Switch to side-by-side view

--- a
+++ b/2_Multivariate_Regression.ipynb
@@ -0,0 +1,20363 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [],
+   "source": [
+    "%matplotlib inline\n",
+    "from IPython.display import display, HTML\n",
+    "import warnings\n",
+    "warnings.filterwarnings('ignore')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Set up"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Our first step is to instantiate some of the objects we will need to clean and featurize the data"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [],
+   "source": [
+    "import units\n",
+    "import icu_data_defs\n",
+    "import mimic\n",
+    "import logger\n",
+    "import pandas as pd\n",
+    "import utils"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": [
+    "#random state used for random things\n",
+    "random_state=42\n",
+    "\n",
+    "#Create a unit registry\n",
+    "ureg = units.MedicalUreg()\n",
+    "\n",
+    "#We will need a data dictionary for some of the cleaning steps\n",
+    "data_dict = icu_data_defs.data_dictionary('config/data_definitions.xlsx')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Now we will define the features we wish to use in multivariate regression"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The **labels**, in this case, are going to be a random lactate randomly sampled from the hospital admissions. There is a small gotcha in certain admissions where the VERY FIRST observation timewise is a lactate measurement. Clinically, this is somewhat bizarre. Practically, it means that these \"first lactates\" are ignored and not considered in sampling. If an admission has only one lactate, and that is the first lactate, then that admission is excluded."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": [
+    "from sklearn.base import BaseEstimator,TransformerMixin\n",
+    "from sklearn.pipeline import Pipeline\n",
+    "import features\n",
+    "import transformers\n",
+    "\n",
+    "from constants import ALL,column_names,variable_type,SEG_ID\n",
+    "\n",
+    "#will ensure that there is at least 1 lactate before the sampled lactate\n",
+    "class keep_one_before_sample(features.preserve_datetime_sample):\n",
+    "    \n",
+    "    def transform(self, df, **transform_params):\n",
+    "        df = df.groupby(level=column_names.ID).apply(lambda grp: grp.iloc[1:]).reset_index(0,drop=True)\n",
+    "        return super(keep_one_before_sample,self).transform(df)\n",
+    "    \n",
+    "\n",
+    "hdf5_fname = 'data/mimic_simple_all'\n",
+    "path = 'cleaned'\n",
+    "data_needs = [(data_dict.components.LACTATE,ALL)]\n",
+    "\n",
+    "\n",
+    "label_cleaners = Pipeline ([\n",
+    "        ('quantitative only',transformers.filter_var_type([variable_type.QUANTITATIVE])),\n",
+    "        ('combine_like_columns',transformers.combine_like_cols()),\n",
+    "        ('max_col',transformers.max_col_only()),\n",
+    "        ('two_or_more_lactate',transformers.more_than_n_component(1,data_dict.components.LACTATE)),\n",
+    "    ]) \n",
+    "\n",
+    "sampler = keep_one_before_sample(random_state)\n",
+    "sample_lactate = features.simple_featurizer(\n",
+    "    sampler,\n",
+    "    transformers.do_nothing(),\n",
+    "    [{column_names.COMPONENT : data_dict.components.LACTATE}],\n",
+    "    sampler.name + '_' + data_dict.components.LACTATE\n",
+    ")\n",
+    "\n",
+    "label_pipeline = Pipeline ([\n",
+    "        ('data_loaader',features.data_loader(hdf5_fname,path,data_needs)),\n",
+    "        ('cleaners',label_cleaners),\n",
+    "        ('sampler',sample_lactate)\n",
+    "    ])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-26 16:50:43) Make DF for 1 components...\n",
+      "lactate\n",
+      "(2017-06-26 16:50:43)>> LACTATE: 1/1\n",
+      "(2017-06-26 16:50:43)>>>> Opening...\n",
+      "(2017-06-26 16:50:45)<<<< DONE (2.0s)\n",
+      "(2017-06-26 16:50:45)>>>> Filter & sort - (177451, 63)\n",
+      "(2017-06-26 16:50:45)<<<< DONE (0.0s)\n",
+      "(2017-06-26 16:50:45)>>>> Convert to dask - (2960, 63)\n",
+      "(2017-06-26 16:50:45)<<<< DONE (0.0s)\n",
+      "(2017-06-26 16:50:45)>>>> Join\n",
+      "(2017-06-26 16:50:45)<<<< DONE (0.0s)\n",
+      "(2017-06-26 16:50:45)<< DONE (2.0s)\n",
+      "(2017-06-26 16:50:45)>> Dask DF back to pandas\n",
+      "(2017-06-26 16:50:45)<< DONE (0.0s)\n",
+      "(2017-06-26 16:50:45) DONE (2.0s)\n",
+      "(2017-06-26 16:50:45) FIT Combine like columns (2960, 63)\n",
+      "(2017-06-26 16:50:45)>> ('lactate', 'known', 'qn', 'mmol/L')\n",
+      "(2017-06-26 16:50:45)<< DONE (0.0s)\n",
+      "(2017-06-26 16:50:45)>> ('lactate', 'unknown', 'nom', 'no_units')\n",
+      "(2017-06-26 16:50:45)<< DONE (0.0s)\n",
+      "(2017-06-26 16:50:45)>> ('lactate', 'unknown', 'qn', 'no_units')\n",
+      "(2017-06-26 16:50:45)<< DONE (0.0s)\n",
+      "(2017-06-26 16:50:45) DONE (0.0s)\n",
+      "(2017-06-26 16:50:45) TRANSFORM Combine like columns (2960, 63)\n",
+      "(2017-06-26 16:50:45)>> ('lactate', 'unknown', 'qn', 'no_units')\n",
+      "(2017-06-26 16:50:45)<< DONE (0.0s)\n",
+      "(2017-06-26 16:50:45)>> ('lactate', 'known', 'qn', 'mmol/L')\n",
+      "(2017-06-26 16:50:45)<< DONE (0.0s)\n",
+      "(2017-06-26 16:50:45) DONE (0.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th>lactate_known_qn_mmol/L_all_SAMPLE</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>id</th>\n",
+       "      <th>datetime</th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>100009</th>\n",
+       "      <th>2162-05-17 17:14:00</th>\n",
+       "      <td>1.5</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>100095</th>\n",
+       "      <th>2108-10-01 06:53:00</th>\n",
+       "      <td>1.1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>100262</th>\n",
+       "      <th>2142-04-29 18:46:00</th>\n",
+       "      <td>3.8</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>100765</th>\n",
+       "      <th>2126-03-12 03:57:00</th>\n",
+       "      <td>1.3</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>101148</th>\n",
+       "      <th>2197-12-17 02:50:00</th>\n",
+       "      <td>2.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>101274</th>\n",
+       "      <th>2170-03-28 18:12:00</th>\n",
+       "      <td>1.3</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>101757</th>\n",
+       "      <th>2133-01-03 19:28:00</th>\n",
+       "      <td>1.1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>102095</th>\n",
+       "      <th>2114-11-27 22:28:00</th>\n",
+       "      <td>2.5</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>102365</th>\n",
+       "      <th>2137-10-27 01:28:00</th>\n",
+       "      <td>0.6</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>102633</th>\n",
+       "      <th>2177-03-24 08:56:00</th>\n",
+       "      <td>3.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>103002</th>\n",
+       "      <th>2143-02-16 15:13:00</th>\n",
+       "      <td>1.5</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>103074</th>\n",
+       "      <th>2125-10-21 20:17:00</th>\n",
+       "      <td>0.7</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>103194</th>\n",
+       "      <th>2154-08-23 22:21:00</th>\n",
+       "      <td>1.8</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>103631</th>\n",
+       "      <th>2158-06-29 06:14:00</th>\n",
+       "      <td>1.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>104958</th>\n",
+       "      <th>2200-03-11 03:11:00</th>\n",
+       "      <td>4.6</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>105399</th>\n",
+       "      <th>2113-07-28 05:23:00</th>\n",
+       "      <td>1.3</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>105452</th>\n",
+       "      <th>2155-05-11 07:41:00</th>\n",
+       "      <td>4.8</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>105501</th>\n",
+       "      <th>2172-07-08 08:44:00</th>\n",
+       "      <td>15.6</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>105588</th>\n",
+       "      <th>2148-05-07 14:59:00</th>\n",
+       "      <td>3.4</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>105694</th>\n",
+       "      <th>2157-05-06 01:13:00</th>\n",
+       "      <td>0.8</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>105764</th>\n",
+       "      <th>2134-03-01 12:23:00</th>\n",
+       "      <td>1.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>106296</th>\n",
+       "      <th>2170-11-05 21:16:00</th>\n",
+       "      <td>0.9</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>106767</th>\n",
+       "      <th>2148-03-16 11:54:00</th>\n",
+       "      <td>2.4</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>106909</th>\n",
+       "      <th>2176-02-07 21:02:00</th>\n",
+       "      <td>1.2</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>107064</th>\n",
+       "      <th>2175-05-30 12:52:00</th>\n",
+       "      <td>3.4</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>107660</th>\n",
+       "      <th>2188-04-11 04:13:00</th>\n",
+       "      <td>0.8</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>107880</th>\n",
+       "      <th>2106-06-19 04:22:00</th>\n",
+       "      <td>1.6</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>107882</th>\n",
+       "      <th>2127-04-07 13:08:00</th>\n",
+       "      <td>6.3</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>108015</th>\n",
+       "      <th>2126-01-02 19:28:00</th>\n",
+       "      <td>2.7</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>108329</th>\n",
+       "      <th>2174-01-10 01:10:00</th>\n",
+       "      <td>11.9</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>190539</th>\n",
+       "      <th>2186-11-22 03:10:00</th>\n",
+       "      <td>1.5</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>190691</th>\n",
+       "      <th>2144-05-13 15:19:00</th>\n",
+       "      <td>2.5</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>190707</th>\n",
+       "      <th>2119-12-25 01:11:00</th>\n",
+       "      <td>2.8</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>190712</th>\n",
+       "      <th>2137-07-19 14:39:00</th>\n",
+       "      <td>4.8</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>191096</th>\n",
+       "      <th>2131-11-18 10:17:00</th>\n",
+       "      <td>1.6</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>191151</th>\n",
+       "      <th>2139-03-20 09:52:00</th>\n",
+       "      <td>1.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>191517</th>\n",
+       "      <th>2157-03-07 20:28:00</th>\n",
+       "      <td>2.6</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>191682</th>\n",
+       "      <th>2201-04-08 05:50:00</th>\n",
+       "      <td>6.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>191817</th>\n",
+       "      <th>2165-05-08 17:17:00</th>\n",
+       "      <td>1.4</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>192097</th>\n",
+       "      <th>2190-03-01 18:38:00</th>\n",
+       "      <td>1.1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>192123</th>\n",
+       "      <th>2142-04-25 01:15:00</th>\n",
+       "      <td>1.1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>192224</th>\n",
+       "      <th>2164-06-13 12:47:00</th>\n",
+       "      <td>2.6</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>194013</th>\n",
+       "      <th>2169-07-05 13:24:00</th>\n",
+       "      <td>2.1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>194111</th>\n",
+       "      <th>2198-08-03 04:38:00</th>\n",
+       "      <td>1.3</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>194340</th>\n",
+       "      <th>2129-09-07 08:18:00</th>\n",
+       "      <td>4.4</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>195160</th>\n",
+       "      <th>2171-03-04 15:33:00</th>\n",
+       "      <td>1.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>195290</th>\n",
+       "      <th>2138-02-14 03:33:00</th>\n",
+       "      <td>1.5</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>195392</th>\n",
+       "      <th>2149-11-29 20:40:00</th>\n",
+       "      <td>5.1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>195962</th>\n",
+       "      <th>2180-12-11 17:48:00</th>\n",
+       "      <td>1.2</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>196159</th>\n",
+       "      <th>2163-01-08 00:29:00</th>\n",
+       "      <td>4.7</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>196271</th>\n",
+       "      <th>2141-12-20 09:13:00</th>\n",
+       "      <td>5.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>197430</th>\n",
+       "      <th>2130-06-01 15:00:00</th>\n",
+       "      <td>3.2</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>197569</th>\n",
+       "      <th>2133-03-02 03:03:00</th>\n",
+       "      <td>1.8</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>198161</th>\n",
+       "      <th>2144-05-08 03:07:00</th>\n",
+       "      <td>2.3</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>198608</th>\n",
+       "      <th>2176-05-28 20:29:00</th>\n",
+       "      <td>2.5</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>199004</th>\n",
+       "      <th>2189-06-12 23:06:00</th>\n",
+       "      <td>1.3</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>199280</th>\n",
+       "      <th>2121-01-04 00:46:00</th>\n",
+       "      <td>1.5</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>199286</th>\n",
+       "      <th>2159-07-27 15:21:00</th>\n",
+       "      <td>1.2</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>199488</th>\n",
+       "      <th>2107-09-08 18:11:00</th>\n",
+       "      <td>1.7</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>199634</th>\n",
+       "      <th>2174-05-18 01:01:00</th>\n",
+       "      <td>0.6</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>328 rows × 1 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                            lactate_known_qn_mmol/L_all_SAMPLE\n",
+       "id     datetime                                               \n",
+       "100009 2162-05-17 17:14:00                                 1.5\n",
+       "100095 2108-10-01 06:53:00                                 1.1\n",
+       "100262 2142-04-29 18:46:00                                 3.8\n",
+       "100765 2126-03-12 03:57:00                                 1.3\n",
+       "101148 2197-12-17 02:50:00                                 2.0\n",
+       "101274 2170-03-28 18:12:00                                 1.3\n",
+       "101757 2133-01-03 19:28:00                                 1.1\n",
+       "102095 2114-11-27 22:28:00                                 2.5\n",
