|
a |
|
b/test/cadec/cadec_eval.py |
|
|
1 |
from gensim import models |
|
|
2 |
import os |
|
|
3 |
import sys |
|
|
4 |
import torch |
|
|
5 |
import numpy as np |
|
|
6 |
from transformers import AutoTokenizer, AutoModel, AutoConfig |
|
|
7 |
|
|
|
8 |
|
|
|
9 |
batch_size = 64 |
|
|
10 |
device = "cuda:1" |
|
|
11 |
|
|
|
12 |
|
|
|
13 |
def main(): |
|
|
14 |
filename = sys.argv[1] |
|
|
15 |
print(filename) |
|
|
16 |
|
|
|
17 |
bert_like = False |
|
|
18 |
if filename[-3:] in ["vec", "txt"]: |
|
|
19 |
W = load_vectors(filename, dev=False) |
|
|
20 |
elif filename[-3:] == "bin": |
|
|
21 |
W = load_vectors_bin(filename) |
|
|
22 |
else: |
|
|
23 |
bert_like = True |
|
|
24 |
try: |
|
|
25 |
config = AutoConfig.from_pretrained(filename) |
|
|
26 |
model = AutoModel.from_pretrained( |
|
|
27 |
filename, config=config).to(device) |
|
|
28 |
except BaseException: |
|
|
29 |
model = torch.load(os.path.join( |
|
|
30 |
filename, 'pytorch_model.bin')).to(device) |
|
|
31 |
|
|
|
32 |
try: |
|
|
33 |
model.output_hidden_states = False |
|
|
34 |
except BaseException: |
|
|
35 |
pass |
|
|
36 |
|
|
|
37 |
try: |
|
|
38 |
tokenizer = AutoTokenizer.from_pretrained(filename) |
|
|
39 |
except BaseException: |
|
|
40 |
tokenizer = AutoTokenizer.from_pretrained( |
|
|
41 |
os.path.join(filename, "../")) |
|
|
42 |
|
|
|
43 |
top_k = 3 |
|
|
44 |
if bert_like: |
|
|
45 |
eval(model, tokenizer, './cadec/data/cadec', top_k=top_k, summary_method="CLS") |
|
|
46 |
eval(model, tokenizer, './cadec/data/cadec', top_k=top_k, summary_method="MEAN") |
|
|
47 |
eval(model, tokenizer, './cadec/data/psytar_disjoint_folds', top_k=top_k, summary_method="CLS") |
|
|
48 |
eval(model, tokenizer, './cadec/data/psytar_disjoint_folds', top_k=top_k, summary_method="MEAN") |
|
|
49 |
else: |
|
|
50 |
eval(W, None, './cadec/data/cadec', top_k=top_k) |
|
|
51 |
eval(W, None, './cadec/data/psytar_disjoint_folds', top_k=top_k) |
|
|
52 |
|
|
|
53 |
|
|
|
54 |
def get_bert_embed(phrase_list, m, tok, normalize=True, summary_method="CLS"): |
|
|
55 |
input_ids = [] |
|
|
56 |
for phrase in phrase_list: |
|
|
57 |
input_ids.append(tok.encode_plus( |
|
|
58 |
phrase, max_length=32, add_special_tokens=True, |
|
|
59 |
truncation=True, pad_to_max_length=True)['input_ids']) |
|
|
60 |
m.eval() |
|
|
61 |
|
|
|
62 |
count = len(input_ids) |
|
|
63 |
now_count = 0 |
|
|
64 |
with torch.no_grad(): |
|
|
65 |
while now_count < count: |
|
|
66 |
input_gpu_0 = torch.LongTensor(input_ids[now_count:min( |
|
|
67 |
now_count + batch_size, count)]).to(device) |
|
|
68 |
if summary_method == "CLS": |
|
|
69 |
embed = m(input_gpu_0)[1] |
|
|
70 |
if summary_method == "MEAN": |
|
|
71 |
embed = torch.mean(m(input_gpu_0)[0], dim=1) |
|
|
72 |
if normalize: |
|
|
73 |
embed_norm = torch.norm( |
|
|
74 |
embed, p=2, dim=1, keepdim=True).clamp(min=1e-12) |
|
|
75 |
embed = embed / embed_norm |
|
|
76 |
embed_np = embed.cpu().detach().numpy() |
|
|
77 |
if now_count == 0: |
|
|
78 |
output = embed_np |
|
|
79 |
else: |
|
|
80 |
output = np.concatenate((output, embed_np), axis=0) |
|
|
81 |
now_count = min(now_count + batch_size, count) |
|
|
82 |
return output |
|
|
83 |
|
|
|
84 |
|
|
|
85 |
def eval_one(m, tok, folder, top_k, summary_method=None): |
|
|
86 |
with open(os.path.join(folder, "standard.txt"), "r", encoding="utf-8") as f: |
|
|
87 |
lines = f.readlines() |
|
|
88 |
label2id = {line.strip().split( |
|
|
89 |
"\t")[0]: index for index, line in enumerate(lines)} |
|
|
90 |
