|
a |
|
b/transformers.py |
|
|
1 |
from sklearn.base import BaseEstimator, TransformerMixin |
|
|
2 |
import utils |
|
|
3 |
import abc |
|
|
4 |
import pandas as pd |
|
|
5 |
from constants import variable_type,column_names,NO_UNITS,ALL |
|
|
6 |
import logger |
|
|
7 |
|
|
|
8 |
|
|
|
9 |
|
|
|
10 |
|
|
|
11 |
class safe_unstacker(BaseEstimator,TransformerMixin): |
|
|
12 |
|
|
|
13 |
def __init__(self, *levels): |
|
|
14 |
self.levels = levels |
|
|
15 |
|
|
|
16 |
def fit(self, x, y=None): |
|
|
17 |
return self |
|
|
18 |
|
|
|
19 |
def transform(self, df): |
|
|
20 |
return safe_unstack(df,self.levels) |
|
|
21 |
|
|
|
22 |
def safe_unstack(df,levels): |
|
|
23 |
subindex = 'subindex' |
|
|
24 |
#add subindex to facilitate unstacking |
|
|
25 |
df = utils.add_subindex(df,subindex) |
|
|
26 |
|
|
|
27 |
#unstack! |
|
|
28 |
df_unstacked = df.unstack(levels) |
|
|
29 |
|
|
|
30 |
#drop "value" level, which is derivative from value column that is being unstacked against |
|
|
31 |
df_unstacked.columns = df_unstacked.columns.droplevel(0) |
|
|
32 |
|
|
|
33 |
# Drop subindex |
|
|
34 |
df_unstacked.index = df_unstacked.index.droplevel(subindex) |
|
|
35 |
|
|
|
36 |
df_unstacked.dropna(axis=1,inplace=True,how='all') |
|
|
37 |
return df_unstacked |
|
|
38 |
|
|
|
39 |
class add_level(BaseEstimator,TransformerMixin): |
|
|
40 |
def __init__(self,level_val,level_name,axis=0): |
|
|
41 |
self.level_val = level_val |
|
|
42 |
self.level_name = level_name |
|
|
43 |
self.axis = axis |
|
|
44 |
|
|
|
45 |
def fit(self, x, y=None): |
|
|
46 |
return self |
|
|
47 |
|
|
|
48 |
def transform(self, df): |
|
|
49 |
return utils.add_same_val_index_level(df,self.level_val,self.level_name,self.axis) |
|
|
50 |
|
|
|
51 |
class column_standardizer(BaseEstimator,TransformerMixin): |
|
|
52 |
|
|
|
53 |
def __init__(self,data_dict,ureg,convert_units=True): |
|
|
54 |
self.data_dict = data_dict |
|
|
55 |
self.ureg = ureg |
|
|
56 |
self.convert_units=convert_units |
|
|
57 |
|
|
|
58 |
def fit(self, x, y=None): |
|
|
59 |
return self |
|
|
60 |
|
|
|
61 |
def transform(self, df): |
|
|
62 |
df = df.copy() |
|
|
63 |
col_cnt = df.columns.size |
|
|
64 |
if col_cnt == 0: return df |
|
|
65 |
names = ['component','status','variable_type','units','description'] |
|
|
66 |
tuples=[] |
|
|
67 |
for col_ix in range(0,col_cnt): |
|
|
68 |
col = df.iloc[:,col_ix] |
|
|
69 |
new_col,new_name = self.standardize(col) |
|
|
70 |
df.iloc[:,col_ix] = new_col |
|
|
71 |
tuples.append(map(str,new_name)) |
|
|
72 |
df.columns = pd.MultiIndex.from_tuples(tuples,names=names) |
|
|
73 |
df.sort_index(axis=1, inplace=True) |
|
|
74 |
return df |
|
|
75 |
|
|
|
76 |
def standardize(self,col): |
|
|
77 |
old_col_name = col.name |
|
|
78 |
guess_component = old_col_name[0] |
|
|
79 |
units = old_col_name[-2] |
|
|
80 |
desc = old_col_name[-1] |
|
|
81 |
dtype = col.dtype |
|
|
82 |
defs = self.data_dict.tables.definitions |
|
|
83 |
defs = defs[defs.component == guess_component] |
|
|
84 |
best_def = None |
|
|
85 |
for ix,row in defs.iterrows(): |
|
|
86 |
def_units = row['units'] |
|
|
87 |
if can_convert(def_units,units,self.ureg): |
|
|
88 |
best_def = row |
|
|
89 |
break |
|
|
90 |
|
|
|
91 |
if (best_def is None) and (dtype != pd.np.object): |
|
|
92 |
status = 'unknown' |
|
|
93 |
var_type = variable_type.QUANTITATIVE |
|
|
94 |
elif (best_def is None) or ((best_def['variable_type'] == variable_type.QUANTITATIVE) & (dtype == pd.np.object)): |
|
|
95 |
status = 'unknown' |
|
