|
a |
|
b/task/NextVIsit-12month.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": null, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import sys \n", |
|
|
10 |
"sys.path.insert(0, '../')\n", |
|
|
11 |
"\n", |
|
|
12 |
"from common.common import create_folder,load_obj\n", |
|
|
13 |
"# from data import bert,dataframe,utils\n", |
|
|
14 |
"from dataLoader.utils import seq_padding,code2index, position_idx, index_seg\n", |
|
|
15 |
"from torch.utils.data import DataLoader\n", |
|
|
16 |
"import pandas as pd\n", |
|
|
17 |
"import numpy as np\n", |
|
|
18 |
"from torch.utils.data.dataset import Dataset\n", |
|
|
19 |
"import os\n", |
|
|
20 |
"import torch\n", |
|
|
21 |
"import torch.nn as nn\n", |
|
|
22 |
"import pytorch_pretrained_bert as Bert\n", |
|
|
23 |
"from model.utils import age_vocab\n", |
|
|
24 |
"from model import optimiser\n", |
|
|
25 |
"import sklearn.metrics as skm\n", |
|
|
26 |
"import math\n", |
|
|
27 |
"from torch.utils.data.dataset import Dataset\n", |
|
|
28 |
"import random\n", |
|
|
29 |
"import numpy as np\n", |
|
|
30 |
"import torch\n", |
|
|
31 |
"import time\n", |
|
|
32 |
"\n", |
|
|
33 |
"# from data.utils import seq_padding, index_seg, position_idx, age_vocab, random_mask, code2index\n", |
|
|
34 |
"# from sklearn.metrics import roc_auc_score" |
|
|
35 |
] |
|
|
36 |
}, |
|
|
37 |
{ |
|
|
38 |
"cell_type": "markdown", |
|
|
39 |
"metadata": {}, |
|
|
40 |
"source": [ |
|
|
41 |
"# File Parameters" |
|
|
42 |
] |
|
|
43 |
}, |
|
|
44 |
{ |
|
|
45 |
"cell_type": "code", |
|
|
46 |
"execution_count": null, |
|
|
47 |
"metadata": {}, |
|
|
48 |
"outputs": [], |
|
|
49 |
"source": [ |
|
|
50 |
"file_config = {\n", |
|
|
51 |
" 'vocab':'', # token2idx idx2token\n", |
|
|
52 |
" 'train': '',\n", |
|
|
53 |
" 'test': '',\n", |
|
|
54 |
"}\n", |
|
|
55 |
"\n", |
|
|
56 |
"optim_config = {\n", |
|
|
57 |
" 'lr': 3e-5,\n", |
|
|
58 |
" 'warmup_proportion': 0.1,\n", |
|
|
59 |
" 'weight_decay': 0.01\n", |
|
|
60 |
"}\n", |
|
|
61 |
"\n", |
|
|
62 |
"global_params = {\n", |
|
|
63 |
" 'batch_size': 128,\n", |
|
|
64 |
" 'gradient_accumulation_steps': 1,\n", |
|
|
65 |
" 'device': 'cuda:1',\n", |
|
|
66 |
" 'output_dir': '', # output folder\n", |
|
|
67 |
" 'best_name': '', # output model name\n", |
|
|
68 |
" 'save_model': True,\n", |
|
|
69 |
" 'max_len_seq': 100,\n", |
|
|
70 |
" 'max_age': 110,\n", |
|
|
71 |
" 'month': 1,\n", |
|
|
72 |
" 'age_symbol': None,\n", |
|
|
73 |
" 'min_visit': 5\n", |
|
|
74 |
"}\n", |
|
|
75 |
"\n", |
|
|
76 |
"pretrainModel = '' # pretrained MLM path" |
|
|
77 |
] |
|
|
78 |
}, |
|
|
79 |
{ |
|
|
80 |
"cell_type": "code", |
|
|
81 |
"execution_count": null, |
|
|
82 |
"metadata": {}, |
|
|
83 |
"outputs": [], |
|
|
84 |
"source": [ |
|
|
85 |
"create_folder(global_params['output_dir'])" |
|
|
86 |
] |
|
|
87 |
}, |
|
|
88 |
{ |
|
|
89 |
"cell_type": "code", |
|
|
90 |
"execution_count": null, |
|
|
91 |
"metadata": {}, |
|
|
92 |
"outputs": [], |
|
|
93 |
"source": [ |
|
|
94 |
"BertVocab = load_obj(file_config['vocab'])\n", |
|
|
95 |
"ageVocab, _ = age_vocab(max_age=global_params['max_age'], mon=global_params['month'], symbol=global_params['age_symbol'])" |
|
|
96 |
] |
|
|
97 |
}, |
|
|
98 |
{ |
|
|
99 |
"cell_type": "code", |
|
|
100 |
"execution_count": null, |
|
|
101 |
"metadata": {}, |
