|
a |
|
b/test/diseasedb/train.py |
|
|
1 |
import sys |
|
|
2 |
sys.path.append("../../pretrain/") |
|
|
3 |
from linear_model import LinearModel |
|
|
4 |
from load_umls import UMLS |
|
|
5 |
import numpy as np |
|
|
6 |
import os |
|
|
7 |
import shutil |
|
|
8 |
import torch |
|
|
9 |
from torch.utils.data import DataLoader, TensorDataset, Dataset |
|
|
10 |
from transformers import AutoTokenizer, AdamW, get_linear_schedule_with_warmup, AutoConfig, AutoModel |
|
|
11 |
from time import time |
|
|
12 |
from tqdm import tqdm |
|
|
13 |
import ipdb |
|
|
14 |
|
|
|
15 |
|
|
|
16 |
# parameters |
|
|
17 |
embedding = sys.argv[1] |
|
|
18 |
embedding_type = sys.argv[2] |
|
|
19 |
freeze_embedding = sys.argv[3] |
|
|
20 |
device = sys.argv[4] |
|
|
21 |
|
|
|
22 |
if freeze_embedding.lower() in ['t', 'true']: |
|
|
23 |
freeze_embedding = True |
|
|
24 |
else: |
|
|
25 |
freeze_embedding = False |
|
|
26 |
|
|
|
27 |
if device == "0": |
|
|
28 |
device = "cuda:0" |
|
|
29 |
if device == "1": |
|
|
30 |
device = "cuda:1" |
|
|
31 |
|
|
|
32 |
if embedding_type == 'bert': |
|
|
33 |
epoch_num = 50 |
|
|
34 |
if freeze_embedding: |
|
|
35 |
batch_size = 512 |
|
|
36 |
learning_rate = 1e-3 |
|
|
37 |
else: |
|
|
38 |
batch_size = 96 |
|
|
39 |
learning_rate = 2e-5 |
|
|
40 |
max_seq_length = 32 |
|
|
41 |
try: |
|
|
42 |
tokenizer = AutoTokenizer.from_pretrained(embedding) |
|
|
43 |
except BaseException: |
|
|
44 |
tokenizer = AutoTokenizer.from_pretrained( |
|
|
45 |
os.path.join(embedding, "../")) |
|
|
46 |
else: |
|
|
47 |
epoch_num = 50 |
|
|
48 |
batch_size = 512 |
|
|
49 |
learning_rate = 1e-3 |
|
|
50 |
max_seq_length = 16 |
|
|
51 |
|
|
|
52 |
def pad(l): |
|
|
53 |
if len(l) > max_seq_length: |
|
|
54 |
return l[0:max_seq_length] |
|
|
55 |
return l + [use_embedding_count - 1] * (max_seq_length - len(l)) |
|
|
56 |
|
|
|
57 |
# load train and test |
|
|
58 |
cui_train_0 = [] |
|
|
59 |
cui_train_1 = [] |
|
|
60 |
rel_train = [] |
|
|
61 |
with open("./data/x_train.txt") as f: |
|
|
62 |
lines = f.readlines() |
|
|
63 |
for line in lines: |
|
|
64 |
line = line.strip().split("\t") |
|
|
65 |
cui_train_0.append(line[0]) |
|
|
66 |
cui_train_1.append(line[1]) |
|
|
67 |
with open("./data/y_train.txt") as f: |
|
|
68 |
lines = f.readlines() |
|
|
69 |
for line in lines: |
|
|
70 |
rel_train.append(line.strip()) |
|
|
71 |
|
|
|
72 |
cui_test_0 = [] |
|
|
73 |
cui_test_1 = [] |
|
|
74 |
rel_test = [] |
|
|
75 |
with open("./data/x_test.txt") as f: |
|
|
76 |
lines = f.readlines() |
|
|
77 |
for line in lines: |
|
|
78 |
line = line.strip().split("\t") |
|
|
79 |
cui_test_0.append(line[0]) |
|
|
80 |
cui_test_1.append(line[1]) |
|
|
81 |
with open("./data/y_test.txt") as f: |
|
|
82 |
lines = f.readlines() |
|
|
83 |
for line in lines: |
|
|
84 |
rel_test.append(line.strip()) |
|
|
85 |
|
|
|
86 |
# build rel2id |
|
|
87 |
rel_set = set(rel_train + rel_test) |
|
|
88 |
rel2id = {rel: index for index, rel in enumerate(list(rel_set))} |
|
|
89 |
id2rel = {index: rel for rel, index in rel2id.items()} |
|
|
90 |
cui_set = set(cui_train_0 + cui_train_1 + cui_test_0 + cui_test_1) |
|
|
91 |
print('Count of differnt cui:', len(cui_set)) |
|
|
92 |
|
|
|
93 |
# Deal cui type embedding |
|
|
94 |
if embedding_type != 'bert': |
|
|
95 |
if embedding.find('txt') >= 0: |
|
|
