import pytorch_pretrained_bert as Bert
def adam(params, config=None):
if config is None:
config = {
'lr': 3e-5,
'warmup_proportion': 0.1,
'weight_decay': 0.01
}
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in params if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in params if any(nd in n for nd in no_decay)], 'weight_decay': 0}
]
optim = Bert.optimization.BertAdam(optimizer_grouped_parameters,
lr=config['lr'],
warmup=config['warmup_proportion'])
return optim