--- a +++ b/dataLoader/MLM.py @@ -0,0 +1,53 @@ +from torch.utils.data.dataset import Dataset +import numpy as np +from dataLoader.utils import seq_padding,position_idx,index_seg,random_mask +import torch + + +class MLMLoader(Dataset): + def __init__(self, dataframe, token2idx, age2idx, max_len, code='code', age='age'): + self.vocab = token2idx + self.max_len = max_len + self.code = dataframe[code] + self.age = dataframe[age] + self.age2idx = age2idx + + def __getitem__(self, index): + """ + return: age, code, position, segmentation, mask, label + """ + + # extract data + age = self.age[index][(-self.max_len+1):] + code = self.code[index][(-self.max_len+1):] + + # avoid data cut with first element to be 'SEP' + if code[0] != 'SEP': + code = np.append(np.array(['CLS']), code) + age = np.append(np.array(age[0]), age) + else: + code[0] = 'CLS' + + # mask 0:len(code) to 1, padding to be 0 + mask = np.ones(self.max_len) + mask[len(code):] = 0 + + # pad age sequence and code sequence + age = seq_padding(age, self.max_len, token2idx=self.age2idx) + + tokens, code, label = random_mask(code, self.vocab) + + # get position code and segment code + tokens = seq_padding(tokens, self.max_len) + position = position_idx(tokens) + segment = index_seg(tokens) + + # pad code and label + code = seq_padding(code, self.max_len, symbol=self.vocab['PAD']) + label = seq_padding(label, self.max_len, symbol=-1) + + return torch.LongTensor(age), torch.LongTensor(code), torch.LongTensor(position), torch.LongTensor(segment), \ + torch.LongTensor(mask), torch.LongTensor(label) + + def __len__(self): + return len(self.code) \ No newline at end of file