96 |
with open(embedding, "r", encoding="utf-8") as f: |
|
|
97 |
line = f.readline() |
|
|
98 |
count, dim = map(int, line.strip().split()) |
|
|
99 |
lines = f.readlines() |
|
|
100 |
|
|
|
101 |
if embedding_type == 'cui': |
|
|
102 |
# build cui2id and use_embedding |
|
|
103 |
if embedding.find('txt') >= 0: |
|
|
104 |
cui2id = {} |
|
|
105 |
use_embedding_count = 0 |
|
|
106 |
emb_sum = np.zeros(shape=(dim), dtype=float) |
|
|
107 |
for line in lines: |
|
|
108 |
l = line.strip().split() |
|
|
109 |
cui = l[0] |
|
|
110 |
if embedding.find('stanford') >= 0: |
|
|
111 |
cui = 'C' + cui |
|
|
112 |
emb = np.array(list(map(float, l[1:]))) |
|
|
113 |
emb_sum += emb |
|
|
114 |
if cui in cui_set: |
|
|
115 |
cui2id[cui] = use_embedding_count |
|
|
116 |
if use_embedding_count == 0: |
|
|
117 |
use_embedding = emb |
|
|
118 |
else: |
|
|
119 |
use_embedding = np.concatenate((use_embedding, emb), axis=0) |
|
|
120 |
use_embedding_count += 1 |
|
|
121 |
emb_avg = emb_sum / use_embedding_count |
|
|
122 |
use_embedding = np.concatenate((use_embedding, emb_avg), axis=0) |
|
|
123 |
use_embedding_count += 1 |
|
|
124 |
use_embedding = use_embedding.reshape((-1, dim)) |
|
|
125 |
print('Embedding shape:', use_embedding.shape) |
|
|
126 |
if embedding.find('pkl') >= 0: |
|
|
127 |
import pickle |
|
|
128 |
with open(embedding, 'rb') as f: |
|
|
129 |
W = pickle.load(f) |
|
|
130 |
cui2id = {} |
|
|
131 |
use_embedding_count = 0 |
|
|
132 |
dim = len(list(W.values())[0][1:-1].split(',')) |
|
|
133 |
emb_sum = np.zeros(shape=(dim), dtype=float) |
|
|
134 |
for cui in cui_set: |
|
|
135 |
if cui in W and not cui in cui2id: |
|
|
136 |
emb = np.array([float(num) for num in W[cui][1:-1].split(',')]) |
|
|
137 |
#ipdb.set_trace() |
|
|
138 |
emb_sum += emb |
|
|
139 |
cui2id[cui] = use_embedding_count |
|
|
140 |
if use_embedding_count == 0: |
|
|
141 |
use_embedding = emb |
|
|
142 |
else: |
|
|
143 |
use_embedding = np.concatenate((use_embedding, emb), axis=0) |
|
|
144 |
use_embedding_count += 1 |
|
|
145 |
emb_avg = emb_sum / use_embedding_count |
|
|
146 |
if 'empty' in W: |
|
|
147 |
emb_avg = np.array([float(num) for num in W['empty'][1:-1].split(',')]) |
|
|
148 |
use_embedding = np.concatenate((use_embedding, emb_avg), axis=0) |
|
|
149 |
use_embedding_count += 1 |
|
|
150 |
use_embedding = use_embedding.reshape((-1, dim)) |
|
|
151 |
print('Embedding shape:', use_embedding.shape) |
|
|
152 |
|
|
|
153 |
# apply cui2id and rel2id |
|
|
154 |
train_input_0 = [cui2id.get(cui, use_embedding_count - 1) |
|
|
155 |
for cui in cui_train_0] |
|
|
156 |
train_input_1 = [cui2id.get(cui, use_embedding_count - 1) |
|
|
157 |
for cui in cui_train_1] |
|
|
158 |
train_y = [rel2id[rel] for rel in rel_train] |
|
|
159 |
test_input_0 = [cui2id.get(cui, use_embedding_count - 1) |
|
|
160 |
for cui in cui_test_0] |
|
|
161 |
test_input_1 = [cui2id.get(cui, use_embedding_count - 1) |
|
|
162 |
for cui in cui_test_1] |
|
|
163 |
test_y = [rel2id[rel] for rel in rel_test] |
|
|
164 |
|
|
|
165 |
# Find standard term name |
|
|
166 |
if not embedding_type == 'cui': |
|
|
167 |
umls = UMLS("../../umls", only_load_dict=True) |
|
|
168 |
cui2str = {} |
|
|
169 |
#ipdb.set_trace() |
|
|
170 |
for cui in cui_set: |
|
|
171 |
standard_term = umls.search(code=cui, max_number=1) |
|
|
172 |
