[c3444c]: / pretrain / train.py

Download this file

301 lines (266 with data), 12.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from data_util import UMLSDataset, fixed_length_dataloader
from model import UMLSPretrainedModel
from transformers import AdamW, get_linear_schedule_with_warmup, get_cosine_schedule_with_warmup, get_constant_schedule_with_warmup
from tqdm import tqdm, trange
import torch
from torch import nn
import time
import os
import numpy as np
import argparse
import time
import pathlib
#import ipdb
# try:
# from torch.utils.tensorboard import SummaryWriter
# except:
from tensorboardX import SummaryWriter
def train(args, model, train_dataloader, umls_dataset):
writer = SummaryWriter(comment='umls')
t_total = args.max_steps
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(
nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters,
lr=args.learning_rate, eps=args.adam_epsilon)
args.warmup_steps = int(args.warmup_steps)
if args.schedule == 'linear':
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
if args.schedule == 'constant':
scheduler = get_constant_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps
)
if args.schedule == 'cosine':
scheduler = get_cosine_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
print("***** Running training *****")
print(" Total Steps =", t_total)
print(" Steps needs to be trained=", t_total - args.shift)
print(" Instantaneous batch size per GPU =", args.train_batch_size)
print(
" Total train batch size (w. parallel, distributed & accumulation) =",
args.train_batch_size
* args.gradient_accumulation_steps,
)
print(" Gradient Accumulation steps =", args.gradient_accumulation_steps)
model.zero_grad()
for i in range(args.shift):
scheduler.step()
global_step = args.shift
while True:
model.train()
epoch_iterator = tqdm(train_dataloader, desc="Iteration", ascii=True)
batch_loss = 0.
batch_sty_loss = 0.
batch_cui_loss = 0.
batch_re_loss = 0.
for _, batch in enumerate(epoch_iterator):
input_ids_0 = batch[0].to(args.device)
input_ids_1 = batch[1].to(args.device)
input_ids_2 = batch[2].to(args.device)
cui_label_0 = batch[3].to(args.device)
cui_label_1 = batch[4].to(args.device)
cui_label_2 = batch[5].to(args.device)
sty_label_0 = batch[6].to(args.device)
sty_label_1 = batch[7].to(args.device)
sty_label_2 = batch[8].to(args.device)
# use batch[9] for re, use batch[10] for rel
if args.use_re:
re_label = batch[9].to(args.device)
else:
re_label = batch[10].to(args.device)
# for item in batch:
# print(item.shape)
loss, (sty_loss, cui_loss, re_loss) = \
model(input_ids_0, input_ids_1, input_ids_2,
cui_label_0, cui_label_1, cui_label_2,
sty_label_0, sty_label_1, sty_label_2,
re_label)
batch_loss = float(loss.item())
batch_sty_loss = float(sty_loss.item())
batch_cui_loss = float(cui_loss.item())
batch_re_loss = float(re_loss.item())
# tensorboardX
writer.add_scalar(
'rel_count', train_dataloader.batch_sampler.rel_sampler_count, global_step=global_step)
writer.add_scalar('batch_loss', batch_loss,
global_step=global_step)
writer.add_scalar('batch_sty_loss', batch_sty_loss,
global_step=global_step)
writer.add_scalar('batch_cui_loss', batch_cui_loss,
global_step=global_step)
writer.add_scalar('batch_re_loss', batch_re_loss,
global_step=global_step)
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
epoch_iterator.set_description("Rel_count: %s, Loss: %0.4f, Sty: %0.4f, Cui: %0.4f, Re: %0.4f" %
(train_dataloader.batch_sampler.rel_sampler_count, batch_loss, batch_sty_loss, batch_cui_loss, batch_re_loss))
if (global_step + 1) % args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(
model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if global_step % args.save_step == 0 and global_step > 0:
save_path = os.path.join(
args.output_dir, f'model_{global_step}.pth')
torch.save(model, save_path)
# re_embedding
if args.use_re:
writer.add_embedding(model.re_embedding.weight, metadata=umls_dataset.re2id.keys(
), global_step=global_step, tag="re embedding")
else:
# print(len(umls_dataset.rel2id))
# print(model.re_embedding.weight.shape)
writer.add_embedding(model.re_embedding.weight, metadata=umls_dataset.rel2id.keys(
), global_step=global_step, tag="rel embedding")
# sty_parameter
writer.add_embedding(model.linear_sty.weight, metadata=umls_dataset.sty2id.keys(
