[418e14]: / features.py

Download this file

239 lines (188 with data), 8.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from sklearn.base import TransformerMixin,BaseEstimator,clone
from sklearn.pipeline import Pipeline,FeatureUnion
from sklearn.preprocessing import FunctionTransformer
from constants import column_names,SEG_ID,NO_SEGMENT,ALL,CUSTOM_FILTER,FEATURE_LEVEL
import numpy as np
import utils
import transformers
import logger
import pandas as pd
"""
Feature Creation
"""
class Featurizer(TransformerMixin,BaseEstimator):
def __init__(self,agg_func,resample_freq,
col_filter=transformers.do_nothing(),
pre_processor=transformers.do_nothing(),
post_processor=transformers.do_nothing(),
fillna_transformer=transformers.do_nothing(),
dropna=True
):
self.col_filter = col_filter
self.agg_func = agg_func
self.resample_freq = resample_freq
self.pre_processor = pre_processor
self.post_processor = post_processor
self.fillna_transformer = fillna_transformer
self.dropna = dropna
def _make_pipeline(self):
dropna_transformer = transformers.do_nothing()
if self.dropna: dropna_transformer = transformers.DropNaN(how='all')
return Pipeline([
('col_filter',self.col_filter),
('pre_processor',self.pre_processor),
('aggregator',ResampleAggregator(self.agg_func,column_names.ID,column_names.DATETIME,self.resample_freq)),
('post_processor',self.post_processor),
('drop_na_rows',dropna_transformer),
('fill_na',self.fillna_transformer)
])
def fit(self, X, y=None, **fit_params):
self.pipeline = self._make_pipeline()
return self.pipeline.fit(X, y, **fit_params)
def transform(self, X):
return self.pipeline.transform(X)
def fit_transform(self,X, y=None, **fit_params):
self.pipeline = self._make_pipeline()
return self.pipeline.fit_transform(X, y, **fit_params)
class DataSpecsFeaturizer(Featurizer):
def __init__(self,agg_func,resample_freq,
data_specs=[],
pre_processor=transformers.do_nothing(),
post_processor=transformers.do_nothing(),
fillna_transformer=transformers.do_nothing(),
dropna=True
):
self.data_specs = data_specs
super(DataSpecsFeaturizer,self).__init__(agg_func,resample_freq,
col_filter=transformers.DataSpecFilter(data_specs),
pre_processor=pre_processor,
post_processor=post_processor,
fillna_transformer=fillna_transformer,
dropna=dropna
)
class ResampleAggregator(TransformerMixin,BaseEstimator):
def __init__(self,agg_func,groupby_level=None,resample_level=None,resample_freq=None):
self.agg_func=agg_func
self.groupby_level=groupby_level
self.resample_level=resample_level
self.resample_freq=resample_freq
def fit(self, X, y=None, **fit_params):
return self
def transform(self, X):
if self.groupby_level is not None:
to_resample = X.groupby(level=self.groupby_level)
else: to_resample = X
if self.resample_level is not None:
to_agg = to_resample.resample(rule=self.resample_freq,level=self.resample_level,label='right')
else:
to_agg = to_resample
return to_agg.agg(self.agg_func)
class FeatureUnionDF(TransformerMixin,BaseEstimator):
def __init__(self,featurizers,add_name_level=True):
self.featurizers = featurizers
self.add_name_level = add_name_level
def fit(self, X, y=None, **fit_params):
for f in self.featurizers:
f[1].fit(X, y=None, **fit_params)
return self
def transform(self, X):
return self.do_union(self,X,False)
def fit_transform(self,X, y=None, **fit_params):
return self.do_union(X, True, y, **fit_params)
def do_union(self,X, is_fit, y=None, **fit_params):
logger.log('Begin union for {} transformers'.format(len(self.featurizers)),new_level=True)
df_features = None
for f in self.featurizers:
logger.log(f[0],new_level=True)
if is_fit: df_ft = f[1].fit_transform(X)
else: df_ft = f[1].transform(X)
if self.add_name_level:
df_ft = utils.add_same_val_index_level(df_ft,level_val=f[0],level_name=FEATURE_LEVEL,axis=1)
if df_features is None: df_features = df_ft
else: df_features = df_features.join(df_ft,how='outer')
del df_ft
logger.end_log_level()
logger.end_log_level()
return df_features
class DataSetFactory(TransformerMixin,BaseEstimator):
def __init__(self,
featurizers,
resample_freq,
components,
etl_manager,
pre_processor=transformers.do_nothing(),
post_processor=transformers.do_nothing(),
should_fillna=True):
self.featurizers = featurizers
self.resample_freq = resample_freq
self.components = components
self.etl_manager=etl_manager
self.pre_processor = pre_processor
self.post_processor = post_processor
self.should_fillna=should_fillna
return
def fit(self,X,y=None, **fit_params):
self.fit_transform(X, y, **fit_params)
return self
def transform(self, X):
return self.make_feature_set(self,X,False)
def fit_transform(self,X, y=None, **fit_params):
return self.make_feature_set(X, True, y, **fit_params)
def make_feature_set(self, ids, fit, y=None, **fit_params):
logger.log("Make Feature Set. id_count={}, #features={}, components=".format(len(ids),len(self.featurizers),self.components),new_level=True)
if fit:
self.comp_preprocessors = [(c,self.preprocessor_pipeline(c)) for c in self.components]
adjusted_featurizers = [(ft_name,self.adjust_featurizer(ft)) for ft_name,ft in self.featurizers]
pipeline_steps = [
('pre_processors',FeatureUnionDF(self.comp_preprocessors, add_name_level=False)),
('feature_union',FeatureUnionDF(adjusted_featurizers)),
('post_processor',self.post_processor),
]
if self.should_fillna:
pipeline_steps.append(('fillna',LocAndFillNaN(self.featurizers)))
ft_union_pipeline = Pipeline(pipeline_steps)
if fit: df = ft_union_pipeline.fit_transform(ids, y, **fit_params)
else: df = ft_union_pipeline.transform(ids)
logger.end_log_level()
return df
def adjust_featurizer(self,ft):
return Featurizer(ft.agg_func,
resample_freq=self.resample_freq,
col_filter=ft.col_filter,
pre_processor=ft.pre_processor,
post_processor=ft.post_processor,
dropna=False
)
def preprocessor_pipeline(self,comp):
return Pipeline([
('data_loader',ComponentDataLoader(comp, self.etl_manager)),
('pre_processor',clone(self.pre_processor))
])
class LocAndFillNaN(TransformerMixin,BaseEstimator):
def __init__(self,featurizers):
self.featurizers = featurizers
def transform(self, df):
df = df.copy()
for ft_name,ft in self.featurizers:
df[ft_name] = ft.fillna_transformer.transform(df[ft_name])
return df
def fit(self, df, y=None, **fit_params):
for ft_name,ft in self.featurizers:
ft.fillna_transformer.fit(df[ft_name],y,**fit_params)
return self
class ComponentDataLoader(TransformerMixin,BaseEstimator):
def __init__(self,component,etl_manager):
self.component = component
self.etl_manager = etl_manager
def transform(self, X):
logger.log('Load data from component: {}'.format(self.component.upper()),new_level=True)
if isinstance(X,pd.DataFrame) or isinstance(X,pd.Series):
X = X.index
if isinstance(X, pd.Index):
ids=X.get_level_values(column_names.ID).unique().tolist()
else: ids=X
df_component = self.etl_manager.open_df(self.component,ids=ids)
logger.end_log_level()
return df_component
def fit(self, X, y=None, **fit_params):
return self