|
a |
|
b/prescreen/simbad/biology_2.py |
|
|
1 |
""" |
|
|
2 |
fetches biology for simbad |
|
|
3 |
""" |
|
|
4 |
import pandas as pd |
|
|
5 |
|
|
|
6 |
from clintk.utils.connection import get_engine, sql2df |
|
|
7 |
from datetime import timedelta |
|
|
8 |
from bs4 import BeautifulSoup |
|
|
9 |
from io import StringIO |
|
|
10 |
|
|
|
11 |
import requests |
|
|
12 |
import argparse |
|
|
13 |
|
|
|
14 |
|
|
|
15 |
def fetch(url, header_path, id, ip, dbase, targets_table): |
|
|
16 |
""" |
|
|
17 |
il suffit de concatener toutes les tables extraites pour ensuite les fold |
|
|
18 |
|
|
|
19 |
url : str |
|
|
20 |
url to the location of biology files |
|
|
21 |
|
|
|
22 |
header_path : str |
|
|
23 |
path to csv file containing header |
|
|
24 |
|
|
|
25 |
id : str |
|
|
26 |
login to the sql database |
|
|
27 |
|
|
|
28 |
ip : str |
|
|
29 |
ip adress to the sql server |
|
|
30 |
|
|
|
31 |
dbase : str |
|
|
32 |
name of the database on the given server |
|
|
33 |
|
|
|
34 |
targets_table : str |
|
|
35 |
name of the table containing targets information |
|
|
36 |
|
|
|
37 |
@TODO ne need to fetch targets_table from sql since already loaded by |
|
|
38 |
@TODO main function |
|
|
39 |
|
|
|
40 |
Returns |
|
|
41 |
------- |
|
|
42 |
""" |
|
|
43 |
# url = 'http://esimbad/testGSAV7/reslabo?FENID=resLaboPatDitep&NIP={}' \ |
|
|
44 |
# '&STARTDATE={}&ENDDATE={}' |
|
|
45 |
|
|
|
46 |
# header_path = '~/workspace/data/biology/header.csv' |
|
|
47 |
# constant names specific to our database |
|
|
48 |
KEY1 = 'id' |
|
|
49 |
KEY2 = 'NIP' |
|
|
50 |
|
|
|
51 |
header = pd.read_csv(header_path, sep=';', encoding='latin1').columns |
|
|
52 |
|
|
|
53 |
|
|
|
54 |
engine = get_engine(id, ip, dbase) |
|
|
55 |
|
|
|
56 |
df_ids = sql2df(engine, targets_table) |
|
|
57 |
df_ids.rename({'nip': KEY2}, inplace=True, axis=1) |
|
|
58 |
df_ids['patient_id'] = df_ids[KEY1] |
|
|
59 |
|
|
|
60 |
cols = [KEY2, 'Analyse', 'Resultat', 'Date prelvt'] |
|
|
61 |
df_res = pd.DataFrame(data=None, columns=cols) |
|
|
62 |
|
|
|
63 |
for index, row in df_ids.iterrows(): |
|
|
64 |
nip = row[KEY2].replace(' ', '') |
|
|
65 |
# patient_id = row['patient_id'] |
|
|
66 |
# c1j1_date = row[C1J1].date() |
|
|
67 |
# start_date = c1j1_date - timedelta(weeks=8) |
|
|
68 |
start_date = row['prescreen'] |
|
|
69 |
end_date = start_date + timedelta(weeks=4) |
|
|
70 |
|
|
|
71 |
start = str(start_date).replace('-', '') |
|
|
72 |
stop = str(end_date).replace('-', '') |
|
|
73 |
|
|
|
74 |
req = requests.get(url.format(nip, start, stop)) |
|
|
75 |
values = BeautifulSoup(req.content, 'html.parser').body.text |
|
|
76 |
|
|
|
77 |
new_df = pd.read_csv(StringIO(values), sep=';', header=None, |
|
|
78 |
index_col=False, names=header) |
|
|
79 |
new_df = new_df.loc[:, cols + ['LC']] |
|
|
80 |
|
|
|
81 |
# normalize nip |
|
|
82 |
new_df[KEY2] = row[KEY2] |
|
|
83 |
|
|
|
84 |
new_df.drop('LC', axis=1, inplace=True) |
|
|
85 |
|
|
|
86 |
df_res = pd.concat([df_res, new_df], axis=0, |
|
|
87 |
sort=False, ignore_index=True) |
|
|
88 |
|
|
|
89 |
return df_res |
|
|
90 |
|
|
|
91 |
|
|
|
92 |
def fetch_and_fold(url, header, id, ip, db, targets): |