+       "102365 2137-10-27 01:28:00                                 0.6\n",
+       "102633 2177-03-24 08:56:00                                 3.0\n",
+       "103002 2143-02-16 15:13:00                                 1.5\n",
+       "103074 2125-10-21 20:17:00                                 0.7\n",
+       "103194 2154-08-23 22:21:00                                 1.8\n",
+       "103631 2158-06-29 06:14:00                                 1.0\n",
+       "104958 2200-03-11 03:11:00                                 4.6\n",
+       "105399 2113-07-28 05:23:00                                 1.3\n",
+       "105452 2155-05-11 07:41:00                                 4.8\n",
+       "105501 2172-07-08 08:44:00                                15.6\n",
+       "105588 2148-05-07 14:59:00                                 3.4\n",
+       "105694 2157-05-06 01:13:00                                 0.8\n",
+       "105764 2134-03-01 12:23:00                                 1.0\n",
+       "106296 2170-11-05 21:16:00                                 0.9\n",
+       "106767 2148-03-16 11:54:00                                 2.4\n",
+       "106909 2176-02-07 21:02:00                                 1.2\n",
+       "107064 2175-05-30 12:52:00                                 3.4\n",
+       "107660 2188-04-11 04:13:00                                 0.8\n",
+       "107880 2106-06-19 04:22:00                                 1.6\n",
+       "107882 2127-04-07 13:08:00                                 6.3\n",
+       "108015 2126-01-02 19:28:00                                 2.7\n",
+       "108329 2174-01-10 01:10:00                                11.9\n",
+       "...                                                        ...\n",
+       "190539 2186-11-22 03:10:00                                 1.5\n",
+       "190691 2144-05-13 15:19:00                                 2.5\n",
+       "190707 2119-12-25 01:11:00                                 2.8\n",
+       "190712 2137-07-19 14:39:00                                 4.8\n",
+       "191096 2131-11-18 10:17:00                                 1.6\n",
+       "191151 2139-03-20 09:52:00                                 1.0\n",
+       "191517 2157-03-07 20:28:00                                 2.6\n",
+       "191682 2201-04-08 05:50:00                                 6.0\n",
+       "191817 2165-05-08 17:17:00                                 1.4\n",
+       "192097 2190-03-01 18:38:00                                 1.1\n",
+       "192123 2142-04-25 01:15:00                                 1.1\n",
+       "192224 2164-06-13 12:47:00                                 2.6\n",
+       "194013 2169-07-05 13:24:00                                 2.1\n",
+       "194111 2198-08-03 04:38:00                                 1.3\n",
+       "194340 2129-09-07 08:18:00                                 4.4\n",
+       "195160 2171-03-04 15:33:00                                 1.0\n",
+       "195290 2138-02-14 03:33:00                                 1.5\n",
+       "195392 2149-11-29 20:40:00                                 5.1\n",
+       "195962 2180-12-11 17:48:00                                 1.2\n",
+       "196159 2163-01-08 00:29:00                                 4.7\n",
+       "196271 2141-12-20 09:13:00                                 5.0\n",
+       "197430 2130-06-01 15:00:00                                 3.2\n",
+       "197569 2133-03-02 03:03:00                                 1.8\n",
+       "198161 2144-05-08 03:07:00                                 2.3\n",
+       "198608 2176-05-28 20:29:00                                 2.5\n",
+       "199004 2189-06-12 23:06:00                                 1.3\n",
+       "199280 2121-01-04 00:46:00                                 1.5\n",
+       "199286 2159-07-27 15:21:00                                 1.2\n",
+       "199488 2107-09-08 18:11:00                                 1.7\n",
+       "199634 2174-05-18 01:01:00                                 0.6\n",
+       "\n",
+       "[328 rows x 1 columns]"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "#bogus ids and make labels:\n",
+    "train_ids = mimic.get_all_hadm_ids()[:1000]\n",
+    "test_ids = mimic.get_all_hadm_ids()[1000:1100]\n",
+    "labels = label_pipeline.fit_transform(X=train_ids)\n",
+    "labels"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Lets start with just some basic **lactate** features"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Now, we need to find some way to identify all of the discrete data needs for every feature in our list, and then create a featurizing pipeline for each of those things.\n",
+    "\n",
+    "Since we cannot hold our entire data set in memory, we need to do this using the following steps:\n",
+    "\n",
+    "1. **Data Loader** - will open the relevent transformed/cleaned dataframes for a given feature group with shared (currently IDENTICAL) data needs. This will both load AND filter data to relevent ids...there is no need to \"fit\" an ID filter because this will change from run to run or fold-to-fold\n",
+    "2. **Cleaning pipeline** - For each loaded data set, we will fit a series of data-dependent cleaning steps such that, for each train-test combination, each cleaning step can be FIT to the train data and then applied to the test data\n",
+    "3. **Segmenter** - This will take the cleaned data set and, using whatever behavior is encoded within the segmenter, it will assign a \"segment\" to each datetime within a give timeseries. There may be multiple segments per timeseries, and there may be some datetimes that ARE NOT part of a segment (encoded by segment index = -1 'NO SEGMENT')\n",
+    "4. **Featurizer** - this is either a featurizer object, or a pdFeatureUnion bundle that will join a bundle of featurizer results. Importantly, the _data loader_ should load all data needed by the featurizer.\n",
+    "\n",
+    "The resulting pipline will then be unioned with other pipelines into a pdFeatureUnion pipeline. The final steps to the overall pipeline will be:\n",
+    "1. **Feature processing pipeline** - In most cases this will just be dropping all-NaN features, and do a standardized scaling. It could potentially include feature selection/creation.\n",
+    "2. ** A Model ** - so that we can finish the entire pipeline and run cross validation!"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Data Loading and segmenting\n",
+    "\n",
+    "initially will start with a segmenter that segments by n hours before a series of \"end datetimes\" which, in this case, will be the datetime of the sampled lactate"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Cleaning pipeline\n",
+    "Now, for this series of machine learning models, we are going to use a simplified/cleaned version of our dataset. Specifically, we are going to combine all columns with the same component and unit into a single column (that is the \"combine line colummns\" cleaning step below)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": [
+    "from features import load_and_segment,data_loader\n",
+    "from segmenting import n_hrs_before\n",
+    "\n",
+    "hdf5_fname = 'data/mimic_simple_all'\n",
+    "path = 'cleaned'\n",
+    "component = data_dict.components.HEART_RATE\n",
+    "data_needs = [(component,ALL)]\n",
+    "segmenter = n_hrs_before(n_hrs=ALL)\n",
+    "\n",
+    "loader = features.load_and_segment(hdf5_fname,path,data_needs,segmenter)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 111,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-26 18:07:21) Make DF for 1 components...\n",
+      "heart rate\n",
+      "(2017-06-26 18:07:21)>> HEART RATE: 1/1\n",
+      "(2017-06-26 18:07:21)>>>> Opening...\n",
+      "(2017-06-26 18:07:21)<<<< DONE (0.0s)\n",
+      "(2017-06-26 18:07:21)>>>> Filter & sort - (7922986, 6)\n",
+      "(2017-06-26 18:07:22)<<<< DONE (1.0s)\n",
+      "(2017-06-26 18:07:22)>>>> Convert to dask - (70798, 6)\n",
+      "(2017-06-26 18:07:22)<<<< DONE (0.0s)\n",
+      "(2017-06-26 18:07:22)>>>> Join\n",
+      "(2017-06-26 18:07:22)<<<< DONE (0.0s)\n",
+      "(2017-06-26 18:07:22)<< DONE (1.0s)\n",
+      "(2017-06-26 18:07:22)>> Dask DF back to pandas\n",
+      "(2017-06-26 18:07:22)<< DONE (0.0s)\n",
+      "(2017-06-26 18:07:22) DONE (1.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th></th>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"6\" halign=\"left\">heart rate</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th></th>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th></th>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th></th>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">beats/min</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th></th>\n",
+       "      <th>description</th>\n",
+       "      <th>211(BPM)</th>\n",
+       "      <th>211(bpm)</th>\n",
+       "      <th>220045(bpm)</th>\n",
+       "      <th>1332</th>\n",
+       "      <th>1341</th>\n",
+       "      <th>1725</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>id</th>\n",
+       "      <th>datetime</th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th rowspan=\"5\" valign=\"top\">100009</th>\n",
+       "      <th>2162-05-17 18:23:00</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>80.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 18:25:00</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>80.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 18:30:00</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>80.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 18:45:00</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>80.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 19:00:00</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>80.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component                  heart rate                                        \n",
+       "status                          known                       unknown          \n",
+       "variable_type                      qn                            qn          \n",
+       "units                       beats/min                      no_units          \n",
+       "description                  211(BPM) 211(bpm) 220045(bpm)     1332 1341 1725\n",
+       "id     datetime                                                              \n",
+       "100009 2162-05-17 18:23:00        NaN      NaN        80.0      NaN  NaN  NaN\n",
+       "       2162-05-17 18:25:00        NaN      NaN        80.0      NaN  NaN  NaN\n",
+       "       2162-05-17 18:30:00        NaN      NaN        80.0      NaN  NaN  NaN\n",
+       "       2162-05-17 18:45:00        NaN      NaN        80.0      NaN  NaN  NaN\n",
+       "       2162-05-17 19:00:00        NaN      NaN        80.0      NaN  NaN  NaN"
+      ]
+     },
+     "execution_count": 111,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "y = labels\n",
+    "ids = y.index.get_level_values(column_names.ID).unique().tolist()\n",
+    "df_loaded = data_loader(hdf5_fname,path,data_needs).fit_transform(ids)\n",
+    "df_loaded.head()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "ename": "NameError",
+     "evalue": "name 'df_loaded' is not defined",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[1;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+      "\u001b[1;32m<ipython-input-1-d96ee5ae9400>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m      3\u001b[0m \u001b[0mreload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msegmenting\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      4\u001b[0m \u001b[0msegmenter\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msegmenting\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mperiodic\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mn_hrs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m48\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 5\u001b[1;33m \u001b[0mdf_segmented\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msegmenter\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdf_loaded\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
+      "\u001b[1;31mNameError\u001b[0m: name 'df_loaded' is not defined"
+     ]
+    }
+   ],
+   "source": [
+    "import segmenting\n",
+    "import constants\n",
+    "reload(segmenting)\n",
+    "segmenter = segmenting.periodic(n_hrs=48)\n",
+    "df_segmented = segmenter.fit_transform(X=df_loaded, y=y)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 62,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-22 10:31:32) Make DF for 1 components...\n",
+      "heart rate\n",
+      "(2017-06-22 10:31:32)>> HEART RATE: 1/1\n",
+      "(2017-06-22 10:31:32)>>>> Opening...\n",
+      "(2017-06-22 10:31:33)<<<< DONE (1.0s)\n",
+      "(2017-06-22 10:31:33)>>>> Join (70798, 6) to None\n",
+      "(2017-06-22 10:31:33)<<<< DONE (0.0s)\n",
+      "(2017-06-22 10:31:33)<< DONE (1.0s)\n",
+      "(2017-06-22 10:31:33) DONE (1.0s)\n",
+      "(2017-06-22 10:31:33) Segment df (70798, 6)\n",
+      "(2017-06-22 10:31:33)>> Get Segments\n",
+      "(2017-06-22 10:31:33)<< DONE (0.0s)\n",
+      "(2017-06-22 10:31:33)>> Apply Segments\n",
+      "(2017-06-22 10:31:34)<< DONE (1.0s)\n",
+      "(2017-06-22 10:31:34) DONE (1.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"6\" halign=\"left\">heart rate</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">beats/min</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th>description</th>\n",
+       "      <th>211(BPM)</th>\n",
+       "      <th>211(bpm)</th>\n",
+       "      <th>220045(bpm)</th>\n",
+       "      <th>1332</th>\n",
+       "      <th>1341</th>\n",
+       "      <th>1725</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>id</th>\n",
+       "      <th>datetime</th>\n",
+       "      <th>seg_id</th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th rowspan=\"5\" valign=\"top\">100009</th>\n",
+       "      <th>2162-05-17 18:23:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>80.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 18:25:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>80.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 18:30:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>80.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 18:45:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>80.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 19:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>80.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component                         heart rate                                \\\n",
+       "status                                 known                       unknown   \n",
+       "variable_type                             qn                            qn   \n",
