Diff of /aitrika/llm/ollama.py [000000] .. [1bdb11]

Switch to unified view

a b/aitrika/llm/ollama.py
1
from llama_index.llms.ollama import Ollama
2
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
3
from llama_index.core.node_parser import SimpleNodeParser
4
from llama_index.core import (
5
    VectorStoreIndex,
6
    Settings,
7
    StorageContext,
8
    load_index_from_storage,
9
    Document,
10
)
11
from llama_index.vector_stores.lancedb import LanceDBVectorStore
12
import os
13
from aitrika.llm.base_llm import BaseLLM
14
from aitrika.config.config import LLMConfig
15
16
17
class OllamaLLM(BaseLLM):
18
    config = LLMConfig()
19
20
    def __init__(self, documents: Document):
21
        self.documents = documents
22
23
    def _build_index(self):
24
        llm = Ollama(model=self.model_name, request_timeout=120.0)
25
        embed_model = HuggingFaceEmbedding(
26
            model_name=self.config.DEFAULT_EMBEDDINGS,
27
            cache_folder=f"aitrika/rag/embeddings/{self.config.DEFAULT_EMBEDDINGS.replace('/','_')}",
28
        )
29
        Settings.llm = llm
30
        Settings.embed_model = embed_model
31
        Settings.chunk_size = self.config.CHUNK_SIZE
32
        Settings.chunk_overlap = self.config.CHUNK_OVERLAP
33
        Settings.context_window = self.config.CONTEXT_WINDOW
34
        Settings.num_output = self.config.NUM_OUTPUT
35
36
        if os.path.exists("aitrika/rag/vectorstores/ollama"):
37
            vector_store = LanceDBVectorStore(uri="aitrika/rag/vectorstores/ollama")
38
            storage_context = StorageContext.from_defaults(
39
                vector_store=vector_store, persist_dir="aitrika/rag/vectorstores/ollama"
40
            )
41
            index = load_index_from_storage(storage_context=storage_context)
42
            parser = SimpleNodeParser()
43
            new_nodes = parser.get_nodes_from_documents(self.documents)
44
            index.insert_nodes(new_nodes)
45
            index = load_index_from_storage(storage_context=storage_context)
46
        else:
47
            vector_store = LanceDBVectorStore(uri="aitrika/rag/vectorstores/ollama")
48
            storage_context = StorageContext.from_defaults(vector_store=vector_store)
49
            index = VectorStoreIndex(
50
                nodes=self.documents, storage_context=storage_context
51
            )
52
            index.storage_context.persist(persist_dir="aitrika/rag/vectorstores/ollama")
53
        self.index = index
54
55
    def query(self, query: str):
56
        self._build_index()
57
        query_engine = self.index.as_query_engine()
58
        response = query_engine.query(query)
59
        return str(response).strip()