[c3444c]: / test / embeddings_reimplement / ndfrt_analysis.py

Download this file

443 lines (379 with data), 17.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
from transformers import AutoConfig, AutoModel, AutoTokenizer
import torch
from tqdm import tqdm
import numpy as np
import sys
sys.path.append("../../pretrain")
from load_umls import UMLS
from nltk.tokenize import word_tokenize
import os
import ipdb
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
batch_size = 512
max_seq_length = 32
def get_drug_diseases_to_check(concept_filename):
query_to_targets = {}
with open(concept_filename, 'r') as infile:
data = infile.readlines()
for row in data:
drug, diseases = row.strip().split(':')
diseases = diseases.split(',')[:-1]
disease_cui_set = set([])
for disease in diseases:
disease_cui_set.add(disease)
if len(disease_cui_set) > 0:
query_to_targets[drug] = disease_cui_set
cui_list = set()
for query, targets in query_to_targets.items():
cui_list.update([query])
cui_list.update(targets)
return query_to_targets, list(cui_list)
def normalize(tensor):
norm = torch.norm(tensor, p=2, dim=1, keepdim=True).clamp(min=1e-12)
return torch.div(tensor, norm)
def calculate_mrm_ndfrt_origin(term_embedding, cui_list, query_to_targets, k):
return calculate_mrm_ndfrt_delta(term_embedding, cui_list, query_to_targets, None, k)
def calculate_mrm_ndfrt_q2t(term_embedding, cui_list, query_to_targets, k):
delta_list = []
term_embedding = torch.FloatTensor(term_embedding).to(device)
norm_embedding = normalize(term_embedding)
id2cui = {i:cui_list[i] for i in range(len(cui_list))}
cui2id = {cui:index for index, cui in id2cui.items()}
for query, targets in query_to_targets.items():
if query in cui2id:
for target in targets:
if target in cui2id:
delta = term_embedding[cui2id[query]] - term_embedding[cui2id[target]]
delta_list.append(delta)
overall_output = []
for _, delta in tqdm(enumerate(delta_list)):
output = []
for query, targets in query_to_targets.items():
if query in cui2id:
find_embedding = term_embedding[cui2id[query]] - delta
similarity = torch.matmul(norm_embedding, find_embedding)
_, indices = torch.topk(similarity, k=k + 1)
find_cui = [cui_list[index] for index in indices[1:]]
score = 0.
for cui in find_cui:
if cui in targets:
score = 1.
break
output.append(score)
if len(output) > 0:
score = sum(output) / len(output)
else:
score = 0.
overall_output.append(score)
if len(overall_output) > 0:
overall_score = sum(overall_output) / len(overall_output)
overall_max = max(overall_output)
else:
overall_score = 0
overall_max = 0
return overall_score, overall_max
def calculate_mrm_ndfrt_delta(term_embedding, cui_list, query_to_targets, delta=None, k=40):
term_embedding = torch.FloatTensor(term_embedding).to(device)
norm_embedding = normalize(term_embedding)
id2cui = {i:cui_list[i] for i in range(len(cui_list))}
cui2id = {cui:index for index, cui in id2cui.items()}
output = []
check_count = 0
for query, targets in query_to_targets.items():
if query in cui2id:
query_embedding = term_embedding[cui2id[query]]
if delta is None:
find_embedding = query_embedding
else:
find_embedding = query_embedding - torch.FloatTensor(delta).to(device)
similarity = torch.matmul(norm_embedding, find_embedding)
_, indices = torch.topk(similarity, k=k + 1)
find_cui = [cui_list[index] for index in indices[1:]]
score = 0.
for cui in find_cui:
if cui in targets:
score = 1.
break
output.append(score)
check_count += 1
del term_embedding
if len(output) > 0:
score = sum(output) / len(output)
else:
score = 0.