+       "units                              beats/min                      no_units   \n",
+       "description                         211(BPM) 211(bpm) 220045(bpm)     1332   \n",
+       "id     datetime            seg_id                                            \n",
+       "100009 2162-05-17 18:23:00 -1            NaN      NaN        80.0      NaN   \n",
+       "       2162-05-17 18:25:00 -1            NaN      NaN        80.0      NaN   \n",
+       "       2162-05-17 18:30:00 -1            NaN      NaN        80.0      NaN   \n",
+       "       2162-05-17 18:45:00 -1            NaN      NaN        80.0      NaN   \n",
+       "       2162-05-17 19:00:00 -1            NaN      NaN        80.0      NaN   \n",
+       "\n",
+       "component                                    \n",
+       "status                                       \n",
+       "variable_type                                \n",
+       "units                                        \n",
+       "description                       1341 1725  \n",
+       "id     datetime            seg_id            \n",
+       "100009 2162-05-17 18:23:00 -1      NaN  NaN  \n",
+       "       2162-05-17 18:25:00 -1      NaN  NaN  \n",
+       "       2162-05-17 18:30:00 -1      NaN  NaN  \n",
+       "       2162-05-17 18:45:00 -1      NaN  NaN  \n",
+       "       2162-05-17 19:00:00 -1      NaN  NaN  "
+      ]
+     },
+     "execution_count": 62,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df_loaded = loader.fit_transform(labels)\n",
+    "df_loaded.head()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 74,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "318\n"
+     ]
+    },
+    {
+     "data": {
+      "text/plain": [
+       "233"
+      ]
+     },
+     "execution_count": 74,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "print df_loaded.index.get_level_values('id').unique().size\n",
+    "df_loaded[df_loaded.index.get_level_values('seg_id') != -1].index.get_level_values('id').unique().size"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 63,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-22 10:31:36) Drop Small columns, threshold = 50 | (70798, 6)\n",
+      "(2017-06-22 10:31:36) DONE (0.0s)\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "(2017-06-22 10:31:36) FIT Combine like columns (70798, 2)\n",
+      "(2017-06-22 10:31:36)>> ('heart rate', 'known', 'qn', 'beats/min')\n",
+      "(2017-06-22 10:31:36)<< DONE (0.0s)\n",
+      "(2017-06-22 10:31:36) DONE (0.0s)\n",
+      "(2017-06-22 10:31:36) TRANSFORM Combine like columns (70798, 2)\n",
+      "(2017-06-22 10:31:36)>> ('heart rate', 'known', 'qn', 'beats/min')\n",
+      "(2017-06-22 10:31:38)<< DONE (2.0s)\n",
+      "(2017-06-22 10:31:38) DONE (2.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th>component</th>\n",
+       "      <th>heart rate</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th>units</th>\n",
+       "      <th>beats/min</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>id</th>\n",
+       "      <th>datetime</th>\n",
+       "      <th>seg_id</th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th rowspan=\"30\" valign=\"top\">100009</th>\n",
+       "      <th>2162-05-17 18:23:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>80.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 18:25:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>80.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 18:30:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>80.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 18:45:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>80.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 19:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>80.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 19:15:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>80.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 19:30:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>80.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 19:45:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>88.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 20:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>92.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 21:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>80.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 22:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>80.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-17 23:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>80.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-18 00:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>80.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-18 01:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>79.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-18 02:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>79.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-18 03:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>80.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-18 04:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>80.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-18 05:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>72.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-18 06:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>87.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-18 07:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>70.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-18 08:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>70.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-18 09:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>70.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-18 10:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>58.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-18 11:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>55.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-18 11:30:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>56.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-18 11:45:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>52.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-18 12:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>54.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-18 12:15:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>49.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-18 12:30:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>59.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2162-05-18 12:45:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>59.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <th>...</th>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th rowspan=\"30\" valign=\"top\">199488</th>\n",
+       "      <th>2107-09-22 12:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>88.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-22 13:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>77.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-22 14:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>89.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-22 15:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>89.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-22 16:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>99.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-22 17:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>91.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-22 18:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>99.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-22 19:30:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>88.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-22 20:30:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>86.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-22 21:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>89.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-22 22:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>87.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-22 23:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>90.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-23 00:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>91.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-23 01:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>98.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-23 02:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>99.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-23 03:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>93.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-23 04:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>87.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-23 05:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>92.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-23 06:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>97.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-23 07:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>89.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-23 08:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>108.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-23 09:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>105.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-23 10:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>84.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-23 11:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>81.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-23 12:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>77.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-23 13:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>91.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-23 14:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>96.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-23 15:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>96.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-23 16:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>108.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2107-09-23 17:00:00</th>\n",
+       "      <th>-1</th>\n",
+       "      <td>96.0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>70798 rows × 1 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component                         heart rate\n",
+       "status                                 known\n",
+       "variable_type                             qn\n",
+       "units                              beats/min\n",
+       "description                              all\n",
+       "id     datetime            seg_id           \n",
+       "100009 2162-05-17 18:23:00 -1           80.0\n",
+       "       2162-05-17 18:25:00 -1           80.0\n",
+       "       2162-05-17 18:30:00 -1           80.0\n",
+       "       2162-05-17 18:45:00 -1           80.0\n",
+       "       2162-05-17 19:00:00 -1           80.0\n",
+       "       2162-05-17 19:15:00 -1           80.0\n",
+       "       2162-05-17 19:30:00 -1           80.0\n",
+       "       2162-05-17 19:45:00 -1           88.0\n",
+       "       2162-05-17 20:00:00 -1           92.0\n",
+       "       2162-05-17 21:00:00 -1           80.0\n",
+       "       2162-05-17 22:00:00 -1           80.0\n",
+       "       2162-05-17 23:00:00 -1           80.0\n",
+       "       2162-05-18 00:00:00 -1           80.0\n",
+       "       2162-05-18 01:00:00 -1           79.0\n",
+       "       2162-05-18 02:00:00 -1           79.0\n",
+       "       2162-05-18 03:00:00 -1           80.0\n",
+       "       2162-05-18 04:00:00 -1           80.0\n",
+       "       2162-05-18 05:00:00 -1           72.0\n",
+       "       2162-05-18 06:00:00 -1           87.0\n",
+       "       2162-05-18 07:00:00 -1           70.0\n",
+       "       2162-05-18 08:00:00 -1           70.0\n",
+       "       2162-05-18 09:00:00 -1           70.0\n",
+       "       2162-05-18 10:00:00 -1           58.0\n",
+       "       2162-05-18 11:00:00 -1           55.0\n",
+       "       2162-05-18 11:30:00 -1           56.0\n",
+       "       2162-05-18 11:45:00 -1           52.0\n",
+       "       2162-05-18 12:00:00 -1           54.0\n",
+       "       2162-05-18 12:15:00 -1           49.0\n",
+       "       2162-05-18 12:30:00 -1           59.0\n",
+       "       2162-05-18 12:45:00 -1           59.0\n",
+       "...                                      ...\n",
+       "199488 2107-09-22 12:00:00 -1           88.0\n",
+       "       2107-09-22 13:00:00 -1           77.0\n",
+       "       2107-09-22 14:00:00 -1           89.0\n",
+       "       2107-09-22 15:00:00 -1           89.0\n",
+       "       2107-09-22 16:00:00 -1           99.0\n",
+       "       2107-09-22 17:00:00 -1           91.0\n",
+       "       2107-09-22 18:00:00 -1           99.0\n",
+       "       2107-09-22 19:30:00 -1           88.0\n",
+       "       2107-09-22 20:30:00 -1           86.0\n",
+       "       2107-09-22 21:00:00 -1           89.0\n",
+       "       2107-09-22 22:00:00 -1           87.0\n",
+       "       2107-09-22 23:00:00 -1           90.0\n",
+       "       2107-09-23 00:00:00 -1           91.0\n",
+       "       2107-09-23 01:00:00 -1           98.0\n",
+       "       2107-09-23 02:00:00 -1           99.0\n",
+       "       2107-09-23 03:00:00 -1           93.0\n",
+       "       2107-09-23 04:00:00 -1           87.0\n",
+       "       2107-09-23 05:00:00 -1           92.0\n",
+       "       2107-09-23 06:00:00 -1           97.0\n",
+       "       2107-09-23 07:00:00 -1           89.0\n",
+       "       2107-09-23 08:00:00 -1          108.0\n",
+       "       2107-09-23 09:00:00 -1          105.0\n",
+       "       2107-09-23 10:00:00 -1           84.0\n",
+       "       2107-09-23 11:00:00 -1           81.0\n",
+       "       2107-09-23 12:00:00 -1           77.0\n",
+       "       2107-09-23 13:00:00 -1           91.0\n",
+       "       2107-09-23 14:00:00 -1           96.0\n",
+       "       2107-09-23 15:00:00 -1           96.0\n",
+       "       2107-09-23 16:00:00 -1          108.0\n",
+       "       2107-09-23 17:00:00 -1           96.0\n",
+       "\n",
+       "[70798 rows x 1 columns]"
+      ]
+     },
+     "execution_count": 63,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "from transformers import remove_small_columns,record_threshold,combine_like_cols\n",
+    "def cleaner_pipeline():\n",
+    "    return Pipeline([\n",
+    "            ('drop_small_columns',remove_small_columns(threshold=50)),\n",
+    "            ('drop_low_id_count',record_threshold(threshold=5)),   \n",
