[418e14]: / load_and_segment.py

Download this file

301 lines (222 with data), 10.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import abc
import constants
import pandas as pd
import utils
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline
import logger
from transformers import filter_ids,DataNeedsFilter,do_nothing
from features import Featurizer
"""
Loading data
"""
class FilterBaseDF(TransformerMixin,BaseEstimator):
def __init__(self,full_df,data_needs=constants.ALL):
self.full_df=full_df
self.data_needs = data_needs
def fit(self, X, y=None, **fit_params):
return self
def transform(self, ids):
pipeline = Pipeline([
('row_filter',filter_ids(ids=ids)),
('dn_filter',DataNeedsFilter(self.data_needs))
])
return pipeline.fit_transform(X=self.full_df, y=None)
class DFLoadAndFilter(FilterBaseDF):
def __init__(self,hdf5_fname,path,data_needs=constants.ALL,load_at_init=False):
self.hdf5_fname = hdf5_fname
self.path = path
self.load_at_init = load_at_init
full_df = None
if self.load_at_init:
full_df = self.load_df(constants.ALL)
super(DFLoadAndFilter,self).__init__(full_df,data_needs)
def transform(self, ids):
if not self.load_at_init:
self.full_df = self.load_df(ids)
return super(DFLoadAndFilter,self).transform(ids)
def load_df(self,ids):
return utils.open_df(self.hdf5_fname,self.path)
class ByComponentLoadAndFilter(DFLoadAndFilter):
def __init__(self,hdf5_fname,path,data_needs,load_at_init=False,chunksize=500000):
self.chunksize=chunksize
super(ByComponentLoadAndFilter,self).__init__(hdf5_fname,path,data_needs,load_at_init)
def load_df(self,ids):
components = [dn[0] for dn in self.data_needs]
return utils.dask_open_and_join(hdf5_fname=self.hdf5_fname,
path=self.path,
components=components,
ids=ids,
chunksize=self.chunksize)
class LoadAndSegment(TransformerMixin,BaseEstimator):
def __init__(self,data_loader,segmenter):
self.data_loader = data_loader
self.segmenter=segmenter
self.data_needs = data_loader.data_needs
def fit(self, X, y=None, **fit_params):
return self
def transform(self, y):
if isinstance(y, pd.DataFrame):
ids = y.index.get_level_values(constants.column_names.ID).unique().tolist()
else: ids=y
self.data_loader.data_needs = self.data_needs
X = self.data_loader.fit_transform(ids)
return self.segmenter.fit_transform(X=X, y=y)
"""
Features and Segments
"""
class SegmentFeaturizer(Featurizer):
def __init__(self,loader,segmenter,
features=[],
pre_cleaners=do_nothing(),
post_cleaners=do_nothing()):
post_cleaners = Pipeline([
('post_cleaner_arg',post_cleaners),
('drop_no_segments',DropNoSegments())
])
super(SegmentFeaturizer, self).__init__(index_levels=[constants.column_names.ID,constants.SEG_ID],
loader=LoadAndSegment(loader,segmenter),
features=features,
pre_cleaners=pre_cleaners,
post_cleaners=post_cleaners)
"""
Segmenting
"""
class segmenter(BaseEstimator,TransformerMixin):
__metaclass__ = abc.ABCMeta
def __init__(self,end_first=False):
self.end_first = end_first
def fit(self, x, y=None):
return self
def transform(self, df):
logger.log('Segment df {}'.format(df.shape),new_level=True)
logger.log('Get Segments')
df_segments = self.__segment(df)
logger.log('Apply n={} Segments to df.shape = {}'.format(df_segments.shape[0],df.shape))
out_df = apply_segments(df,df_segments)
logger.end_log_level()
return out_df
def __segment(self, df):
if self.end_first:
end_dt = self.__get_end_dt(df)
start_dt = self.__get_start_dt(df,end_dt)
else:
start_dt = self.__get_start_dt(df)
end_dt = self.__get_end_dt(df,start_dt)
df_segments = self.__create_seg_df(start_dt,end_dt)
return df_segments
def __create_seg_df(self,start_dt,end_dt):
return create_seg_df(start_dt,end_dt)
@abc.abstractmethod
def __get_start_dt(self,df_ts,end_dt=None):
return
@abc.abstractmethod
def __get_end_dt(self,df_ts,start_dt=None):
return
class static_end_date(segmenter):
def __init__(self):
super(static_end_date, self).__init__(end_first=True)
return
def fit(self, x, y=None, **fit_params):
if y is None:
self.end_dt = fit_params.get('end_dt',None)
else:
self.end_dt = y.reset_index(constants.column_names.DATETIME,drop=False).iloc[:,0]
return self
def _segmenter__get_end_dt(self,df_ts):
return self.end_dt
class n_hrs_before(static_end_date):
def __init__(self,n_hrs):
