[418e14]: / mimic.py

Download this file

746 lines (581 with data), 24.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
import utils
import pandas as pd
from constants import ALL,column_names,NO_UNITS,START_DT,END_DT
import logger
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline
from fuzzywuzzy import fuzz
import re
import random
import units
import transformers
import dask.dataframe as dd
from extract_transform_load import ETLManager
import matplotlib.pyplot as plt
ITEMID = 'itemid'
SUBINDEX = 'subindex'
HADM_ID = 'hadm_id'
UOM_MAP = {
'#': 'number',
'%': 'percent',
'(CU MM|mm3)': 'mm**3',
'24(hr|hour)s?': 'day',
'Deg\\.? F': 'degF',
'Deg\\.? C': 'degC',
'I.U.': 'IU',
'MEQ': 'mEq',
'MM HG': 'mmHg',
'\\+': 'pos',
'\\-': 'neg',
'cmH20': 'cmH2O',
'gms': 'grams',
'kg x m ': 'kg*m',
'lpm': 'liter/min',
'm2': 'm**2',
'mcghr': 'mcg/hr',
'mcgkghr': 'mcg/kg/hr',
'mcgkgmin': 'mcg/kg/min',
'mcgmin': 'mcg/min',
'mghr': 'mg/hr',
'mgkghr': 'mg/kg/hr',
'mgmin': 'mg/min',
'\?F':'degF',
'\?C':'degC',
'Uhr':'U/hr',
'Umin':'U/min',
'/mic l':'1/uL',
'K/uL':'x10e3/uL'
}
"""
EXPLORING MIMIC-III database
"""
class explorer(object):
def __init__(self, mimic_conn=None):
if mimic_conn is None:
mimic_conn = connect()
columns_to_keep = ['label','abbreviation','itemid','linksto','category','unitname']
self.mimic_conn = mimic_conn
self.df_all_defs = item_defs(self.mimic_conn)[columns_to_keep]
self.df_all_defs.set_index('itemid',inplace=True, drop=True)
def search(self,terms,loinc_code=None):
results = None
for term in terms:
score = self.df_all_defs[['category','label','abbreviation','unitname']].applymap(lambda x: fuzzy_score(str(x),term)).max(axis=1)
if results is None: results = score
else: results = pd.concat([results, score], axis=1).max(axis=1)
results.name = 'score'
return self.df_all_defs.join(results.to_frame()).sort_values('score',ascending=False)
def investigate(self, itemid,upper_limit):
info = self.df_all_defs.loc[itemid]
table = info.loc['linksto']
df = pd.read_sql_query('SELECT * FROM mimiciii.{} WHERE itemid={}'.format(table,itemid),self.mimic_conn)
print df.describe(include='all')
#value
print 'value count:',df.value.count()
value = df.value
if value.count() > 0:
print value.value_counts()/df.value.count()
value.value_counts().plot('bar')
plt.show()
#valuenum
print 'valuenum count:',df.valuenum.count()
valuenum = df.loc[df.valuenum < upper_limit].valuenum
if valuenum.count() > 0:
valuenum.hist()
plt.show()
print 'UOM info:'
print df.valueuom.value_counts()
return df
def fuzzy_score(x,y):
if len(x)==0 or len(y) == 0: return 0
x = x.lower()
y = y.lower()
score = pd.np.mean([
fuzz.partial_ratio(x,y),
fuzz.token_sort_ratio(x,y),
fuzz.ratio(x,y)
])
bonus = 10 if (x in y) or (y in x) else 0
return score + bonus
def add_item_mapping(component,item_ids,item_map_fpath='config/mimic_item_map.csv'):
item_map = pd.read_csv(item_map_fpath)
new_mappings = pd.DataFrame([(component,item_id) for item_id in item_ids],columns=['component','itemid'])
item_map = pd.concat([item_map,new_mappings]).reset_index(drop=True)
item_map.to_csv(item_map_fpath, index=False)
return item_map
"""
EXTRACTING Data from MIMIC-III
- Timeseries data
- Context/demographic data
"""
class MimicETLManager(ETLManager):
def __init__(self,hdf5_fname,mimic_item_map_fname,data_dict):
self.conn = connect()
self.item_map_fname = mimic_item_map_fname