+    "            ('combine_like_columns',combine_like_cols())\n",
+    "        ])\n",
+    "\n",
+    "cleaners = cleaner_pipeline()\n",
+    "\n",
+    "df_cleaned = cleaners.fit_transform(X=df_loaded,y=labels)\n",
+    "df_cleaned"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 64,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-22 10:31:40) FIT features...\n",
+      "(2017-06-22 10:31:40)>> MEAN_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 10:31:41)<< DONE (1.0s)\n",
+      "(2017-06-22 10:31:41)>> STD_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 10:31:41)<< DONE (0.0s)\n",
+      "(2017-06-22 10:31:41)>> LAST_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 10:31:41)<< DONE (0.0s)\n",
+      "(2017-06-22 10:31:41)>> COUNT_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 10:31:41)<< DONE (0.0s)\n",
+      "(2017-06-22 10:31:41) DONE (1.0s)\n",
+      "(2017-06-22 10:31:41) Start Feature Union on DF (70798, 1)\n",
+      "(2017-06-22 10:31:41)>> MEAN_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 10:31:41)<< DONE (0.0s)\n",
+      "(2017-06-22 10:31:41)>> STD_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 10:31:41)<< DONE (0.0s)\n",
+      "(2017-06-22 10:31:41)>> LAST_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 10:31:41)<< DONE (0.0s)\n",
+      "(2017-06-22 10:31:41)>> COUNT_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 10:31:41)<< DONE (0.0s)\n",
+      "(2017-06-22 10:31:41) DONE (0.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th>heart rate_known_qn_beats/min_all_MEAN</th>\n",
+       "      <th>heart rate_known_qn_beats/min_all_STD</th>\n",
+       "      <th>heart rate_known_qn_beats/min_all_LAST</th>\n",
+       "      <th>heart rate_known_qn_beats/min_all_COUNT</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>id</th>\n",
+       "      <th>seg_id</th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>100095</th>\n",
+       "      <th>0</th>\n",
+       "      <td>86.918367</td>\n",
+       "      <td>13.800249</td>\n",
+       "      <td>94.0</td>\n",
+       "      <td>98.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>100262</th>\n",
+       "      <th>0</th>\n",
+       "      <td>138.809524</td>\n",
+       "      <td>10.766339</td>\n",
+       "      <td>139.0</td>\n",
+       "      <td>42.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>100765</th>\n",
+       "      <th>0</th>\n",
+       "      <td>103.750000</td>\n",
+       "      <td>3.201562</td>\n",
+       "      <td>106.0</td>\n",
+       "      <td>4.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>101274</th>\n",
+       "      <th>0</th>\n",
+       "      <td>94.785714</td>\n",
+       "      <td>5.294098</td>\n",
+       "      <td>97.0</td>\n",
+       "      <td>14.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>101757</th>\n",
+       "      <th>0</th>\n",
+       "      <td>100.700000</td>\n",
+       "      <td>8.932463</td>\n",
+       "      <td>97.0</td>\n",
+       "      <td>10.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>102095</th>\n",
+       "      <th>0</th>\n",
+       "      <td>133.000000</td>\n",
+       "      <td>9.396389</td>\n",
+       "      <td>133.0</td>\n",
+       "      <td>1.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>102365</th>\n",
+       "      <th>0</th>\n",
+       "      <td>85.209205</td>\n",
+       "      <td>8.493087</td>\n",
+       "      <td>82.0</td>\n",
+       "      <td>239.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>102633</th>\n",
+       "      <th>0</th>\n",
+       "      <td>108.300000</td>\n",
+       "      <td>8.300602</td>\n",
+       "      <td>97.0</td>\n",
+       "      <td>10.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>103002</th>\n",
+       "      <th>0</th>\n",
+       "      <td>71.666667</td>\n",
+       "      <td>1.154701</td>\n",
+       "      <td>71.0</td>\n",
+       "      <td>3.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>103074</th>\n",
+       "      <th>0</th>\n",
+       "      <td>86.118519</td>\n",
+       "      <td>7.869807</td>\n",
+       "      <td>90.0</td>\n",
+       "      <td>270.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>103194</th>\n",
+       "      <th>0</th>\n",
+       "      <td>102.444444</td>\n",
+       "      <td>4.390647</td>\n",
+       "      <td>102.0</td>\n",
+       "      <td>9.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>103631</th>\n",
+       "      <th>0</th>\n",
+       "      <td>90.226415</td>\n",
+       "      <td>9.348576</td>\n",
+       "      <td>96.0</td>\n",
+       "      <td>106.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>104958</th>\n",
+       "      <th>0</th>\n",
+       "      <td>92.000000</td>\n",
+       "      <td>1.414214</td>\n",
+       "      <td>91.0</td>\n",
+       "      <td>2.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>105399</th>\n",
+       "      <th>0</th>\n",
+       "      <td>90.704918</td>\n",
+       "      <td>6.960231</td>\n",
+       "      <td>89.0</td>\n",
+       "      <td>61.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>105501</th>\n",
+       "      <th>0</th>\n",
+       "      <td>101.937500</td>\n",
+       "      <td>8.225722</td>\n",
+       "      <td>101.0</td>\n",
+       "      <td>16.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>105694</th>\n",
+       "      <th>0</th>\n",
+       "      <td>80.225989</td>\n",
+       "      <td>12.666832</td>\n",
+       "      <td>66.0</td>\n",
+       "      <td>177.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>105764</th>\n",
+       "      <th>0</th>\n",
+       "      <td>75.000000</td>\n",
+       "      <td>5.291503</td>\n",
+       "      <td>76.0</td>\n",
+       "      <td>4.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>106296</th>\n",
+       "      <th>0</th>\n",
+       "      <td>133.222222</td>\n",
+       "      <td>7.408704</td>\n",
+       "      <td>138.0</td>\n",
+       "      <td>18.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>106909</th>\n",
+       "      <th>0</th>\n",
+       "      <td>81.838843</td>\n",
+       "      <td>17.787870</td>\n",
+       "      <td>63.0</td>\n",
+       "      <td>968.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>107660</th>\n",
+       "      <th>0</th>\n",
+       "      <td>88.080000</td>\n",
+       "      <td>13.910188</td>\n",
+       "      <td>91.0</td>\n",
+       "      <td>25.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>107880</th>\n",
+       "      <th>0</th>\n",
+       "      <td>89.000000</td>\n",
+       "      <td>11.481210</td>\n",
+       "      <td>83.0</td>\n",
+       "      <td>45.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>107882</th>\n",
+       "      <th>0</th>\n",
+       "      <td>90.964286</td>\n",
+       "      <td>20.411475</td>\n",
+       "      <td>72.0</td>\n",
+       "      <td>28.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>108015</th>\n",
+       "      <th>0</th>\n",
+       "      <td>100.500000</td>\n",
+       "      <td>6.663332</td>\n",
+       "      <td>86.0</td>\n",
+       "      <td>16.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>108329</th>\n",
+       "      <th>0</th>\n",
+       "      <td>126.333333</td>\n",
+       "      <td>9.646601</td>\n",
+       "      <td>104.0</td>\n",
+       "      <td>42.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>108462</th>\n",
+       "      <th>0</th>\n",
+       "      <td>89.600000</td>\n",
+       "      <td>3.209361</td>\n",
+       "      <td>87.0</td>\n",
+       "      <td>5.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>108923</th>\n",
+       "      <th>0</th>\n",
+       "      <td>86.000000</td>\n",
+       "      <td>2.828427</td>\n",
+       "      <td>88.0</td>\n",
+       "      <td>2.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>109185</th>\n",
+       "      <th>0</th>\n",
+       "      <td>91.157143</td>\n",
+       "      <td>13.611228</td>\n",
+       "      <td>101.0</td>\n",
+       "      <td>280.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>109235</th>\n",
+       "      <th>0</th>\n",
+       "      <td>98.416667</td>\n",
+       "      <td>10.312157</td>\n",
+       "      <td>100.0</td>\n",
+       "      <td>24.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>109451</th>\n",
+       "      <th>0</th>\n",
+       "      <td>67.550000</td>\n",
+       "      <td>7.250953</td>\n",
+       "      <td>62.0</td>\n",
+       "      <td>20.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>109718</th>\n",
+       "      <th>0</th>\n",
+       "      <td>85.200000</td>\n",
+       "      <td>9.420343</td>\n",
+       "      <td>96.0</td>\n",
+       "      <td>15.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>185910</th>\n",
+       "      <th>0</th>\n",
+       "      <td>106.234043</td>\n",
+       "      <td>8.270463</td>\n",
+       "      <td>112.0</td>\n",
+       "      <td>47.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>186516</th>\n",
+       "      <th>0</th>\n",
+       "      <td>78.446154</td>\n",
+       "      <td>13.608397</td>\n",
+       "      <td>83.0</td>\n",
+       "      <td>65.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>188038</th>\n",
+       "      <th>0</th>\n",
+       "      <td>69.416667</td>\n",
+       "      <td>16.822395</td>\n",
+       "      <td>60.0</td>\n",
+       "      <td>84.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>188256</th>\n",
+       "      <th>0</th>\n",
+       "      <td>105.617857</td>\n",
+       "      <td>12.959284</td>\n",
+       "      <td>87.0</td>\n",
+       "      <td>280.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>188576</th>\n",
+       "      <th>0</th>\n",
+       "      <td>83.402609</td>\n",
+       "      <td>14.957631</td>\n",
+       "      <td>128.0</td>\n",
+       "      <td>1150.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>188869</th>\n",
+       "      <th>0</th>\n",
+       "      <td>67.038462</td>\n",
+       "      <td>13.075646</td>\n",
+       "      <td>78.0</td>\n",
+       "      <td>78.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>189081</th>\n",
+       "      <th>0</th>\n",
+       "      <td>74.555556</td>\n",
+       "      <td>3.045944</td>\n",
+       "      <td>80.0</td>\n",
+       "      <td>9.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>189243</th>\n",
+       "      <th>0</th>\n",
+       "      <td>100.285714</td>\n",
+       "      <td>3.860669</td>\n",
+       "      <td>94.0</td>\n",
+       "      <td>7.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>189332</th>\n",
+       "      <th>0</th>\n",
+       "      <td>87.578947</td>\n",
+       "      <td>5.398722</td>\n",
+       "      <td>99.0</td>\n",
+       "      <td>19.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>190159</th>\n",
+       "      <th>0</th>\n",
+       "      <td>109.878049</td>\n",
+       "      <td>13.082804</td>\n",
+       "      <td>87.0</td>\n",
+       "      <td>41.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>190462</th>\n",
+       "      <th>0</th>\n",
+       "      <td>107.333333</td>\n",
+       "      <td>12.785408</td>\n",
+       "      <td>117.0</td>\n",
+       "      <td>6.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>190539</th>\n",
+       "      <th>0</th>\n",
+       "      <td>74.400000</td>\n",
+       "      <td>6.651846</td>\n",
+       "      <td>74.0</td>\n",
+       "      <td>35.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>190707</th>\n",
+       "      <th>0</th>\n",
+       "      <td>82.315789</td>\n",
+       "      <td>29.238583</td>\n",
+       "      <td>102.0</td>\n",
+       "      <td>19.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>191096</th>\n",
+       "      <th>0</th>\n",
+       "      <td>71.850000</td>\n",
+       "      <td>6.588841</td>\n",
+       "      <td>83.0</td>\n",
+       "      <td>40.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>191517</th>\n",
+       "      <th>0</th>\n",
+       "      <td>83.214286</td>\n",
+       "      <td>7.062126</td>\n",
+       "      <td>76.0</td>\n",
+       "      <td>14.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>191817</th>\n",
+       "      <th>0</th>\n",
+       "      <td>86.900000</td>\n",
+       "      <td>7.812209</td>\n",
+       "      <td>98.0</td>\n",
+       "      <td>50.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>192123</th>\n",
+       "      <th>0</th>\n",
+       "      <td>125.060606</td>\n",
+       "      <td>11.365901</td>\n",
+       "      <td>112.0</td>\n",
+       "      <td>33.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>194013</th>\n",
+       "      <th>0</th>\n",
+       "      <td>67.654639</td>\n",
+       "      <td>5.309031</td>\n",
+       "      <td>68.0</td>\n",
+       "      <td>194.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>194111</th>\n",
+       "      <th>0</th>\n",
+       "      <td>41.090909</td>\n",
+       "      <td>1.758098</td>\n",
+       "      <td>40.0</td>\n",
+       "      <td>11.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>194340</th>\n",
+       "      <th>0</th>\n",
+       "      <td>100.596774</td>\n",
+       "      <td>8.501610</td>\n",
+       "      <td>105.0</td>\n",
+       "      <td>62.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>195160</th>\n",
+       "      <th>0</th>\n",
+       "      <td>78.971429</td>\n",
+       "      <td>6.228425</td>\n",
+       "      <td>80.0</td>\n",
+       "      <td>35.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>195290</th>\n",
+       "      <th>0</th>\n",
+       "      <td>65.333333</td>\n",
+       "      <td>13.613719</td>\n",
+       "      <td>70.0</td>\n",
+       "      <td>3.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>195962</th>\n",
+       "      <th>0</th>\n",
+       "      <td>105.659420</td>\n",
+       "      <td>21.987221</td>\n",
+       "      <td>96.0</td>\n",
+       "      <td>138.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>197569</th>\n",
+       "      <th>0</th>\n",
+       "      <td>94.491228</td>\n",
+       "      <td>8.398815</td>\n",
+       "      <td>93.0</td>\n",
+       "      <td>57.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>198161</th>\n",
+       "      <th>0</th>\n",
+       "      <td>91.477889</td>\n",
+       "      <td>19.453641</td>\n",
+       "      <td>66.0</td>\n",
+       "      <td>701.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>198608</th>\n",
+       "      <th>0</th>\n",
+       "      <td>92.989899</td>\n",
+       "      <td>13.632594</td>\n",
+       "      <td>85.0</td>\n",
+       "      <td>198.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>199004</th>\n",