if standard_term is not None: |
|
|
173 |
cui2str[cui] = standard_term[0] |
|
|
174 |
else: |
|
|
175 |
cui2str[cui] = cui |
|
|
176 |
|
|
|
177 |
# Deal word type embedding |
|
|
178 |
if embedding_type == 'word': |
|
|
179 |
|
|
|
180 |
# tokenize |
|
|
181 |
from nltk.tokenize import word_tokenize |
|
|
182 |
cui2tokenize = {} |
|
|
183 |
for cui in cui2str: |
|
|
184 |
cui2tokenize[cui] = word_tokenize(cui2str[cui]) |
|
|
185 |
|
|
|
186 |
# build word2id and use_embedding |
|
|
187 |
word2id = {} |
|
|
188 |
use_embedding_count = 0 |
|
|
189 |
|
|
|
190 |
if embedding.find('txt') >= 0: |
|
|
191 |
emb_sum = np.zeros(shape=(dim), dtype=float) |
|
|
192 |
for line in lines: |
|
|
193 |
l = line.strip().split() |
|
|
194 |
word = l[0] |
|
|
195 |
emb = np.array(list(map(float, l[1:]))) |
|
|
196 |
emb_sum += emb |
|
|
197 |
word2id[word] = use_embedding_count |
|
|
198 |
if use_embedding_count == 0: |
|
|
199 |
use_embedding = emb |
|
|
200 |
else: |
|
|
201 |
use_embedding = np.concatenate((use_embedding, emb), axis=0) |
|
|
202 |
use_embedding_count += 1 |
|
|
203 |
emb_avg = emb_sum / use_embedding_count |
|
|
204 |
use_embedding = np.concatenate((use_embedding, emb_avg), axis=0) |
|
|
205 |
use_embedding_count += 1 |
|
|
206 |
emb_zero = np.zeros_like(emb_avg) |
|
|
207 |
use_embedding = np.concatenate((use_embedding, emb_zero), axis=0) |
|
|
208 |
use_embedding_count += 1 |
|
|
209 |
use_embedding = use_embedding.reshape((-1, dim)) |
|
|
210 |
print('Embedding shape:', use_embedding.shape) |
|
|
211 |
if embedding.find('bin') >= 0: |
|
|
212 |
import gensim |
|
|
213 |
model = gensim.models.KeyedVectors.load_word2vec_format(embedding, binary=True) |
|
|
214 |
emb_sum = np.zeros(shape=(model.vector_size), dtype=float) |
|
|
215 |
for cui in cui2tokenize: |
|
|
216 |
for w in cui2tokenize[cui]: |
|
|
217 |
if w in model and not w in word2id: |
|
|
218 |
emb = model[w] |
|
|
219 |
emb_sum += emb |
|
|
220 |
word2id[w] = use_embedding_count |
|
|
221 |
if use_embedding_count == 0: |
|
|
222 |
use_embedding = emb |
|
|
223 |
else: |
|
|
224 |
use_embedding = np.concatenate((use_embedding, emb), axis=0) |
|
|
225 |
use_embedding_count += 1 |
|
|
226 |
emb_avg = emb_sum / use_embedding_count |
|
|
227 |
use_embedding = np.concatenate((use_embedding, emb_avg), axis=0) |
|
|
228 |
use_embedding_count += 1 |
|
|
229 |
emb_zero = np.zeros_like(emb_avg) |
|
|
230 |
use_embedding = np.concatenate((use_embedding, emb_zero), axis=0) |
|
|
231 |
use_embedding_count += 1 |
|
|
232 |
use_embedding = use_embedding.reshape((-1, model.vector_size)) |
|
|
233 |
print('Original embedding count:', len(model.wv.vocab)) |
|
|
234 |
print('Embedding shape:', use_embedding.shape) |
|
|
235 |
|
|
|
236 |
# apply word2id and rel2id |
|
|
237 |
train_input_0 = [[word2id[w] for w in cui2tokenize[cui] if w in word2id] for cui in cui_train_0] |
|
|
238 |
train_input_1 = [[word2id[w] for w in cui2tokenize[cui] if w in word2id] for cui in cui_train_1] |
|
|
239 |
train_y = [rel2id[rel] for rel in rel_train] |
|
|
240 |
test_input_0 = [[word2id[w] for w in cui2tokenize[cui] if w in word2id] for cui in cui_test_0] |
|
|
241 |
test_input_1 = [[word2id[w] for w in cui2tokenize[cui] if w in word2id] for cui in cui_test_1] |
|
|
242 |
test_y = [rel2id[rel] for rel in rel_test] |
|
|
243 |
|
|
|
244 |