|
|
102 |
"outputs": [], |
|
|
103 |
"source": [ |
|
|
104 |
"def format_label_vocab(token2idx):\n", |
|
|
105 |
" token2idx = token2idx.copy()\n", |
|
|
106 |
" del token2idx['PAD']\n", |
|
|
107 |
" del token2idx['SEP']\n", |
|
|
108 |
" del token2idx['CLS']\n", |
|
|
109 |
" del token2idx['MASK']\n", |
|
|
110 |
" token = list(token2idx.keys())\n", |
|
|
111 |
" labelVocab = {}\n", |
|
|
112 |
" for i,x in enumerate(token):\n", |
|
|
113 |
" labelVocab[x] = i\n", |
|
|
114 |
" return labelVocab\n", |
|
|
115 |
"\n", |
|
|
116 |
"Vocab_diag = format_label_vocab(BertVocab['token2idx'])" |
|
|
117 |
] |
|
|
118 |
}, |
|
|
119 |
{ |
|
|
120 |
"cell_type": "code", |
|
|
121 |
"execution_count": null, |
|
|
122 |
"metadata": {}, |
|
|
123 |
"outputs": [], |
|
|
124 |
"source": [ |
|
|
125 |
"model_config = {\n", |
|
|
126 |
" 'vocab_size': len(BertVocab['token2idx'].keys()), # number of disease + symbols for word embedding\n", |
|
|
127 |
" 'hidden_size': 288, # word embedding and seg embedding hidden size\n", |
|
|
128 |
" 'seg_vocab_size': 2, # number of vocab for seg embedding\n", |
|
|
129 |
" 'age_vocab_size': len(ageVocab.keys()), # number of vocab for age embedding\n", |
|
|
130 |
" 'max_position_embedding': global_params['max_len_seq'], # maximum number of tokens\n", |
|
|
131 |
" 'hidden_dropout_prob': 0.2, # dropout rate\n", |
|
|
132 |
" 'num_hidden_layers': 6, # number of multi-head attention layers required\n", |
|
|
133 |
" 'num_attention_heads': 12, # number of attention heads\n", |
|
|
134 |
" 'attention_probs_dropout_prob': 0.22, # multi-head attention dropout rate\n", |
|
|
135 |
" 'intermediate_size': 512, # the size of the \"intermediate\" layer in the transformer encoder\n", |
|
|
136 |
" 'hidden_act': 'gelu', # The non-linear activation function in the encoder and the pooler \"gelu\", 'relu', 'swish' are supported\n", |
|
|
137 |
" 'initializer_range': 0.02, # parameter weight initializer range\n", |
|
|
138 |
"}" |
|
|
139 |
] |
|
|
140 |
}, |
|
|
141 |
{ |
|
|
142 |
"cell_type": "markdown", |
|
|
143 |
"metadata": {}, |
|
|
144 |
"source": [ |
|
|
145 |
"# Set Up Model" |
|
|
146 |
] |
|
|
147 |
}, |
|
|
148 |
{ |
|
|
149 |
"cell_type": "code", |
|
|
150 |
"execution_count": null, |
|
|
151 |
"metadata": {}, |
|
|
152 |
"outputs": [], |
|
|
153 |
"source": [ |
|
|
154 |
"class NextVisit(Dataset):\n", |
|
|
155 |
" def __init__(self, token2idx, diag2idx, age2idx,dataframe, max_len, max_age=110, min_visit=5):\n", |
|
|
156 |
" # dataframe preproecssing\n", |
|
|
157 |
" # filter out the patient with number of visits less than min_visit\n", |
|
|
158 |
" self.vocab = token2idx\n", |
|
|
159 |
" self.label_vocab = diag2idx\n", |
|
|
160 |
" self.max_len = max_len\n", |
|
|
161 |
" self.code = dataframe.code\n", |
|
|
162 |
" self.age = dataframe.age\n", |
|
|
163 |
" self.label = dataframe.label\n", |
|
|
164 |
" self.patid = dataframe.patid\n", |
|
|
165 |
"\n", |
|
|
166 |
" self.age2idx = age2idx\n", |
|
|
167 |
"\n", |
|
|
168 |
" def __getitem__(self, index):\n", |
|
|
169 |
" \"\"\"\n", |
|
|
170 |
" return: age, code, position, segmentation, mask, label\n", |
|
|
171 |
" \"\"\"\n", |
|
|
172 |
" # cut data\n", |
|
|
173 |
" age = self.age[index]\n", |
|
|
174 |
" code = self.code[index]\n", |
|
|
175 |
" label = self.label[index]\n", |