"""
print(f"Check count: {check_count}")
print(score)
"""
return score
def mrm_ndfrt_cui(cui_embedding, umls, cui_list, query_to_targets, k, method):
w, _ = load_embedding(cui_embedding)
new_cui_list = [cui for cui in cui_list if cui in w]
term_embedding = np.array([w[cui] for cui in new_cui_list])
print(f"Cui count:{len(new_cui_list)}")
if method == "origin":
score = calculate_mrm_ndfrt_origin(term_embedding, new_cui_list, query_to_targets, k)
print(f"Origin: {score}")
if method == "all":
score = calculate_mrm_ndfrt_q2t(term_embedding, new_cui_list, query_to_targets, k)
average_score, max_score = score
print(f"Average: {average_score}")
print(f"Max: {max_score}")
return score
def mrm_ndfrt_word(word_embedding, umls, cui_list, query_to_targets, k, method):
w, dim = load_embedding(word_embedding)
print("Tokenize and calculate avg embedding.")
cui_str = [[word for word in word_tokenize(
list(umls.cui2str[cui])[0]) if word in w] for cui in cui_list if cui in umls.cui2str]
new_cui_list = []
check_count = 0
for index, des in enumerate(cui_str):
if len(des) > 0:
tmp_emb = np.zeros((dim))
for word in des:
tmp_emb += w[word]
if check_count == 0:
term_embedding = tmp_emb
else:
term_embedding = np.concatenate(
(term_embedding, tmp_emb), axis=0)
check_count += 1
new_cui_list.append(cui_list[index])
term_embedding = term_embedding.reshape((-1, dim))
print(f"Cui count:{len(new_cui_list)}")
if method == "origin":
score = calculate_mrm_ndfrt_origin(term_embedding, new_cui_list, query_to_targets, k)
print(f"Origin: {score}")
if method == "all":
score = calculate_mrm_ndfrt_q2t(term_embedding, new_cui_list, query_to_targets, k)
average_score, max_score = score
print(f"Average: {average_score}")
print(f"Max: {max_score}")
return score
def mrm_ndfrt_bert(bert_embedding, umls, cui_list, query_to_targets, k, method, summary_method):
print(summary_method)
model, tokenizer = load_bert(bert_embedding)
model.eval()
input_ids = []
new_cui_list = []
for cui in cui_list:
if cui in umls.cui2str:
input_ids.append(tokenizer.encode_plus(
list(umls.cui2str[cui])[
0], max_length=max_seq_length, add_special_tokens=True,
truncation=True, pad_to_max_length=True)['input_ids'])
new_cui_list.append(cui)
count = len(input_ids)
now_count = 0
# with tqdm(total=count) as pbar:
with torch.no_grad():
while now_count < count:
input_gpu_0 = torch.LongTensor(input_ids[now_count:min(
now_count + batch_size, count)]).to(device)
if summary_method == "CLS":
embed = model(input_gpu_0)[1]
if summary_method == "MEAN":
embed = torch.mean(model(input_gpu_0)[0], dim=1)
embed_np = embed.cpu().detach().numpy()
if now_count == 0:
term_embedding = embed_np
else:
term_embedding = np.concatenate((term_embedding, embed_np), axis=0)
update = min(now_count + batch_size, count) - now_count
now_count = now_count + update
# pbar.update(update)
print(f"Cui count:{len(new_cui_list)}")
if method == "origin":
score = calculate_mrm_ndfrt_origin(term_embedding, new_cui_list, query_to_targets, k)
print(f"Origin: {score}")
if method == "all":
score = calculate_mrm_ndfrt_q2t(term_embedding, new_cui_list, query_to_targets, k)
average_score, max_score = score
print(f"Average: {average_score}")
print(f"Max: {max_score}")
if method in ["may_treat", "may_prevent"]:
beta_path = os.path.join(bert_embedding, "run", "1000000", "rel embedding")
with open(os.path.join(beta_path, "metadata.tsv"), "r", encoding="utf-8") as f:
metadata = f.readlines()
metadata = [line.strip() for line in metadata]
with open(os.path.join(beta_path, "tensors.tsv"), "r", encoding="utf-8") as f:
tensor = f.readlines()
tensor = [[float(num) for num in line.split("\t")] for line in tensor]