+       "      <th>0</th>\n",
+       "      <td>74.000000</td>\n",
+       "      <td>9.396389</td>\n",
+       "      <td>74.0</td>\n",
+       "      <td>1.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>199280</th>\n",
+       "      <th>0</th>\n",
+       "      <td>67.274510</td>\n",
+       "      <td>6.798598</td>\n",
+       "      <td>59.0</td>\n",
+       "      <td>102.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>199286</th>\n",
+       "      <th>0</th>\n",
+       "      <td>107.637681</td>\n",
+       "      <td>10.213732</td>\n",
+       "      <td>118.0</td>\n",
+       "      <td>138.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>199488</th>\n",
+       "      <th>0</th>\n",
+       "      <td>113.222222</td>\n",
+       "      <td>7.612125</td>\n",
+       "      <td>119.0</td>\n",
+       "      <td>9.0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>233 rows × 4 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "               heart rate_known_qn_beats/min_all_MEAN  \\\n",
+       "id     seg_id                                           \n",
+       "100095 0                                    86.918367   \n",
+       "100262 0                                   138.809524   \n",
+       "100765 0                                   103.750000   \n",
+       "101274 0                                    94.785714   \n",
+       "101757 0                                   100.700000   \n",
+       "102095 0                                   133.000000   \n",
+       "102365 0                                    85.209205   \n",
+       "102633 0                                   108.300000   \n",
+       "103002 0                                    71.666667   \n",
+       "103074 0                                    86.118519   \n",
+       "103194 0                                   102.444444   \n",
+       "103631 0                                    90.226415   \n",
+       "104958 0                                    92.000000   \n",
+       "105399 0                                    90.704918   \n",
+       "105501 0                                   101.937500   \n",
+       "105694 0                                    80.225989   \n",
+       "105764 0                                    75.000000   \n",
+       "106296 0                                   133.222222   \n",
+       "106909 0                                    81.838843   \n",
+       "107660 0                                    88.080000   \n",
+       "107880 0                                    89.000000   \n",
+       "107882 0                                    90.964286   \n",
+       "108015 0                                   100.500000   \n",
+       "108329 0                                   126.333333   \n",
+       "108462 0                                    89.600000   \n",
+       "108923 0                                    86.000000   \n",
+       "109185 0                                    91.157143   \n",
+       "109235 0                                    98.416667   \n",
+       "109451 0                                    67.550000   \n",
+       "109718 0                                    85.200000   \n",
+       "...                                               ...   \n",
+       "185910 0                                   106.234043   \n",
+       "186516 0                                    78.446154   \n",
+       "188038 0                                    69.416667   \n",
+       "188256 0                                   105.617857   \n",
+       "188576 0                                    83.402609   \n",
+       "188869 0                                    67.038462   \n",
+       "189081 0                                    74.555556   \n",
+       "189243 0                                   100.285714   \n",
+       "189332 0                                    87.578947   \n",
+       "190159 0                                   109.878049   \n",
+       "190462 0                                   107.333333   \n",
+       "190539 0                                    74.400000   \n",
+       "190707 0                                    82.315789   \n",
+       "191096 0                                    71.850000   \n",
+       "191517 0                                    83.214286   \n",
+       "191817 0                                    86.900000   \n",
+       "192123 0                                   125.060606   \n",
+       "194013 0                                    67.654639   \n",
+       "194111 0                                    41.090909   \n",
+       "194340 0                                   100.596774   \n",
+       "195160 0                                    78.971429   \n",
+       "195290 0                                    65.333333   \n",
+       "195962 0                                   105.659420   \n",
+       "197569 0                                    94.491228   \n",
+       "198161 0                                    91.477889   \n",
+       "198608 0                                    92.989899   \n",
+       "199004 0                                    74.000000   \n",
+       "199280 0                                    67.274510   \n",
+       "199286 0                                   107.637681   \n",
+       "199488 0                                   113.222222   \n",
+       "\n",
+       "               heart rate_known_qn_beats/min_all_STD  \\\n",
+       "id     seg_id                                          \n",
+       "100095 0                                   13.800249   \n",
+       "100262 0                                   10.766339   \n",
+       "100765 0                                    3.201562   \n",
+       "101274 0                                    5.294098   \n",
+       "101757 0                                    8.932463   \n",
+       "102095 0                                    9.396389   \n",
+       "102365 0                                    8.493087   \n",
+       "102633 0                                    8.300602   \n",
+       "103002 0                                    1.154701   \n",
+       "103074 0                                    7.869807   \n",
+       "103194 0                                    4.390647   \n",
+       "103631 0                                    9.348576   \n",
+       "104958 0                                    1.414214   \n",
+       "105399 0                                    6.960231   \n",
+       "105501 0                                    8.225722   \n",
+       "105694 0                                   12.666832   \n",
+       "105764 0                                    5.291503   \n",
+       "106296 0                                    7.408704   \n",
+       "106909 0                                   17.787870   \n",
+       "107660 0                                   13.910188   \n",
+       "107880 0                                   11.481210   \n",
+       "107882 0                                   20.411475   \n",
+       "108015 0                                    6.663332   \n",
+       "108329 0                                    9.646601   \n",
+       "108462 0                                    3.209361   \n",
+       "108923 0                                    2.828427   \n",
+       "109185 0                                   13.611228   \n",
+       "109235 0                                   10.312157   \n",
+       "109451 0                                    7.250953   \n",
+       "109718 0                                    9.420343   \n",
+       "...                                              ...   \n",
+       "185910 0                                    8.270463   \n",
+       "186516 0                                   13.608397   \n",
+       "188038 0                                   16.822395   \n",
+       "188256 0                                   12.959284   \n",
+       "188576 0                                   14.957631   \n",
+       "188869 0                                   13.075646   \n",
+       "189081 0                                    3.045944   \n",
+       "189243 0                                    3.860669   \n",
+       "189332 0                                    5.398722   \n",
+       "190159 0                                   13.082804   \n",
+       "190462 0                                   12.785408   \n",
+       "190539 0                                    6.651846   \n",
+       "190707 0                                   29.238583   \n",
+       "191096 0                                    6.588841   \n",
+       "191517 0                                    7.062126   \n",
+       "191817 0                                    7.812209   \n",
+       "192123 0                                   11.365901   \n",
+       "194013 0                                    5.309031   \n",
+       "194111 0                                    1.758098   \n",
+       "194340 0                                    8.501610   \n",
+       "195160 0                                    6.228425   \n",
+       "195290 0                                   13.613719   \n",
+       "195962 0                                   21.987221   \n",
+       "197569 0                                    8.398815   \n",
+       "198161 0                                   19.453641   \n",
+       "198608 0                                   13.632594   \n",
+       "199004 0                                    9.396389   \n",
+       "199280 0                                    6.798598   \n",
+       "199286 0                                   10.213732   \n",
+       "199488 0                                    7.612125   \n",
+       "\n",
+       "               heart rate_known_qn_beats/min_all_LAST  \\\n",
+       "id     seg_id                                           \n",
+       "100095 0                                         94.0   \n",
+       "100262 0                                        139.0   \n",
+       "100765 0                                        106.0   \n",
+       "101274 0                                         97.0   \n",
+       "101757 0                                         97.0   \n",
+       "102095 0                                        133.0   \n",
+       "102365 0                                         82.0   \n",
+       "102633 0                                         97.0   \n",
+       "103002 0                                         71.0   \n",
+       "103074 0                                         90.0   \n",
+       "103194 0                                        102.0   \n",
+       "103631 0                                         96.0   \n",
+       "104958 0                                         91.0   \n",
+       "105399 0                                         89.0   \n",
+       "105501 0                                        101.0   \n",
+       "105694 0                                         66.0   \n",
+       "105764 0                                         76.0   \n",
+       "106296 0                                        138.0   \n",
+       "106909 0                                         63.0   \n",
+       "107660 0                                         91.0   \n",
+       "107880 0                                         83.0   \n",
+       "107882 0                                         72.0   \n",
+       "108015 0                                         86.0   \n",
+       "108329 0                                        104.0   \n",
+       "108462 0                                         87.0   \n",
+       "108923 0                                         88.0   \n",
+       "109185 0                                        101.0   \n",
+       "109235 0                                        100.0   \n",
+       "109451 0                                         62.0   \n",
+       "109718 0                                         96.0   \n",
+       "...                                               ...   \n",
+       "185910 0                                        112.0   \n",
+       "186516 0                                         83.0   \n",
+       "188038 0                                         60.0   \n",
+       "188256 0                                         87.0   \n",
+       "188576 0                                        128.0   \n",
+       "188869 0                                         78.0   \n",
+       "189081 0                                         80.0   \n",
+       "189243 0                                         94.0   \n",
+       "189332 0                                         99.0   \n",
+       "190159 0                                         87.0   \n",
+       "190462 0                                        117.0   \n",
+       "190539 0                                         74.0   \n",
+       "190707 0                                        102.0   \n",
+       "191096 0                                         83.0   \n",
+       "191517 0                                         76.0   \n",
+       "191817 0                                         98.0   \n",
+       "192123 0                                        112.0   \n",
+       "194013 0                                         68.0   \n",
+       "194111 0                                         40.0   \n",
+       "194340 0                                        105.0   \n",
+       "195160 0                                         80.0   \n",
+       "195290 0                                         70.0   \n",
+       "195962 0                                         96.0   \n",
+       "197569 0                                         93.0   \n",
+       "198161 0                                         66.0   \n",
+       "198608 0                                         85.0   \n",
+       "199004 0                                         74.0   \n",
+       "199280 0                                         59.0   \n",
+       "199286 0                                        118.0   \n",
+       "199488 0                                        119.0   \n",
+       "\n",
+       "               heart rate_known_qn_beats/min_all_COUNT  \n",
+       "id     seg_id                                           \n",
+       "100095 0                                          98.0  \n",
+       "100262 0                                          42.0  \n",
+       "100765 0                                           4.0  \n",
+       "101274 0                                          14.0  \n",
+       "101757 0                                          10.0  \n",
+       "102095 0                                           1.0  \n",
+       "102365 0                                         239.0  \n",
+       "102633 0                                          10.0  \n",
