|
a |
|
b/test/embeddings_reimplement/codes_analysis.py |
|
|
1 |
import os |
|
|
2 |
import ipdb |
|
|
3 |
from nltk.tokenize import word_tokenize |
|
|
4 |
from icd9 import ICD9 |
|
|
5 |
from transformers import AutoConfig, AutoModel, AutoTokenizer |
|
|
6 |
import torch |
|
|
7 |
from tqdm import tqdm |
|
|
8 |
import numpy as np |
|
|
9 |
import sys |
|
|
10 |
sys.path.append("../../pretrain") |
|
|
11 |
from load_umls import UMLS |
|
|
12 |
|
|
|
13 |
|
|
|
14 |
tree = ICD9('codes.json') |
|
|
15 |
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu") |
|
|
16 |
log_list = 1 / np.log2(list(range(2, 1001, 1))) |
|
|
17 |
|
|
|
18 |
batch_size = 512 |
|
|
19 |
max_seq_length = 32 |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
def get_icd9_pairs(icd9_set): |
|
|
23 |
icd9_pairs = {} |
|
|
24 |
with open('icd9_grp_file.txt', 'r', encoding="utf-8") as infile: |
|
|
25 |
data = infile.readlines() |
|
|
26 |
for row in data: |
|
|
27 |
codes, name = row.strip().split('#') |
|
|
28 |
name = name.strip() |
|
|
29 |
codes = codes.strip().split(' ') |
|
|
30 |
new_codes = set([]) |
|
|
31 |
for code in codes: |
|
|
32 |
if code in icd9_set: |
|
|
33 |
new_codes.add(code) |
|
|
34 |
elif len(code) > 5 and code[:5] in icd9_set: |
|
|
35 |
new_codes.add(code[:5]) |
|
|
36 |
elif len(code) > 4 and code[:3] in icd9_set: |
|
|
37 |
new_codes.add(code[:3]) |
|
|
38 |
codes = list(new_codes) |
|
|
39 |
|
|
|
40 |
if len(codes) > 1: |
|
|
41 |
for idx, code in enumerate(codes): |
|
|
42 |
if code not in icd9_pairs: |
|
|
43 |
icd9_pairs[code] = set([]) |
|
|
44 |
icd9_pairs[code].update(set(codes[:idx])) |
|
|
45 |
icd9_pairs[code].update(set(codes[idx+1:])) |
|
|
46 |
return icd9_pairs |
|
|
47 |
|
|
|
48 |
|
|
|
49 |
def get_coarse_icd9_pairs(icd9_set): |
|
|
50 |
icd9_pairs = {} |
|
|
51 |
ccs_to_icd9 = {} |
|
|
52 |
with open('ccs_coarsest.txt', 'r', encoding="utf-8") as infile: |
|
|
53 |
data = infile.readlines() |
|
|
54 |
currect_ccs = '' |
|
|
55 |
for row in data: |
|
|
56 |
if row[:10].strip() != '': |
|
|
57 |
current_ccs = row[:10].strip() |
|
|
58 |
ccs_to_icd9[current_ccs] = set([]) |
|
|
59 |
elif row.strip() != '': |
|
|
60 |
ccs_to_icd9[current_ccs].update(set(row.strip().split(' '))) |
|
|
61 |
|
|
|
62 |
ccs_coarse = {} |
|
|
63 |
for ccs in list(ccs_to_icd9.keys()): |
|
|
64 |
ccs_eles = ccs.split('.') |
|
|
65 |
if len(ccs_eles) >= 2: |
|
|
66 |
code = ccs_eles[0] + '.' + ccs_eles[1] |
|
|
67 |
if code not in ccs_coarse: |
|
|
68 |
ccs_coarse[code] = set([]) |
|
|
69 |
ccs_coarse[code].update(ccs_to_icd9[ccs]) |
|
|
70 |
|
|
|
71 |
for ccs in list(ccs_coarse.keys()): |
|
|
72 |
new_codes = set([]) |
|
|
73 |
for code in ccs_coarse[ccs]: |
|
|
74 |
if len(code) > 3: |
|
|
75 |