|
96 |
var_type = variable_type.NOMINAL |
|
|
97 |
if units != NO_UNITS: |
|
|
98 |
desc = utils.append_to_description(desc,units) |
|
|
99 |
units = NO_UNITS |
|
|
100 |
else: |
|
|
101 |
status = 'known' |
|
|
102 |
var_type = best_def['variable_type'] |
|
|
103 |
new_units = best_def['units'] |
|
|
104 |
if new_units != units: |
|
|
105 |
if not self.ureg.same_units(units,new_units) and self.convert_units: |
|
|
106 |
col = self.ureg.convert_units(units,new_units,col) |
|
|
107 |
desc = utils.append_to_description(str(desc),units) |
|
|
108 |
units = new_units |
|
|
109 |
|
|
|
110 |
|
|
|
111 |
|
|
|
112 |
return (col,(guess_component,status,var_type,units,desc)) |
|
|
113 |
|
|
|
114 |
def can_convert(unit1,unit2,med_ureg): |
|
|
115 |
if (unit1 == unit2): return True |
|
|
116 |
if (NO_UNITS in [unit1,unit2]): return False |
|
|
117 |
return med_ureg.same_dimensionality(unit1,unit2) |
|
|
118 |
|
|
|
119 |
class oob_value_remover(BaseEstimator,TransformerMixin): |
|
|
120 |
def __init__(self,data_dict): |
|
|
121 |
self.data_dict = data_dict |
|
|
122 |
|
|
|
123 |
def fit(self, x, y=None): |
|
|
124 |
return self |
|
|
125 |
|
|
|
126 |
def transform(self, df): |
|
|
127 |
logger.log('Drop OOB data | {}'.format(df.shape),new_level=True) |
|
|
128 |
df = df.copy() |
|
|
129 |
idx = pd.IndexSlice |
|
|
130 |
df = df.sort_index(axis=1).sort_index() |
|
|
131 |
for component in df.columns.get_level_values('component').unique().tolist(): |
|
|
132 |
component_defs = self.data_dict.defs_for_component(component) |
|
|
133 |
for units in df[component].columns.get_level_values(column_names.UNITS).unique().tolist(): |
|
|
134 |
df_slice = df.loc[:,idx[component,:,:,units,:]] |
|
|
135 |
logger.log('{}, {}, {}'.format(component,units,df_slice.count().sum())) |
|
|
136 |
matching_defs = component_defs[(component_defs.units == units)] |
|
|
137 |
if matching_defs.empty: continue |
|
|
138 |
def_row = matching_defs.iloc[0] |
|
|
139 |
lower = def_row['lower'] |
|
|
140 |
upper = def_row['upper'] |
|
|
141 |
df.loc[:,idx[component,:,:,units,:]] = remove_oob_values(df_slice,lower,upper) |
|
|
142 |
df.dropna(how='all',inplace=True,axis=1) |
|
|
143 |
logger.end_log_level() |
|
|
144 |
return df |
|
|
145 |
|
|
|
146 |
def remove_oob_values(data,lower,upper): |
|
|
147 |
oob_mask = (data < lower) | (data > upper) |
|
|
148 |
return data[~oob_mask] |
|
|
149 |
|
|
|
150 |
|
|
|
151 |
|
|
|
152 |
|
|
|
153 |
class split_dtype(BaseEstimator,TransformerMixin): |
|
|
154 |
|
|
|
155 |
def fit(self, x, y=None): |
|
|
156 |
return self |
|
|
157 |
|
|
|
158 |
def transform(self, df): |
|
|
159 |
if df.empty: return df |
|
|
160 |
df_numeric = df.apply(pd.to_numeric,errors='coerce') |
|
|
161 |
is_string = pd.isnull(df_numeric) & ~pd.isnull(df) |
|
|
162 |
|
|
|
163 |
df_string = df[is_string].dropna(how='all') |
|
|
164 |
tuples = [(col_name[0],NO_UNITS,utils.append_to_description(*map(str,col_name[3:0:-1]))) for col_name in df_string.columns] |
|
|
165 |
df_string.columns = pd.MultiIndex.from_tuples(tuples,names = df_string.columns.names) |
|
|
166 |
df_string = utils.add_same_val_index_level(df_string,level_val='string',level_name='dtype',axis=1) |
|
|
167 |
|
|
|
168 |
df_numeric = df_numeric.dropna(how='all') |
|
|
169 |
df_numeric = utils.add_same_val_index_level(df_numeric,level_val='number',level_name='dtype',axis=1) |
|
|
170 |
|
|
|
171 |
df_joined = df_numeric.join(df_string,how='outer') |
|
|
172 |
del df_string,df_numeric |
|
|
173 |
|
|
|
174 |
