import pandas as pd
import numpy as np
import math
import warnings
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib import rc
from matplotlib.lines import Line2D
from matplotlib.colors import SymLogNorm
from sklearn.metrics import mean_absolute_error, r2_score
import seaborn as sns
import models
import utils
import preprocessing as pre
import fit_studies as fit
# plot the change in LD from treatment start for given study
# corresponds to figure 1C
# input: names of studies, list of studies, amount of patients per study
def plot_change_trend(studies, amount=15, recist=True):
# use RECIST 1.1 categories
if recist:
detect_f = utils.detect_recist
ts = utils.Recist
trend_name = 'RECIST'
# categories proposed by the authors
else:
detect_f = utils.detect_trend
ts = utils.Trend
trend_name = 'trend'
fig, axs = plt.subplots(1, len(studies), figsize=(18, 4))
for (name, study), ax in zip(studies.items(), axs):
# patients need >= 2 data points
study = utils.get_at_least(
utils.filter_treatment_started(study),
2
)
# take up to "amount" patients from study
for patient in study['PatientID'].unique()[:amount]:
# get LD and treatment week since treatment started for patient
patient_data = study.loc[study['PatientID'] == patient]
time = utils.convert_to_weeks(patient_data['TreatmentDay'])
ld_data = np.array(patient_data['TargetLesionLongDiam_mm'])
# get trend for color and LD deltas
trend = detect_f(ld_data)
ld_delta = ld_data - ld_data[0] # change in LD from first measurement
time_delta = time - time[0] # start with time is 0
# create subplot
ax.axhline(y=0, linewidth=1, color='k', zorder=-1)
ax.plot(
time_delta,
ld_delta,
marker='o',
markeredgewidth=1,
linewidth=1,
color=trend.color()
)
ax.set_title(name, fontsize=18, wrap=True)
ax.set_xlabel('Time (weeks)', fontsize=16)
ax.tick_params(axis='both', which='major', labelsize=14)
axs[0].set_ylabel('Change in LD from baseline (mm)', fontsize=16)
axs[0].legend(
[Line2D([0], [0], color=trend.color(), lw=4) for trend in ts],
[trend.name for trend in ts],
fontsize=16
)
fig.tight_layout()
fig.savefig(f'../imgs/1C_{trend_name}.svg', format='svg', dpi=600)
# plot the proportions of trends for a study
# corresponds to figure 1D, but barchart instead of a nested pie chart for readability
def plot_proportion_trend(studies, recist=True):
# use RECIST 1.1 categories
if recist:
detect_f = utils.detect_recist
ts = utils.Recist
trend_name = 'RECIST'
# categories proposed by the authors
else:
detect_f = utils.detect_trend
ts = utils.Trend
trend_name = 'trend'
fig, axs = plt.subplots(1, len(studies), figsize=(18, 4))
for (name, study), ax in zip(studies.items(), axs):
# count amount of patients per trend and arm
trend_counts = study.groupby(['Arm', 'PatientID']) \
.apply(lambda p: detect_f(p['TargetLesionLongDiam_mm'])) \
.rename('Trend').reset_index() \
.groupby('Arm')['Trend'] \
.value_counts()
# set trend categories that do not appear to 0
arms = trend_counts.index.get_level_values('Arm').unique()
trend_counts = trend_counts.reindex(
pd.MultiIndex.from_product([arms, list(ts)]),
fill_value=0
)
# plot for each trend
width = 0.2
n_trends = len(ts)
offsets = np.linspace( # calculate bar offsets
width / 2 - n_trends / 10, # min offset
- width / 2 + n_trends / 10, # max offset
num=n_trends
)
for trend, offset in zip(ts, offsets):
# get count for each arm and plot
trend_count = trend_counts.loc[pd.IndexSlice[:, trend]]
ax.bar(
np.array(arms) + offset,
trend_count,
width=width,
label=trend.name,
color=trend.color()
)
# create plot
ax.set_xticks(arms)
ax.set_xlabel('Study arms', fontsize=16)
ax.set_title(name, fontsize=18, wrap=True)
ax.tick_params(axis='both', which='major', labelsize=14)
axs[0].set_ylabel('Number of occurences', fontsize=16)
axs[0].legend(loc='upper left', fontsize=16)
fig.tight_layout()
fig.savefig(f'../imgs/1D_{trend_name}.svg', format='svg', dpi=600)
# plot the proportions of correct trends predictions based on up to "up_to_nth" data point per study and arm
# corresponds to figure 1E
def plot_correct_predictions(studies, up_to_nth=4, recist=True):
# use Recist 1.1 categories
if recist:
detect_f = utils.detect_recist
trend = 'RECIST'
# categories proposed by the authors
else:
detect_f = utils.detect_trend
trend = 'trend'
nth_points = np.arange(2, up_to_nth + 2) # baseline does not count
merged_studies = pd.concat(studies.values(), ignore_index=True)
merged_studies = utils.get_at_least(
utils.filter_treatment_started(merged_studies),
2
)
# get trend of each patient
trends = merged_studies.groupby(['StudyNr', 'Arm', 'PatientID']) \
.apply(lambda p: detect_f(p['TargetLesionLongDiam_mm'])) \
.rename('Trend')
# get proportions of correct trends from 1 extra to "up_to" extra data points, per arm
data = [
merged_studies.groupby(['StudyNr', 'Arm', 'PatientID']) \
.apply(lambda p: \
# compare trend of first i with final trend
detect_f(p.head(n)['TargetLesionLongDiam_mm']) \
== trends.loc[*p.name]
) \
.rename('CorrectTrend').reset_index() \
.groupby(['StudyNr', 'Arm'])['CorrectTrend'] \
.aggregate('mean')
for n in nth_points
]
data_med = [np.median(x) for x in data]
# create plot
fig, ax = plt.subplots(figsize=(8, 8))
bplts = ax.boxplot(data, positions=nth_points - 1, notch=True, patch_artist=True)
ax.set_xlabel('nth data point used to predict', fontsize=16)
ax.set_ylabel(f'Proportion of correct {trend} predictions', fontsize=16)
# ax.set_title(f'Proportion of correct {trend} predictions using only data point 1 up to only data point {up_to_nth}', fontsize=20, wrap=True)
ax.tick_params(axis='both', which='major', labelsize=14)
# color fill
cmap = cm.ScalarMappable(cmap='plasma')
# print(cmap)
for patch, med in zip(bplts['boxes'], data_med):
#print(color)
color = cmap.to_rgba(med)
patch.set_facecolor(color)
fig.tight_layout()
fig.savefig(f'../imgs/1E_{trend}.svg', format='svg', dpi=600)
print(f'MEDIAN {trend}: {data_med}')
# plot actual vs predicted normalized tumor volume values
# corresponds to figure 2C
def plot_actual_fitted(studies, models, dirname, experiment, log_scale=True, part=None):
fig, axs = plt.subplots(len(studies), len(models), figsize=(12, 12))
for i, ((name, study), ax_row) in enumerate(zip(studies.items(), axs), start=1):
study = utils.filter_treatment_started(study)
if experiment == 1:
study = utils.get_at_least(study, 3)
elif experiment == 2:
study = utils.get_at_least(study, 6)
for model, ax in zip(models, ax_row):
params = pd.read_csv(f'{dirname}/study{i}_{model.__name__.lower()}.csv')
# predict model function per patient
predicted = study.groupby('PatientID') \
.apply(lambda p: fit.checkpoint_predict(p, model, params)) \
.rename('PredictedTumorVolumeNorm').reset_index() \
.join(study, rsuffix='_') \
.dropna()
# create subplot
ax.scatter(predicted['TumorVolumeNorm'], predicted['PredictedTumorVolumeNorm'], s=2)
ax.axline((0, 0), slope=1, linestyle=':', linewidth=1, color='k', zorder=10)
ax.tick_params(axis='both', which='major', labelsize=14)
if log_scale:
ax.set_xscale('log')
ax.set_yscale('log')
# ax.set_xlabel('Actual normalized tumor volume', fontsize=12)
# ax.set_ylabel('Predicted normalized tumor volume', fontsize=12)
ax_row[0].set_ylabel(name, fontsize=18)
for ax, model in zip(axs[0], models):
ax.set_title(model.__name__, fontsize=18)
fig.tight_layout()
if part:
filename = f'../imgs/2C_exp{experiment}_{part}.svg'
else:
filename = f'../imgs/2C_exp{experiment}.svg'
fig.savefig(filename, format='svg', dpi=600)
def plot_trend_pred_error(studies, models, dirname, experiment, error_metric='MAE', recist=True, normalize=False):
def error_f(model, t):
if error_metric == 'MAE':
return mean_absolute_error(
t['TumorVolumeNorm'],
t['PredictedTumorVolumeNorm']
)
elif error_metric == 'AIC':
return utils.akaike_information_criterion(
model.params * len(t['PatientID'].unique()),
t['TumorVolumeNorm'],
t['PredictedTumorVolumeNorm']
)
elif error_metric == 'R2':
return np.mean(
t.groupby('PatientID') \
.apply(lambda p: r2_score(
p['TumorVolumeNorm'],
p['PredictedTumorVolumeNorm']
))
)
# use RECIST 1.1 categories
if recist:
detect_f = utils.detect_recist
trend_name = 'RECIST'
# categories proposed by the authors
else:
detect_f = utils.detect_trend
trend_name = 'trend'
