[c3444c]: / test / umnsrs / umnsrs_eval.py

Download this file

177 lines (147 with data), 6.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import sys
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModel, AutoConfig
from tqdm import tqdm
from scipy.stats.stats import pearsonr, spearmanr
batch_size = 32
device = "cuda:0"
def main():
filename = sys.argv[1]
print(filename)
if filename[-3:] in ["vec", "txt", "pkl", "bin"]:
model = load_vectors(filename)
tokenizer = None
else:
try:
config = AutoConfig.from_pretrained(filename)
model = AutoModel.from_pretrained(filename, config=config).to(device)
except BaseException:
model = torch.load(os.path.join(filename, 'pytorch_model.bin')).to(device)
try:
tokenizer = AutoTokenizer.from_pretrained(filename)
except BaseException:
tokenizer = AutoTokenizer.from_pretrained(
os.path.join(filename, "../"))
eval(model, tokenizer, './umnsrs/data/umnsrs-rel.txt')
eval(model, tokenizer, './umnsrs/data/umnsrs-sim.txt')
eval(model, tokenizer, './umnsrs/data/umnsrs-sim_noRepeat.txt')
def load_vectors(filename):
if filename.find('bin') >= 0:
from gensim import models
W = models.KeyedVectors.load_word2vec_format(filename, binary=True)
return W
if filename.find('pkl') >= 0:
import pickle
with open(filename, 'rb') as f:
W = pickle.load(f)
return W
W = {}
with open(filename, 'r') as f:
for i, line in enumerate(f.readlines()):
if i == 0:
continue
toks = line.strip().split()
w = toks[0]
vec = np.array(map(float, toks[1:]))
W[w] = vec
return W
"""
def get_bert_embed(phrase, m, tok):
input_id = tok.encode_plus(
phrase, max_length=32, add_special_tokens=True,
truncation=True, pad_to_max_length=True, return_tensors="pt")['input_ids']
m.eval()
with torch.no_grad():
embed = m(input_id)[1].cpu().detach()[0].numpy()
return embed / (norm(embed) + 1e-9)
"""
def norm(v):
return np.dot(v, v)**0.5
def sim(v0, v1):
return np.dot(v0, v1)
def embed(phrase, dim, W):
words = phrase.split()
vectors = [W[w] for w in words if (w in W)]
v = sum(vectors, np.zeros(dim))
return v / (norm(v) + 1e-9)
def get_simlarity_bert(input_0, input_1, m, tok):
input_ids_0 = []
input_ids_1 = []
for phrase in input_0:
input_ids_0.append(tok.encode_plus(
phrase, max_length=32, add_special_tokens=True,
truncation=True, pad_to_max_length=True)['input_ids'])
for phrase in input_1:
input_ids_1.append(tok.encode_plus(
phrase, max_length=32, add_special_tokens=True,
truncation=True, pad_to_max_length=True)['input_ids'])
count = len(input_0)
now_count = 0
m.eval()
with torch.no_grad():
while now_count < count:
input_gpu_0 = torch.LongTensor(input_ids_0[now_count:min(
now_count + batch_size, count)]).to(device)
input_gpu_1 = torch.LongTensor(input_ids_1[now_count:min(
now_count + batch_size, count)]).to(device)
embed_0 = m(input_gpu_0)[1]
embed_1 = m(input_gpu_1)[1]
embed_0_norm = torch.norm(embed_0, p=2, dim=1, keepdim=True).clamp(min=1e-12)
embed_0 = torch.div(embed_0, embed_0_norm)
embed_1_norm = torch.norm(embed_1, p=2, dim=1, keepdim=True).clamp(min=1e-12)
embed_1 = torch.div(embed_1, embed_1_norm)
embed_0_mean = torch.mean(m(input_gpu_0)[0], dim=1)
embed_1_mean = torch.mean(m(input_gpu_1)[0], dim=1)
embed_0_mean_norm = torch.norm(embed_0_mean, p=2, dim=1, keepdim=True).clamp(min=1e-12)
embed_0_mean = torch.div(embed_0_mean, embed_0_mean_norm)
embed_1_mean_norm = torch.norm(embed_1_mean, p=2, dim=1, keepdim=True).clamp(min=1e-12)
embed_1_mean = torch.div(embed_1_mean, embed_1_mean_norm)
if now_count == 0:
sim = torch.sum(torch.mul(embed_0, embed_1), dim=1)
sim_mean = torch.sum(torch.mul(embed_0_mean, embed_1_mean), dim=1)
#print(sim)
else:
tmp = torch.sum(torch.mul(embed_0, embed_1), dim=1)
tmp_mean = torch.sum(torch.mul(embed_0_mean, embed_1_mean), dim=1)
sim = torch.cat((sim, tmp), dim=0)
sim_mean = torch.cat((sim_mean, tmp_mean), dim=0)
#print(tmp)
now_count = min(now_count + batch_size, count)
return sim.cpu().detach().numpy(), sim_mean.cpu().detach().numpy()
def get_simlarity(input_0, input_1, m, dim):
emb_0 = np.array([embed(x, dim, m) for x in input_0])
emb_1 = np.array([embed(x, dim, m) for x in input_1])
return np.sum(emb_0 * emb_1, axis=1)
def eval(m, tok, task_name):
with open(task_name, "r", encoding="utf-8") as f:
lines = f.readlines()
lines = [line.strip().split("\t") for line in lines]
ys = [float(line[2]) for line in lines]
input_term = []
for line in lines:
input_term.append(line[0])
for line in lines:
input_term.append(line[1])
if tok is not None:
preds_cls, preds_mean = get_simlarity_bert(
input_term[0:len(lines)], input_term[len(lines):], m, tok)
c_cls, p_cls = spearmanr(preds_cls, ys)
print(task_name, "CLS", c_cls, p_cls)
c_mean, p_mean = spearmanr(preds_mean, ys)
print(task_name, "MEAN", c_mean, p_mean)
else:
try:
dim = m.values()[0].shape[0]
except BaseException:
try:
dim = m.vector_size
except BaseException:
dim = 300
preds = get_simlarity(
input_term[0:len(lines)], input_term[len(lines):], m, dim)
c, p = spearmanr(preds, ys)
print(task_name, c, p)
if __name__ == "__main__":
main()