df_joined.columns = df_joined.columns.droplevel('dtype') |
|
|
175 |
df_joined.dropna(how='all',inplace=True,axis=1) |
|
|
176 |
return df_joined |
|
|
177 |
|
|
|
178 |
|
|
|
179 |
class combine_like_cols(BaseEstimator,TransformerMixin): |
|
|
180 |
def fit(self, df, y=None, **fit_params): |
|
|
181 |
logger.log('FIT Combine like columns {}'.format(df.shape),new_level=True) |
|
|
182 |
|
|
|
183 |
self.columns_to_combine = {} |
|
|
184 |
groupby_cols = list(df.columns.names) |
|
|
185 |
groupby_cols.remove(column_names.DESCRIPTION) |
|
|
186 |
grouped = df.groupby(level=groupby_cols,axis=1) |
|
|
187 |
|
|
|
188 |
column_list = [] |
|
|
189 |
df_out=None |
|
|
190 |
for index,group in grouped: |
|
|
191 |
index |
|
|
192 |
logger.log(index) |
|
|
193 |
if index[2] == variable_type.NOMINAL: continue |
|
|
194 |
|
|
|
195 |
ordered_cols = group[group.count().sort_values(ascending=False).index.tolist()].columns.tolist() |
|
|
196 |
self.columns_to_combine[index] = ordered_cols |
|
|
197 |
|
|
|
198 |
logger.end_log_level() |
|
|
199 |
return self |
|
|
200 |
|
|
|
201 |
def transform(self, df): |
|
|
202 |
logger.log('TRANSFORM Combine like columns {}'.format(df.shape),new_level=True) |
|
|
203 |
|
|
|
204 |
column_list = [] |
|
|
205 |
for index,columns in self.columns_to_combine.iteritems(): |
|
|
206 |
logger.log(index) |
|
|
207 |
df_list=[] |
|
|
208 |
for col_name in columns: |
|
|
209 |
if col_name not in df.columns: |
|
|
210 |
df[col_name] = pd.np.nan |
|
|
211 |
col = df[col_name].dropna() |
|
|
212 |
col.name = index + (ALL,) |
|
|
213 |
df_list.append(col) |
|
|
214 |
|
|
|
215 |
df_combined = pd.concat(df_list).to_frame() |
|
|
216 |
|
|
|
217 |
# Here we will drop all duplicate values; since we sort the max col first, |
|
|
218 |
# BEFORE we loop and combine, we will be prioritizing all values from the max value |
|
|
219 |
# column. Although this may be a change in style from previous, it is easy, and will |
|
|
220 |
# most of the time be RIGHT. |
|
|
221 |
duplicates_to_drop = df_combined.index.duplicated(keep='first') |
|
|
222 |
df_combined = df_combined.loc[~duplicates_to_drop] |
|
|
223 |
|
|
|
224 |
#drop the combined columns |
|
|
225 |
df.drop(columns,axis=1,inplace=True) |
|
|
226 |
|
|
|
227 |
#join the combined column back to the DF |
|
|
228 |
df = df.join(df_combined,how='outer') |
|
|
229 |
|
|
|
230 |
df.columns.names = df.columns.names |
|
|
231 |
df.sort_index(inplace=True) |
|
|
232 |
df.sort_index(inplace=True,axis=1) |
|
|
233 |
|
|
|
234 |
logger.end_log_level() |
|
|
235 |
|
|
|
236 |
|
|
|
237 |
return df |
|
|
238 |
|
|
|
239 |
class flatten_index(BaseEstimator,TransformerMixin): |
|
|
240 |
def __init__(self,axis=0,suffix=None): |
|
|
241 |
self.axis=axis |
|
|
242 |
self.suffix=suffix |
|
|
243 |
|
|
|
244 |
def fit(self, x, y=None): |
|
|
245 |
return self |
|
|
246 |
|
|
|
247 |
def transform(self, df): |
|
|
248 |
df = utils.flatten_index(df,axis=self.axis,suffix=self.suffix) |
|
|
249 |
return df |
|
|
250 |
|
|
|
251 |
|
|
|
252 |
""" |
|
|
253 |
Deal with categorical data |
|
|
254 |
""" |
|
|
255 |
class standardize_categories(BaseEstimator,TransformerMixin): |
|
|
256 |
|
|
|
257 |
def __init__(self,data_dict,category_map,use_numeric=True): |
|
|
258 |
self.data_dict = data_dict |
|
|
259 |
self.category_map = category_map |
|
|
260 |
self.use_numeric = use_numeric |
|
|
261 |
|
|
|
262 |
def fit(self, x, y=None): |
|
|
263 |
return self |
|
|
264 |
|
|
|
265 |
def transform(self, df): |
|
|
266 |