self.data_dict = data_dict
cleaners = standard_cleaners(data_dict)
super(MimicETLManager,self).__init__(cleaners,hdf5_fname)
def extract(self,component):
item_map = pd.read_csv(self.item_map_fname)
return extract_component(self.conn,component,item_map)
def transform(self,df,component):
transformers = transform_pipeline(component,self.data_dict)
return transformers.fit_transform(df)
def extracted_ids(self,df_extracted):
return df_extracted[column_names.ID].unique().tolist()
def extracted_data_count(self,df_extracted):
return df_extracted[column_names.VALUE].count()
def all_ids(self):
return get_all_hadm_ids(self.conn)
def extract_component(mimic_conn,component,item_map,hadm_ids=ALL):
itemids = items_for_components(item_map,[component])
if len(itemids) == 0: return None
#Get item defs and filter to what we want
df_item_defs = item_defs(mimic_conn)
df_item_defs = df_item_defs[df_item_defs.itemid.isin(itemids)]
df_item_defs = df_item_defs[~(df_item_defs.linksto == '')]
grouped = df_item_defs.groupby('linksto')
df_list = []
df_columns = column_map()
too_many_ids = len(hadm_ids) > 2000
for table,group in grouped:
itemids = group.itemid.astype(int).tolist()
logger.log('Extracting {} items from {}'.format(len(itemids),table))
is_iemv = table == 'inputevents_mv'
df_col = df_columns.columns.tolist() + (['statusdescription'] if is_iemv else [])
for ix,column_set in df_columns.loc[[table]].iterrows():
psql_col = column_set.tolist() + (['statusdescription'] if is_iemv else [])
query = 'SELECT {} FROM mimiciii.{} WHERE itemid = ANY (ARRAY{})'.format(','.join(psql_col),table,itemids)
if not (hadm_ids == ALL) and not too_many_ids:
query += ' AND hadm_id = ANY (ARRAY{})'.format(hadm_ids)
df = pd.read_sql_query(query,mimic_conn)
df.columns = df_col
if too_many_ids:
df = df[df[column_names.ID].isin(hadm_ids)]
if is_iemv:
df = df.loc[df['statusdescription'].astype(str) != 'Rewritten']
df.drop('statusdescription', axis=1,inplace=True)
df_list.append(df)
logger.log('Combine DF')
df_all = pd.concat(df_list)
return df_all
def get_context_data(hadm_ids=ALL,mimic_conn=None):
if mimic_conn is None:
mimic_conn = connect()
#get HADM info (includes patient demographics)
df_hadm = hadm_data(mimic_conn,hadm_ids)
#get icu data
df_icu = icu_data(mimic_conn,hadm_ids)
#merge into single dataframe
df_hadm_info = df_hadm.merge(df_icu,on=HADM_ID,how='left')
df_hadm_info.rename(columns={HADM_ID : column_names.ID},inplace=True)
return df_hadm_info
def hadm_data(mimic_conn,hadm_ids):
"""
expects a TUPLE of hadm_ids
"""
"""
@@@@@@@@@@@@
1. Get all demographic data from the ADMISSIONS table = df_hadm
https://mimic.physionet.org/mimictables/admissions/
SELECT subject_id, hadm_id, admittime, dischtime, language, religion,
marital_status, ethnicity, diagnosis, admission_location
FROM admissions
WHERE hadm_id IN hadm_ids
@@@@@@@@@@@@
"""
table = 'mimiciii.admissions'
hadm_where_case = None if hadm_ids == ALL else 'hadm_id IN {}'.format(tuple(hadm_ids))
col_psql = ['subject_id', HADM_ID, 'admittime', 'dischtime', 'language',
'religion','marital_status', 'ethnicity', 'diagnosis','admission_location']
col_df = ['pt_id',HADM_ID,START_DT,END_DT,'lang',
'religion','marital_status','ethnicity','dx_info','admission_location']
df_hadm = context_extraction_helper(mimic_conn,table,col_psql,col_df,hadm_where_case)
"""