|
|
93 |
key1, key2, date = 'patient_id', 'nip', 'date' |
|
|
94 |
# engine for sql connection |
|
|
95 |
engine = get_engine(id, ip, db) |
|
|
96 |
|
|
|
97 |
# fetching targets table |
|
|
98 |
df_targets = sql2df(engine, 'patient_target_simbad') |
|
|
99 |
df_targets['prescreen'] = df_targets.loc[:, 'prescreen'].dt.date |
|
|
100 |
|
|
|
101 |
# fetching features |
|
|
102 |
# url = 'http://esimbad/testGSAV7/reslabo?FENID=resLaboPatDitep&NIP={}' \ |
|
|
103 |
# '&STARTDATE={}&ENDDATE={}' |
|
|
104 |
# |
|
|
105 |
# header_path = '~/workspace/data/biology/header.csv' |
|
|
106 |
url =url |
|
|
107 |
header_path = header |
|
|
108 |
|
|
|
109 |
# fetching features |
|
|
110 |
|
|
|
111 |
df_bio = fetch(url, header_path, id, ip, db, targets) |
|
|
112 |
# parse_dates |
|
|
113 |
df_bio['Date prelvt'] = pd.to_datetime(df_bio['Date prelvt'], |
|
|
114 |
errors='coerce', |
|
|
115 |
format='%Y%m%d').dt.date |
|
|
116 |
df_bio.dropna(inplace=True) |
|
|
117 |
|
|
|
118 |
df_bio.rename({'Date prelvt': date, 'Analyse': 'feature', |
|
|
119 |
'Resultat': 'value'}, inplace=True, axis=1) |
|
|
120 |
|
|
|
121 |
# joining with targets |
|
|
122 |
df_bio = df_bio.merge(df_targets, on=None, left_on='NIP', |
|
|
123 |
right_on='nip').drop('NIP', axis=1) |
|
|
124 |
|
|
|
125 |
df_bio.rename({'id': 'patient_id'}, axis=1, inplace=True) |
|
|
126 |
df_bio['value'] = pd.to_numeric(df_bio.loc[:, 'value'], errors='coerce', |
|
|
127 |
downcast='float') |
|
|
128 |
|
|
|
129 |
df_bio = df_bio.loc[:, [key1, key2, 'feature', 'value', date]] |
|
|
130 |
# df_bio already folded |
|
|
131 |
|
|
|
132 |
|
|
|
133 |
print('done') |
|
|
134 |
|
|
|
135 |
return df_bio |
|
|
136 |
|
|
|
137 |
|
|
|
138 |
|
|
|
139 |
|
|
|
140 |
def main_fetch_and_fold(): |
|
|
141 |
description = 'Folding biology measures from Ventura Care' |
|
|
142 |
parser = argparse.ArgumentParser(description=description) |
|
|
143 |
|
|
|
144 |
parser.add_argument('--url', '-u', |
|
|
145 |
help='url to where measures are stored') |
|
|
146 |
parser.add_argument('--header', '-H', |
|
|
147 |
help='path to the header file to read csv') |
|
|
148 |
parser.add_argument('--id', '-I', |
|
|
149 |
help='id to connect to sql server') |
|
|
150 |
parser.add_argument('--ip', '-a', |
|
|
151 |
help='ip adress of the sql server') |
|
|
152 |
parser.add_argument('--db', '-d', |
|
|
153 |
help='name of the database on the sql server') |
|
|
154 |
parser.add_argument('--targets', '-t', |
|
|
155 |
help='name of the table containing targets on the db') |
|
|
156 |
parser.add_argument('--output', '-o', |
|
|
157 |
help='output path to write the folded result') |
|
|
158 |
|
|
|
159 |
args = parser.parse_args() |
|
|
160 |
|
|
|
161 |
|
|
|
162 |
df_bio = fetch_and_fold(args.url, args.header,args.id, args.ip, |
|
|
163 |
args.db, args.targets) |
|
|
164 |
# df_bio already folded |
|
|
165 |
|
|
|
166 |
output = args.output |
|
|
167 |
df_bio.to_csv(output, encoding='utf-8', sep=';') |
|
|
168 |
|
|
|
169 |
print('done') |
|
|
170 |
|
|
|
171 |
return df_bio |
|
|
172 |
|
|
|
173 |
|
|
|
174 |
if __name__ == "__main__": |
|
|
175 |
main_fetch_and_fold() |