# average and padding |
|
|
245 |
# deal with input length = 0, use average |
|
|
246 |
train_input_0 = [cui if cui else [use_embedding_count - 2] for cui in train_input_0] |
|
|
247 |
train_input_1 = [cui if cui else [use_embedding_count - 2] for cui in train_input_1] |
|
|
248 |
test_input_0 = [cui if cui else [use_embedding_count - 2] for cui in test_input_0] |
|
|
249 |
test_input_1 = [cui if cui else [use_embedding_count - 2] for cui in test_input_1] |
|
|
250 |
# calculate length |
|
|
251 |
train_length_0 = [len(cui) for cui in train_input_0] |
|
|
252 |
train_length_1 = [len(cui) for cui in train_input_1] |
|
|
253 |
test_length_0 = [len(cui) for cui in test_input_0] |
|
|
254 |
test_length_1 = [len(cui) for cui in test_input_1] |
|
|
255 |
# padding |
|
|
256 |
train_input_0 = list(map(pad, train_input_0)) |
|
|
257 |
train_input_1 = list(map(pad, train_input_1)) |
|
|
258 |
test_input_0 = list(map(pad, test_input_0)) |
|
|
259 |
test_input_1 = list(map(pad, test_input_1)) |
|
|
260 |
|
|
|
261 |
# Deal bert type embedding |
|
|
262 |
if embedding_type == 'bert': |
|
|
263 |
train_input_0 = [] |
|
|
264 |
train_input_1 = [] |
|
|
265 |
test_input_0 = [] |
|
|
266 |
test_input_1 = [] |
|
|
267 |
|
|
|
268 |
cui2tokenize = {} |
|
|
269 |
for cui in cui2str: |
|
|
270 |
cui2tokenize[cui] = tokenizer.encode_plus( |
|
|
271 |
cui2str[cui], max_length=max_seq_length, add_special_tokens=True, |
|
|
272 |
truncation=True, pad_to_max_length=True)['input_ids'] |
|
|
273 |
|
|
|
274 |
train_input_0 = [cui2tokenize[cui] for cui in cui_train_0] |
|
|
275 |
train_input_1 = [cui2tokenize[cui] for cui in cui_train_1] |
|
|
276 |
test_input_0 = [cui2tokenize[cui] for cui in cui_test_0] |
|
|
277 |
test_input_1 = [cui2tokenize[cui] for cui in cui_test_1] |
|
|
278 |
train_y = [rel2id[rel] for rel in rel_train] |
|
|
279 |
test_y = [rel2id[rel] for rel in rel_test] |
|
|
280 |
|
|
|
281 |
# Dataset and Dataloader |
|
|
282 |
train_input_0 = torch.LongTensor(train_input_0) |
|
|
283 |
train_input_1 = torch.LongTensor(train_input_1) |
|
|
284 |
test_input_0 = torch.LongTensor(test_input_0) |
|
|
285 |
test_input_1 = torch.LongTensor(test_input_1) |
|
|
286 |
train_y = torch.LongTensor(train_y) |
|
|
287 |
test_y = torch.LongTensor(test_y) |
|
|
288 |
if embedding_type != 'word': |
|
|
289 |
train_dataset = TensorDataset(train_input_0, train_input_1, train_y) |
|
|
290 |
test_dataset = TensorDataset(test_input_0, test_input_1, test_y) |
|
|
291 |
else: |
|
|
292 |
train_length_0 = torch.LongTensor(train_length_0) |
|
|
293 |
train_length_1 = torch.LongTensor(train_length_1) |
|
|
294 |
test_length_0 = torch.LongTensor(test_length_0) |
|
|
295 |
test_length_1 = torch.LongTensor(test_length_1) |
|
|
296 |
train_dataset = TensorDataset(train_input_0, train_input_1, train_length_0, train_length_1, train_y) |
|
|
297 |
test_dataset = TensorDataset(test_input_0, test_input_1, test_length_0, test_length_1, test_y) |
|
|
298 |
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=1) |
|
|
299 |
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=1) |
|
|
300 |
|
|
|
301 |
# Prepare model and optimizier |
|
|
302 |
# model |
|
|
303 |
if embedding_type != 'bert': |
|
|
304 |
use_embedding = torch.FloatTensor(use_embedding) |
|
|
305 |
