{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import numpy as np # linear algebra\n", "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n", "import matplotlib.pyplot as plt\n", "from sklearn.preprocessing import binarize\n", "\n", "from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score, plot_precision_recall_curve, f1_score, confusion_matrix" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "performances = pd.read_csv('performances.csv')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | ground_truth | \n", "probability | \n", "
---|---|---|
0 | \n", "1 | \n", "0.99 | \n", "
1 | \n", "1 | \n", "0.98 | \n", "
2 | \n", "1 | \n", "0.97 | \n", "
3 | \n", "1 | \n", "0.96 | \n", "
4 | \n", "1 | \n", "0.95 | \n", "