new_code = code[:3] + '.' + code[3:] |
|
|
76 |
code = new_code |
|
|
77 |
if code in icd9_set: |
|
|
78 |
new_codes.add(code) |
|
|
79 |
elif len(code) > 5 and code[:5] in icd9_set: |
|
|
80 |
new_codes.add(code[:5]) |
|
|
81 |
elif len(code) > 4 and code[:3] in icd9_set: |
|
|
82 |
new_codes.add(code[:3]) |
|
|
83 |
codes = list(new_codes) |
|
|
84 |
if len(codes) > 1: |
|
|
85 |
for idx, code in enumerate(codes): |
|
|
86 |
if code not in icd9_pairs: |
|
|
87 |
icd9_pairs[code] = set([]) |
|
|
88 |
icd9_pairs[code].update(set(codes[:idx])) |
|
|
89 |
icd9_pairs[code].update(set(codes[idx+1:])) |
|
|
90 |
return icd9_pairs |
|
|
91 |
|
|
|
92 |
|
|
|
93 |
def get_cui_concept_mappings(): |
|
|
94 |
concept_to_cui_hdr = '2b_concept_ID_to_CUI.txt' |
|
|
95 |
concept_to_cui = {} |
|
|
96 |
cui_to_concept = {} |
|
|
97 |
with open(concept_to_cui_hdr, 'r', encoding="utf-8") as infile: |
|
|
98 |
lines = infile.readlines() |
|
|
99 |
for line in lines: |
|
|
100 |
concept = line.split('\t')[0] |
|
|
101 |
cui = line.split('\t')[1].split('\r')[0].strip() |
|
|
102 |
concept_to_cui[concept] = cui |
|
|
103 |
cui_to_concept[cui] = concept |
|
|
104 |
return concept_to_cui, cui_to_concept |
|
|
105 |
|
|
|
106 |
|
|
|
107 |
def get_icd9_reverse_dict(icd9_dict): |
|
|
108 |
reverse_dict = {} |
|
|
109 |
for key, value in icd9_dict.items(): |
|
|
110 |
for v in value: |
|
|
111 |
reverse_dict[v] = key |
|
|
112 |
return reverse_dict |
|
|
113 |
|
|
|
114 |
|
|
|
115 |
def get_icd9_cui_mappings(): |
|
|
116 |
cui_to_icd9 = {} |
|
|
117 |
icd9_to_cui = {} |
|
|
118 |
with open('cui_icd9.txt', 'r', encoding="utf-8") as infile: |
|
|
119 |
data = infile.readlines() |
|
|
120 |
for row in data: |
|
|
121 |
ele = row.strip().split('|') |
|
|
122 |
if ele[11] == 'ICD9CM': |
|
|
123 |
cui = ele[0] |
|
|
124 |
icd9 = ele[10] |
|
|
125 |
if cui not in cui_to_icd9 and icd9 != '' and '-' not in icd9: |
|
|
126 |
cui_to_icd9[cui] = icd9 |
|
|
127 |
icd9_to_cui[icd9] = cui |
|
|
128 |
return cui_to_icd9, icd9_to_cui |
|
|
129 |
|
|
|
130 |
|
|
|
131 |
def get_icd9_to_description(): |
|
|
132 |
icd9_to_description = {} |
|
|
133 |
with open('CMS32_DESC_LONG_DX.txt', 'r', encoding='latin-1') as infile: |
|
|
134 |
data = infile.readlines() |
|
|
135 |
for row in data: |
|
|
136 |
icd9 = row.strip()[:6].strip() |
|
|
137 |
if len(icd9) > 3: |
|
|
138 |
icd9 = icd9[:3] + '.' + icd9[3:] |
|
|
139 |
description = row.strip()[6:].strip() |
|
|
140 |
icd9_to_description[icd9] = description |
|
|
141 |
return icd9_to_description |
|
|
142 |
|
|
|
143 |
|
|
|
144 |
def mrm_ccs(embedding_list, embedding_type_list, k=40, check_intersection=False): |
|
|
145 |
cui_to_icd9, icd9_to_cui = get_icd9_cui_mappings() |
|
|
146 |
|
|
|
147 |