model = LinearModel(len(rel2id), embedding_type, use_embedding, freeze_embedding).to(device) |
|
|
306 |
else: |
|
|
307 |
try: |
|
|
308 |
config = AutoConfig.from_pretrained(embedding) |
|
|
309 |
bert_model = AutoModel.from_pretrained(embedding, config=config).to(device) |
|
|
310 |
except BaseException: |
|
|
311 |
bert_model = torch.load(os.path.join(embedding, 'pytorch_model.bin')).to(device) |
|
|
312 |
model = LinearModel(len(rel2id), embedding_type, bert_model, freeze_embedding).to(device) |
|
|
313 |
|
|
|
314 |
# optimizier |
|
|
315 |
if embedding_type != 'bert': |
|
|
316 |
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) |
|
|
317 |
if embedding_type == "bert": |
|
|
318 |
no_decay = ["bias", "LayerNorm.weight"] |
|
|
319 |
optimizer_grouped_parameters = [ |
|
|
320 |
{ |
|
|
321 |
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], |
|
|
322 |
"weight_decay": 0.0, |
|
|
323 |
}, |
|
|
324 |
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, |
|
|
325 |
] |
|
|
326 |
optimizer = AdamW(optimizer_grouped_parameters, lr=learning_rate, eps=1e-8) |
|
|
327 |
|
|
|
328 |
scheduler = get_linear_schedule_with_warmup(optimizer, |
|
|
329 |
num_warmup_steps=int(epoch_num * len(train_dataloader) * 0.1), |
|
|
330 |
num_training_steps=epoch_num * len(train_dataloader)) |
|
|
331 |
|
|
|
332 |
# Prepare eval function |
|
|
333 |
from sklearn.metrics import accuracy_score, classification_report, f1_score |
|
|
334 |
def eval(m, dataloader): |
|
|
335 |
y_pred = [] |
|
|
336 |
y_true = [] |
|
|
337 |
m.eval() |
|
|
338 |
with torch.no_grad(): |
|
|
339 |
for batch in dataloader: |
|
|
340 |
x0 = batch[0].to(device) |
|
|
341 |
x1 = batch[1].to(device) |
|
|
342 |
if m.embedding_type == "word": |
|
|
343 |
l0 = batch[2].to(device) |
|
|
344 |
l1 = batch[3].to(device) |
|
|
345 |
r = batch[4] |
|
|
346 |
else: |
|
|
347 |
l0 = l1 = None |
|
|
348 |
r = batch[2] |
|
|
349 |
pred, loss = m(x0, x1, l0, l1) |
|
|
350 |
y_pred += torch.max(pred, dim=1)[1].detach().cpu().numpy().tolist() |
|
|
351 |
y_true += r.detach().cpu().numpy().tolist() |
|
|
352 |
acc = accuracy_score(y_true, y_pred) * 100 |
|
|
353 |
#f1 = f1_score(y_true, y_pred) * 100 |
|
|
354 |
report = classification_report(y_true, y_pred) |
|
|
355 |
return acc, report |
|
|
356 |
|
|
|
357 |
# Train and eval |
|
|
358 |
if not os.path.exists("./result/"): |
|
|
359 |
os.mkdir("./result/") |
|
|
360 |
|
|
|
361 |
for epoch_index in range(epoch_num): |
|
|
362 |
model.train() |
|
|
363 |
epoch_loss = 0. |
|
|
364 |
time_now = time() |
|
|
365 |
for batch in tqdm(train_dataloader): |
|
|
366 |
optimizer.zero_grad() |
|
|
367 |
x0 = batch[0].to(device) |
|
|
368 |
x1 = batch[1].to(device) |
|
|
369 |
if model.embedding_type == "word": |
|
|
370 |
l0 = batch[2].to(device) |
|
|
371 |
l1 = batch[3].to(device) |
|
|
372 |
r = batch[4].to(device) |
|
|
373 |
else: |
|
|
374 |
l0 = l1 = None |
|
|
375 |
r = batch[2].to(device) |
|
|
376 |
pred, loss = model(x0, x1, l0, l1, r) |
|
|
377 |
loss.backward() |
|
|
378 |
optimizer.step() |
|
|
379 |
if model.embedding_type == "bert": |
|
|
380 |
scheduler.step() |
|
|
381 |
epoch_loss += loss.item() |
|
|
382 |
print(epoch_index + 1, round(time() - time_now, 1), epoch_loss) |
|
|
383 |
|
|
|
384 |
acc, report = eval(model, test_dataloader) |
|
|
385 |
print("Accuracy:", acc) |
|
|
386 |
#print(report) |