for component in utils.get_components(df): |
|
|
267 |
cat_map = self.category_map.get(component,None) |
|
|
268 |
if cat_map is None: continue |
|
|
269 |
df_slice = df.loc[:,[component]] |
|
|
270 |
categorical_mask = df_slice.columns.get_level_values('variable_type').isin([variable_type.NOMINAL,variable_type.ORDINAL]) |
|
|
271 |
df_categories = self.data_dict.tables.categories |
|
|
272 |
to_replace = cat_map.keys() |
|
|
273 |
col = 'val_numeric' if self.use_numeric else 'val_text' |
|
|
274 |
values = [df_categories.loc[cat_ix,col] for cat_ix in cat_map.values()] |
|
|
275 |
|
|
|
276 |
df_slice.loc[:,categorical_mask] = df_slice.loc[:,categorical_mask].replace(to_replace=to_replace,value=values) |
|
|
277 |
if not self.use_numeric: |
|
|
278 |
to_replace = [df_categories.loc[cat_ix,'val_numeric'] for cat_ix in cat_map.values()] |
|
|
279 |
df_slice.loc[:,categorical_mask] = df_slice.loc[:,categorical_mask].replace(to_replace=to_replace,value=values) |
|
|
280 |
df.loc[:,[component]] = df_slice |
|
|
281 |
return df |
|
|
282 |
|
|
|
283 |
class split_bad_categories(BaseEstimator,TransformerMixin): |
|
|
284 |
|
|
|
285 |
def __init__(self,data_dict,use_numeric=True): |
|
|
286 |
self.data_dict = data_dict |
|
|
287 |
self.use_numeric = use_numeric |
|
|
288 |
|
|
|
289 |
def fit(self, x, y=None): |
|
|
290 |
return self |
|
|
291 |
|
|
|
292 |
def transform(self, df): |
|
|
293 |
for component in utils.get_components(df): |
|
|
294 |
df_categories = self.data_dict.get_categories(component) |
|
|
295 |
if df_categories is None: continue |
|
|
296 |
df_slice = df.loc[:,[component]] |
|
|
297 |
col = 'val_numeric' if self.use_numeric else 'val_text' |
|
|
298 |
valid_values = df_categories.loc[:,col] |
|
|
299 |
|
|
|
300 |
categorical_mask = df_slice.columns.get_level_values('variable_type').isin([variable_type.NOMINAL,variable_type.ORDINAL]) |
|
|
301 |
categorical_slice = df_slice.loc[:,categorical_mask] |
|
|
302 |
|
|
|
303 |
df_valid_mask = categorical_slice.apply(lambda x: x.isin(valid_values)) |
|
|
304 |
|
|
|
305 |
df_slice.loc[:,categorical_mask] = categorical_slice[df_valid_mask] |
|
|
306 |
df.loc[:,[component]] = df_slice |
|
|
307 |
|
|
|
308 |
df_invalid = categorical_slice[~df_valid_mask] |
|
|
309 |
df_invalid.columns = utils.set_level_to_same_val(df_invalid.columns,'status','unknown') |
|
|
310 |
df_invalid.columns = utils.set_level_to_same_val(df_invalid.columns,'variable_type',variable_type.NOMINAL) |
|
|
311 |
df = df.join(df_invalid,how='outer') |
|
|
312 |
del df_invalid |
|
|
313 |
df.dropna(how='all',inplace=True,axis=1) |
|
|
314 |
return df |
|
|
315 |
|
|
|
316 |
class nominal_to_onehot(BaseEstimator,TransformerMixin): |
|
|
317 |
|
|
|
318 |
def fit(self, x, y=None): |
|
|
319 |
return self |
|
|
320 |
|
|
|
321 |
def transform(self, df): |
|
|
322 |
if df.empty: return df |
|
|
323 |
|
|
|
324 |
logger.log('Nominal to OneHot',new_level=True) |
|
|
325 |
nominal_cols = df.columns.get_level_values('variable_type') == variable_type.NOMINAL |
|
|
326 |
|
|
|
327 |
for col_name in df.loc[:,nominal_cols]: |
|
|
328 |
column = df[col_name] |
|
|
329 |
df.drop(col_name,axis=1,inplace=True) |
|
|
330 |
df_dummies = pd.get_dummies(column) |
|
|
331 |
if df_dummies.empty: continue |
|
|
332 |
dummy_col_names = [col_name[:-1] + ('{}_{}'.format(col_name[-1],text),) for text in df_dummies.columns] |
|
|
333 |
df_dummies.columns = pd.MultiIndex.from_tuples(dummy_col_names,names=df.columns.names) |
|
|
334 |
df = df.join(df_dummies,how='outer') |
