|
a |
|
b/prescreen/evaluation/biology_val.py |
|
|
1 |
""" |
|
|
2 |
fetches biology for validation cohort |
|
|
3 |
""" |
|
|
4 |
import pandas as pd |
|
|
5 |
|
|
|
6 |
from clintk.utils import Unfolder |
|
|
7 |
from datetime import timedelta |
|
|
8 |
from bs4 import BeautifulSoup |
|
|
9 |
from io import StringIO |
|
|
10 |
|
|
|
11 |
import requests |
|
|
12 |
|
|
|
13 |
|
|
|
14 |
|
|
|
15 |
def fetch(url, header_path, df_ids): |
|
|
16 |
""" |
|
|
17 |
|
|
|
18 |
Parameters |
|
|
19 |
---------- |
|
|
20 |
url : str |
|
|
21 |
url to the location of biology files |
|
|
22 |
|
|
|
23 |
header_path : str |
|
|
24 |
path to csv file containing header |
|
|
25 |
|
|
|
26 |
|
|
|
27 |
df_ids : pd.DataFrame |
|
|
28 |
df containing target info |
|
|
29 |
columns should be [nip, date_sign_ok] |
|
|
30 |
|
|
|
31 |
Returns |
|
|
32 |
------- |
|
|
33 |
|
|
|
34 |
""" |
|
|
35 |
header = pd.read_csv(header_path, sep=';', encoding='latin1').columns |
|
|
36 |
|
|
|
37 |
cols = ['nip', 'Analyse', 'Resultat', 'Date prelvt'] |
|
|
38 |
df_res = pd.DataFrame(data=None, columns=cols) |
|
|
39 |
|
|
|
40 |
for index, row in df_ids.iterrows(): |
|
|
41 |
nip = row['nip'] |
|
|
42 |
|
|
|
43 |
start_date = row['DATE SIGN_OK'] |
|
|
44 |
end_date = start_date + timedelta(weeks=4) |
|
|
45 |
|
|
|
46 |
start = str(start_date).replace('-', '') |
|
|
47 |
stop = str(end_date).replace('-', '') |
|
|
48 |
|
|
|
49 |
req = requests.get(url.format(nip.replace(' ', ''), start, stop)) |
|
|
50 |
values = BeautifulSoup(req.content, 'html.parser').body.text |
|
|
51 |
|
|
|
52 |
new_df = pd.read_csv(StringIO(values), sep=';', header=None, |
|
|
53 |
index_col=False, names=header) |
|
|
54 |
new_df = new_df.loc[:, cols] |
|
|
55 |
|
|
|
56 |
new_df['nip'] = nip |
|
|
57 |
|
|
|
58 |
df_res = pd.concat([df_res, new_df], axis=0, |
|
|
59 |
sort=False, ignore_index=True) |
|
|
60 |
|
|
|
61 |
return df_res |
|
|
62 |
|
|
|
63 |
|
|
|
64 |
def fetch_and_fold(url, header_path, targets): |
|
|
65 |
|
|
|
66 |
df_bio = fetch(url, header_path, targets) |
|
|
67 |
|
|
|
68 |
df_bio['Date prelvt'] = pd.to_datetime(df_bio['Date prelvt'], |
|
|
69 |
errors='coerce', |
|
|
70 |
format='%Y%m%d').dt.date |
|
|
71 |
df_bio.dropna(inplace=True) |
|
|
72 |
|
|
|
73 |
df_bio.rename({'Date prelvt': 'date', 'Analyse': 'feature', |
|
|
74 |
'Resultat': 'value'}, inplace=True, axis=1) |
|
|
75 |
|
|
|
76 |
df_bio['value'] = pd.to_numeric(df_bio.loc[:, 'value'], errors='coerce', |
|
|
77 |
downcast='float') |
|
|
78 |