super(n_hrs_before, self).__init__()
self.__n_hrs = n_hrs
return
def _segmenter__get_start_dt(self,df_ts,end_dt):
if self.__n_hrs == constants.ALL:
return pd.Series([pd.NaT]*end_dt.size,index =end_dt.index)
# n_before_dt = end_dt - pd.Timedelta(self.__n_hrs, unit='h')
# first_obs_dt = utils.get_first_obs_dt(df_ts)
# start_dt = first_obs_dt.to_frame().join(n_before_dt,how='left').apply(pd.np.max,axis=1)
start_dt = end_dt - pd.Timedelta(self.__n_hrs, unit='h')
return start_dt
class periodic(segmenter):
def __init__(self,n_hrs,df_context=None):
super(periodic, self).__init__()
self.n_hrs = n_hrs
self.df_context=df_context
if self.df_context is not None:
self.df_context = self.df_context.set_index(constants.column_names.ID)
return
def _segmenter__get_start_dt(self,df_ts,end_dt=None):
grouped = df_ts.groupby(level=constants.column_names.ID)
start_dt = grouped.apply(lambda x: self.__create_periods(x)).reset_index(level=1,drop=True)
return start_dt.iloc[:,0]
def _segmenter__get_end_dt(self,df_ts,start_dt):
return start_dt + pd.Timedelta(self.n_hrs, unit='h')
def __create_periods(self,seg):
ID = seg.iloc[0].name[0]
start = seg.iloc[0].name[-1]
end = seg.iloc[-1].name[-1]
if self.df_context is not None:
start = min(start,self.df_context.loc[[ID],constants.START_DT].iloc[0])
end = max(end,self.df_context.loc[[ID],constants.END_DT].iloc[0])
return pd.Series(pd.date_range(start=start, end=end, freq='{}H'.format(self.n_hrs))).to_frame()
class DropNoSegments(BaseEstimator,TransformerMixin):
def fit(self, x, y=None):
return self
def transform(self, df):
return df[df.index.get_level_values(constants.SEG_ID) != constants.NO_SEGMENT]
def create_seg_df(start_dt,end_dt):
start_dt.name = constants.START_DT
start_dt = start_dt.to_frame()
start_dt[constants.SEG_ID] = start_dt.groupby(level=constants.column_names.ID).cumcount()
start_dt = start_dt.set_index(constants.SEG_ID,append=True).iloc[:,0]
end_dt.name = constants.END_DT
end_dt = end_dt.to_frame()
end_dt[constants.SEG_ID] = end_dt.groupby(level=constants.column_names.ID).cumcount()
end_dt = end_dt.set_index(constants.SEG_ID,append=True).iloc[:,0]
df_segments = start_dt.to_frame()
df_segments[end_dt.name] = end_dt
df_segments.sort_index(inplace=True)
return df_segments
def apply_segments(df_ts,df_segments):
idx = pd.IndexSlice
seg_to_add = {}
#make a copy because we are going to be directly modifying this dataframe
df_segmented = df_ts.copy()
#we set all seg_id to "no segment" for now
df_segmented[constants.SEG_ID] = constants.NO_SEGMENT
#Iterate across all segments for a given ID
for ID,id_segs in df_segments.groupby(level=constants.column_names.ID):
has_data = ID in df_segmented.index
if has_data: id_slice = df_segmented.loc[ID,:]
#check segments within that ID, only compare to datetimes from that admission
for seg_id,row in id_segs.loc[ID].iterrows():
start_dt = row[constants.START_DT]
end_dt = row[constants.END_DT]
if has_data:
#Datettime needs to be at or after start_dt, before end_dt
# If start_dt or end_dt is NaN, this signifies all before or all after
# respectively. as a result, if start_dt is nan, then any dt is "after start" etc.
after_start = pd.isnull(start_dt) | (id_slice.index >= start_dt)
before_end = pd.isnull(end_dt) | (id_slice.index < end_dt)
in_seg = after_start & before_end
#get the dt that should be in this segement
dt_in_seg = id_slice.loc[in_seg].index.tolist()
if len(dt_in_seg) > 0:
df_segmented.loc[idx[ID,dt_in_seg],constants.SEG_ID] = seg_id
continue
in_seg_dt = start_dt
if pd.isnull(in_seg_dt):
in_seg_dt = end_dt - pd.Timedelta(value=1,unit='s')
seg_to_add[(ID,in_seg_dt)] = seg_id
# create df for the empty segments & concat with existing dataframe
if len(seg_to_add) > 0:
empty_seg_index = pd.MultiIndex.from_tuples(seg_to_add.keys(),names=df_ts.index.names)
df_empty_seg = pd.DataFrame(columns=df_ts.columns,index=empty_seg_index)
df_empty_seg.loc[:,constants.SEG_ID] = seg_to_add.values()
df_segmented = pd.concat([df_segmented,df_empty_seg])
#format output dataframe
df_segmented.set_index(constants.SEG_ID,append=True,inplace=True)
df_segmented = df_segmented.reorder_levels([constants.column_names.ID,constants.SEG_ID,constants.column_names.DATETIME])
df_segmented.sort_index(inplace=True)
return df_segmented