|
|
176 |
" patid = self.patid[index]\n", |
|
|
177 |
"\n", |
|
|
178 |
" # extract data\n", |
|
|
179 |
" age = age[(-self.max_len+1):]\n", |
|
|
180 |
" code = code[(-self.max_len+1):]\n", |
|
|
181 |
"\n", |
|
|
182 |
" # avoid data cut with first element to be 'SEP'\n", |
|
|
183 |
" if code[0] != 'SEP':\n", |
|
|
184 |
" code = np.append(np.array(['CLS']), code)\n", |
|
|
185 |
" age = np.append(np.array(age[0]), age)\n", |
|
|
186 |
" else:\n", |
|
|
187 |
" code[0] = 'CLS'\n", |
|
|
188 |
"\n", |
|
|
189 |
" # mask 0:len(code) to 1, padding to be 0\n", |
|
|
190 |
" mask = np.ones(self.max_len)\n", |
|
|
191 |
" mask[len(code):] = 0\n", |
|
|
192 |
"\n", |
|
|
193 |
" # pad age sequence and code sequence\n", |
|
|
194 |
" age = seq_padding(age, self.max_len, token2idx=self.age2idx)\n", |
|
|
195 |
"\n", |
|
|
196 |
" tokens, code = code2index(code, self.vocab)\n", |
|
|
197 |
" _, label = code2index(label, self.label_vocab)\n", |
|
|
198 |
"\n", |
|
|
199 |
" # get position code and segment code\n", |
|
|
200 |
" tokens = seq_padding(tokens, self.max_len)\n", |
|
|
201 |
" position = position_idx(tokens)\n", |
|
|
202 |
" segment = index_seg(tokens)\n", |
|
|
203 |
"\n", |
|
|
204 |
" # pad code and label\n", |
|
|
205 |
" code = seq_padding(code, self.max_len, symbol=self.vocab['PAD'])\n", |
|
|
206 |
" label = seq_padding(label, self.max_len, symbol=-1)\n", |
|
|
207 |
"\n", |
|
|
208 |
" return torch.LongTensor(age), torch.LongTensor(code), torch.LongTensor(position), torch.LongTensor(segment), \\\n", |
|
|
209 |
" torch.LongTensor(mask), torch.LongTensor(label), torch.LongTensor([int(patid)])\n", |
|
|
210 |
"\n", |
|
|
211 |
" def __len__(self):\n", |
|
|
212 |
" return len(self.code)" |
|
|
213 |
] |
|
|
214 |
}, |
|
|
215 |
{ |
|
|
216 |
"cell_type": "code", |
|
|
217 |
"execution_count": null, |
|
|
218 |
"metadata": {}, |
|
|
219 |
"outputs": [], |
|
|
220 |
"source": [ |
|
|
221 |
"class BertConfig(Bert.modeling.BertConfig):\n", |
|
|
222 |
" def __init__(self, config):\n", |
|
|
223 |
" super(BertConfig, self).__init__(\n", |
|
|
224 |
" vocab_size_or_config_json_file=config.get('vocab_size'),\n", |
|
|
225 |
" hidden_size=config['hidden_size'],\n", |
|
|
226 |
" num_hidden_layers=config.get('num_hidden_layers'),\n", |
|
|
227 |
" num_attention_heads=config.get('num_attention_heads'),\n", |
|
|
228 |
" intermediate_size=config.get('intermediate_size'),\n", |
|
|
229 |
" hidden_act=config.get('hidden_act'),\n", |
|
|
230 |
" hidden_dropout_prob=config.get('hidden_dropout_prob'),\n", |
|
|
231 |
" attention_probs_dropout_prob=config.get('attention_probs_dropout_prob'),\n", |
|
|
232 |
" max_position_embeddings = config.get('max_position_embedding'),\n", |
|
|
233 |
" initializer_range=config.get('initializer_range'),\n", |
|
|
234 |
" )\n", |
|
|
235 |
" self.seg_vocab_size = config.get('seg_vocab_size')\n", |
|
|
236 |
" self.age_vocab_size = config.get('age_vocab_size')\n", |
|
|
237 |
"\n", |
|
|
238 |
"class BertEmbeddings(nn.Module):\n", |
|
|
239 |
" \"\"\"Construct the embeddings from word, segment, age\n", |
|
|
240 |
" \"\"\"\n", |
|
|
241 |
"\n", |
|
|
242 |
" def __init__(self, config):\n", |
|
|
243 |
" super(BertEmbeddings, self).__init__()\n", |
|
|
244 |
" self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)\n", |
|
|