|
|
335 |
logger.end_log_level() |
|
|
336 |
return df |
|
|
337 |
|
|
|
338 |
|
|
|
339 |
""" |
|
|
340 |
Duplicate index aggregators |
|
|
341 |
""" |
|
|
342 |
|
|
|
343 |
class same_index_aggregator(BaseEstimator,TransformerMixin): |
|
|
344 |
|
|
|
345 |
def __init__(self,agg_func): |
|
|
346 |
self.agg_func = agg_func |
|
|
347 |
|
|
|
348 |
def fit(self, x, y=None): |
|
|
349 |
return self |
|
|
350 |
|
|
|
351 |
def transform(self, df): |
|
|
352 |
|
|
|
353 |
duplicated = df.index.duplicated(keep=False) |
|
|
354 |
|
|
|
355 |
df_safe = df[~duplicated] |
|
|
356 |
df_duplicated = df[duplicated] |
|
|
357 |
|
|
|
358 |
df_fixed = df_duplicated.groupby(level=df_duplicated.index.names).agg(lambda x:self.agg_func(x)) |
|
|
359 |
|
|
|
360 |
df_no_dups = pd.concat([df_safe,df_fixed]) |
|
|
361 |
df_no_dups.sort_index(inplace=True) |
|
|
362 |
return df_no_dups |
|
|
363 |
|
|
|
364 |
""" |
|
|
365 |
Fill NA |
|
|
366 |
""" |
|
|
367 |
|
|
|
368 |
class NaNFiller(BaseEstimator,TransformerMixin): |
|
|
369 |
|
|
|
370 |
def fit(self, X, y, **fit_params): |
|
|
371 |
self.fill_vals = self.get_fill_vals(X, y, **fit_params) |
|
|
372 |
return self |
|
|
373 |
|
|
|
374 |
def transform(self,df): |
|
|
375 |
return df.apply(lambda col: col.fillna(self.fill_vals[col.name])) |
|
|
376 |
|
|
|
377 |
def get_fill_vals(self, X, y, **fit_params): |
|
|
378 |
return pd.Series(np.NaN,index=X.columns) |
|
|
379 |
|
|
|
380 |
class FillerZero(NaNFiller): |
|
|
381 |
|
|
|
382 |
def get_fill_vals(self, X, y, **fit_params): |
|
|
383 |
return pd.Series(0,index=X.columns) |
|
|
384 |
|
|
|
385 |
class FillerMean(NaNFiller): |
|
|
386 |
|
|
|
387 |
def get_fill_vals(self, X, y, **fit_params): |
|
|
388 |
return X.mean() |
|
|
389 |
|
|
|
390 |
class FillerMode(NaNFiller): |
|
|
391 |
|
|
|
392 |
def get_fill_vals(self, X, y, **fit_params): |
|
|
393 |
return X.mode().iloc[0] |
|
|
394 |
|
|
|
395 |
|
|
|
396 |
class do_nothing(BaseEstimator,TransformerMixin): |
|
|
397 |
|
|
|
398 |
def fit(self, x, y=None): |
|
|
399 |
return self |
|
|
400 |
|
|
|
401 |
def transform(self, df): |
|
|
402 |
return df |
|
|
403 |
|
|
|
404 |
class GroupbyAndFFill(BaseEstimator,TransformerMixin): |
|
|
405 |
def __init__(self,level=None,by=None): |
|
|
406 |
self.level=level |
|
|
407 |
self.by=by |
|
|
408 |
|
|
|
409 |
def fit(self, x, y=None): |
|
|
410 |
return self |
|
|
411 |
|
|
|
412 |
def transform(self, df): |
|
|
413 |
return df.groupby(level=self.level,by=self.by).ffill() |
|
|
414 |
|
|
|
415 |
class GroupbyAndBFill(BaseEstimator,TransformerMixin): |
|
|
416 |
def __init__(self,level=None,by=None): |
|
|
417 |
self.level=level |
|
|
418 |
self.by=by |
|
|
419 |
|
|
|
420 |
def fit(self, x, y=None): |
|
|
421 |
return self |
|
|
422 |
|
|
|
423 |
def transform(self, df): |
|
|
424 |
return df.groupby(level=self.level,by=self.by).bfill() |
|
|
425 |
|
|
|
426 |
|
|
|
427 |
""" |
|
|
428 |
filtering |
|
|
429 |
""" |
|
|
430 |
|
|
|
431 |
|
|
|
432 |
class column_filter(BaseEstimator,TransformerMixin): |
|
|
433 |
|
|
|
434 |
def fit(self, df, y=None, **fit_params): |
|
|
435 |
logger.log('*fit* Filter columns ({}) {}'.format(self.__class__.__name__, df.shape).format(self.__class__),new_level=True) |
|
|
436 |
if df.empty: |
|
|
437 |
self.cols_to_keep = [] |
|
|
438 |
else: |
|
|
439 |
self.cols_to_keep = self.get_columns_to_keep(df, y, **fit_params) |
|
|
440 |
logger.end_log_level() |
|
|
441 |
return self |
|
|
442 |
|
|
|
443 |
def transform(self, df): |
