|
a |
|
b/test/embeddings_reimplement/mcsm.py |
|
|
1 |
from transformers import AutoConfig, AutoModel, AutoTokenizer |
|
|
2 |
import torch |
|
|
3 |
from tqdm import tqdm |
|
|
4 |
import numpy as np |
|
|
5 |
import sys |
|
|
6 |
sys.path.append("../../pretrain") |
|
|
7 |
from load_umls import UMLS |
|
|
8 |
from nltk.tokenize import word_tokenize |
|
|
9 |
import ipdb |
|
|
10 |
import os |
|
|
11 |
|
|
|
12 |
|
|
|
13 |
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu") |
|
|
14 |
log_list = 1 / np.log2(list(range(2, 1001, 1))) |
|
|
15 |
|
|
|
16 |
batch_size = 512 |
|
|
17 |
max_seq_length = 32 |
|
|
18 |
|
|
|
19 |
# umls = UMLS("../../umls", source_range='SNOMEDCT_US') |
|
|
20 |
t_list = ['Pharmacologic Substance', 'Disease or Syndrome', |
|
|
21 |
'Neoplastic Process', 'Clinical Drug', 'Finding', 'Injury or Poisoning'] |
|
|
22 |
|
|
|
23 |
|
|
|
24 |
def mcsm(embedding_list, embedding_type_list, type_list=t_list, k=40, lang_range=['ENG'], check_intersection=False): |
|
|
25 |
if check_intersection: |
|
|
26 |
if not os.path.exists("intersection.txt"): |
|
|
27 |
intersection_cui = get_intersection( |
|
|
28 |
embedding_list, embedding_type_list) |
|
|
29 |
with open("intersection.txt", "w", encoding="utf-8") as f: |
|
|
30 |
for cui in intersection_cui: |
|
|
31 |
f.write(cui.strip() + "\n") |
|
|
32 |
else: |
|
|
33 |
with open("intersection.txt", "r", encoding="utf-8") as f: |
|
|
34 |
lines = f.readlines() |
|
|
35 |
intersection_cui = [line.strip() for line in lines] |
|
|
36 |
|
|
|
37 |
umls = UMLS("../../umls", source_range='SNOMEDCT_US', |
|
|
38 |
lang_range=lang_range) |
|
|
39 |
if check_intersection: |
|
|
40 |
cui_list = [cui for cui in intersection_cui |
|
|
41 |
if cui in umls.cui2sty and umls.cui2sty[cui] in type_list] |
|
|
42 |
else: |
|
|
43 |
cui_list = [cui for cui, sty in umls.cui2sty.items() |
|
|
44 |
if sty in type_list] |
|
|
45 |
opt = [] |
|
|
46 |
for index, embedding in enumerate(embedding_list): |
|
|
47 |
if embedding_type_list[index].lower() == "cui": |
|
|
48 |
opt.append(mcsm_cui(embedding, umls, cui_list, type_list, k)) |
|
|
49 |
if embedding_type_list[index].lower() == "word": |
|
|
50 |
opt.append(mcsm_word(embedding, umls, cui_list, type_list, k)) |
|
|
51 |
if embedding_type_list[index].lower() == "bert": |
|
|
52 |
opt.append(mcsm_bert(embedding, umls, cui_list, |
|
|
53 |
type_list, k, summary_method="MEAN")) |
|
|
54 |
opt.append(mcsm_bert(embedding, umls, cui_list, |
|
|
55 |
type_list, k, summary_method="CLS")) |
|
|
56 |
return opt |
|
|
57 |
|
|
|
58 |
|
|
|
59 |
def mcsm_cui(cui_embedding, umls, cui_list, type_list, k=40): |
|
|
60 |
w, _ = load_embedding(cui_embedding) |
|
|
61 |
if cui_list is None: |
|
|
62 |
cui_list = list(w.keys()) |
|
|
63 |
print(f"Check cui count:{len(cui_list)}") |
|
|
64 |
else: |
|
|
65 |
print(f"All cui count:{len(cui_list)}") |
|
|
66 |
cui_list = list(set(w.keys()).intersection(set(cui_list))) |
|
|
67 |
print(f"Check cui count:{len(cui_list)}") |
|
|
68 |
|
|
|
69 |
term_embedding = np.array([w[cui] for cui in cui_list]) |