245 |
" self.segment_embeddings = nn.Embedding(config.seg_vocab_size, config.hidden_size)\n", |
|
|
246 |
" self.age_embeddings = nn.Embedding(config.age_vocab_size, config.hidden_size)\n", |
|
|
247 |
" self.posi_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size).\\\n", |
|
|
248 |
" from_pretrained(embeddings=self._init_posi_embedding(config.max_position_embeddings, config.hidden_size))\n", |
|
|
249 |
"\n", |
|
|
250 |
" self.LayerNorm = Bert.modeling.BertLayerNorm(config.hidden_size, eps=1e-12)\n", |
|
|
251 |
" self.dropout = nn.Dropout(config.hidden_dropout_prob)\n", |
|
|
252 |
"\n", |
|
|
253 |
" def forward(self, word_ids, age_ids=None, seg_ids=None, posi_ids=None, age=True):\n", |
|
|
254 |
" if seg_ids is None:\n", |
|
|
255 |
" seg_ids = torch.zeros_like(word_ids)\n", |
|
|
256 |
" if age_ids is None:\n", |
|
|
257 |
" age_ids = torch.zeros_like(word_ids)\n", |
|
|
258 |
" if posi_ids is None:\n", |
|
|
259 |
" posi_ids = torch.zeros_like(word_ids)\n", |
|
|
260 |
"\n", |
|
|
261 |
" word_embed = self.word_embeddings(word_ids)\n", |
|
|
262 |
" segment_embed = self.segment_embeddings(seg_ids)\n", |
|
|
263 |
" age_embed = self.age_embeddings(age_ids)\n", |
|
|
264 |
" posi_embeddings = self.posi_embeddings(posi_ids)\n", |
|
|
265 |
" \n", |
|
|
266 |
" if age:\n", |
|
|
267 |
" embeddings = word_embed + segment_embed + age_embed + posi_embeddings\n", |
|
|
268 |
" else:\n", |
|
|
269 |
" embeddings = word_embed + segment_embed + posi_embeddings\n", |
|
|
270 |
" embeddings = self.LayerNorm(embeddings)\n", |
|
|
271 |
" embeddings = self.dropout(embeddings)\n", |
|
|
272 |
" return embeddings\n", |
|
|
273 |
"\n", |
|
|
274 |
" def _init_posi_embedding(self, max_position_embedding, hidden_size):\n", |
|
|
275 |
" def even_code(pos, idx):\n", |
|
|
276 |
" return np.sin(pos/(10000**(2*idx/hidden_size)))\n", |
|
|
277 |
"\n", |
|
|
278 |
" def odd_code(pos, idx):\n", |
|
|
279 |
" return np.cos(pos/(10000**(2*idx/hidden_size)))\n", |
|
|
280 |
"\n", |
|
|
281 |
" # initialize position embedding table\n", |
|
|
282 |
" lookup_table = np.zeros((max_position_embedding, hidden_size), dtype=np.float32)\n", |
|
|
283 |
"\n", |
|
|
284 |
" # reset table parameters with hard encoding\n", |
|
|
285 |
" # set even dimension\n", |
|
|
286 |
" for pos in range(max_position_embedding):\n", |
|
|
287 |
" for idx in np.arange(0, hidden_size, step=2):\n", |
|
|
288 |
" lookup_table[pos, idx] = even_code(pos, idx)\n", |
|
|
289 |
" # set odd dimension\n", |
|
|
290 |
" for pos in range(max_position_embedding):\n", |
|
|
291 |
" for idx in np.arange(1, hidden_size, step=2):\n", |
|
|
292 |
" lookup_table[pos, idx] = odd_code(pos, idx)\n", |
|
|
293 |
"\n", |
|
|
294 |
" return torch.tensor(lookup_table)\n", |
|
|
295 |
"\n", |
|
|
296 |
"class BertModel(Bert.modeling.BertPreTrainedModel):\n", |
|
|
297 |
" def __init__(self, config):\n", |
|
|
298 |
" super(BertModel, self).__init__(config)\n", |
|
|
299 |
" self.embeddings = BertEmbeddings(config=config)\n", |
|
|
300 |
" self.encoder = Bert.modeling.BertEncoder(config=config)\n", |
|
|
301 |
" self.pooler = Bert.modeling.BertPooler(config)\n", |
|
|
302 |
" self.apply(self.init_bert_weights)\n", |
|
|
303 |
"\n", |
|
|
304 |
" def forward(self, input_ids, age_ids=None, seg_ids=None, posi_ids=None, attention_mask=None, output_all_encoded_layers=True):\n", |