|
|
|
79 |
return df_bio |
|
|
80 |
|
|
|
81 |
|
|
|
82 |
def main_fetch(): |
|
|
83 |
base_path = 'data/cohorte_validation' |
|
|
84 |
|
|
|
85 |
|
|
|
86 |
## ditep |
|
|
87 |
path = base_path + '/ditep_inclus.csv' |
|
|
88 |
ditep_ok = pd.read_csv(path, sep=';', |
|
|
89 |
parse_dates=[-2]).loc[:, ['nip','DATE SIGN_OK']] |
|
|
90 |
|
|
|
91 |
path = base_path + '/ditep_sf.csv' |
|
|
92 |
ditep_sf = pd.read_csv(path, sep=';', |
|
|
93 |
parse_dates=[-2]).loc[:, ['nip', 'DATE SIGN_OK']] |
|
|
94 |
|
|
|
95 |
ditep = pd.concat([ditep_ok, ditep_sf], ignore_index=True) |
|
|
96 |
|
|
|
97 |
ditep['DATE SIGN_OK'] = ditep['DATE SIGN_OK'].dt.date |
|
|
98 |
|
|
|
99 |
url = 'http://esimbad/testGSAV7/reslabo?FENID=resLaboPatDitep&NIP={}' \ |
|
|
100 |
'&STARTDATE={}&ENDDATE={}' |
|
|
101 |
header_path = '/home/v_charvet/workspace/data/biology/header.csv' |
|
|
102 |
|
|
|
103 |
bio_ditep = fetch_and_fold(url, header_path, ditep) |
|
|
104 |
|
|
|
105 |
|
|
|
106 |
# poumon |
|
|
107 |
path = base_path + '/poumons_inclusion.csv' |
|
|
108 |
poumon_ok = pd.read_csv(path, sep=';', |
|
|
109 |
parse_dates=[-2]).loc[:, ['nip', 'DATE_SIGN_OK']] |
|
|
110 |
|
|
|
111 |
path = base_path + '/poumons_sf.csv' |
|
|
112 |
poumon_sf = pd.read_csv(path, sep=';', |
|
|
113 |
parse_dates=[-2]).loc[:, ['nip', 'DATE_SIGN_OK']] |
|
|
114 |
|
|
|
115 |
poumon = pd.concat([poumon_ok, poumon_sf], ignore_index=True) |
|
|
116 |
poumon.rename({'DATE_SIGN_OK': 'DATE SIGN_OK'}, axis=1, inplace=True) |
|
|
117 |
|
|
|
118 |
poumon['DATE SIGN_OK'] = poumon['DATE SIGN_OK'].dt.date |
|
|
119 |
|
|
|
120 |
bio_poumon = fetch_and_fold(url, header_path, poumon) |
|
|
121 |
|
|
|
122 |
|
|
|
123 |
#unfolding features |
|
|
124 |
bio_ditep['null_id'] = [1] * bio_ditep.shape[0] |
|
|
125 |
bio_poumon['null_id'] = [1] * bio_poumon.shape[0] |
|
|
126 |
|
|
|
127 |
unfolder = Unfolder('nip', 'null_id', 'feature', 'value', 'date', False, -1) |
|
|
128 |
|
|
|
129 |
ditep_unfold = unfolder.fit(bio_ditep).unfold() |
|
|
130 |
|
|
|
131 |
poumon_unfold = unfolder.fit(bio_poumon).unfold() |
|
|
132 |
|
|
|
133 |
ditep_unfold.to_csv('data/ditep_bio_unfold.csv', sep=';') |
|
|
134 |
poumon_unfold.to_csv('data/poumons_bio_unfold.csv', sep=';') |
|
|
135 |
|
|
|
136 |
|
|
|
137 |
return bio_ditep, bio_poumon |
|
|
138 |
|
|
|
139 |
if __name__ == "__main__": |
|
|
140 |
main_fetch() |
|
|
141 |
|
|
|
142 |
|
|
|
143 |
|
|
|
144 |
|
|
|
145 |
|
|
|
146 |
|
|
|
147 |
|
|
|
148 |
|
|
|
149 |
|
|
|
150 |
|
|
|
151 |
|
|
|
152 |
|