@@@@@@@@@@@@
2. Get all demographic data from PATIENTS table = df_pt
https://mimic.physionet.org/mimictables/patients/
SELECT gender, dob, dod
FROM patients
WHERE subject_id IN pt_ids
@@@@@@@@@@@@
"""
table = 'mimiciii.patients'
pt_ids = df_hadm['pt_id'].unique().tolist()
col_psql = ['subject_id','gender','dob','dod']
col_df = ['pt_id','gender','dob','dod']
df_pt = context_extraction_helper(mimic_conn,table,col_psql,col_df)
"""
@@@@@@@@@@@@
3. Get all ICD codes data from DIAGNOSES_ICD table = df_icd
https://mimic.physionet.org/mimictables/diagnoses_icd/
SELECT subject_id, hadm_id, seq_num, icd9_code
FROM diagnoses_icd
WHERE hadm_id IN hadm_ids
@@@@@@@@@@@@
"""
table = 'mimiciii.diagnoses_icd'
col_psql = ['subject_id',HADM_ID,'seq_num','icd9_code']
col_df = ['pt_id',HADM_ID,'icd_rank','icd_code']
df_icd = context_extraction_helper(mimic_conn,table,col_psql,col_df,hadm_where_case)
"""
@@@@@@@@@@@@
4. Make df_icd into single rows for each admission, where one
column is an ordered list of ICD codes for that admission
@@@@@@@@@@@@
"""
df_icd = df_icd.sort_values('icd_rank').groupby(HADM_ID).apply(lambda grp: grp['icd_code'].tolist())
df_icd.name = 'icd_codes'
df_icd = df_icd.reset_index()
"""
@@@@@@@@@@@@
Merging
5. Merge df_pt and df_hadm on subject_id = demographics_df
6. Merge demographics_df with df_icd on hadm_id = df_hadm_info
@@@@@@@@@@@@
"""
df_demographics = df_hadm.merge(df_pt,on='pt_id',how='left')
df_hadm_info = df_demographics.merge(df_icd,on=HADM_ID,how='left')
"""
@@@@@@@@@@@@
Cleaning
7. Remove all NA hadm_ids
8. Add age column
9. cast hadm_id to int
@@@@@@@@@@@@
"""
df_hadm_info = df_hadm_info.dropna(subset=[HADM_ID])
df_hadm_info['age'] = df_hadm_info['start_dt']-df_hadm_info['dob']
df_hadm_info[HADM_ID] = df_hadm_info[HADM_ID].astype(int)
return df_hadm_info
def icu_data(mimic_conn,hadm_ids):
table = 'mimiciii.icustays'
col_psql = [HADM_ID,'icustay_id','dbsource','first_careunit','last_careunit','intime','outtime','los']
col_df = [HADM_ID,'icustay_id','dbsource','first_icu','last_icu','intime','outtime','los']
hadm_where_case = None if hadm_ids == ALL else 'hadm_id IN {}'.format(tuple(hadm_ids))
df_icu = context_extraction_helper(mimic_conn,table,col_psql,col_df,hadm_where_case)
"""
Cleaning
- drop ICUSTAYS without hadm_id
"""
df_icu = df_icu.dropna(subset=[HADM_ID])
return df_icu
def context_extraction_helper(mimic_conn,table,col_psql,col_df,where_case=None):
query = utils.simple_sql_query(table,col_psql,where_case)
df = pd.read_sql_query(query,mimic_conn)
rename_dict = dict(zip(col_psql,col_df))
df.rename(index=str,columns=rename_dict,inplace=True)
return df
def column_map():
"""
Create column mapping
"""
#definitions
std_columns = [column_names.ID,column_names.DATETIME,column_names.VALUE,column_names.UNITS,'itemid']
psql_col = ['hadm_id','charttime','value','valueuom','itemid']
col_series = pd.Series(
psql_col,
index=std_columns
)
map_list = []
col_series.name = 'chartevents'
map_list.append(col_series)
col_series = col_series.copy()
col_series.name = 'labevents'
map_list.append(col_series)
col_series = col_series.copy()
col_series.name = 'procedureevents_mv'
map_list.append(col_series)
col_series = col_series.copy()
col_series.name = 'datetimeevents'
map_list.append(col_series)
col_series = col_series.copy()
col_series.name = 'outputevents'
map_list.append(col_series)