+       "103002 0                                           3.0  \n",
+       "103074 0                                         270.0  \n",
+       "103194 0                                           9.0  \n",
+       "103631 0                                         106.0  \n",
+       "104958 0                                           2.0  \n",
+       "105399 0                                          61.0  \n",
+       "105501 0                                          16.0  \n",
+       "105694 0                                         177.0  \n",
+       "105764 0                                           4.0  \n",
+       "106296 0                                          18.0  \n",
+       "106909 0                                         968.0  \n",
+       "107660 0                                          25.0  \n",
+       "107880 0                                          45.0  \n",
+       "107882 0                                          28.0  \n",
+       "108015 0                                          16.0  \n",
+       "108329 0                                          42.0  \n",
+       "108462 0                                           5.0  \n",
+       "108923 0                                           2.0  \n",
+       "109185 0                                         280.0  \n",
+       "109235 0                                          24.0  \n",
+       "109451 0                                          20.0  \n",
+       "109718 0                                          15.0  \n",
+       "...                                                ...  \n",
+       "185910 0                                          47.0  \n",
+       "186516 0                                          65.0  \n",
+       "188038 0                                          84.0  \n",
+       "188256 0                                         280.0  \n",
+       "188576 0                                        1150.0  \n",
+       "188869 0                                          78.0  \n",
+       "189081 0                                           9.0  \n",
+       "189243 0                                           7.0  \n",
+       "189332 0                                          19.0  \n",
+       "190159 0                                          41.0  \n",
+       "190462 0                                           6.0  \n",
+       "190539 0                                          35.0  \n",
+       "190707 0                                          19.0  \n",
+       "191096 0                                          40.0  \n",
+       "191517 0                                          14.0  \n",
+       "191817 0                                          50.0  \n",
+       "192123 0                                          33.0  \n",
+       "194013 0                                         194.0  \n",
+       "194111 0                                          11.0  \n",
+       "194340 0                                          62.0  \n",
+       "195160 0                                          35.0  \n",
+       "195290 0                                           3.0  \n",
+       "195962 0                                         138.0  \n",
+       "197569 0                                          57.0  \n",
+       "198161 0                                         701.0  \n",
+       "198608 0                                         198.0  \n",
+       "199004 0                                           1.0  \n",
+       "199280 0                                         102.0  \n",
+       "199286 0                                         138.0  \n",
+       "199488 0                                           9.0  \n",
+       "\n",
+       "[233 rows x 4 columns]"
+      ]
+     },
+     "execution_count": 64,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "#mean, std, and last of all quantitative values\n",
+    "aggregator = features.segment_mean()\n",
+    "mean_component = features.simple_featurizer(\n",
+    "                    aggregator, #aggregator\n",
+    "                    transformers.fill_mean(), #how to fill empty features\n",
+    "                    [{\n",
+    "                        column_names.COMPONENT : component,\n",
+    "                        column_names.VAR_TYPE : variable_type.QUANTITATIVE\n",
+    "                    }], #what do we apply this to?\n",
+    "                    aggregator.name + '_' + component\n",
+    "                )\n",
+    "\n",
+    "aggregator = features.segment_std()\n",
+    "std_component = features.simple_featurizer(\n",
+    "                    aggregator, #aggregator\n",
+    "                    transformers.fill_mean(), #how to fill empty features\n",
+    "                    [{\n",
+    "                        column_names.COMPONENT : component,\n",
+    "                        column_names.VAR_TYPE : variable_type.QUANTITATIVE\n",
+    "                    }], #what do we apply this to?\n",
+    "                    aggregator.name + '_' + component\n",
+    "                )\n",
+    "\n",
+    "aggregator = features.segment_last()\n",
+    "last_component = features.simple_featurizer(\n",
+    "                    aggregator, #aggregator\n",
+    "                    transformers.fill_mean(), #how to fill empty features\n",
+    "                    [{\n",
+    "                        column_names.COMPONENT : component,\n",
+    "                        column_names.VAR_TYPE : variable_type.QUANTITATIVE\n",
+    "                    }], #what do we apply this to?\n",
+    "                    aggregator.name + '_' + component\n",
+    "                )\n",
+    "\n",
+    "#count of everything, including nominal\n",
+    "aggregator = features.segment_count()\n",
+    "count_component = features.simple_featurizer(\n",
+    "                    aggregator, #aggregator\n",
+    "                    transformers.fill_mean(), #how to fill empty features\n",
+    "                    [{column_names.COMPONENT : component}], #what do we apply this to?\n",
+    "                    aggregator.name + '_' + component\n",
+    "                )\n",
+    "\n",
+    "featurizer = features.pdFeatureUnion([\n",
+    "    (mean_component.name,mean_component),\n",
+    "    (std_component.name,std_component),\n",
+    "    (last_component.name,last_component),\n",
+    "    (count_component.name,count_component)\n",
+    "])\n",
+    "\n",
+    "featurizer.fit_transform(X=df_cleaned,y=labels)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Put it all together"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 65,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-22 10:32:03) Make DF for 1 components...\n",
+      "heart rate\n",
+      "(2017-06-22 10:32:03)>> HEART RATE: 1/1\n",
+      "(2017-06-22 10:32:03)>>>> Opening...\n",
+      "(2017-06-22 10:32:04)<<<< DONE (1.0s)\n",
+      "(2017-06-22 10:32:04)>>>> Join (70798, 6) to None\n",
+      "(2017-06-22 10:32:04)<<<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:04)<< DONE (1.0s)\n",
+      "(2017-06-22 10:32:04) DONE (1.0s)\n",
+      "(2017-06-22 10:32:04) Segment df (70798, 6)\n",
+      "(2017-06-22 10:32:04)>> Get Segments\n",
+      "(2017-06-22 10:32:04)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:04)>> Apply Segments\n",
+      "(2017-06-22 10:32:04)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:04) DONE (0.0s)\n",
+      "(2017-06-22 10:32:04) Drop Small columns, threshold = 50 | (70798, 6)\n",
+      "(2017-06-22 10:32:05) DONE (1.0s)\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "(2017-06-22 10:32:05) FIT Combine like columns (70798, 2)\n",
+      "(2017-06-22 10:32:05)>> ('heart rate', 'known', 'qn', 'beats/min')\n",
+      "(2017-06-22 10:32:05)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:05) DONE (0.0s)\n",
+      "(2017-06-22 10:32:05) TRANSFORM Combine like columns (70798, 2)\n",
+      "(2017-06-22 10:32:05)>> ('heart rate', 'known', 'qn', 'beats/min')\n",
+      "(2017-06-22 10:32:06)<< DONE (1.0s)\n",
+      "(2017-06-22 10:32:06) DONE (1.0s)\n",
+      "(2017-06-22 10:32:06) FIT features...\n",
+      "(2017-06-22 10:32:06)>> MEAN_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 10:32:06)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:06)>> STD_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 10:32:06)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:06)>> LAST_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 10:32:07)<< DONE (1.0s)\n",
+      "(2017-06-22 10:32:07)>> COUNT_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 10:32:07)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:07) DONE (1.0s)\n",
+      "(2017-06-22 10:32:07) Start Feature Union on DF (70798, 1)\n",
+      "(2017-06-22 10:32:07)>> MEAN_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 10:32:07)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:07)>> STD_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 10:32:07)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:07)>> LAST_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 10:32:07)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:07)>> COUNT_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 10:32:07)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:07) DONE (0.0s)\n"
+     ]
+    }
+   ],
+   "source": [
+    "feature_pipeline = Pipeline ([\n",
+    "        ('data_loader',loader),\n",
+    "        ('cleaners',cleaner_pipeline()),\n",
+    "        ('featurizer',featurizer)\n",
+    "    ])\n",
+    "\n",
+    "df_features = feature_pipeline.fit_transform(labels)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 66,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th>heart rate_known_qn_beats/min_all_MEAN</th>\n",
+       "      <th>heart rate_known_qn_beats/min_all_STD</th>\n",
+       "      <th>heart rate_known_qn_beats/min_all_LAST</th>\n",
+       "      <th>heart rate_known_qn_beats/min_all_COUNT</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>id</th>\n",
+       "      <th>seg_id</th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>100095</th>\n",
+       "      <th>0</th>\n",
+       "      <td>86.918367</td>\n",
+       "      <td>13.800249</td>\n",
+       "      <td>94.0</td>\n",
+       "      <td>98.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>100262</th>\n",
+       "      <th>0</th>\n",
+       "      <td>138.809524</td>\n",
+       "      <td>10.766339</td>\n",
+       "      <td>139.0</td>\n",
+       "      <td>42.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>100765</th>\n",
+       "      <th>0</th>\n",
+       "      <td>103.750000</td>\n",
+       "      <td>3.201562</td>\n",
+       "      <td>106.0</td>\n",
+       "      <td>4.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>101274</th>\n",
+       "      <th>0</th>\n",
+       "      <td>94.785714</td>\n",
+       "      <td>5.294098</td>\n",
+       "      <td>97.0</td>\n",
+       "      <td>14.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>101757</th>\n",
+       "      <th>0</th>\n",
+       "      <td>100.700000</td>\n",
+       "      <td>8.932463</td>\n",
+       "      <td>97.0</td>\n",
+       "      <td>10.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>102095</th>\n",
+       "      <th>0</th>\n",
+       "      <td>133.000000</td>\n",
+       "      <td>9.396389</td>\n",
+       "      <td>133.0</td>\n",
+       "      <td>1.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>102365</th>\n",
+       "      <th>0</th>\n",
+       "      <td>85.209205</td>\n",
+       "      <td>8.493087</td>\n",
+       "      <td>82.0</td>\n",
+       "      <td>239.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>102633</th>\n",
+       "      <th>0</th>\n",
+       "      <td>108.300000</td>\n",
+       "      <td>8.300602</td>\n",
+       "      <td>97.0</td>\n",
+       "      <td>10.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>103002</th>\n",
+       "      <th>0</th>\n",
+       "      <td>71.666667</td>\n",
+       "      <td>1.154701</td>\n",
+       "      <td>71.0</td>\n",
+       "      <td>3.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>103074</th>\n",
+       "      <th>0</th>\n",
+       "      <td>86.118519</td>\n",
+       "      <td>7.869807</td>\n",
+       "      <td>90.0</td>\n",
+       "      <td>270.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>103194</th>\n",
+       "      <th>0</th>\n",
+       "      <td>102.444444</td>\n",
+       "      <td>4.390647</td>\n",
+       "      <td>102.0</td>\n",
+       "      <td>9.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>103631</th>\n",
+       "      <th>0</th>\n",
+       "      <td>90.226415</td>\n",
+       "      <td>9.348576</td>\n",
+       "      <td>96.0</td>\n",
+       "      <td>106.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>104958</th>\n",
+       "      <th>0</th>\n",
+       "      <td>92.000000</td>\n",
+       "      <td>1.414214</td>\n",
+       "      <td>91.0</td>\n",
+       "      <td>2.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>105399</th>\n",
+       "      <th>0</th>\n",
+       "      <td>90.704918</td>\n",
+       "      <td>6.960231</td>\n",
+       "      <td>89.0</td>\n",
+       "      <td>61.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>105501</th>\n",
+       "      <th>0</th>\n",
+       "      <td>101.937500</td>\n",
+       "      <td>8.225722</td>\n",
+       "      <td>101.0</td>\n",
+       "      <td>16.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>105694</th>\n",
+       "      <th>0</th>\n",
+       "      <td>80.225989</td>\n",
+       "      <td>12.666832</td>\n",
+       "      <td>66.0</td>\n",
+       "      <td>177.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>105764</th>\n",
+       "      <th>0</th>\n",
+       "      <td>75.000000</td>\n",
+       "      <td>5.291503</td>\n",
+       "      <td>76.0</td>\n",
+       "      <td>4.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>106296</th>\n",
+       "      <th>0</th>\n",
+       "      <td>133.222222</td>\n",
+       "      <td>7.408704</td>\n",
+       "      <td>138.0</td>\n",
+       "      <td>18.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>106909</th>\n",
+       "      <th>0</th>\n",
+       "      <td>81.838843</td>\n",
+       "      <td>17.787870</td>\n",
+       "      <td>63.0</td>\n",
+       "      <td>968.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>107660</th>\n",
+       "      <th>0</th>\n",
+       "      <td>88.080000</td>\n",
+       "      <td>13.910188</td>\n",
+       "      <td>91.0</td>\n",
+       "      <td>25.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>107880</th>\n",
+       "      <th>0</th>\n",
+       "      <td>89.000000</td>\n",