for index, title in enumerate(metadata):
if title == method:
delta = tensor[index]
score = calculate_mrm_ndfrt_delta(term_embedding, new_cui_list, query_to_targets, delta, k)
print(f"{method}: {score}")
return score
def mrm_ndfrt(embedding_list, embedding_type_list, concept_filename, k=40, check_intersection=True):
if check_intersection:
if not os.path.exists("intersection.txt"):
intersection_cui = get_intersection(
embedding_list, embedding_type_list)
with open("intersection.txt", "w", encoding="utf-8") as f:
for cui in intersection_cui:
f.write(cui.strip() + "\n")
else:
with open("intersection.txt", "r", encoding="utf-8") as f:
lines = f.readlines()
intersection_cui = [line.strip() for line in lines]
query_to_targets, cui_list = get_drug_diseases_to_check(concept_filename)
umls = UMLS("../../umls", only_load_dict=True) # source_range='SNOMEDCT_US')#, only_load_dict=True)
if check_intersection:
cui_list = [cui for cui in cui_list if cui in intersection_cui]
#cui_list = [cui for cui in umls.cui2str if umls.cui2sty[cui] in sty_list]
#cui_list = [cui for cui in cui_list if cui in umls.sty_list]
"""
for cui in cui_list:
if not cui in umls.cui2str:
print(cui)
ipdb.set_trace()
"""
opt = []
"""
# Origin
print("ORIGIN")
for index, embedding in enumerate(embedding_list):
if embedding_type_list[index].lower() == "cui":
opt.append(mrm_ndfrt_cui(embedding, umls, cui_list, query_to_targets, k, "origin"))
if embedding_type_list[index].lower() == "word":
opt.append(mrm_ndfrt_word(embedding, umls, cui_list, query_to_targets, k, "origin"))
if embedding_type_list[index].lower() == "bert":
#opt.append(mrm_ndfrt_bert(embedding, umls, cui_list,
# query_to_targets, k, "origin", summary_method="MEAN"))
opt.append(mrm_ndfrt_bert(embedding, umls, cui_list,
query_to_targets, k, "origin", summary_method="CLS"))
# For UMLSBert
for index, embedding in enumerate(embedding_list):
if embedding_type_list[index].lower() == "bert":
print("BETA")
beta_path = os.path.join(embedding, "run", "1000000", "rel embedding")
if os.path.exists(beta_path):
if concept_filename.find('treat') >= 0:
method = "may_treat"
else:
method = "may_prevent"
#opt.append(mrm_ndfrt_bert(embedding, umls, cui_list,
# query_to_targets, k, method, summary_method="MEAN"))
opt.append(mrm_ndfrt_bert(embedding, umls, cui_list,
query_to_targets, k, method, summary_method="CLS"))
# For average and max
print("ALL")
for index, embedding in enumerate(embedding_list):
if embedding_type_list[index].lower() == "cui":
opt.append(mrm_ndfrt_cui(embedding, umls, cui_list, query_to_targets, k, "all"))
if embedding_type_list[index].lower() == "word":
opt.append(mrm_ndfrt_word(embedding, umls, cui_list, query_to_targets, k, "all"))
if embedding_type_list[index].lower() == "bert":
#opt.append(mrm_ndfrt_bert(embedding, umls, cui_list,
# query_to_targets, k, "all", summary_method="MEAN"))
opt.append(mrm_ndfrt_bert(embedding, umls, cui_list,
query_to_targets, k, "all", summary_method="CLS"))
"""
for index, embedding in enumerate(embedding_list):
if embedding_type_list[index].lower() == "cui":
opt.append(mrm_ndfrt_cui(embedding, umls, cui_list, query_to_targets, k, "origin"))
opt.append(mrm_ndfrt_cui(embedding, umls, cui_list, query_to_targets, k, "all"))
if embedding_type_list[index].lower() == "word":
opt.append(mrm_ndfrt_word(embedding, umls, cui_list, query_to_targets, k, "origin"))
opt.append(mrm_ndfrt_word(embedding, umls, cui_list, query_to_targets, k, "all"))
if embedding_type_list[index].lower() == "bert":
opt.append(mrm_ndfrt_bert(embedding, umls, cui_list,
query_to_targets, k, "origin", summary_method="CLS"))