|
|
305 |
" if attention_mask is None:\n", |
|
|
306 |
" attention_mask = torch.ones_like(input_ids)\n", |
|
|
307 |
" if age_ids is None:\n", |
|
|
308 |
" age_ids = torch.zeros_like(input_ids)\n", |
|
|
309 |
" if seg_ids is None:\n", |
|
|
310 |
" seg_ids = torch.zeros_like(input_ids)\n", |
|
|
311 |
" if posi_ids is None:\n", |
|
|
312 |
" posi_ids = torch.zeros_like(input_ids)\n", |
|
|
313 |
"\n", |
|
|
314 |
" extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)\n", |
|
|
315 |
" extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility\n", |
|
|
316 |
" extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0\n", |
|
|
317 |
"\n", |
|
|
318 |
" embedding_output = self.embeddings(input_ids, age_ids, seg_ids, posi_ids)\n", |
|
|
319 |
" encoded_layers = self.encoder(embedding_output,\n", |
|
|
320 |
" extended_attention_mask,\n", |
|
|
321 |
" output_all_encoded_layers=output_all_encoded_layers)\n", |
|
|
322 |
" sequence_output = encoded_layers[-1]\n", |
|
|
323 |
" pooled_output = self.pooler(sequence_output)\n", |
|
|
324 |
" if not output_all_encoded_layers:\n", |
|
|
325 |
" encoded_layers = encoded_layers[-1]\n", |
|
|
326 |
" return encoded_layers, pooled_output\n", |
|
|
327 |
"\n", |
|
|
328 |
"class BertForMultiLabelPrediction(Bert.modeling.BertPreTrainedModel):\n", |
|
|
329 |
" def __init__(self, config, num_labels):\n", |
|
|
330 |
" super(BertForMultiLabelPrediction, self).__init__(config)\n", |
|
|
331 |
" self.num_labels = num_labels\n", |
|
|
332 |
" self.bert = BertModel(config)\n", |
|
|
333 |
" self.dropout = nn.Dropout(config.hidden_dropout_prob)\n", |
|
|
334 |
" self.classifier = nn.Linear(config.hidden_size, num_labels)\n", |
|
|
335 |
" self.apply(self.init_bert_weights)\n", |
|
|
336 |
"\n", |
|
|
337 |
" def forward(self, input_ids, age_ids=None, seg_ids=None, posi_ids=None, attention_mask=None, labels=None):\n", |
|
|
338 |
" _, pooled_output = self.bert(input_ids, age_ids ,seg_ids, posi_ids, attention_mask,\n", |
|
|
339 |
" output_all_encoded_layers=False)\n", |
|
|
340 |
" pooled_output = self.dropout(pooled_output)\n", |
|
|
341 |
" logits = self.classifier(pooled_output)\n", |
|
|
342 |
"\n", |
|
|
343 |
" if labels is not None:\n", |
|
|
344 |
" loss_fct = nn.MultiLabelSoftMarginLoss()\n", |
|
|
345 |
" loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1, self.num_labels))\n", |
|
|
346 |
" return loss, logits\n", |
|
|
347 |
" else:\n", |
|
|
348 |
" return logits" |
|
|
349 |
] |
|
|
350 |
}, |
|
|
351 |
{ |
|
|
352 |
"cell_type": "markdown", |
|
|
353 |
"metadata": {}, |
|
|
354 |
"source": [ |
|
|
355 |
"# Load Data" |
|
|
356 |
] |
|
|
357 |
}, |
|
|
358 |
{ |
|
|
359 |
"cell_type": "code", |
|
|
360 |
"execution_count": null, |
|
|
361 |
"metadata": {}, |
|
|
362 |
"outputs": [], |
|
|
363 |
"source": [ |
|
|
364 |
"data = pd.read_parquet(file_config['train']).reset_index(drop=True)\n", |
|
|
365 |
"data['label'] = data.label.apply(lambda x: list(set(x)))\n", |
|
|
366 |
"Dset = NextVisit(token2idx=BertVocab['token2idx'], diag2idx=Vocab_diag, age2idx=ageVocab,dataframe=data, max_len=global_params['max_len_seq'])\n", |
|
|
367 |
"trainload = DataLoader(dataset=Dset, batch_size=global_params['batch_size'], shuffle=True, num_workers=3)" |
|
|
368 |
] |