|
|
444 |
logger.log('*transform* Filter columns ({}) {}'.format(self.__class__.__name__, df.shape)) |
|
|
445 |
df_out = None |
|
|
446 |
if df.empty or len(self.cols_to_keep) == 0: df_out = df.drop(df.columns,axis=1) |
|
|
447 |
else: df_out = df.loc[:,self.cols_to_keep] |
|
|
448 |
logger.log(end_prev=True) |
|
|
449 |
return df_out |
|
|
450 |
|
|
|
451 |
def get_columns_to_keep(self,df, y=None, **fit_params): |
|
|
452 |
return df.columns |
|
|
453 |
|
|
|
454 |
class DataSpecFilter(column_filter): |
|
|
455 |
|
|
|
456 |
def __init__(self,data_specs): |
|
|
457 |
self.data_specs = data_specs |
|
|
458 |
|
|
|
459 |
def get_columns_to_keep(self, df, y=None, **fit_params): |
|
|
460 |
|
|
|
461 |
df_cols = pd.DataFrame(map(list,df.columns.tolist()),columns=df.columns.names) |
|
|
462 |
|
|
|
463 |
mask = utils.complex_row_mask(df_cols,self.data_specs) |
|
|
464 |
|
|
|
465 |
return [tuple(x) for x in df_cols[mask].to_records(index=False)] |
|
|
466 |
|
|
|
467 |
class max_col_only(column_filter): |
|
|
468 |
def get_columns_to_keep(self, df, y=None, **fit_params): |
|
|
469 |
self.max_col = df.apply(utils.smart_count).sort_values().index.tolist()[-1] |
|
|
470 |
return [self.max_col] |
|
|
471 |
|
|
|
472 |
|
|
|
473 |
class remove_small_columns(column_filter): |
|
|
474 |
|
|
|
475 |
def __init__(self,threshold): |
|
|
476 |
self.threshold = threshold |
|
|
477 |
|
|
|
478 |
def get_columns_to_keep(self, df, y=None, **fit_params): |
|
|
479 |
return df.loc[:,df.apply(utils.smart_count) > self.threshold].columns |
|
|
480 |
|
|
|
481 |
|
|
|
482 |
class multislice_filter(column_filter): |
|
|
483 |
|
|
|
484 |
def __init__(self,slice_dict_list): |
|
|
485 |
self.slice_dict_list = slice_dict_list |
|
|
486 |
|
|
|
487 |
def get_columns_to_keep(self,df, y=None, **fit_params): |
|
|
488 |
|
|
|
489 |
cols = [] |
|
|
490 |
for slice_dict in self.slice_dict_list: |
|
|
491 |
levels = slice_dict.keys() |
|
|
492 |
vals = slice_dict.values() |
|
|
493 |
cols += df.xs(vals,level=levels,axis=1,drop_level=False).columns.tolist() |
|
|
494 |
|
|
|
495 |
|
|
|
496 |
return cols |
|
|
497 |
|
|
|
498 |
class DataNeedsFilter(multislice_filter): |
|
|
499 |
|
|
|
500 |
def __init__(self,data_needs): |
|
|
501 |
comp_dict = {} |
|
|
502 |
for dn in data_needs: |
|
|
503 |
component = dn[0] |
|
|
504 |
units = dn[1] |
|
|
505 |
units_list = comp_dict.get(component,[]) |
|
|
506 |
units_list.append(units) |
|
|
507 |
|
|
|
508 |
comp_dict[component] = units_list |
|
|
509 |
|
|
|
510 |
slice_dict_list = [] |
|
|
511 |
for component,units_list in comp_dict.iteritems(): |
|
|
512 |
if ALL in units_list: |
|
|
513 |
slice_dict_list.append({column_names.COMPONENT: component}) |
|
|
514 |
continue |
|
|
515 |
for unit in units_list: |
|
|
516 |
slice_dict_list.append({ |
|
|
517 |
column_names.COMPONENT: component, |
|
|
518 |
column_names.UNITS : units |
|
|
519 |
}) |
|
|
520 |
super(DataNeedsFilter,self).__init__(slice_dict_list) |
|
|
521 |
|
|
|
522 |
class func_filter(column_filter): |
|
|
523 |
|
|
|
524 |
def __init__(self,filter_func): |
|
|
525 |
self.filter_func = filter_func |
|
|
526 |
|
|
|
527 |
def get_columns_to_keep(self,df, y=None, **fit_params): |
|
|
528 |
return df.loc[:,df.apply(self.filter_func)].columns |
|
|
529 |
|
|
|
530 |
|
|
|
531 |
class record_threshold(func_filter): |
|
|
532 |
|
|
|
533 |
def __init__(self,threshold): |
|
|
534 |
self.threshold = threshold |
|
|
535 |
