{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import sklearn.metrics" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | age | \n", "gender | \n", "num_prior_positive | \n", "race | \n", "scanner_type | \n", "ground_truth | \n", "algorithm_output | \n", "
---|---|---|---|---|---|---|---|
0 | \n", "53 | \n", "F | \n", "0 | \n", "hispanic | \n", "hologic | \n", "normal | \n", "normal | \n", "
1 | \n", "39 | \n", "F | \n", "0 | \n", "caucasian | \n", "hologic | \n", "normal | \n", "abnormal | \n", "
2 | \n", "56 | \n", "F | \n", "0 | \n", "african_american | \n", "hologic | \n", "normal | \n", "normal | \n", "
3 | \n", "44 | \n", "F | \n", "0 | \n", "caucasian | \n", "hologic | \n", "normal | \n", "abnormal | \n", "
4 | \n", "35 | \n", "F | \n", "0 | \n", "caucasian | \n", "hologic | \n", "normal | \n", "normal | \n", "