|
a |
|
b/test/diseasedb/linear_model.py |
|
|
1 |
import torch |
|
|
2 |
from torch import nn |
|
|
3 |
import os |
|
|
4 |
|
|
|
5 |
|
|
|
6 |
class LinearModel(nn.Module): |
|
|
7 |
def __init__(self, label_count, embedding_type, embedding, freeze_embedding=True): |
|
|
8 |
super(LinearModel, self).__init__() |
|
|
9 |
self.embedding_type = embedding_type |
|
|
10 |
if self.embedding_type in ["word", "cui"]: |
|
|
11 |
self.embedding = nn.Embedding.from_pretrained(embedding) |
|
|
12 |
self.input_dim = self.embedding.weight.shape[1] |
|
|
13 |
if freeze_embedding: |
|
|
14 |
self.embedding.weight.required_grad = False |
|
|
15 |
if self.embedding_type == "bert": |
|
|
16 |
self.embedding = embedding |
|
|
17 |
self.input_dim = 768 |
|
|
18 |
if freeze_embedding: |
|
|
19 |
for name, param in self.embedding.named_parameters(): |
|
|
20 |
param.requires_grad = False |
|
|
21 |
self.linear = nn.Linear(self.input_dim * 2, label_count) |
|
|
22 |
self.loss_fn = nn.CrossEntropyLoss() |
|
|
23 |
|
|
|
24 |
def forward(self, x0, x1, length_0=None, length_1=None, label=None): |
|
|
25 |
count = x0.shape[0] |
|
|
26 |
x = torch.cat((x0, x1), dim=0) |
|
|
27 |
emb = self.embedding(x) |
|
|
28 |
|
|
|
29 |
#print(x.shape, emb.shape, length_0.shape) |
|
|
30 |
|
|
|
31 |
if self.embedding_type == "word": |
|
|
32 |
emb = torch.sum(emb, dim=1) |
|
|
33 |
length = torch.cat((length_0, length_1)).reshape(-1, 1).expand_as(emb) |
|
|
34 |
emb = emb / length |
|
|
35 |
if self.embedding_type == "cui": |
|
|
36 |
pass |
|
|
37 |
if self.embedding_type == "bert": |
|
|
38 |
emb = emb[1] |
|
|
39 |
|
|
|
40 |
emb_0 = emb[0:count] |
|
|
41 |
emb_1 = emb[count:] |
|
|
42 |
feature = torch.cat((emb_0, emb_1), dim=1) |
|
|
43 |
pred = self.linear(feature) |
|
|
44 |
|
|
|
45 |
if label is not None: |
|
|
46 |
loss = self.loss_fn(pred, label) |
|
|
47 |
return pred, loss |
|
|
48 |
return pred, 0. |