psql_col = ['hadm_id','starttime','rate','rateuom','itemid']
col_series = pd.Series(
psql_col,
index=std_columns
)
col_series.name = 'inputevents_mv'
map_list.append(col_series)
psql_col = ['hadm_id','endtime','amount','amountuom','itemid']
col_series = pd.Series(
psql_col,
index=std_columns
)
col_series.name = 'inputevents_mv'
map_list.append(col_series)
psql_col = ['hadm_id','charttime','rate','rateuom','itemid']
col_series = pd.Series(
psql_col,
index=std_columns
)
col_series.name = 'inputevents_cv'
map_list.append(col_series)
psql_col = ['hadm_id','charttime','amount','amountuom','itemid']
col_series = pd.Series(
psql_col,
index=std_columns
)
col_series.name = 'inputevents_cv'
map_list.append(col_series)
return pd.DataFrame(map_list)
def item_defs(mimic_conn):
df_items = pd.read_sql_query('SELECT * FROM mimiciii.d_items',mimic_conn)
df_labitems = pd.read_sql_query('SELECT * FROM mimiciii.d_labitems',mimic_conn)
df_labitems['linksto'] = 'labevents'
df_all_items = pd.concat([df_labitems,df_items])
return df_all_items
def items_for_components(item_map,components=ALL):
if not (components == ALL):
item_map = item_map[item_map.component.isin(components)]
items = item_map.itemid.unique().astype(int).tolist()
return items
def get_all_hadm_ids(conn=None):
if conn is None:
conn = connect()
all_ids = pd.read_sql_query('SELECT hadm_id from mimiciii.admissions',conn)['hadm_id']
all_ids = all_ids[~pd.isnull(all_ids)]
return all_ids.astype(int).sort_values().tolist()
def sample_hadm_ids(n,seed):
all_ids = get_all_hadm_ids()
random.seed(seed)
sampled_ids = random.sample(all_ids,n)
return sampled_ids
def connect(psql_username='postgres',psql_pass='123'):
return utils.psql_connect(psql_username,psql_pass,'mimic')
"""
TRANSFORM Data extracted from MIMIC-III
"""
class CleanUnits(BaseEstimator,TransformerMixin):
def __init__(self,component,data_dict):
self.data_dict = data_dict
self.component = component
def fit(self, x, y=None):
return self
def transform(self, df):
logger.log('Clean UOM',new_level=True)
df = clean_uom(df,self.component,self.data_dict)
logger.end_log_level()
return df
def clean_uom(df,component,data_dict):
grouped = df.groupby(column_names.UNITS)
for old_uom,group in grouped:
new_uom = process_uom(old_uom,component,data_dict)
df.loc[group.index,column_names.UNITS] = new_uom
if not (old_uom == new_uom):
df.loc[group.index,ITEMID] = utils.append_to_description(df.loc[group.index,ITEMID].astype(str),old_uom)
return df
def process_uom(units,component,data_dict):
if units in ['BPM','bpm']:
if component == data_dict.components.HEART_RATE: units = 'beats/min'
if component == data_dict.components.RESPIRATORY_RATE: units = 'breaths/min'
for to_replace,replacement in UOM_MAP.iteritems():
units = re.sub(to_replace, replacement,units,flags=re.IGNORECASE)
return units
class clean_extract(BaseEstimator,TransformerMixin):
def fit(self, x, y=None):
return self
def transform(self, df):
"""
FORMAT pre-unstack columns
"""
df = df.replace(to_replace='', value=pd.np.nan)
#drop NAN record_id, timestamps, or value
df.dropna(subset=[column_names.ID,column_names.DATETIME,column_names.VALUE], how='any',inplace=True)
#ID to integer
df.loc[:,column_names.ID] = df.loc[:,column_names.ID].astype(int)
#DATETIME to pd.DATETIME
df.loc[:,column_names.DATETIME] = pd.to_datetime(df.loc[:,column_names.DATETIME],errors='raise')