if check_intersection: |
|
|
148 |
if not os.path.exists("intersection.txt"): |
|
|
149 |
intersection_cui = get_intersection( |
|
|
150 |
embedding_list, embedding_type_list) |
|
|
151 |
with open("intersection.txt", "w", encoding="utf-8") as f: |
|
|
152 |
for cui in intersection_cui: |
|
|
153 |
f.write(cui.strip() + "\n") |
|
|
154 |
else: |
|
|
155 |
with open("intersection.txt", "r", encoding="utf-8") as f: |
|
|
156 |
lines = f.readlines() |
|
|
157 |
intersection_cui = [line.strip() for line in lines] |
|
|
158 |
|
|
|
159 |
umls = UMLS("../../umls", only_load_dict=True) |
|
|
160 |
|
|
|
161 |
if check_intersection: |
|
|
162 |
cui_list = [cui for cui in intersection_cui |
|
|
163 |
if cui in list(cui_to_icd9.keys())] |
|
|
164 |
else: |
|
|
165 |
cui_list = list(cui_to_icd9.keys()) |
|
|
166 |
|
|
|
167 |
icd9_list = [cui_to_icd9[cui] for cui in cui_list] |
|
|
168 |
icd9_set = set(icd9_list) |
|
|
169 |
icd9_pair = get_icd9_pairs(icd9_set) |
|
|
170 |
icd9_coarse_pair = get_coarse_icd9_pairs(icd9_set) |
|
|
171 |
icd9_to_description = get_icd9_to_description() |
|
|
172 |
|
|
|
173 |
#icd9_reverse_dict_pair = get_icd9_reverse_dict(icd9_pair) |
|
|
174 |
#icd9_reverse_dict_coarse_pair = get_icd9_reverse_dict(icd9_coarse_pair) |
|
|
175 |
|
|
|
176 |
#ipdb.set_trace() |
|
|
177 |
|
|
|
178 |
# type label |
|
|
179 |
# Only part of the icd is calculated as center |
|
|
180 |
# icd9_to_check = set(icd9_pairs.keys()) |
|
|
181 |
# icd9_to_check.intersection_update(set(icd9_to_idx.keys())) |
|
|
182 |
pair_center_label = [] |
|
|
183 |
#pair_label = [] |
|
|
184 |
coarse_pair_center_label = [] |
|
|
185 |
#coarse_pair_label = [] |
|
|
186 |
for cui in cui_list: |
|
|
187 |
if cui_to_icd9[cui] in icd9_pair: |
|
|
188 |
pair_center_label.append(1) |
|
|
189 |
else: |
|
|
190 |
pair_center_label.append(0) |
|
|
191 |
#pair_label.append(icd9_reverse_dict_pair[cui_to_icd9[cui]]) |
|
|
192 |
|
|
|
193 |
if cui_to_icd9[cui] in icd9_coarse_pair: |
|
|
194 |
coarse_pair_center_label.append(1) |
|
|
195 |
else: |
|
|
196 |
coarse_pair_center_label.append(0) |
|
|
197 |
#coarse_pair_label.append(icd9_reverse_dict_coarse_pair[cui_to_icd9[cui]]) |
|
|
198 |
|
|
|
199 |
# generate_description |
|
|
200 |
description = [] |
|
|
201 |
for cui in cui_list: |
|
|
202 |
if cui in cui_to_icd9 and cui_to_icd9[cui] in icd9_to_description: |
|
|
203 |
description.append(icd9_to_description[cui_to_icd9[cui]]) |
|
|
204 |
elif cui in cui_to_icd9 and tree.find(cui_to_icd9[cui]): |
|
|
205 |
description.append(tree.find(cui_to_icd9[cui]).description) |
|
|
206 |
elif cui in umls.cui2str: |
|
|
207 |
description.append(list(umls.cui2str[cui])[0]) |
|
|
208 |
else: |
|
|
209 |
description.append("") |
|
|
210 |