model_names = list(map(lambda m: m.__name__, models))
results = []
for i, (name, study) in enumerate(studies.items(), start=1):
study_results = pd.DataFrame(columns=model_names)
# detect trend per patient
study = utils.filter_treatment_started(study)
if experiment == 1:
study = utils.get_at_least(study, 3)
elif experiment == 2:
study = utils.get_at_least(study, 6)
study_trends = study.groupby('PatientID') \
.apply(lambda p: detect_f(p['TumorVolumeNorm'])) \
.rename('Trend').reset_index() \
.merge(study, on='PatientID', how='left')
for model in models:
params = pd.read_csv(f'{dirname}/study{i}_{model.__name__.lower()}.csv')
# predict model function per patient
predicted = study_trends.groupby('PatientID') \
.apply(lambda p: fit.checkpoint_predict(p, model, params)) \
.rename('PredictedTumorVolumeNorm').reset_index() \
.join(study_trends, rsuffix='_') \
.dropna()
# get the prediction error per study and trend
pred_error = predicted.groupby('Trend') \
.apply(lambda t: error_f(model, t)) \
.rename('Error') \
.sort_index()
pred_error.index = pred_error.index.map(lambda t: f'{name} {t.name}')
study_results[model.__name__] = pred_error
results.append(study_results)
results = pd.concat(results)
if normalize:
max = results.dropna().max(axis=1)
min = results.dropna().min(axis=1)
results = results.sub(min, axis=0).divide(max - min, axis=0)
fig, ax = plt.subplots(figsize=(15, 15))
# get best results per row
if error_metric == 'R2':
best_results = np.array(results).max(axis=1, keepdims=1)
else:
best_results = np.array(results).min(axis=1, keepdims=1)
underline = np.array([
r'\underline{' + utils.format_float(val) + '}' if is_best else utils.format_float(val)
for val, is_best in zip(
np.array(results).ravel(),
np.array(best_results == results).ravel()
)
]).reshape(results.shape)
sns.heatmap(
results,
annot=underline,
annot_kws={'fontsize': 16},
fmt='',
cbar=True,
ax=ax
)
# ax.set_title(f'Experiment {experiment} {error_metric} by final {trend_name}', fontsize=20, wrap=True)
ax.tick_params(axis='both', labelsize=16)
ax.tick_params(axis='x', labelrotation=45)
ax.set_xlabel('')
ax.set_ylabel('')
fig.axes[-1].tick_params(labelsize=16)
fig.align_xlabels()
fig.tight_layout()
fig.savefig(f'../imgs/3_{error_metric}_exp{experiment}.svg', format='svg', dpi=600)
if __name__ == "__main__":
rc('font', family='serif', serif=['Computer Modern'])
rc('text', usetex=True)
# disable warning in terminal
warnings.filterwarnings("ignore")
# read all the studies as dataframes
study_names = ['FIR', 'POPLAR', 'BIRCH', 'OAK', 'IMVIGOR210']
studies = [
pd.read_excel(f'./data/study{i}.xlsx')
for i, _ in enumerate(study_names, start=1)
]
models = [
models.Exponential,
models.Logistic,
models.GeneralLogistic,
models.Gompertz,
models.GeneralGompertz,
models.ClassicBertalanffy,
models.GeneralBertalanffy,
models.DynCarryingCapacity
]
processed_studies = {
name: study
for name, study in zip(study_names, pre.preprocess(studies))
}
plot_change_trend(processed_studies)
plot_change_trend(processed_studies, recist=False)
plot_proportion_trend(processed_studies)
plot_proportion_trend(processed_studies, recist=False)
plot_correct_predictions(processed_studies)
plot_correct_predictions(processed_studies, recist=False)
plot_actual_fitted(
processed_studies,
models[:4],
'./data/params/experiment1_odeint',
experiment=1,
part=1,
)
plot_actual_fitted(
processed_studies,
models[4:],
'./data/params/experiment1_odeint',
experiment=1,
part=2
)
plot_trend_pred_error(
processed_studies,
models,
experiment=1,
dirname='data/params/experiment1_odeint',
error_metric='MAE'
)
plot_trend_pred_error(
processed_studies,
models,
experiment=1,
dirname='data/params/experiment1_odeint',
error_metric='AIC',
normalize=True
)
plot_trend_pred_error(
processed_studies,
models,
experiment=2,
dirname='data/params/experiment2_odeint',
error_metric='MAE'
)
plot_trend_pred_error(
processed_studies,
models,
experiment=2,
dirname='data/params/experiment2_odeint',
error_metric='AIC',
normalize=True
)
plot_trend_pred_error(
processed_studies,
models,
experiment=2,
dirname='data/params/experiment2_odeint',
error_metric='R2'
)