#set UOM to NO_UOM if not declared
df.loc[:,column_names.UNITS] = df.loc[:,column_names.UNITS].fillna(NO_UNITS)
df.rename(index=str,columns={ITEMID:column_names.DESCRIPTION},inplace=True)
index_cols = [
column_names.ID,
column_names.DATETIME,
column_names.DESCRIPTION,
column_names.UNITS
]
#Set up our row index
df.set_index(index_cols,inplace=True)
return df
class unstacker(transformers.safe_unstacker):
def __init__(self):
super(unstacker,self).__init__(column_names.UNITS,column_names.DESCRIPTION)
def transform_pipeline(component,data_dict):
return Pipeline([
('clean_units',CleanUnits(component,data_dict)),
('clean_df',clean_extract()),
('unstack',unstacker()),
('add_level',transformers.add_level(component,'component',axis=1)),
])
def standard_cleaners(data_dict):
category_map = mimic_category_map(data_dict)
ureg = units.MedicalUreg()
return Pipeline([
('aggregate_same_datetime',transformers.same_index_aggregator(lambda grp:grp.iloc[0])),
('split_dtype',transformers.split_dtype()),
('standardize_columns',transformers.column_standardizer(data_dict,ureg)),
('standardize_categories',transformers.standardize_categories(data_dict,category_map)),
('split_bad_categories',transformers.split_bad_categories(data_dict)),
('one_hotter',transformers.nominal_to_onehot()),
('drop_oob_values',transformers.oob_value_remover(data_dict))
])
def mimic_category_map(data_dict):
return {
data_dict.components.GLASGOW_COMA_SCALE_EYE_OPENING: {
'1 No Response': 6,
'2 To pain': 7,
'3 To speech': 8,
'4 Spontaneously': 9
},
data_dict.components.GLASGOW_COMA_SCALE_MOTOR: {
'1 No Response': 0,
'2 Abnorm extensn': 1,
'3 Abnorm flexion': 2,
'4 Flex-withdraws': 3,
'5 Localizes Pain': 4,
'6 Obeys Commands': 5
},
data_dict.components.GLASGOW_COMA_SCALE_VERBAL: {
'1 No Response': 10,
'1.0 ET/Trach': 10,
'2 Incomp sounds': 11,
'3 Inapprop words': 12,
'4 Confused': 13,
'5 Oriented':14
}
}
def ETL(extractor,
components,
data_dict,
same_dt_aggregator,
hdf5_fname=None,joined_path=None,
hadm_ids=ALL,
use_base_df=True,
to_pandas=False,
chunksize=500000):
logger.log('***ETL***',new_level=True)
logger.log('SETUP',new_level=True)
category_map = mimic_category_map(data_dict)
ureg = units.MedicalUreg()
transformer = transform_pipeline()
standard_clean_pipeline = Pipeline([
('aggregate_same_datetime',same_dt_aggregator),
('split_dtype',transformers.split_dtype()),
('standardize_columns',transformers.column_standardizer(data_dict,ureg)),
('standardize_categories',transformers.standardize_categories(data_dict,category_map)),
('split_bad_categories',transformers.split_bad_categories(data_dict)),
# ('one_hotter',transformers.nominal_to_onehot()),
('drop_oob_values',transformers.oob_value_remover(data_dict))
])
should_save = (hdf5_fname is not None)
df_base = None
if should_save & use_base_df:
try:
df_base = utils.open_df(hdf5_fname,joined_path)
except:
pass
if df_base is not None:
existing_components = df_base.columns.get_level_values(column_names.COMPONENT).unique().tolist()
existing_ids = set(df_base.index.get_level_values(column_names.ID).tolist())
requested_ids = hadm_ids if hadm_ids != ALL else get_all_hadm_ids()
new_ids = [ID for ID in requested_ids if ID not in existing_ids]
#case 1: new ids in existing columns, don't try to be smart with ALL unless not a lot of IDs
if len(new_ids) > 0:
df_addition = ETL(extractor,