print(f"Can not find description for {cui}") |
|
|
211 |
|
|
|
212 |
#ipdb.set_trace() |
|
|
213 |
|
|
|
214 |
opt = [] |
|
|
215 |
for index, embedding in enumerate(embedding_list): |
|
|
216 |
print("*************************") |
|
|
217 |
if embedding_type_list[index].lower() == "cui": |
|
|
218 |
opt.append(mrm_ccs_cui(embedding, icd9_list, cui_list, pair_center_label, icd9_pair, k)) |
|
|
219 |
opt.append(mrm_ccs_cui(embedding, icd9_list, cui_list, coarse_pair_center_label, icd9_coarse_pair, k)) |
|
|
220 |
if embedding_type_list[index].lower() == "word": |
|
|
221 |
opt.append(mrm_ccs_word(embedding, icd9_list, description, pair_center_label, icd9_pair, k)) |
|
|
222 |
opt.append(mrm_ccs_word(embedding, icd9_list, description, coarse_pair_center_label, icd9_coarse_pair, k)) |
|
|
223 |
if embedding_type_list[index].lower() == "bert": |
|
|
224 |
opt.append(mrm_ccs_bert(embedding, icd9_list, description, pair_center_label, icd9_pair, k, summary_method="MEAN")) |
|
|
225 |
opt.append(mrm_ccs_bert(embedding, icd9_list, description, coarse_pair_center_label, icd9_coarse_pair, k, summary_method="MEAN")) |
|
|
226 |
opt.append(mrm_ccs_bert(embedding, icd9_list, description, pair_center_label, icd9_pair, k, summary_method="CLS")) |
|
|
227 |
opt.append(mrm_ccs_bert(embedding, icd9_list, description, coarse_pair_center_label, icd9_coarse_pair, k, summary_method="CLS")) |
|
|
228 |
return opt |
|
|
229 |
|
|
|
230 |
|
|
|
231 |
def mrm_ccs_cui(cui_embedding, icd9_list, cui_list, center_label, pair, k=40): |
|
|
232 |
w, _ = load_embedding(cui_embedding) |
|
|
233 |
print(f"All cui count:{len(cui_list)}") |
|
|
234 |
new_cui_list = [] |
|
|
235 |
#new_label = [] |
|
|
236 |
new_center_label = [] |
|
|
237 |
new_icd9_list = [] |
|
|
238 |
for index, cui in enumerate(cui_list): |
|
|
239 |
if cui in w: |
|
|
240 |
new_cui_list.append(cui) |
|
|
241 |
new_center_label.append(center_label[index]) |
|
|
242 |
new_icd9_list.append(icd9_list[index]) |
|
|
243 |
#new_label.append(label[index]) |
|
|
244 |
#print(f"Check cui count:{len(new_cui_list)}") |
|
|
245 |
|
|
|
246 |
term_embedding = np.array([w[cui] for cui in new_cui_list]) |
|
|
247 |
|
|
|
248 |
return calculate_mrm_ccs(term_embedding, new_icd9_list, new_center_label, pair, k=k) |
|
|
249 |
|
|
|
250 |
|
|
|
251 |
def mrm_ccs_word(word_embedding, icd9_list, description, center_label, pair, k=40): |
|
|
252 |
w, dim = load_embedding(word_embedding) |
|
|
253 |
|
|
|
254 |
print(f"All cui count:{len(description)}") |
|
|
255 |
#cui_str = [[word for word in word_tokenize( |
|
|
256 |
# list(umls.cui2str[cui])[0]) if word in w] for cui in cui_list] |
|
|
257 |
cui_str = [] |
|
|
258 |
#new_label = [] |
|
|
259 |
new_center_label = [] |
|
|
260 |
new_icd9_list = [] |