|
|
369 |
}, |
|
|
370 |
{ |
|
|
371 |
"cell_type": "code", |
|
|
372 |
"execution_count": null, |
|
|
373 |
"metadata": {}, |
|
|
374 |
"outputs": [], |
|
|
375 |
"source": [ |
|
|
376 |
"data = pd.read_parquet(file_config['test']).reset_index(drop=True)\n", |
|
|
377 |
"data['label'] = data.label.apply(lambda x: list(set(x)))\n", |
|
|
378 |
"Dset = NextVisit(token2idx=BertVocab['token2idx'], diag2idx=Vocab_diag, age2idx=ageVocab,dataframe=data, max_len=global_params['max_len_seq'])\n", |
|
|
379 |
"testload = DataLoader(dataset=Dset, batch_size=global_params['batch_size'], shuffle=False, num_workers=3)" |
|
|
380 |
] |
|
|
381 |
}, |
|
|
382 |
{ |
|
|
383 |
"cell_type": "markdown", |
|
|
384 |
"metadata": {}, |
|
|
385 |
"source": [ |
|
|
386 |
"# Set Up Model" |
|
|
387 |
] |
|
|
388 |
}, |
|
|
389 |
{ |
|
|
390 |
"cell_type": "code", |
|
|
391 |
"execution_count": null, |
|
|
392 |
"metadata": {}, |
|
|
393 |
"outputs": [], |
|
|
394 |
"source": [ |
|
|
395 |
"# del model\n", |
|
|
396 |
"conf = BertConfig(model_config)\n", |
|
|
397 |
"model = BertForMultiLabelPrediction(conf, num_labels=len(Vocab_diag.keys()))" |
|
|
398 |
] |
|
|
399 |
}, |
|
|
400 |
{ |
|
|
401 |
"cell_type": "code", |
|
|
402 |
"execution_count": null, |
|
|
403 |
"metadata": { |
|
|
404 |
"scrolled": true |
|
|
405 |
}, |
|
|
406 |
"outputs": [], |
|
|
407 |
"source": [ |
|
|
408 |
"# load pretrained model and update weights\n", |
|
|
409 |
"pretrained_dict = torch.load(pretrainModel)\n", |
|
|
410 |
"model_dict = model.state_dict()\n", |
|
|
411 |
"# 1. filter out unnecessary keys\n", |
|
|
412 |
"pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}\n", |
|
|
413 |
"# 2. overwrite entries in the existing state dict\n", |
|
|
414 |
"model_dict.update(pretrained_dict) \n", |
|
|
415 |
"# 3. load the new state dict\n", |
|
|
416 |
"model.load_state_dict(model_dict)" |
|
|
417 |
] |
|
|
418 |
}, |
|
|
419 |
{ |
|
|
420 |
"cell_type": "code", |
|
|
421 |
"execution_count": null, |
|
|
422 |
"metadata": {}, |
|
|
423 |
"outputs": [], |
|
|
424 |
"source": [ |
|
|
425 |
"model = model.to(global_params['device'])\n", |
|
|
426 |
"optim = optimiser.adam(params=list(model.named_parameters()), config=optim_config)" |
|
|
427 |
] |
|
|
428 |
}, |
|
|
429 |
{ |
|
|
430 |
"cell_type": "markdown", |
|
|
431 |
"metadata": {}, |
|
|
432 |
"source": [ |
|
|
433 |
"# Evaluation Matrix" |
|
|
434 |
] |
|
|
435 |
}, |
|
|
436 |
{ |
|
|
437 |
"cell_type": "code", |
|
|
438 |
"execution_count": null, |
|
|
439 |
"metadata": {}, |
|
|
440 |
"outputs": [], |
|
|
441 |
"source": [ |
|
|
442 |
"import sklearn\n", |
|
|
443 |
"def precision(logits, label):\n", |
|
|
444 |
" sig = nn.Sigmoid()\n", |
|
|
445 |
" output=sig(logits)\n", |
|
|
446 |
" label, output=label.cpu(), output.detach().cpu()\n", |
|
|
447 |
" tempprc= sklearn.metrics.average_precision_score(label.numpy(),output.numpy(), average='samples')\n", |
|
|
448 |
" return tempprc, output, label\n", |
|
|
449 |
"\n", |
|
|
450 |
"def precision_test(logits, label):\n", |
|
|
451 |
" sig = nn.Sigmoid()\n", |
|
|
452 |
" output=sig(logits)\n", |
|
|
453 |
" tempprc= sklearn.metrics.average_precision_score(label.numpy(),output.numpy(), average='samples')\n", |
|
|
454 |
"# roc = sklearn.metrics.roc_auc_score()\n", |
|
|
455 |
" return tempprc, output, label\n", |