beta_path = os.path.join(embedding, "run", "1000000", "rel embedding")
if os.path.exists(beta_path):
if concept_filename.find('treat') >= 0:
method = "may_treat"
else:
method = "may_prevent"
opt.append(mrm_ndfrt_bert(embedding, umls, cui_list,
query_to_targets, k, method, summary_method="CLS"))
opt.append(mrm_ndfrt_bert(embedding, umls, cui_list,
query_to_targets, k, "all", summary_method="CLS"))
return opt
def load_embedding(filename):
print(filename)
if filename.find('bin') >= 0:
from gensim import models
W = models.KeyedVectors.load_word2vec_format(filename, binary=True)
dim = W.vector_size
return W, dim
if filename.find('pkl') >= 0:
import pickle
with open(filename, 'rb') as f:
W = pickle.load(f)
for key, value in W.items():
W[key] = np.array(list(map(float, value[1:-1].split(","))))
dim = len(list(W.values())[0])
return W, dim
W = {}
with open(filename, 'r') as f:
for i, line in enumerate(f.readlines()):
if i == 0:
continue
toks = line.strip().split()
w = toks[0]
vec = np.array(list(map(float, toks[1:])))
W[w] = vec
dim = len(list(W.values())[0])
return W, dim
def load_bert(model_name_or_path):
print(model_name_or_path)
try:
config = AutoConfig.from_pretrained(model_name_or_path)
model = AutoModel.from_pretrained(
model_name_or_path, config=config).to(device)
except BaseException:
model = torch.load(os.path.join(
model_name_or_path, 'pytorch_model.bin')).to(device)
try:
model.output_hidden_states = False
except BaseException:
pass
try:
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
except BaseException:
tokenizer = AutoTokenizer.from_pretrained(
os.path.join(model_name_or_path, "../"))
return model, tokenizer
def get_intersection(embedding_list, embedding_type_list):
intersection_cui = set()
checker = True
for index, embed in enumerate(embedding_list):
if embedding_type_list[index] == "cui":
w, _ = load_embedding(embed)
if checker:
intersection_cui = set(list(w.keys()))
checker = False
else:
intersection_cui = set(
list(w.keys())).intersection(intersection_cui)
print(f"Intersection count: {len(intersection_cui)}")
return list(intersection_cui)
if __name__ == "__main__":
"""
embedding_list = ["../../embeddings/claims_codes_hs_300.txt",
"../../embeddings/GoogleNews-vectors-negative300.bin",
"../../models/2020_eng"]
embedding_type_list = ["cui", "word", "bert"]
mrm_ndfrt(embedding_list, embedding_type_list, "may_prevent_cui.txt", check_intersection=False)
"""
embedding_list = ["../../embeddings/wikipedia-pubmed-and-PMC-w2v.bin",
"../../embeddings/bio_nlp_vec/PubMed-shuffle-win-2.bin",
"../../embeddings/bio_nlp_vec/PubMed-shuffle-win-30.bin"]
embedding_type_list = ["word", "word", "word"]
embedding_list += ["../../embeddings/DeVine_etal_200.txt",
"/home/yz/pretraining_models/cui2vec.pkl"]
embedding_type_list += ["cui", "cui"]
embedding_list += ["../../models/2020_all",
"/home/yz/pretraining_models/bert-base-cased",
"/home/yz/pretraining_models/biobert_v1.1",
"/home/yz/pretraining_models/BiomedNLP-PubMedBERT-base-uncased-abstract",
"/home/yz/pretraining_models/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
"/home/yz/pretraining_models/kexinghuang_clinical",
"emilyalsentzer/Bio_ClinicalBERT"]
embedding_type_list += ["bert"] * 7
#mrm_ndfrt(embedding_list, embedding_type_list, "may_treat_cui.txt", check_intersection=True)
mrm_ndfrt(embedding_list, embedding_type_list, "may_treat_cui.txt", check_intersection=False)
#mrm_ndfrt(embedding_list[-6:], embedding_type_list[-6:], "may_prevent_cui.txt", check_intersection=True)
#mrm_ndfrt(embedding_list, embedding_type_list, "may_prevent_cui.txt", check_intersection=False)