[7e250a]: / src / hint / trial / model.py

Download this file

332 lines (263 with data), 13.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import torch
from torch import nn
from torch.nn.functional import binary_cross_entropy_with_logits as bce_loss
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.optim import Adam
import matplotlib.pyplot as plt
from functools import reduce
from sklearn.metrics import f1_score, auc, precision_recall_curve, roc_auc_score, confusion_matrix
import numpy as np
from sklearn.utils import resample
from collections import defaultdict
from copy import deepcopy
from tqdm import tqdm
import pickle
from .layers import FeedForward
from typing import Optional, Any
import wandb
from torch.optim import Adam
from torch.utils.data import DataLoader
from tqdm import tqdm
from sklearn.metrics import confusion_matrix, f1_score, precision_recall_curve, auc, roc_auc_score
from collections import defaultdict
from copy import deepcopy
import numpy as np
from sklearn.utils import resample
class TrialModel(nn.Module):
def __init__(self,
toxicity_encoder: nn.Module,
disease_encoder: nn.Module,
protocol_embedding_size: int,
embedding_size: int,
num_ffn_layers: int,
num_pred_layers: int,
phase_dim: int,
dropout: float,
device: Any,
ablations: dict = {"config": {"base_model": True}},
name: str = "trial_model"):
super(TrialModel, self).__init__()
self.toxicity_encoder = toxicity_encoder
self.disease_encoder = disease_encoder
self.embedding_size = embedding_size
self.ablations = ablations
self.model_name = name
self.include_all = ablations["config"].get("base_model", False)
self.device = device
encoder_dim = toxicity_encoder.embedding_size + disease_encoder.embedding_size + protocol_embedding_size + embedding_size
self.phase_encoder = FeedForward(
input_dim=phase_dim,
hidden_dim=embedding_size,
output_dim=embedding_size,
num_layers=num_ffn_layers,
dropout=dropout
)
self.multimodal_encoder = FeedForward(
input_dim=encoder_dim,
hidden_dim=embedding_size,
output_dim=embedding_size,
num_layers=num_ffn_layers,
dropout=dropout
)
self.disease_risk_encoder = FeedForward(
input_dim=disease_encoder.embedding_size,
output_dim=embedding_size,
hidden_dim=embedding_size,
num_layers=num_ffn_layers
)
self.interaction_encoder = FeedForward(
input_dim=2*embedding_size,
hidden_dim=embedding_size,
output_dim=embedding_size,
num_layers=num_ffn_layers,
dropout=dropout
)
self.pk_encoder = FeedForward(
input_dim=toxicity_encoder.embedding_size,
output_dim=embedding_size,
hidden_dim=10*embedding_size,
num_layers=num_ffn_layers,
dropout=dropout
)
self.trial_encoder = FeedForward(
input_dim=2*embedding_size,
output_dim=embedding_size,
hidden_dim=embedding_size,
num_layers=num_ffn_layers,
dropout=dropout
)
self.pred = nn.Sequential(
FeedForward(input_dim=embedding_size,
hidden_dim=1*embedding_size,
output_dim=1,
num_layers=num_pred_layers)
)
def forward(self, smiles, icd, protocol_embedding, phase):
icd_embedding = self.disease_encoder.forward_code_lst3(icd)
molecule_embedding = self.toxicity_encoder(smiles.to(self.device)).squeeze()
phase_embedding = self.phase_encoder(phase)
encoder_embedding = self.multimodal_encoder(torch.cat([
molecule_embedding,
icd_embedding,
protocol_embedding,
phase_embedding
], 1))
disease_risk_embedding = self.disease_risk_encoder(icd_embedding)
interaction_embedding = self.interaction_encoder(torch.cat([encoder_embedding, disease_risk_embedding], 1))
pk_embedding = self.pk_encoder(molecule_embedding)
trial_embedding = self.trial_encoder(torch.cat([interaction_embedding, pk_embedding], 1))
embedding_options = {
"disease_embedding": icd_embedding,
"molecule_embedding": molecule_embedding,
"protocol_embedding": protocol_embedding,
"encoder_embedding": encoder_embedding,
"disease_risk_embedding": disease_risk_embedding,
"interaction_embedding": interaction_embedding,
"pk_embedding": pk_embedding,
"trial_embedding": trial_embedding
}
for key, value in embedding_options.items():
if self.ablations["config"].get(key, self.include_all):
x = value
output = self.pred(x)
return output
class Trainer:
def __init__(self, model: TrialModel, weight_decay: float, lr: float, device: Any):
self.model = model
self.device = device
self.optimizer = Adam(self.model.parameters(), weight_decay=weight_decay, lr=lr)
wandb.init(project="trial_outcome_prediction")
def train(self, epochs: int, train_dataloader: DataLoader, valid_dataloader: DataLoader, test_dataloader: DataLoader):
self.model.train()
self.model.to(self.device)
valid_loss, _ = self.evaluate(valid_dataloader, return_loss=True)
best_valid_loss = valid_loss
best_model = deepcopy(self.model)
train_losses = []
valid_losses = [valid_loss]
for epoch in range(epochs):
epoch_losses = []
for nctids, labels, smiles, icdcodes, criteria, phase in tqdm(train_dataloader):
labels = labels.to(self.device)
smiles = smiles.to(self.device)
phase = phase.to(self.device)
criteria = criteria.to(self.device)