|
|
456 |
"\n", |
|
|
457 |
"def auroc_test(logits, label):\n", |
|
|
458 |
" sig = nn.Sigmoid()\n", |
|
|
459 |
" output=sig(logits)\n", |
|
|
460 |
" tempprc= sklearn.metrics.roc_auc_score(label.numpy(),output.numpy(), average='samples')\n", |
|
|
461 |
"# roc = sklearn.metrics.roc_auc_score()\n", |
|
|
462 |
" return tempprc" |
|
|
463 |
] |
|
|
464 |
}, |
|
|
465 |
{ |
|
|
466 |
"cell_type": "markdown", |
|
|
467 |
"metadata": {}, |
|
|
468 |
"source": [ |
|
|
469 |
"# Multi-hot Label Encoder" |
|
|
470 |
] |
|
|
471 |
}, |
|
|
472 |
{ |
|
|
473 |
"cell_type": "code", |
|
|
474 |
"execution_count": null, |
|
|
475 |
"metadata": {}, |
|
|
476 |
"outputs": [], |
|
|
477 |
"source": [ |
|
|
478 |
"from sklearn.preprocessing import MultiLabelBinarizer\n", |
|
|
479 |
"mlb = MultiLabelBinarizer(classes=list(Vocab_diag.values()))\n", |
|
|
480 |
"mlb.fit([[each] for each in list(Vocab_diag.values())])" |
|
|
481 |
] |
|
|
482 |
}, |
|
|
483 |
{ |
|
|
484 |
"cell_type": "markdown", |
|
|
485 |
"metadata": {}, |
|
|
486 |
"source": [ |
|
|
487 |
"# Train and Test" |
|
|
488 |
] |
|
|
489 |
}, |
|
|
490 |
{ |
|
|
491 |
"cell_type": "code", |
|
|
492 |
"execution_count": null, |
|
|
493 |
"metadata": {}, |
|
|
494 |
"outputs": [], |
|
|
495 |
"source": [ |
|
|
496 |
"def train(e):\n", |
|
|
497 |
" model.train()\n", |
|
|
498 |
" tr_loss = 0\n", |
|
|
499 |
" temp_loss = 0\n", |
|
|
500 |
" nb_tr_examples, nb_tr_steps = 0, 0\n", |
|
|
501 |
" cnt = 0\n", |
|
|
502 |
" for step, batch in enumerate(trainload):\n", |
|
|
503 |
" cnt +=1\n", |
|
|
504 |
" age_ids, input_ids, posi_ids, segment_ids, attMask, targets, _ = batch\n", |
|
|
505 |
" targets = torch.tensor(mlb.transform(targets.numpy()), dtype=torch.float32)\n", |
|
|
506 |
" \n", |
|
|
507 |
" age_ids = age_ids.to(global_params['device'])\n", |
|
|
508 |
" input_ids = input_ids.to(global_params['device'])\n", |
|
|
509 |
" posi_ids = posi_ids.to(global_params['device'])\n", |
|
|
510 |
" segment_ids = segment_ids.to(global_params['device'])\n", |
|
|
511 |
" attMask = attMask.to(global_params['device'])\n", |
|
|
512 |
" targets = targets.to(global_params['device'])\n", |
|
|
513 |
" \n", |
|
|
514 |
" loss, logits = model(input_ids, age_ids, segment_ids, posi_ids,attention_mask=attMask, labels=targets)\n", |
|
|
515 |
" \n", |
|
|
516 |
" if global_params['gradient_accumulation_steps'] >1:\n", |
|
|
517 |
" loss = loss/global_params['gradient_accumulation_steps']\n", |
|
|
518 |
" loss.backward()\n", |
|
|
519 |
" \n", |
|
|
520 |
" temp_loss += loss.item()\n", |
|
|
521 |
" tr_loss += loss.item()\n", |
|
|
522 |
" nb_tr_examples += input_ids.size(0)\n", |
|
|
523 |
" nb_tr_steps += 1\n", |
|
|
524 |
" \n", |
|
|
525 |
" if step % 2000==0:\n", |
|
|
526 |
" prec, a, b = precision(logits, targets)\n", |
|
|
527 |
" print(\"epoch: {}\\t| Cnt: {}\\t| Loss: {}\\t| precision: {}\".format(e, cnt,temp_loss/2000, prec))\n", |
|
|
528 |
" temp_loss = 0\n", |
|
|
529 |
" \n", |
|
|
530 |
" if (step + 1) % global_params['gradient_accumulation_steps'] == 0:\n", |
|
|
531 |
" optim.step()\n", |
|
|
532 |
" optim.zero_grad()\n", |
|
|
533 |
" \n", |
|
|
534 |
"\n", |
|
|
535 |
"def evaluation():\n", |
|
|
536 |
" model.eval()\n", |
|
|
537 |
" y = []\n", |
|
|
538 |
" y_label = []\n", |
|
|
539 |
