import torch.nn as nn
import pytorch_pretrained_bert as Bert
import numpy as np
import torch
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, segment, age
"""
def __init__(self, config):
super(BertEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.segment_embeddings = nn.Embedding(config.seg_vocab_size, config.hidden_size)
self.age_embeddings = nn.Embedding(config.age_vocab_size, config.hidden_size)
self.posi_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size). \
from_pretrained(embeddings=self._init_posi_embedding(config.max_position_embeddings, config.hidden_size))
self.LayerNorm = Bert.modeling.BertLayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, word_ids, age_ids=None, seg_ids=None, posi_ids=None, age=True):
if seg_ids is None:
seg_ids = torch.zeros_like(word_ids)
if age_ids is None:
age_ids = torch.zeros_like(word_ids)
if posi_ids is None:
posi_ids = torch.zeros_like(word_ids)
word_embed = self.word_embeddings(word_ids)
segment_embed = self.segment_embeddings(seg_ids)
age_embed = self.age_embeddings(age_ids)
posi_embeddings = self.posi_embeddings(posi_ids)
if age:
embeddings = word_embed + segment_embed + age_embed + posi_embeddings
else:
embeddings = word_embed + segment_embed + posi_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
def _init_posi_embedding(self, max_position_embedding, hidden_size):
def even_code(pos, idx):
return np.sin(pos / (10000 ** (2 * idx / hidden_size)))
def odd_code(pos, idx):
return np.cos(pos / (10000 ** (2 * idx / hidden_size)))
# initialize position embedding table
lookup_table = np.zeros((max_position_embedding, hidden_size), dtype=np.float32)
# reset table parameters with hard encoding
# set even dimension
for pos in range(max_position_embedding):
for idx in np.arange(0, hidden_size, step=2):
lookup_table[pos, idx] = even_code(pos, idx)
# set odd dimension
for pos in range(max_position_embedding):
for idx in np.arange(1, hidden_size, step=2):
lookup_table[pos, idx] = odd_code(pos, idx)
return torch.tensor(lookup_table)
class BertModel(Bert.modeling.BertPreTrainedModel):
def __init__(self, config):
super(BertModel, self).__init__(config)
self.embeddings = BertEmbeddings(config=config)
self.encoder = Bert.modeling.BertEncoder(config=config)
self.pooler = Bert.modeling.BertPooler(config)
self.apply(self.init_bert_weights)
def forward(self, input_ids, age_ids=None, seg_ids=None, posi_ids=None, attention_mask=None,
output_all_encoded_layers=True):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if age_ids is None:
age_ids = torch.zeros_like(input_ids)
if seg_ids is None:
seg_ids = torch.zeros_like(input_ids)
if posi_ids is None:
posi_ids = torch.zeros_like(input_ids)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
embedding_output = self.embeddings(input_ids, age_ids, seg_ids, posi_ids)
encoded_layers = self.encoder(embedding_output,
extended_attention_mask,
output_all_encoded_layers=output_all_encoded_layers)
sequence_output = encoded_layers[-1]
pooled_output = self.pooler(sequence_output)
if not output_all_encoded_layers:
encoded_layers = encoded_layers[-1]
return encoded_layers, pooled_output
class BertForMaskedLM(Bert.modeling.BertPreTrainedModel):
def __init__(self, config):
super(BertForMaskedLM, self).__init__(config)
self.bert = BertModel(config)
self.cls = Bert.modeling.BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
self.apply(self.init_bert_weights)
def forward(self, input_ids, age_ids=None, seg_ids=None, posi_ids=None, attention_mask=None, masked_lm_labels=None):
sequence_output, _ = self.bert(input_ids, age_ids, seg_ids, posi_ids, attention_mask,
output_all_encoded_layers=False)
prediction_scores = self.cls(sequence_output)
if masked_lm_labels is not None:
loss_fct = nn.CrossEntropyLoss(ignore_index=-1)
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
return masked_lm_loss, prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)
else:
return prediction_scores