|
a |
|
b/main.py |
|
|
1 |
""" |
|
|
2 |
Main script for demo. |
|
|
3 |
""" |
|
|
4 |
|
|
|
5 |
from aitrika.engine.online_aitrika import OnlineAItrika |
|
|
6 |
from aitrika.llm.openai import OpenAILLM |
|
|
7 |
from aitrika.utils.text_parser import generate_documents |
|
|
8 |
from dotenv import load_dotenv |
|
|
9 |
import os |
|
|
10 |
|
|
|
11 |
if __name__ == "__main__": |
|
|
12 |
load_dotenv() |
|
|
13 |
pubmed_id = 23747889 |
|
|
14 |
engine = OnlineAItrika(pubmed_id=pubmed_id) |
|
|
15 |
|
|
|
16 |
# Extract the content |
|
|
17 |
abstract = engine.extract_abstract() |
|
|
18 |
|
|
|
19 |
# Prepare the documents (you can use full-text if available) |
|
|
20 |
documents = generate_documents(content=abstract) |
|
|
21 |
|
|
|
22 |
# Set the LLM (default for OpenAI is gpt-4o-mini) |
|
|
23 |
llm = OpenAILLM( |
|
|
24 |
documents=documents, |
|
|
25 |
api_key=os.getenv("OPENAI_API_KEY"), |
|
|
26 |
) |
|
|
27 |
|
|
|
28 |
# Query your document |
|
|
29 |
query = "Is BRCA1 associated with breast cancer?" |
|
|
30 |
print(llm.query(query=query)) |
|
|
31 |
|
|
|
32 |
# Extract paper results |
|
|
33 |
results = engine.extract_results(llm=llm) |
|
|
34 |
print(results) |
|
|
35 |
|
|
|
36 |
# Extract number of participants |
|
|
37 |
number_of_participants = engine.extract_number_of_participants(llm=llm) |
|
|
38 |
print(number_of_participants) |
|
|
39 |
|
|
|
40 |
# Extract outcomes |
|
|
41 |
outcomes = engine.extract_outcomes(llm=llm) |
|
|
42 |
print(outcomes) |