" for step, batch in enumerate(testload):\n", |
|
|
540 |
" model.eval()\n", |
|
|
541 |
" age_ids, input_ids, posi_ids, segment_ids, attMask, targets, _ = batch\n", |
|
|
542 |
" targets = torch.tensor(mlb.transform(targets.numpy()), dtype=torch.float32)\n", |
|
|
543 |
" \n", |
|
|
544 |
" age_ids = age_ids.to(global_params['device'])\n", |
|
|
545 |
" input_ids = input_ids.to(global_params['device'])\n", |
|
|
546 |
" posi_ids = posi_ids.to(global_params['device'])\n", |
|
|
547 |
" segment_ids = segment_ids.to(global_params['device'])\n", |
|
|
548 |
" attMask = attMask.to(global_params['device'])\n", |
|
|
549 |
" targets = targets.to(global_params['device'])\n", |
|
|
550 |
" \n", |
|
|
551 |
" with torch.no_grad():\n", |
|
|
552 |
" loss, logits = model(input_ids, age_ids, segment_ids, posi_ids,attention_mask=attMask, labels=targets)\n", |
|
|
553 |
" logits = logits.cpu()\n", |
|
|
554 |
" targets = targets.cpu()\n", |
|
|
555 |
"\n", |
|
|
556 |
" y_label.append(targets)\n", |
|
|
557 |
" y.append(logits)\n", |
|
|
558 |
"\n", |
|
|
559 |
" y_label = torch.cat(y_label, dim=0)\n", |
|
|
560 |
" y = torch.cat(y, dim=0)\n", |
|
|
561 |
"\n", |
|
|
562 |
" tempprc, output, label = precision_test(y, y_label)\n", |
|
|
563 |
" auroc = auroc_test(y, y_label)\n", |
|
|
564 |
" return tempprc, auroc" |
|
|
565 |
] |
|
|
566 |
}, |
|
|
567 |
{ |
|
|
568 |
"cell_type": "code", |
|
|
569 |
"execution_count": null, |
|
|
570 |
"metadata": { |
|
|
571 |
"scrolled": true |
|
|
572 |
}, |
|
|
573 |
"outputs": [], |
|
|
574 |
"source": [ |
|
|
575 |
"import warnings\n", |
|
|
576 |
"warnings.filterwarnings(action='ignore')\n", |
|
|
577 |
"optim_config = {\n", |
|
|
578 |
" 'lr': 9e-6,\n", |
|
|
579 |
" 'warmup_proportion': 0.1\n", |
|
|
580 |
"}\n", |
|
|
581 |
"optim = optimiser.adam(params=list(model.named_parameters()), config=optim_config)\n", |
|
|
582 |
"\n", |
|
|
583 |
"best_pre = 0\n", |
|
|
584 |
"for e in range(50):\n", |
|
|
585 |
" train(e)\n", |
|
|
586 |
" auc, roc= evaluation()\n", |
|
|
587 |
" if auc >best_pre:\n", |
|
|
588 |
" # Save a trained model\n", |
|
|
589 |
" print(\"** ** * Saving fine - tuned model ** ** * \")\n", |
|
|
590 |
" model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self\n", |
|
|
591 |
" output_model_file = os.path.join(global_params['output_dir'],global_params['best_name'])\n", |
|
|
592 |
" create_folder(global_params['output_dir'])\n", |
|
|
593 |
" if global_params['save_model']:\n", |
|
|
594 |
" torch.save(model_to_save.state_dict(), output_model_file)\n", |
|
|
595 |
" best_pre = auc\n", |
|
|
596 |
" print('precision : {}, auroc: {},'.format(auc, roc))" |
|
|
597 |
] |
|
|
598 |
} |
|
|
599 |
], |
|
|
600 |
"metadata": { |
|
|
601 |
"kernelspec": { |
|
|
602 |
"display_name": "Python 3", |
|
|
603 |
"language": "python", |
|
|
604 |
"name": "python3" |
|
|
605 |
}, |
|
|
606 |
"language_info": { |
|
|
607 |
"codemirror_mode": { |
|
|
608 |
"name": "ipython", |
|
|
609 |
"version": 3 |
|
|
610 |
}, |
|
|
611 |
"file_extension": ".py", |
|
|
612 |
"mimetype": "text/x-python", |
|
|
613 |
"name": "python", |
|
|
614 |
"nbconvert_exporter": "python", |
|
|
615 |
"pygments_lexer": "ipython3", |
|
|
616 |
"version": "3.7.4" |
|
|
617 |
} |
|
|
618 |
}, |
|
|
619 |
"nbformat": 4, |
|
|
620 |
"nbformat_minor": 2 |
|
|
621 |
} |