301 lines (300 with data), 8.5 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import sklearn.metrics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Read in labels and performance data:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Pneumonia</th>\n",
" <th>Atelectasis</th>\n",
" <th>Effusion</th>\n",
" <th>Pneumothorax</th>\n",
" <th>Infiltration</th>\n",
" <th>Cardiomegaly</th>\n",
" <th>Mass</th>\n",
" <th>Nodule</th>\n",
" <th>algorithm_output</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Pneumonia Atelectasis Effusion Pneumothorax Infiltration Cardiomegaly \\\n",
"0 1 1 1 0 0 0 \n",
"1 1 1 0 0 0 1 \n",
"2 1 0 1 0 0 0 \n",
"3 1 1 1 0 0 1 \n",
"4 0 1 0 0 0 0 \n",
"\n",
" Mass Nodule algorithm_output \n",
"0 0 0 1 \n",
"1 0 0 1 \n",
"2 0 0 1 \n",
"3 0 0 1 \n",
"4 0 0 0 "
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = pd.read_csv('labels_and_performance.csv')\n",
"data.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, look at the overall performance of the algorithm for the detection of pneumonia:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"tn, fp, fn, tp = sklearn.metrics.confusion_matrix(data.Pneumonia.values,\n",
" data.algorithm_output.values,labels=[1,0]).ravel()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.8235294117647058"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sens = tp/(tp+fn)\n",
"sens"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.8166666666666667"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"spec = tn/(tn+fp)\n",
"spec"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, look at the algorithm's performance in the presence of the other diseases: "
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Atelectasis\n",
"Sensitivity: 0.8333333333333334\n",
"Specificity: 0.782608695652174\n",
"\n",
"Effusion\n",
"Sensitivity: 0.8571428571428571\n",
"Specificity: 0.6521739130434783\n",
"\n",
"Pneumothorax\n",
"Sensitivity: 0.6666666666666666\n",
"Specificity: 0.8571428571428571\n",
"\n",
"Infiltration\n",
"Sensitivity: 0.0\n",
"Specificity: 0.3888888888888889\n",
"\n",
"Cardiomegaly\n",
"Sensitivity: 1.0\n",
"Specificity: 0.8888888888888888\n",
"\n",
"Mass\n",
"Sensitivity: 0.8666666666666667\n",
"Specificity: 0.9285714285714286\n",
"\n",
"Nodule\n",
"Sensitivity: 0.5384615384615384\n",
"Specificity: 1.0\n",
"\n"
]
}
],
"source": [
"for i in ['Atelectasis','Effusion','Pneumothorax','Infiltration','Cardiomegaly','Mass','Nodule']:\n",
"\n",
" tn, fp, fn, tp = sklearn.metrics.confusion_matrix(data[data[i]==1].Pneumonia.values,\n",
" data[data[i]==1].algorithm_output.values,labels=[1,0]).ravel()\n",
" sens = tp/(tp+fn)\n",
" spec = tn/(tn+fp)\n",
"\n",
" print(i)\n",
" print('Sensitivity: '+ str(sens))\n",
" print('Specificity: ' +str(spec))\n",
" print()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Statement on algorithmic limitations:\n",
"\n",
"The results above indicate that the presence of infiltrations in a chest x-ray is a limitation of this algorithm, and that the algorithm performs very poorly on the accurate detection of pneumonia in the presence of infiltration. The presence of nodules and pneumothorax have a slight impact on the algorithm's sensitivity and may reduce the ability to detect pneumonia, while the presence of effusion has a slight impact on specificity and may increase the number of false positive pneumonia classifications."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}