outputs = self.model.forward(smiles, icdcodes, criteria, phase).view(-1)
loss = bce_loss(outputs, labels.float())
epoch_losses.append(loss.item())
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
avg_epoch_loss = sum(epoch_losses) / len(epoch_losses)
train_losses.append(avg_epoch_loss)
valid_loss, _ = self.evaluate(valid_dataloader, return_loss=True)
valid_losses.append(valid_loss)
if avg_epoch_loss < best_valid_loss:
best_valid_loss = avg_epoch_loss
best_model = deepcopy(self.model)
wandb.log({"train_loss": avg_epoch_loss, "valid_loss": valid_loss})
self.model = deepcopy(best_model)
eval_metrics = self.evaluate(test_dataloader, return_loss=False)
return eval_metrics
def decode_phase(self, phase_categories, phase_tensor):
phase_idx = phase_tensor.argmax().item()
return phase_categories[phase_idx]
def evaluate(self, dataloader: DataLoader, return_loss: bool = False):
self.model.eval()
with torch.no_grad():
all_predictions = []
all_labels = []
total_loss = 0
for nctids, labels, smiles, icdcodes, criteria, phase in dataloader:
labels = labels.to(self.device)
smiles = smiles.to(self.device)
phase = phase.to(self.device)
criteria = criteria.to(self.device)
outputs = self.model.forward(smiles, icdcodes, criteria, phase).view(-1)
if return_loss:
loss = bce_loss(outputs, labels.float())
total_loss += loss.item()
predictions = (outputs > 0.5).float()
all_labels.extend(labels.cpu().numpy())
all_predictions.extend(predictions.cpu().numpy())
tn, fp, fn, tp = confusion_matrix(all_labels, all_predictions).ravel()
f1 = f1_score(all_labels, all_predictions)
precision, recall, _ = precision_recall_curve(all_labels, all_predictions)
pr_auc = auc(recall, precision)
roc_auc = roc_auc_score(all_labels, all_predictions)
self.model.train()
metrics = {'tp': tp, 'fp': fp, 'tn': tn, 'fn': fn, 'f1': f1, 'pr_auc': pr_auc, 'roc_auc': roc_auc}
if return_loss:
return total_loss / len(dataloader), metrics
else:
return metrics
def test(self, test_dataloader: DataLoader, phase_categories):
self.model.eval()
with torch.no_grad():
phase_metrics = defaultdict(list)
for nctids, labels, smiles, icdcodes, criteria, phase in test_dataloader:
labels = labels.to(self.device)
smiles = smiles.to(self.device)
phase = phase.to(self.device)
criteria = criteria.to(self.device)
outputs = self.model.forward(smiles, icdcodes, criteria, phase).view(-1)
predictions = (outputs > 0.5).float()
for ph, lbl, pred in zip(phase.cpu().numpy(), labels.cpu().numpy(), predictions.cpu().numpy()):
phase_metrics[self.decode_phase(phase_categories, ph)].append((lbl, pred))
for ph, results in phase_metrics.items():
labels, predictions = zip(*results)
tn, fp, fn, tp = confusion_matrix(labels, predictions).ravel()
f1 = f1_score(labels, predictions)
precision, recall, _ = precision_recall_curve(labels, predictions)
pr_auc = auc(recall, precision)
roc_auc = roc_auc_score(labels, predictions)
print(f"--- {ph} ---")
print(f"Accuracy: {(tp+tn)/(tp+tn+fp+fn):.3f}, TP: {tp}, FP:{fp}, TN:{tn}, FN:{fn}")
print(f"F1-Score: {f1:.3f}")
print(f"ROC-AUC: {roc_auc:.3f}")
print(f"PR-AUC: {pr_auc:.3f}")
print("-"*50)
self.model.train()
def bootstrap_test(self, test_dataloader: DataLoader, phase_categories, sample_num: int = 30):
self.model.eval()
phase_metrics = defaultdict(list)
with torch.no_grad():
for _, labels, smiles, icdcodes, criteria, phase in test_dataloader:
labels = labels.to(self.device)
smiles = smiles.to(self.device)
phase = phase.to(self.device)
criteria = criteria.to(self.device)
outputs = self.model.forward(smiles, icdcodes, criteria, phase).view(-1)
predictions = outputs.sigmoid().cpu().numpy()
labels = labels.cpu().numpy()
phases = phase.cpu().numpy()
for ph, lbl, pred in zip(phases, labels, predictions):
phase_name = self.decode_phase(phase_categories, torch.tensor(ph))
phase_metrics[phase_name].append((lbl, pred))
bootstrap_results = defaultdict(lambda: defaultdict(list))
for ph, results in phase_metrics.items():
labels, predictions = zip(*results)
labels = np.array(labels)
predictions = np.array(predictions)
for _ in range(sample_num):
bs_labels, bs_predictions = resample(labels, predictions)
if len(np.unique(bs_labels)) < 2:
continue
precision, recall, _ = precision_recall_curve(bs_labels, bs_predictions)
pr_auc = auc(recall, precision)
roc_auc = roc_auc_score(bs_labels, bs_predictions)
bs_predictions_binary = (bs_predictions > 0.5).astype(int)
f1 = f1_score(bs_labels, bs_predictions_binary)
accuracy = np.mean(bs_labels == bs_predictions_binary)
bootstrap_results[ph]['pr_auc'].append(pr_auc)
bootstrap_results[ph]['f1'].append(f1)
bootstrap_results[ph]['roc_auc'].append(roc_auc)
bootstrap_results[ph]['accuracy'].append(accuracy)
self.model.train()
for ph, metrics in bootstrap_results.items():
print(f"--- {ph} ---")
for metric, values in metrics.items():
print(f"{metric.upper()} - mean: {np.mean(values):.4f}, std: {np.std(values):.4f}")
print("-"*50)
return bootstrap_results