|
|
261 |
for index, des in enumerate(description): |
|
|
262 |
tokenize_result = [word for word in word_tokenize(des) if word in w] |
|
|
263 |
if len(tokenize_result) > 0: |
|
|
264 |
cui_str.append(tokenize_result) |
|
|
265 |
new_center_label.append(center_label[index]) |
|
|
266 |
#new_label.append(label[index]) |
|
|
267 |
new_icd9_list.append(icd9_list[index]) |
|
|
268 |
|
|
|
269 |
check_count = 0 |
|
|
270 |
for index, cui in tqdm(enumerate(cui_str)): |
|
|
271 |
tmp_emb = np.zeros((dim)) |
|
|
272 |
for word in cui: |
|
|
273 |
tmp_emb += w[word] |
|
|
274 |
|
|
|
275 |
if check_count == 0: |
|
|
276 |
term_embedding = tmp_emb |
|
|
277 |
else: |
|
|
278 |
term_embedding = np.concatenate( |
|
|
279 |
(term_embedding, tmp_emb), axis=0) |
|
|
280 |
check_count += 1 |
|
|
281 |
term_embedding = term_embedding.reshape((-1, dim)) |
|
|
282 |
|
|
|
283 |
#print(f"Check cui count:{check_count}") |
|
|
284 |
|
|
|
285 |
return calculate_mrm_ccs(term_embedding, new_icd9_list, new_center_label, pair, k=k) |
|
|
286 |
|
|
|
287 |
|
|
|
288 |
def mrm_ccs_bert(bert_embedding, icd9_list, description, center_label, pair, k=40, summary_method="MEAN"): |
|
|
289 |
#print(f"Check cui count:{len(description)}") |
|
|
290 |
model, tokenizer = load_bert(bert_embedding) |
|
|
291 |
model.eval() |
|
|
292 |
|
|
|
293 |
input_ids = [] |
|
|
294 |
for des in tqdm(description): |
|
|
295 |
input_ids.append(tokenizer.encode_plus( |
|
|
296 |
des, max_length=max_seq_length, add_special_tokens=True, |
|
|
297 |
truncation=True, pad_to_max_length=True)['input_ids']) |
|
|
298 |
|
|
|
299 |
count = len(input_ids) |
|
|
300 |
now_count = 0 |
|
|
301 |
with tqdm(total=count) as pbar: |
|
|
302 |
with torch.no_grad(): |
|
|
303 |
while now_count < count: |
|
|
304 |
input_gpu_0 = torch.LongTensor(input_ids[now_count:min( |
|
|
305 |
now_count + batch_size, count)]).to(device) |
|
|
306 |
if summary_method == "CLS": |
|
|
307 |
embed = model(input_gpu_0)[1] |
|
|
308 |
if summary_method == "MEAN": |
|
|
309 |
embed = torch.mean(model(input_gpu_0)[0], dim=1) |
|
|
310 |
embed_np = embed.cpu().detach().numpy() |
|
|
311 |
if now_count == 0: |
|
|
312 |
term_embedding = embed_np |
|
|
313 |
else: |
|
|
314 |
term_embedding = np.concatenate( |
|
|
315 |
(term_embedding, embed_np), axis=0) |
|
|
316 |
update = min(now_count + batch_size, count) - now_count |
|
|
317 |
now_count = now_count + update |
|
|
318 |
pbar.update(update) |
|
|
319 |
|
|
|
320 |
return calculate_mrm_ccs(term_embedding, icd9_list, center_label, pair, k=k) |
|
|
321 |
|
|
|
322 |
|
|
|
323 |
def calculate_mrm_ccs(term_embedding, icd9_list, center_label, pair, k, normalize=True): |
|
|
324 |
# term_embedding: term_count * embedding_dim |
|
|
325 |