), global_step=global_step, tag="sty weight")
if args.max_steps > 0 and global_step > args.max_steps:
return None
return None
def run(args):
torch.manual_seed(args.seed) # cpu
torch.cuda.manual_seed(args.seed) # gpu
np.random.seed(args.seed) # numpy
torch.backends.cudnn.deterministic = True # cudnn
#args.output_dir = args.output_dir + "_" + str(int(time.time()))
# dataloader
if args.lang == "eng":
lang = ["ENG"]
if args.lang == "all":
lang = None
assert args.model_name_or_path.find("bio") == -1, "Should use multi-language model"
umls_dataset = UMLSDataset(
umls_folder=args.umls_dir, model_name_or_path=args.model_name_or_path, lang=lang, json_save_path=args.output_dir)
umls_dataloader = fixed_length_dataloader(
umls_dataset, fixed_length=args.train_batch_size, num_workers=args.num_workers)
if args.use_re:
rel_label_count = len(umls_dataset.re2id)
else:
rel_label_count = len(umls_dataset.rel2id)
model_load = False
if os.path.exists(args.output_dir):
save_list = []
for f in os.listdir(args.output_dir):
if f[0:5] == "model" and f[-4:] == ".pth":
save_list.append(int(f[6:-4]))
if len(save_list) > 0:
args.shift = max(save_list)
if os.path.exists(os.path.join(args.output_dir, 'last_model.pth')):
model = torch.load(os.path.join(
args.output_dir, 'last_model.pth')).to(args.device)
model_load = True
else:
model = torch.load(os.path.join(
args.output_dir, f'model_{max(save_list)}.pth')).to(args.device)
model_load = True
if not model_load:
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
model = UMLSPretrainedModel(device=args.device, model_name_or_path=args.model_name_or_path,
cui_label_count=len(umls_dataset.cui2id),
rel_label_count=rel_label_count,
sty_label_count=len(umls_dataset.sty2id),
re_weight=args.re_weight,
sty_weight=args.sty_weight).to(args.device)
args.shift = 0
model_load = True
if args.do_train:
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
train(args, model, umls_dataloader, umls_dataset)
torch.save(model, os.path.join(args.output_dir, 'last_model.pth'))
return None
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--umls_dir",
default="../umls",
type=str,
help="UMLS dir",
)
parser.add_argument(
"--model_name_or_path",
default="../biobert_v1.1",
type=str,
help="Path to pre-trained model or shortcut name selected in the list: ",
)
parser.add_argument(
"--output_dir",
default="output",
type=str,
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--save_step",
default=25000,
type=int,
help="Save step",
)
# Other parameters
parser.add_argument(
"--max_seq_length",
default=32,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument("--do_train", default=True, type=bool, help="Whether to run training.")
parser.add_argument(
"--train_batch_size", default=256, type=int, help="Batch size per GPU/CPU for training.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=8,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--learning_rate", default=2e-5,
type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.01,
type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8,
type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0,
type=float, help="Max gradient norm.")
parser.add_argument(
"--max_steps",
default=1000000,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=10000,
help="Linear warmup over warmup_steps or a float.")
parser.add_argument("--device", type=str, default='cuda:1', help="device")
parser.add_argument("--seed", type=int, default=72,
help="random seed for initialization")
parser.add_argument("--schedule", type=str, default="linear",
choices=["linear", "cosine", "constant"], help="Schedule.")
parser.add_argument("--trans_margin", type=float, default=1.0,
help="Margin of TransE.")
parser.add_argument("--use_re", default=False, type=bool,
help="Whether to use re or rel.")
parser.add_argument("--num_workers", default=1, type=int,
help="Num workers for data loader, only 0 can be used for Windows")
parser.add_argument("--lang", default='eng', type=str, choices=["eng", "all"],
help="language range, eng or all")
parser.add_argument("--sty_weight", type=float, default=0.0,
help="Weight of sty.")
parser.add_argument("--re_weight", type=float, default=1.0,
help="Weight of re.")
args = parser.parse_args()
run(args)
if __name__ == "__main__":
main()