|
|
70 |
term_type = [umls.cui2sty[cui] for cui in cui_list] |
|
|
71 |
|
|
|
72 |
return calculate_mcsm(term_embedding, term_type, type_list, k=k) |
|
|
73 |
|
|
|
74 |
|
|
|
75 |
def mcsm_word(word_embedding, umls, cui_list, type_list, k=40): |
|
|
76 |
w, dim = load_embedding(word_embedding) |
|
|
77 |
|
|
|
78 |
print(f"All cui count:{len(cui_list)}") |
|
|
79 |
cui_str = [[word for word in word_tokenize( |
|
|
80 |
list(umls.cui2str[cui])[0]) if word in w] for cui in cui_list] |
|
|
81 |
|
|
|
82 |
check_count = 0 |
|
|
83 |
term_type = [] |
|
|
84 |
for index, cui in tqdm(enumerate(cui_str)): |
|
|
85 |
if len(cui) > 0: |
|
|
86 |
term_type.append(umls.cui2sty[cui_list[index]]) |
|
|
87 |
|
|
|
88 |
tmp_emb = np.zeros((dim)) |
|
|
89 |
for word in cui: |
|
|
90 |
tmp_emb += w[word] |
|
|
91 |
|
|
|
92 |
if check_count == 0: |
|
|
93 |
term_embedding = tmp_emb |
|
|
94 |
else: |
|
|
95 |
term_embedding = np.concatenate( |
|
|
96 |
(term_embedding, tmp_emb), axis=0) |
|
|
97 |
check_count += 1 |
|
|
98 |
""" |
|
|
99 |
if check_count > 500: |
|
|
100 |
break |
|
|
101 |
""" |
|
|
102 |
term_embedding = term_embedding.reshape((-1, dim)) |
|
|
103 |
|
|
|
104 |
print(f"Check cui count:{check_count}") |
|
|
105 |
|
|
|
106 |
return calculate_mcsm(term_embedding, term_type, type_list, k=k) |
|
|
107 |
|
|
|
108 |
|
|
|
109 |
def mcsm_bert(bert_embedding, umls, cui_list, type_list, k=40, summary_method="MEAN"): |
|
|
110 |
print(f"Check cui count:{len(cui_list)}") |
|
|
111 |
model, tokenizer = load_bert(bert_embedding) |
|
|
112 |
model.eval() |
|
|
113 |
|
|
|
114 |
input_ids = [] |
|
|
115 |
for cui in tqdm(cui_list): |
|
|
116 |
input_ids.append(tokenizer.encode_plus( |
|
|
117 |
list(umls.cui2str[cui])[ |
|
|
118 |
0], max_length=max_seq_length, add_special_tokens=True, |
|
|
119 |
truncation=True, pad_to_max_length=True)['input_ids']) |
|
|
120 |
|
|
|
121 |
count = len(input_ids) |
|
|
122 |
now_count = 0 |
|
|
123 |
with tqdm(total=count) as pbar: |
|
|
124 |
with torch.no_grad(): |
|
|
125 |
while now_count < count: |
|
|
126 |
input_gpu_0 = torch.LongTensor(input_ids[now_count:min( |
|
|
127 |
now_count + batch_size, count)]).to(device) |
|
|
128 |
if summary_method == "CLS": |
|
|
129 |
embed = model(input_gpu_0)[1] |
|
|
130 |
if summary_method == "MEAN": |
|
|
131 |
embed = torch.mean(model(input_gpu_0)[0], dim=1) |
|
|
132 |
embed_np = embed.cpu().detach().numpy() |
|
|
133 |
if now_count == 0: |
|
|
134 |
term_embedding = embed_np |
|
|
135 |
else: |
|
|
136 |
term_embedding = np.concatenate((term_embedding, embed_np), axis=0) |
|
|
137 |
update = min(now_count + batch_size, count) - now_count |
|
|
138 |
now_count = now_count + update |
|
|
139 |
pbar.update(update) |
|
|
140 |
|
|
|
141 |
term_type = [umls.cui2sty[cui] for cui in cui_list] |
|
|
142 |
return calculate_mcsm(term_embedding, term_type, type_list, k=k) |
|
|
143 |
|
|
|
144 |
|
|
|
145 |
def summary(opt): |
|
|
146 |
new_opt = {k: (np.mean(v), np.std(v)) for k, v in opt.items()} |
|
|
147 |