# term_type: term_count |
|
|
326 |
term_embedding = torch.FloatTensor(term_embedding).to(device) |
|
|
327 |
embedding_norm = torch.norm( |
|
|
328 |
term_embedding, p=2, dim=1, keepdim=True).clamp(min=1e-12) |
|
|
329 |
term_embedding = torch.div(term_embedding, embedding_norm) |
|
|
330 |
del embedding_norm |
|
|
331 |
|
|
|
332 |
output = [] |
|
|
333 |
check_count = 0 |
|
|
334 |
|
|
|
335 |
count = {} |
|
|
336 |
for icd9 in tqdm(pair): |
|
|
337 |
count[icd9] = 0 |
|
|
338 |
for v in pair[icd9]: |
|
|
339 |
if v in icd9_list: |
|
|
340 |
count[icd9] += 1 |
|
|
341 |
|
|
|
342 |
for index, icd9 in tqdm(enumerate(icd9_list)): |
|
|
343 |
if center_label[index] == 1 and icd9 in pair: |
|
|
344 |
now = term_embedding[index] |
|
|
345 |
score = 0.0 |
|
|
346 |
similarity = torch.matmul(term_embedding, now) |
|
|
347 |
# The most similar term is itself |
|
|
348 |
_, indices = torch.topk(similarity, k=k + 1) |
|
|
349 |
group = pair[icd9] |
|
|
350 |
for i in range(1, k + 1, 1): |
|
|
351 |
if icd9_list[indices[i]] in group: |
|
|
352 |
score += log_list[i - 1] |
|
|
353 |
if normalize: |
|
|
354 |
if score > 0: |
|
|
355 |
score /= sum(log_list[0:min(k, count[icd9])]) |
|
|
356 |
output.append(score) |
|
|
357 |
check_count += 1 |
|
|
358 |
del term_embedding |
|
|
359 |
|
|
|
360 |
if len(output) >= 1: |
|
|
361 |
score = sum(output) / len(output) |
|
|
362 |
else: |
|
|
363 |
score = 0. |
|
|
364 |
print(f"Check count: {check_count}") |
|
|
365 |
print(score) |
|
|
366 |
return score |
|
|
367 |
|
|
|
368 |
|
|
|
369 |
def load_embedding(filename): |
|
|
370 |
print(filename) |
|
|
371 |
if filename.find('bin') >= 0: |
|
|
372 |
from gensim import models |
|
|
373 |
W = models.KeyedVectors.load_word2vec_format(filename, binary=True) |
|
|
374 |
dim = W.vector_size |
|
|
375 |
return W, dim |
|
|
376 |
|
|
|
377 |
if filename.find('pkl') >= 0: |
|
|
378 |
import pickle |
|
|
379 |
with open(filename, 'rb') as f: |
|
|
380 |
W = pickle.load(f) |
|
|
381 |
for key, value in W.items(): |
|
|
382 |
W[key] = np.array(list(map(float, value[1:-1].split(",")))) |
|
|
383 |
dim = len(list(W.values())[0]) |
|
|
384 |
return W, dim |
|
|
385 |
|
|
|
386 |
W = {} |
|
|
387 |
with open(filename, 'r') as f: |
|
|
388 |
for i, line in enumerate(f.readlines()): |
|
|
389 |
if i == 0: |
|
|
390 |
continue |
|
|
391 |
toks = line.strip().split() |
|
|
392 |
w = toks[0] |
|
|
393 |
vec = np.array(list(map(float, toks[1:]))) |
|
|
394 |
W[w] = vec |
|
|
395 |
dim = len(list(W.values())[0]) |
|
|
396 |
return W, dim |
|
|
397 |
|
|
|
398 |
|
|
|
399 |
def load_bert(model_name_or_path): |
|
|
400 |
print(model_name_or_path) |
|
|
401 |
try: |
|
|
402 |
config = AutoConfig.from_pretrained(model_name_or_path) |
|
|