existing_components,
data_dict,
same_dt_aggregator,
hadm_ids=new_ids,
to_pandas=True)
if df_addition is not None:
df_base = pd.concat([df_base,df_addition])
#now we only need to load NEW components
components = [comp for comp in components if comp not in existing_components]
logger.log('Base DF to Dask')
df_base = dd.from_pandas(df_base.reset_index(), chunksize=chunksize)
df_all = df_base
logger.log('BEGIN ETL for {} admissions and {} components: {}'.format(hadm_ids if hadm_ids == ALL else len(hadm_ids),
len(components),
components),new_level=True,end_level=True)
for component in components:
logger.log('{}: {}/{}'.format(component.upper(),components.index(component)+1,len(components)),new_level=True)
"""
@@@@@@@@@@@@@@@
----EXTRACT----
@@@@@@@@@@@@@@@
"""
logger.log("Extracting...",new_level=True)
df_extracted = extractor.extract_component(component,hadm_ids)
if df_extracted.empty:
print 'EMPTY Dataframe EXTRACTED for {}, n={} ids'.format(component,len(hadm_ids))
logger.end_log_level()
continue
if should_save:
logger.log('Save EXTRACTED DF = {}'.format(df_extracted.shape))
utils.save_df(df_extracted,hdf5_fname,'extracted/{}'.format(component))
logger.end_log_level()
"""
@@@@@@@@@@@@@@@@@
----TRANSFORM----
@@@@@@@@@@@@@@@@@
"""
logger.log("Transforming... {}".format(df_extracted.shape),new_level=True)
transformer.set_params(add_level__level_val=component)
df_transformed = transformer.transform(df_extracted)
print 'Data Loss (Extract > Transformed):',utils.data_loss(df_extracted.set_index(column_names.ID).value.to_frame(),df_transformed)
if df_transformed.empty:
print 'EMPTY Dataframe TRANSFORMED for {}, n={} ids'.format(component,len(hadm_ids))
logger.end_log_level()
continue
if should_save:
logger.log('Save TRANSFORMED DF = {}'.format(df_transformed.shape))
utils.save_df(df_transformed,hdf5_fname,'transformed/{}'.format(component))
logger.end_log_level()
"""
@@@@@@@@@@@@@@@
-----CLEAN-----
@@@@@@@@@@@@@@@
"""
logger.log("Cleaning... {}".format(df_transformed.shape),new_level=True)
df = standard_clean_pipeline.transform(df_transformed)
print 'Data Loss (Extract > Cleaned):', utils.data_loss(df_extracted.set_index(column_names.ID).value.to_frame(),df)
if df.empty:
print 'EMPTY Dataframe TRANSFORMED for {}, n={} ids'.format(component,len(hadm_ids))
logger.end_log_level()
continue
if should_save:
logger.log('Save CLEANED DF = {}'.format(df.shape))
utils.save_df(df,hdf5_fname,'cleaned/{}'.format(component))
logger.end_log_level()
del df_extracted,df_transformed
logger.log('Filter & sort - {}'.format(df.shape))
df.sort_index(inplace=True)
df.sort_index(inplace=True, axis=1)
logger.log('Convert to dask - {}'.format(df.shape))
df_dask = dd.from_pandas(df.reset_index(), chunksize=chunksize)
del df
logger.log('Join to big DF')
if df_all is None: df_all = df_dask
else :
df_all = df_all.merge(df_dask,how='outer', on=['id','datetime'])
del df_dask
logger.end_log_level()
logger.end_log_level()
if df_all is None or not to_pandas:
logger.end_log_level()
return df_all
logger.log('Dask DF back to pandas')
df_pd = df_all.compute()
del df_all
df_pd.set_index(['id','datetime'], inplace=True)
logger.log('SORT Joined DF')
df_pd.sort_index(inplace=True)
df_pd.sort_index(inplace=True, axis=1)
if should_save:
logger.log('SAVE Big DF')
utils.save_df(df_pd,hdf5_fname,joined_path)
logger.end_log_level()
return df_pd