[bad60c]: / model / NextXVisit.py

Download this file

139 lines (110 with data), 6.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import torch.nn as nn
import pytorch_pretrained_bert as Bert
import numpy as np
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, segment, age
"""
def __init__(self, config, feature_dict=None):
super(BertEmbeddings, self).__init__()
if feature_dict is None:
self.feature_dict = {
'word': True,
'seg': True,
'age': True,
'position': True
}
else:
self.feature_dict = feature_dict
if feature_dict['word']:
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
if feature_dict['seg']:
self.segment_embeddings = nn.Embedding(config.seg_vocab_size, config.hidden_size)
if feature_dict['age']:
self.age_embeddings = nn.Embedding(config.age_vocab_size, config.hidden_size)
if feature_dict['position']:
self.posi_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size). \
from_pretrained(embeddings=self._init_posi_embedding(config.max_position_embeddings, config.hidden_size))
self.LayerNorm = Bert.modeling.BertLayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, word_ids, age_ids, seg_ids, posi_ids):
embeddings = self.word_embeddings(word_ids)
if self.feature_dict['seg']:
segment_embed = self.segment_embeddings(seg_ids)
embeddings = embeddings + segment_embed
if self.feature_dict['age']:
age_embed = self.age_embeddings(age_ids)
embeddings = embeddings + age_embed
if self.feature_dict['position']:
posi_embeddings = self.posi_embeddings(posi_ids)
embeddings = embeddings + posi_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
def _init_posi_embedding(self, max_position_embedding, hidden_size):
def even_code(pos, idx):
return np.sin(pos / (10000 ** (2 * idx / hidden_size)))
def odd_code(pos, idx):
return np.cos(pos / (10000 ** (2 * idx / hidden_size)))
# initialize position embedding table
lookup_table = np.zeros((max_position_embedding, hidden_size), dtype=np.float32)
# reset table parameters with hard encoding
# set even dimension
for pos in range(max_position_embedding):
for idx in np.arange(0, hidden_size, step=2):
lookup_table[pos, idx] = even_code(pos, idx)
# set odd dimension
for pos in range(max_position_embedding):
for idx in np.arange(1, hidden_size, step=2):
lookup_table[pos, idx] = odd_code(pos, idx)
return torch.tensor(lookup_table)
class BertModel(Bert.modeling.BertPreTrainedModel):
def __init__(self, config, feature_dict):
super(BertModel, self).__init__(config)
self.embeddings = BertEmbeddings(config=config, feature_dict=feature_dict)
self.encoder = Bert.modeling.BertEncoder(config=config)
self.pooler = Bert.modeling.BertPooler(config)
self.apply(self.init_bert_weights)
def forward(self, input_ids, age_ids, seg_ids, posi_ids, attention_mask,
output_all_encoded_layers=True):
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
embedding_output = self.embeddings(input_ids, age_ids, seg_ids, posi_ids)
encoded_layers = self.encoder(embedding_output,
extended_attention_mask,
output_all_encoded_layers=output_all_encoded_layers)
sequence_output = encoded_layers[-1]
pooled_output = self.pooler(sequence_output)
if not output_all_encoded_layers:
encoded_layers = encoded_layers[-1]
return encoded_layers, pooled_output
class BertForMultiLabelPrediction(Bert.modeling.BertPreTrainedModel):
def __init__(self, config, num_labels, feature_dict):
super(BertForMultiLabelPrediction, self).__init__(config)
self.num_labels = num_labels
self.bert = BertModel(config, feature_dict)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, num_labels)
self.apply(self.init_bert_weights)
def forward(self, input_ids, age_ids=None, seg_ids=None, posi_ids=None, attention_mask=None, labels=None):
_, pooled_output = self.bert(input_ids, age_ids, seg_ids, posi_ids, attention_mask,
output_all_encoded_layers=False)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
if labels is not None:
loss_fct = nn.MultiLabelSoftMarginLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1, self.num_labels))
return loss, logits
else:
return logits