filter_func = lambda col: col.dropna().index.get_level_values(column_names.ID).unique().size > self.threshold |
|
|
536 |
super(record_threshold,self).__init__(filter_func) |
|
|
537 |
|
|
|
538 |
|
|
|
539 |
class drop_all_nan_cols(func_filter): |
|
|
540 |
|
|
|
541 |
def __init__(self): |
|
|
542 |
filter_func = lambda col: ~pd.isnull(col).all() |
|
|
543 |
super(drop_all_nan_cols,self).__init__(filter_func) |
|
|
544 |
|
|
|
545 |
|
|
|
546 |
class known_col_only(func_filter): |
|
|
547 |
|
|
|
548 |
def __init__(self): |
|
|
549 |
filter_func = lambda col: col.name[1] == 'known' |
|
|
550 |
super(known_col_only,self).__init__(filter_func) |
|
|
551 |
|
|
|
552 |
class filter_to_component(func_filter): |
|
|
553 |
def __init__(self,components): |
|
|
554 |
self.components = components |
|
|
555 |
filter_func = lambda col: col.name[0] in self.components |
|
|
556 |
super(filter_to_component,self).__init__(filter_func) |
|
|
557 |
|
|
|
558 |
class filter_var_type(func_filter): |
|
|
559 |
|
|
|
560 |
def __init__(self,var_types): |
|
|
561 |
self.var_types =var_types |
|
|
562 |
filter_func = lambda col: col.name[2] in self.var_types |
|
|
563 |
super(filter_var_type,self).__init__(filter_func) |
|
|
564 |
|
|
|
565 |
class summable_only(func_filter): |
|
|
566 |
|
|
|
567 |
def __init__(self,ureg,ignore_component_list): |
|
|
568 |
self.ureg = ureg |
|
|
569 |
self.ignore_component_list = ignore_component_list |
|
|
570 |
filter_func = lambda col:summable_only_filter(col,self.ureg,self.ignore_component_list) |
|
|
571 |
super(summable_only,self).__init__(filter_func) |
|
|
572 |
|
|
|
573 |
def summable_only_filter(col,ureg,ignore_component_list): |
|
|
574 |
is_summable_unit = lambda col: (col.name[-2] != NO_UNITS) and (ureg.is_volume(str(col.name[-2])) or ureg.is_mass(str(col.name[-2]))) |
|
|
575 |
should_ignore_component = lambda col: (col.name[0] in ignore_component_list) |
|
|
576 |
return lambda col: is_summable_unit(col.name) and not should_ignore_component(col.name) |
|
|
577 |
|
|
|
578 |
class DropNaN(BaseEstimator,TransformerMixin): |
|
|
579 |
|
|
|
580 |
def __init__(self,axis=0,how='any',thresh=None): |
|
|
581 |
self.axis=axis |
|
|
582 |
self.how=how |
|
|
583 |
self.thresh=thresh |
|
|
584 |
|
|
|
585 |
def fit(self, df, y=None): |
|
|
586 |
return self |
|
|
587 |
|
|
|
588 |
def transform(self, df): |
|
|
589 |
return df.dropna(axis=self.axis,how=self.how,thresh=self.thresh) |
|
|
590 |
|
|
|
591 |
class filter_ids(BaseEstimator,TransformerMixin): |
|
|
592 |
|
|
|
593 |
def __init__(self,print_loss=False,ids=None): |
|
|
594 |
self.print_loss = print_loss |
|
|
595 |
self.ids = ids |
|
|
596 |
|
|
|
597 |
def fit(self, x, y=None, **fit_params): |
|
|
598 |
if self.ids is None: |
|
|
599 |
ids = fit_params.get('ids',None) |
|
|
600 |
if (ids is None) and (y is not None): |
|
|
601 |
ids = y.index.get_level_values(column_names.ID).unique().tolist() |
|
|
602 |
self.ids = ids |
|
|
603 |
return self |
|
|
604 |
|
|
|
605 |
def transform(self, df): |
|
|
606 |
if self.ids is not None: |
|
|
607 |
out_df = df.loc[df.index.get_level_values(column_names.ID).isin(self.ids)] |
|
|
608 |
else: out_df = df |
|
|
609 |
if self.print_loss: |
|
|
610 |
print 'Data Loss:',utils.data_loss(df,out_df) |
|
|
611 |
return out_df |
|
|
612 |
|
|
|
613 |
class more_than_n_component(BaseEstimator,TransformerMixin): |
|
|
614 |
|
|
|
615 |
def __init__(self,n,component): |
|
|
616 |
self.n = n |
|
|
617 |
self.component = component |
|
|
618 |
|
|
|
619 |
def fit(self, df, y=None): |
|
|
620 |