standard_lines = [line.strip().split("\t") for line in lines] |
|
|
91 |
#standard_feat = np.array([get_bert_embed(text, m, tok) for (label, text) in standard_lines]) |
|
|
92 |
if tok is not None: |
|
|
93 |
standard_feat = get_bert_embed( |
|
|
94 |
[text for (label, text) in standard_lines], m, tok, normalize=True, summary_method=summary_method) |
|
|
95 |
else: |
|
|
96 |
standard_feat = embed( |
|
|
97 |
[text for (label, text) in standard_lines], m.vector_size, m) |
|
|
98 |
|
|
|
99 |
with open(os.path.join(folder, "test.txt"), "r", encoding="utf-8") as f: |
|
|
100 |
lines = f.readlines() |
|
|
101 |
test_lines = [line.strip().split("\t") for line in lines] |
|
|
102 |
#test_feat = np.array([get_bert_embed(text, m, tok) for (label, text) in test_lines]) |
|
|
103 |
if tok is not None: |
|
|
104 |
test_feat = get_bert_embed( |
|
|
105 |
[text for (label, text) in test_lines], m, tok, normalize=True, summary_method=summary_method) |
|
|
106 |
else: |
|
|
107 |
test_feat = embed( |
|
|
108 |
[text for (label, text) in test_lines], m.vector_size, m) |
|
|
109 |
|
|
|
110 |
sim_mat = np.dot(test_feat, standard_feat.T) |
|
|
111 |
|
|
|
112 |
correct_1 = 0 |
|
|
113 |
correct_k = 0 |
|
|
114 |
pred_top_k = torch.topk(torch.FloatTensor(sim_mat), k=top_k)[ |
|
|
115 |
1].cpu().numpy() |
|
|
116 |
for i in range(len(test_lines)): |
|
|
117 |
true_id = label2id[test_lines[i][0]] |
|
|
118 |
if pred_top_k[i][0] == true_id: |
|
|
119 |
correct_1 += 1 |
|
|
120 |
if true_id in list(pred_top_k[i]): |
|
|
121 |
correct_k += 1 |
|
|
122 |
acc_1 = correct_1 / len(test_lines) |
|
|
123 |
acc_k = correct_k / len(test_lines) |
|
|
124 |
return acc_1, acc_k |
|
|
125 |
|
|
|
126 |
|
|
|
127 |
def eval(m, tok, task_name, top_k=3, summary_method=None): |
|
|
128 |
acc_1_list = [] |
|
|
129 |
acc_k_list = [] |
|
|
130 |
for p in os.listdir(task_name): |
|
|
131 |
acc_1, acc_k = eval_one(m, tok, os.path.join(task_name, p), top_k, summary_method=summary_method) |
|
|
132 |
acc_1_list.append(acc_1) |
|
|
133 |
acc_k_list.append(acc_k) |
|
|
134 |
print(task_name, summary_method) |
|
|
135 |
print(f"top_k={top_k}") |
|
|
136 |
print(acc_1_list) |
|
|
137 |
print(acc_k_list) |
|
|
138 |
print(sum(acc_1_list) / 5, sum(acc_k_list) / 5) |
|
|
139 |
|
|
|
140 |
return None |
|
|
141 |
|
|
|
142 |
|
|
|
143 |
def load_vectors(filename): |
|
|
144 |
W = {} |
|
|
145 |
with open(filename, 'r') as f: |
|
|
146 |
for i, line in enumerate(f.readlines()): |
|
|
147 |
if i == 0: |
|
|
148 |
continue |
|
|
149 |
toks = line.strip().split() |
|
|
150 |
w = toks[0] |
|
|
151 |
vec = np.array(map(float, toks[1:])) |
|
|
152 |
W[w] = vec |
|
|
153 |
return W |
|
|
154 |
|
|
|
155 |
|
|
|
156 |
def load_vectors_bin(filename): |
|
|
157 |
w = models.KeyedVectors.load_word2vec_format(filename, binary=True) |
|
|
158 |
return w |
|
|
159 |
|
|
|
160 |
|
|
|
161 |
def cosine(u, v): |
|
|
162 |
return np.dot(u, v) |
|
|
163 |
|
|
|
164 |
|
|
|
165 |
def norm(v): |
|
|
166 |
return np.dot(v, v)**0.5 |
|
|
167 |
|
|
|
168 |
|
|
|
169 |
def embed_one(phrase, dim, W): |
|
|
170 |
words = phrase.split() |
|
|
171 |
vectors = [W[w] for w in words if (w in W)] |
|
|
172 |
v = sum(vectors, np.zeros(dim)) |
|
|
173 |
return v / (norm(v) + 1e-9) |
|
|
174 |
|
|
|
175 |
|
|
|
176 |
def embed(phrase_list, dim, W): |
|
|
177 |
return np.array([embed_one(phrase, dim, W) for phrase in phrase_list]) |
|
|
178 |
|
|
|
179 |
|
|
|
180 |
if __name__ == '__main__': |
|
|
181 |
main() |