return new_opt |
|
|
148 |
|
|
|
149 |
|
|
|
150 |
def calculate_mcsm(term_embedding, term_type, target_type_list, k): |
|
|
151 |
# term_embedding: term_count * embedding_dim |
|
|
152 |
# term_type: term_count |
|
|
153 |
term_embedding = torch.FloatTensor(term_embedding).to(device) |
|
|
154 |
embedding_norm = torch.norm( |
|
|
155 |
term_embedding, p=2, dim=1, keepdim=True).clamp(min=1e-12) |
|
|
156 |
term_embedding = torch.div(term_embedding, embedding_norm) |
|
|
157 |
del embedding_norm |
|
|
158 |
output = {target_type: [] for target_type in target_type_list} |
|
|
159 |
for index, t in tqdm(enumerate(term_type)): |
|
|
160 |
if t in target_type_list: |
|
|
161 |
now = term_embedding[index] |
|
|
162 |
score = 0.0 |
|
|
163 |
similarity = torch.matmul(term_embedding, now) |
|
|
164 |
# The most similar term is itself |
|
|
165 |
_, indices = torch.topk(similarity, k=k + 1) |
|
|
166 |
for i in range(1, k + 1, 1): |
|
|
167 |
if term_type[indices[i]] == t: |
|
|
168 |
score += log_list[i - 1] |
|
|
169 |
output[t].append(score) |
|
|
170 |
del term_embedding |
|
|
171 |
|
|
|
172 |
output = summary(output) |
|
|
173 |
print(output) |
|
|
174 |
return output |
|
|
175 |
|
|
|
176 |
|
|
|
177 |
def load_embedding(filename): |
|
|
178 |
print(filename) |
|
|
179 |
if filename.find('bin') >= 0: |
|
|
180 |
from gensim import models |
|
|
181 |
W = models.KeyedVectors.load_word2vec_format(filename, binary=True) |
|
|
182 |
dim = W.vector_size |
|
|
183 |
return W, dim |
|
|
184 |
|
|
|
185 |
if filename.find('pkl') >= 0: |
|
|
186 |
import pickle |
|
|
187 |
with open(filename, 'rb') as f: |
|
|
188 |
W = pickle.load(f) |
|
|
189 |
for key, value in W.items(): |
|
|
190 |
W[key] = np.array(list(map(float, value[1:-1].split(",")))) |
|
|
191 |
dim = len(list(W.values())[0]) |
|
|
192 |
return W, dim |
|
|
193 |
|
|
|
194 |
W = {} |
|
|
195 |
with open(filename, 'r') as f: |
|
|
196 |
for i, line in enumerate(f.readlines()): |
|
|
197 |
if i == 0: |
|
|
198 |
continue |
|
|
199 |
toks = line.strip().split() |
|
|
200 |
w = toks[0] |
|
|
201 |
vec = np.array(list(map(float, toks[1:]))) |
|
|
202 |
W[w] = vec |
|
|
203 |
dim = len(list(W.values())[0]) |
|
|
204 |
return W, dim |
|
|
205 |
|
|
|
206 |
|
|
|
207 |
def load_bert(model_name_or_path): |
|
|
208 |
print(model_name_or_path) |
|
|
209 |
try: |
|
|
210 |
config = AutoConfig.from_pretrained(model_name_or_path) |
|
|
211 |
model = AutoModel.from_pretrained( |
|
|
212 |
model_name_or_path, config=config).to(device) |
|
|
213 |
except BaseException: |
|
|
214 |
model = torch.load(os.path.join( |
|
|
215 |
model_name_or_path, 'pytorch_model.bin')).to(device) |
|
|
216 |
|
|
|
217 |
try: |
|
|
218 |
model.output_hidden_states = False |
|
|
219 |
except BaseException: |
|
|
220 |
pass |
|
|
221 |
|
|
|
222 |
try: |
|
|
223 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) |
|
|
224 |
except BaseException: |
|
|
225 |
tokenizer = AutoTokenizer.from_pretrained( |
|
|
226 |
os.path.join(model_name_or_path, "../")) |
|
|
227 |
return model, tokenizer |