+       "      <td>11.481210</td>\n",
+       "      <td>83.0</td>\n",
+       "      <td>45.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>107882</th>\n",
+       "      <th>0</th>\n",
+       "      <td>90.964286</td>\n",
+       "      <td>20.411475</td>\n",
+       "      <td>72.0</td>\n",
+       "      <td>28.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>108015</th>\n",
+       "      <th>0</th>\n",
+       "      <td>100.500000</td>\n",
+       "      <td>6.663332</td>\n",
+       "      <td>86.0</td>\n",
+       "      <td>16.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>108329</th>\n",
+       "      <th>0</th>\n",
+       "      <td>126.333333</td>\n",
+       "      <td>9.646601</td>\n",
+       "      <td>104.0</td>\n",
+       "      <td>42.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>108462</th>\n",
+       "      <th>0</th>\n",
+       "      <td>89.600000</td>\n",
+       "      <td>3.209361</td>\n",
+       "      <td>87.0</td>\n",
+       "      <td>5.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>108923</th>\n",
+       "      <th>0</th>\n",
+       "      <td>86.000000</td>\n",
+       "      <td>2.828427</td>\n",
+       "      <td>88.0</td>\n",
+       "      <td>2.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>109185</th>\n",
+       "      <th>0</th>\n",
+       "      <td>91.157143</td>\n",
+       "      <td>13.611228</td>\n",
+       "      <td>101.0</td>\n",
+       "      <td>280.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>109235</th>\n",
+       "      <th>0</th>\n",
+       "      <td>98.416667</td>\n",
+       "      <td>10.312157</td>\n",
+       "      <td>100.0</td>\n",
+       "      <td>24.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>109451</th>\n",
+       "      <th>0</th>\n",
+       "      <td>67.550000</td>\n",
+       "      <td>7.250953</td>\n",
+       "      <td>62.0</td>\n",
+       "      <td>20.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>109718</th>\n",
+       "      <th>0</th>\n",
+       "      <td>85.200000</td>\n",
+       "      <td>9.420343</td>\n",
+       "      <td>96.0</td>\n",
+       "      <td>15.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>185910</th>\n",
+       "      <th>0</th>\n",
+       "      <td>106.234043</td>\n",
+       "      <td>8.270463</td>\n",
+       "      <td>112.0</td>\n",
+       "      <td>47.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>186516</th>\n",
+       "      <th>0</th>\n",
+       "      <td>78.446154</td>\n",
+       "      <td>13.608397</td>\n",
+       "      <td>83.0</td>\n",
+       "      <td>65.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>188038</th>\n",
+       "      <th>0</th>\n",
+       "      <td>69.416667</td>\n",
+       "      <td>16.822395</td>\n",
+       "      <td>60.0</td>\n",
+       "      <td>84.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>188256</th>\n",
+       "      <th>0</th>\n",
+       "      <td>105.617857</td>\n",
+       "      <td>12.959284</td>\n",
+       "      <td>87.0</td>\n",
+       "      <td>280.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>188576</th>\n",
+       "      <th>0</th>\n",
+       "      <td>83.402609</td>\n",
+       "      <td>14.957631</td>\n",
+       "      <td>128.0</td>\n",
+       "      <td>1150.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>188869</th>\n",
+       "      <th>0</th>\n",
+       "      <td>67.038462</td>\n",
+       "      <td>13.075646</td>\n",
+       "      <td>78.0</td>\n",
+       "      <td>78.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>189081</th>\n",
+       "      <th>0</th>\n",
+       "      <td>74.555556</td>\n",
+       "      <td>3.045944</td>\n",
+       "      <td>80.0</td>\n",
+       "      <td>9.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>189243</th>\n",
+       "      <th>0</th>\n",
+       "      <td>100.285714</td>\n",
+       "      <td>3.860669</td>\n",
+       "      <td>94.0</td>\n",
+       "      <td>7.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>189332</th>\n",
+       "      <th>0</th>\n",
+       "      <td>87.578947</td>\n",
+       "      <td>5.398722</td>\n",
+       "      <td>99.0</td>\n",
+       "      <td>19.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>190159</th>\n",
+       "      <th>0</th>\n",
+       "      <td>109.878049</td>\n",
+       "      <td>13.082804</td>\n",
+       "      <td>87.0</td>\n",
+       "      <td>41.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>190462</th>\n",
+       "      <th>0</th>\n",
+       "      <td>107.333333</td>\n",
+       "      <td>12.785408</td>\n",
+       "      <td>117.0</td>\n",
+       "      <td>6.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>190539</th>\n",
+       "      <th>0</th>\n",
+       "      <td>74.400000</td>\n",
+       "      <td>6.651846</td>\n",
+       "      <td>74.0</td>\n",
+       "      <td>35.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>190707</th>\n",
+       "      <th>0</th>\n",
+       "      <td>82.315789</td>\n",
+       "      <td>29.238583</td>\n",
+       "      <td>102.0</td>\n",
+       "      <td>19.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>191096</th>\n",
+       "      <th>0</th>\n",
+       "      <td>71.850000</td>\n",
+       "      <td>6.588841</td>\n",
+       "      <td>83.0</td>\n",
+       "      <td>40.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>191517</th>\n",
+       "      <th>0</th>\n",
+       "      <td>83.214286</td>\n",
+       "      <td>7.062126</td>\n",
+       "      <td>76.0</td>\n",
+       "      <td>14.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>191817</th>\n",
+       "      <th>0</th>\n",
+       "      <td>86.900000</td>\n",
+       "      <td>7.812209</td>\n",
+       "      <td>98.0</td>\n",
+       "      <td>50.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>192123</th>\n",
+       "      <th>0</th>\n",
+       "      <td>125.060606</td>\n",
+       "      <td>11.365901</td>\n",
+       "      <td>112.0</td>\n",
+       "      <td>33.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>194013</th>\n",
+       "      <th>0</th>\n",
+       "      <td>67.654639</td>\n",
+       "      <td>5.309031</td>\n",
+       "      <td>68.0</td>\n",
+       "      <td>194.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>194111</th>\n",
+       "      <th>0</th>\n",
+       "      <td>41.090909</td>\n",
+       "      <td>1.758098</td>\n",
+       "      <td>40.0</td>\n",
+       "      <td>11.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>194340</th>\n",
+       "      <th>0</th>\n",
+       "      <td>100.596774</td>\n",
+       "      <td>8.501610</td>\n",
+       "      <td>105.0</td>\n",
+       "      <td>62.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>195160</th>\n",
+       "      <th>0</th>\n",
+       "      <td>78.971429</td>\n",
+       "      <td>6.228425</td>\n",
+       "      <td>80.0</td>\n",
+       "      <td>35.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>195290</th>\n",
+       "      <th>0</th>\n",
+       "      <td>65.333333</td>\n",
+       "      <td>13.613719</td>\n",
+       "      <td>70.0</td>\n",
+       "      <td>3.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>195962</th>\n",
+       "      <th>0</th>\n",
+       "      <td>105.659420</td>\n",
+       "      <td>21.987221</td>\n",
+       "      <td>96.0</td>\n",
+       "      <td>138.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>197569</th>\n",
+       "      <th>0</th>\n",
+       "      <td>94.491228</td>\n",
+       "      <td>8.398815</td>\n",
+       "      <td>93.0</td>\n",
+       "      <td>57.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>198161</th>\n",
+       "      <th>0</th>\n",
+       "      <td>91.477889</td>\n",
+       "      <td>19.453641</td>\n",
+       "      <td>66.0</td>\n",
+       "      <td>701.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>198608</th>\n",
+       "      <th>0</th>\n",
+       "      <td>92.989899</td>\n",
+       "      <td>13.632594</td>\n",
+       "      <td>85.0</td>\n",
+       "      <td>198.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>199004</th>\n",
+       "      <th>0</th>\n",
+       "      <td>74.000000</td>\n",
+       "      <td>9.396389</td>\n",
+       "      <td>74.0</td>\n",
+       "      <td>1.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>199280</th>\n",
+       "      <th>0</th>\n",
+       "      <td>67.274510</td>\n",
+       "      <td>6.798598</td>\n",
+       "      <td>59.0</td>\n",
+       "      <td>102.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>199286</th>\n",
+       "      <th>0</th>\n",
+       "      <td>107.637681</td>\n",
+       "      <td>10.213732</td>\n",
+       "      <td>118.0</td>\n",
+       "      <td>138.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>199488</th>\n",
+       "      <th>0</th>\n",
+       "      <td>113.222222</td>\n",
+       "      <td>7.612125</td>\n",
+       "      <td>119.0</td>\n",
+       "      <td>9.0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>233 rows × 4 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "               heart rate_known_qn_beats/min_all_MEAN  \\\n",
+       "id     seg_id                                           \n",
+       "100095 0                                    86.918367   \n",
+       "100262 0                                   138.809524   \n",
+       "100765 0                                   103.750000   \n",
+       "101274 0                                    94.785714   \n",
+       "101757 0                                   100.700000   \n",
+       "102095 0                                   133.000000   \n",
+       "102365 0                                    85.209205   \n",
+       "102633 0                                   108.300000   \n",
+       "103002 0                                    71.666667   \n",
+       "103074 0                                    86.118519   \n",
+       "103194 0                                   102.444444   \n",
+       "103631 0                                    90.226415   \n",
+       "104958 0                                    92.000000   \n",
+       "105399 0                                    90.704918   \n",
+       "105501 0                                   101.937500   \n",
+       "105694 0                                    80.225989   \n",
+       "105764 0                                    75.000000   \n",
+       "106296 0                                   133.222222   \n",
+       "106909 0                                    81.838843   \n",
+       "107660 0                                    88.080000   \n",
+       "107880 0                                    89.000000   \n",
+       "107882 0                                    90.964286   \n",
+       "108015 0                                   100.500000   \n",
+       "108329 0                                   126.333333   \n",
+       "108462 0                                    89.600000   \n",
+       "108923 0                                    86.000000   \n",
+       "109185 0                                    91.157143   \n",
+       "109235 0                                    98.416667   \n",
+       "109451 0                                    67.550000   \n",
+       "109718 0                                    85.200000   \n",
+       "...                                               ...   \n",
+       "185910 0                                   106.234043   \n",
+       "186516 0                                    78.446154   \n",
+       "188038 0                                    69.416667   \n",
+       "188256 0                                   105.617857   \n",
+       "188576 0                                    83.402609   \n",
+       "188869 0                                    67.038462   \n",
+       "189081 0                                    74.555556   \n",
+       "189243 0                                   100.285714   \n",
+       "189332 0                                    87.578947   \n",
+       "190159 0                                   109.878049   \n",
+       "190462 0                                   107.333333   \n",
+       "190539 0                                    74.400000   \n",
+       "190707 0                                    82.315789   \n",
+       "191096 0                                    71.850000   \n",
+       "191517 0                                    83.214286   \n",
+       "191817 0                                    86.900000   \n",
+       "192123 0                                   125.060606   \n",
+       "194013 0                                    67.654639   \n",
+       "194111 0                                    41.090909   \n",
+       "194340 0                                   100.596774   \n",
+       "195160 0                                    78.971429   \n",
+       "195290 0                                    65.333333   \n",
+       "195962 0                                   105.659420   \n",
+       "197569 0                                    94.491228   \n",
+       "198161 0                                    91.477889   \n",
+       "198608 0                                    92.989899   \n",
+       "199004 0                                    74.000000   \n",
+       "199280 0                                    67.274510   \n",
+       "199286 0                                   107.637681   \n",
+       "199488 0                                   113.222222   \n",
+       "\n",
+       "               heart rate_known_qn_beats/min_all_STD  \\\n",
+       "id     seg_id                                          \n",
+       "100095 0                                   13.800249   \n",
+       "100262 0                                   10.766339   \n",
+       "100765 0                                    3.201562   \n",
+       "101274 0                                    5.294098   \n",
+       "101757 0                                    8.932463   \n",
+       "102095 0                                    9.396389   \n",
+       "102365 0                                    8.493087   \n",
+       "102633 0                                    8.300602   \n",
+       "103002 0                                    1.154701   \n",
+       "103074 0                                    7.869807   \n",
+       "103194 0                                    4.390647   \n",
+       "103631 0                                    9.348576   \n",
+       "104958 0                                    1.414214   \n",
+       "105399 0                                    6.960231   \n",
+       "105501 0                                    8.225722   \n",