403 |
model = AutoModel.from_pretrained( |
|
|
404 |
model_name_or_path, config=config).to(device) |
|
|
405 |
except BaseException: |
|
|
406 |
model = torch.load(os.path.join( |
|
|
407 |
model_name_or_path, 'pytorch_model.bin')).to(device) |
|
|
408 |
|
|
|
409 |
try: |
|
|
410 |
model.output_hidden_states = False |
|
|
411 |
except BaseException: |
|
|
412 |
pass |
|
|
413 |
|
|
|
414 |
try: |
|
|
415 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) |
|
|
416 |
except BaseException: |
|
|
417 |
tokenizer = AutoTokenizer.from_pretrained( |
|
|
418 |
os.path.join(model_name_or_path, "../")) |
|
|
419 |
return model, tokenizer |
|
|
420 |
|
|
|
421 |
|
|
|
422 |
def get_intersection(embedding_list, embedding_type_list): |
|
|
423 |
intersection_cui = set() |
|
|
424 |
checker = True |
|
|
425 |
for index, embed in enumerate(embedding_list): |
|
|
426 |
if embedding_type_list[index] == "cui": |
|
|
427 |
w, _ = load_embedding(embed) |
|
|
428 |
if checker: |
|
|
429 |
intersection_cui = set(list(w.keys())) |
|
|
430 |
checker = False |
|
|
431 |
else: |
|
|
432 |
intersection_cui = set( |
|
|
433 |
list(w.keys())).intersection(intersection_cui) |
|
|
434 |
print(f"Intersection count: {len(intersection_cui)}") |
|
|
435 |
return list(intersection_cui) |
|
|
436 |
|
|
|
437 |
|
|
|
438 |
if __name__ == "__main__": |
|
|
439 |
|
|
|
440 |
embedding_list = ["../../embeddings/claims_codes_hs_300.txt", |
|
|
441 |
"../../embeddings/GoogleNews-vectors-negative300.bin", |
|
|
442 |
"../../models/2020_eng"] |
|
|
443 |
embedding_type_list = ["cui", "word", "bert"] |
|
|
444 |
mrm_ccs(embedding_list, embedding_type_list)#, normalize=True) |
|
|
445 |
""" |
|
|
446 |
embedding_list = ["../../embeddings/wikipedia-pubmed-and-PMC-w2v.bin", |
|
|
447 |
"../../embeddings/bio_nlp_vec/PubMed-shuffle-win-2.bin", |
|
|
448 |
"../../embeddings/bio_nlp_vec/PubMed-shuffle-win-30.bin", |
|
|
449 |
"/home/yz/pretraining_models/cui2vec.pkl", |
|
|
450 |
"../../embeddings/DeVine_etal_200.txt"] |
|
|
451 |
embedding_type_list = ["word", "word", "word", "cui", "cui"] |
|
|
452 |
mrm_ccs(embedding_list[3:], embedding_type_list[3:]) |
|
|
453 |
|
|
|
454 |
embedding_list = ["../../models/2020_all", |
|
|
455 |
"/home/yz/pretraining_models/bert-base-cased", |
|
|
456 |
"/home/yz/pretraining_models/biobert_v1.1", |
|
|
457 |
"/home/yz/pretraining_models/BiomedNLP-PubMedBERT-base-uncased-abstract", |
|
|
458 |
"/home/yz/pretraining_models/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext", |
|
|
459 |
"/home/yz/pretraining_models/kexinghuang_clinical", |
|
|
460 |
"emilyalsentzer/Bio_ClinicalBERT"] |
|
|
461 |
""" |
|
|
462 |
#mrm_ccs(embedding_list, ["bert"] * 7) |
|
|
463 |
#mrm_ccs([embedding_list[6]], ["bert"]) |