return self |
|
|
621 |
|
|
|
622 |
def transform(self, df): |
|
|
623 |
if df.empty: return df.drop(df.index) |
|
|
624 |
good_ids = df.loc[:,[self.component]].dropna(how='all').groupby(level=column_names.ID).count() > self.n |
|
|
625 |
good_ids = good_ids.loc[good_ids.iloc[:,0]].index.unique().tolist() |
|
|
626 |
return df.loc[df.index.get_level_values(column_names.ID).isin(good_ids)] |
|
|
627 |
|
|
|
628 |
""" |
|
|
629 |
Simple Data Manipulation |
|
|
630 |
""" |
|
|
631 |
|
|
|
632 |
class TimeShifter(TransformerMixin,BaseEstimator): |
|
|
633 |
|
|
|
634 |
def __init__(self,datetime_level,shift='infer',n=1): |
|
|
635 |
self.shift=shift |
|
|
636 |
self.datetime_level = datetime_level |
|
|
637 |
self.n=n |
|
|
638 |
|
|
|
639 |
def fit(self, X, y=None, **fit_params): |
|
|
640 |
return self |
|
|
641 |
|
|
|
642 |
def transform(self, df): |
|
|
643 |
shift = self.shift |
|
|
644 |
if shift == 'infer': |
|
|
645 |
infer_freq = lambda grp: grp.index.get_level_values(self.datetime_level).inferred_freq |
|
|
646 |
inferred_freqs = df.groupby(level=column_names.ID).apply(infer_freq) |
|
|
647 |
shift = inferred_freqs.value_counts().sort_values().index[-1] |
|
|
648 |
df = df.reset_index(level=self.datetime_level) |
|
|
649 |
df.loc[:,self.datetime_level] = df.loc[:,self.datetime_level] + self.n*pd.Timedelta(shift) |
|
|
650 |
df.set_index(self.datetime_level,append=True,inplace=True) |
|
|
651 |
return df |
|
|
652 |
|
|
|
653 |
class RowShifter(TransformerMixin,BaseEstimator): |
|
|
654 |
|
|
|
655 |
def __init__(self,n): |
|
|
656 |
self.n=n |
|
|
657 |
|
|
|
658 |
def fit(self, X, y=None, **fit_params): |
|
|
659 |
return self |
|
|
660 |
|
|
|
661 |
def transform(self, df): |
|
|
662 |
return df.shift(self.n) |
|
|
663 |
|
|
|
664 |
class Replacer(TransformerMixin,BaseEstimator): |
|
|
665 |
|
|
|
666 |
def __init__(self,to_replace=None, value=None, regex=False, method='pad'): |
|
|
667 |
self.to_replace = to_replace |
|
|
668 |
self.value = value |
|
|
669 |
self.regex=regex |
|
|
670 |
self.method = method |
|
|
671 |
|
|
|
672 |
def fit(self, X, y=None, **fit_params): |
|
|
673 |
return self |
|
|
674 |
|
|
|
675 |
def transform(self, df): |
|
|
676 |
return df.replace( |
|
|
677 |
to_replace=self.to_replace, |
|
|
678 |
value=self.value, |
|
|
679 |
regex=self.regex, |
|
|
680 |
method=self.method |
|
|
681 |
) |
|
|
682 |
class Delta(TransformerMixin,BaseEstimator): |
|
|
683 |
|
|
|
684 |
def fit(self, X, y=None, **fit_params): |
|
|
685 |
return self |
|
|
686 |
|
|
|
687 |
def transform(self, df): |
|
|
688 |
|
|
|
689 |
df_last = df.ffill().dropna(how='any') |
|
|
690 |
df_last = utils.add_same_val_index_level(df_last,'last','temp',axis=1) |
|
|
691 |
|
|
|
692 |
|
|
|
693 |
df_next = df.shift(-1).dropna(how='any') |
|
|
694 |
df_next = utils.add_same_val_index_level(df_next,'next','temp',axis=1) |
|
|
695 |
|
|
|
696 |
df_all = df_last.join(df_next,how='inner') |
|
|
697 |
return df_all.loc[:,'next'] - df_all.loc[:,'last'] |
|
|
698 |
|
|
|
699 |
class ToGroupby(TransformerMixin,BaseEstimator): |
|
|
700 |
|
|
|
701 |
def __init__(self, by=None, axis=0, level=None, as_index=True): |
|
|
702 |
self.by=by |
|
|
703 |
self.axis=axis |
|
|
704 |
self.level=level |
|
|
705 |
self.as_index = as_index |
|
|
706 |
|
|
|
707 |
def fit(self, X, y=None, **fit_params): |
|
|
708 |
return self |
|
|
709 |
|
|
|
710 |
def transform(self, df): |
|
|
711 |
return df.groupby(by=self.by, axis=self.axis, level=self.level, as_index=self.as_index) |