|
|
228 |
|
|
|
229 |
|
|
|
230 |
def get_intersection(embedding_list, embedding_type_list): |
|
|
231 |
intersection_cui = set() |
|
|
232 |
checker = True |
|
|
233 |
for index, embed in enumerate(embedding_list): |
|
|
234 |
if embedding_type_list[index] == "cui": |
|
|
235 |
w, _ = load_embedding(embed) |
|
|
236 |
if checker: |
|
|
237 |
intersection_cui = set(list(w.keys())) |
|
|
238 |
checker = False |
|
|
239 |
else: |
|
|
240 |
intersection_cui = set( |
|
|
241 |
list(w.keys())).intersection(intersection_cui) |
|
|
242 |
print(f"Intersection count: {len(intersection_cui)}") |
|
|
243 |
return list(intersection_cui) |
|
|
244 |
|
|
|
245 |
|
|
|
246 |
if __name__ == "__main__": |
|
|
247 |
""" |
|
|
248 |
embedding_list = ["../../embeddings/claims_codes_hs_300.txt", |
|
|
249 |
"../../embeddings/GoogleNews-vectors-negative300.bin", |
|
|
250 |
"../../models/2020_eng"] |
|
|
251 |
#embedding_type_list = ["cui", "word", "bert"] |
|
|
252 |
embedding_list = ["../../embeddings/wikipedia-pubmed-and-PMC-w2v.bin", |
|
|
253 |
"../../embeddings/bio_nlp_vec/PubMed-shuffle-win-2.bin", |
|
|
254 |
"../../embeddings/bio_nlp_vec/PubMed-shuffle-win-30.bin"] |
|
|
255 |
embedding_type_list = ["word", "word", "word"] |
|
|
256 |
embedding_list = ["../../embeddings/DeVine_etal_200.txt", |
|
|
257 |
"/home/yz/pretraining_models/cui2vec.pkl"] |
|
|
258 |
embedding_type_list = ["cui", "cui"] |
|
|
259 |
""" |
|
|
260 |
#mcsm([embedding_list[2], embedding_type_list[2]]) |
|
|
261 |
""" |
|
|
262 |
embedding_list = ["../../embeddings/claims_codes_hs_300.txt", |
|
|
263 |
"../../embeddings/DeVine_etal_200.txt", |
|
|
264 |
"/home/yz/pretraining_models/cui2vec.pkl"] |
|
|
265 |
embedding_type_list = ["cui", "cui", "cui"] |
|
|
266 |
mcsm(embedding_list, embedding_type_list, check_intersection=True) |
|
|
267 |
""" |
|
|
268 |
#embedding_list = ["../../models/2020_eng", "../../models/2020_all"] |
|
|
269 |
#mcsm(embedding_list, ["bert"] * 2, check_intersection=True) |
|
|
270 |
|
|
|
271 |
""" |
|
|
272 |
embedding_list = ["../../embeddings/wikipedia-pubmed-and-PMC-w2v.bin", |
|
|
273 |
"../../embeddings/GoogleNews-vectors-negative300.bin", |
|
|
274 |
"../../embeddings/bio_nlp_vec/PubMed-shuffle-win-2.bin", |
|
|
275 |
"../../embeddings/bio_nlp_vec/PubMed-shuffle-win-30.bin"] |
|
|
276 |
mcsm(embedding_list, ["word"] * 4, check_intersection=True) |
|
|
277 |
""" |
|
|
278 |
|
|
|
279 |
embedding_list = ["/home/yz/pretraining_models/bert-base-cased", |
|
|
280 |
"/home/yz/pretraining_models/biobert_v1.1", |
|
|
281 |
"/home/yz/pretraining_models/BiomedNLP-PubMedBERT-base-uncased-abstract", |
|
|
282 |
"/home/yz/pretraining_models/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext", |
|
|
283 |
"/home/yz/pretraining_models/kexinghuang_clinical", |
|
|
284 |
"emilyalsentzer/Bio_ClinicalBERT", |
|
|
285 |
"../../models/UMLSBert_nosty"] |
|
|
286 |
#mcsm(embedding_list, ["bert"] * 6, check_intersection=True) |
|
|
287 |
#mcsm(embedding_list, ["bert"] * 6) |
|
|
288 |
mcsm([embedding_list[-1]], ["bert"]) |