+       "105694 0                                   12.666832   \n",
+       "105764 0                                    5.291503   \n",
+       "106296 0                                    7.408704   \n",
+       "106909 0                                   17.787870   \n",
+       "107660 0                                   13.910188   \n",
+       "107880 0                                   11.481210   \n",
+       "107882 0                                   20.411475   \n",
+       "108015 0                                    6.663332   \n",
+       "108329 0                                    9.646601   \n",
+       "108462 0                                    3.209361   \n",
+       "108923 0                                    2.828427   \n",
+       "109185 0                                   13.611228   \n",
+       "109235 0                                   10.312157   \n",
+       "109451 0                                    7.250953   \n",
+       "109718 0                                    9.420343   \n",
+       "...                                              ...   \n",
+       "185910 0                                    8.270463   \n",
+       "186516 0                                   13.608397   \n",
+       "188038 0                                   16.822395   \n",
+       "188256 0                                   12.959284   \n",
+       "188576 0                                   14.957631   \n",
+       "188869 0                                   13.075646   \n",
+       "189081 0                                    3.045944   \n",
+       "189243 0                                    3.860669   \n",
+       "189332 0                                    5.398722   \n",
+       "190159 0                                   13.082804   \n",
+       "190462 0                                   12.785408   \n",
+       "190539 0                                    6.651846   \n",
+       "190707 0                                   29.238583   \n",
+       "191096 0                                    6.588841   \n",
+       "191517 0                                    7.062126   \n",
+       "191817 0                                    7.812209   \n",
+       "192123 0                                   11.365901   \n",
+       "194013 0                                    5.309031   \n",
+       "194111 0                                    1.758098   \n",
+       "194340 0                                    8.501610   \n",
+       "195160 0                                    6.228425   \n",
+       "195290 0                                   13.613719   \n",
+       "195962 0                                   21.987221   \n",
+       "197569 0                                    8.398815   \n",
+       "198161 0                                   19.453641   \n",
+       "198608 0                                   13.632594   \n",
+       "199004 0                                    9.396389   \n",
+       "199280 0                                    6.798598   \n",
+       "199286 0                                   10.213732   \n",
+       "199488 0                                    7.612125   \n",
+       "\n",
+       "               heart rate_known_qn_beats/min_all_LAST  \\\n",
+       "id     seg_id                                           \n",
+       "100095 0                                         94.0   \n",
+       "100262 0                                        139.0   \n",
+       "100765 0                                        106.0   \n",
+       "101274 0                                         97.0   \n",
+       "101757 0                                         97.0   \n",
+       "102095 0                                        133.0   \n",
+       "102365 0                                         82.0   \n",
+       "102633 0                                         97.0   \n",
+       "103002 0                                         71.0   \n",
+       "103074 0                                         90.0   \n",
+       "103194 0                                        102.0   \n",
+       "103631 0                                         96.0   \n",
+       "104958 0                                         91.0   \n",
+       "105399 0                                         89.0   \n",
+       "105501 0                                        101.0   \n",
+       "105694 0                                         66.0   \n",
+       "105764 0                                         76.0   \n",
+       "106296 0                                        138.0   \n",
+       "106909 0                                         63.0   \n",
+       "107660 0                                         91.0   \n",
+       "107880 0                                         83.0   \n",
+       "107882 0                                         72.0   \n",
+       "108015 0                                         86.0   \n",
+       "108329 0                                        104.0   \n",
+       "108462 0                                         87.0   \n",
+       "108923 0                                         88.0   \n",
+       "109185 0                                        101.0   \n",
+       "109235 0                                        100.0   \n",
+       "109451 0                                         62.0   \n",
+       "109718 0                                         96.0   \n",
+       "...                                               ...   \n",
+       "185910 0                                        112.0   \n",
+       "186516 0                                         83.0   \n",
+       "188038 0                                         60.0   \n",
+       "188256 0                                         87.0   \n",
+       "188576 0                                        128.0   \n",
+       "188869 0                                         78.0   \n",
+       "189081 0                                         80.0   \n",
+       "189243 0                                         94.0   \n",
+       "189332 0                                         99.0   \n",
+       "190159 0                                         87.0   \n",
+       "190462 0                                        117.0   \n",
+       "190539 0                                         74.0   \n",
+       "190707 0                                        102.0   \n",
+       "191096 0                                         83.0   \n",
+       "191517 0                                         76.0   \n",
+       "191817 0                                         98.0   \n",
+       "192123 0                                        112.0   \n",
+       "194013 0                                         68.0   \n",
+       "194111 0                                         40.0   \n",
+       "194340 0                                        105.0   \n",
+       "195160 0                                         80.0   \n",
+       "195290 0                                         70.0   \n",
+       "195962 0                                         96.0   \n",
+       "197569 0                                         93.0   \n",
+       "198161 0                                         66.0   \n",
+       "198608 0                                         85.0   \n",
+       "199004 0                                         74.0   \n",
+       "199280 0                                         59.0   \n",
+       "199286 0                                        118.0   \n",
+       "199488 0                                        119.0   \n",
+       "\n",
+       "               heart rate_known_qn_beats/min_all_COUNT  \n",
+       "id     seg_id                                           \n",
+       "100095 0                                          98.0  \n",
+       "100262 0                                          42.0  \n",
+       "100765 0                                           4.0  \n",
+       "101274 0                                          14.0  \n",
+       "101757 0                                          10.0  \n",
+       "102095 0                                           1.0  \n",
+       "102365 0                                         239.0  \n",
+       "102633 0                                          10.0  \n",
+       "103002 0                                           3.0  \n",
+       "103074 0                                         270.0  \n",
+       "103194 0                                           9.0  \n",
+       "103631 0                                         106.0  \n",
+       "104958 0                                           2.0  \n",
+       "105399 0                                          61.0  \n",
+       "105501 0                                          16.0  \n",
+       "105694 0                                         177.0  \n",
+       "105764 0                                           4.0  \n",
+       "106296 0                                          18.0  \n",
+       "106909 0                                         968.0  \n",
+       "107660 0                                          25.0  \n",
+       "107880 0                                          45.0  \n",
+       "107882 0                                          28.0  \n",
+       "108015 0                                          16.0  \n",
+       "108329 0                                          42.0  \n",
+       "108462 0                                           5.0  \n",
+       "108923 0                                           2.0  \n",
+       "109185 0                                         280.0  \n",
+       "109235 0                                          24.0  \n",
+       "109451 0                                          20.0  \n",
+       "109718 0                                          15.0  \n",
+       "...                                                ...  \n",
+       "185910 0                                          47.0  \n",
+       "186516 0                                          65.0  \n",
+       "188038 0                                          84.0  \n",
+       "188256 0                                         280.0  \n",
+       "188576 0                                        1150.0  \n",
+       "188869 0                                          78.0  \n",
+       "189081 0                                           9.0  \n",
+       "189243 0                                           7.0  \n",
+       "189332 0                                          19.0  \n",
+       "190159 0                                          41.0  \n",
+       "190462 0                                           6.0  \n",
+       "190539 0                                          35.0  \n",
+       "190707 0                                          19.0  \n",
+       "191096 0                                          40.0  \n",
+       "191517 0                                          14.0  \n",
+       "191817 0                                          50.0  \n",
+       "192123 0                                          33.0  \n",
+       "194013 0                                         194.0  \n",
+       "194111 0                                          11.0  \n",
+       "194340 0                                          62.0  \n",
+       "195160 0                                          35.0  \n",
+       "195290 0                                           3.0  \n",
+       "195962 0                                         138.0  \n",
+       "197569 0                                          57.0  \n",
+       "198161 0                                         701.0  \n",
+       "198608 0                                         198.0  \n",
+       "199004 0                                           1.0  \n",
+       "199280 0                                         102.0  \n",
+       "199286 0                                         138.0  \n",
+       "199488 0                                           9.0  \n",
+       "\n",
+       "[233 rows x 4 columns]"
+      ]
+     },
+     "execution_count": 66,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df_features"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 68,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "component   status  variable_type  units      description\n",
+       "heart rate  known   qn             beats/min  all            9.396389\n",
+       "dtype: float64"
+      ]
+     },
+     "execution_count": 68,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "feature_pipeline.get_params()['featurizer'].get_params()['STD_heart rate'].get_params()['feature_fillna'].means"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 69,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-22 10:32:30) Make DF for 1 components...\n",
+      "lactate\n",
+      "(2017-06-22 10:32:30)>> LACTATE: 1/1\n",
+      "(2017-06-22 10:32:30)>>>> Opening...\n",
+      "(2017-06-22 10:32:31)<<<< DONE (1.0s)\n",
+      "(2017-06-22 10:32:31)>>>> Join (187, 63) to None\n",
+      "(2017-06-22 10:32:31)<<<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:31)<< DONE (1.0s)\n",
+      "(2017-06-22 10:32:31) DONE (1.0s)\n",
+      "51\n",
+      "51\n",
+      "51\n",
+      "(2017-06-22 10:32:31) TRANSFORM Combine like columns (187, 63)\n",
+      "(2017-06-22 10:32:31)>> ('lactate', 'unknown', 'qn', 'no_units')\n",
+      "(2017-06-22 10:32:31)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:31)>> ('lactate', 'known', 'qn', 'mmol/L')\n",
+      "(2017-06-22 10:32:31)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:31) DONE (0.0s)\n",
+      "30\n",
+      "30\n",
+      "30\n",
+      "30\n",
+      "(2017-06-22 10:32:31) Make DF for 1 components...\n",
+      "heart rate\n",
+      "(2017-06-22 10:32:31)>> HEART RATE: 1/1\n",
+      "(2017-06-22 10:32:31)>>>> Opening...\n",
+      "(2017-06-22 10:32:32)<<<< DONE (1.0s)\n",
+      "(2017-06-22 10:32:32)>>>> Join (7191, 6) to None\n",
+      "(2017-06-22 10:32:32)<<<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:32)<< DONE (1.0s)\n",
+      "(2017-06-22 10:32:32) DONE (1.0s)\n",
+      "(2017-06-22 10:32:32) Segment df (7191, 6)\n",
+      "(2017-06-22 10:32:32)>> Get Segments\n",
+      "(2017-06-22 10:32:32)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:32)>> Apply Segments\n",
+      "(2017-06-22 10:32:32)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:32) DONE (0.0s)\n",
+      "(2017-06-22 10:32:32) Drop Small columns, threshold = 50 | (7191, 6)\n",
+      "(2017-06-22 10:32:32) DONE (0.0s)\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "(2017-06-22 10:32:32) TRANSFORM Combine like columns (7191, 2)\n",
+      "(2017-06-22 10:32:32)>> ('heart rate', 'known', 'qn', 'beats/min')\n",
+      "(2017-06-22 10:32:32)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:32) DONE (0.0s)\n",
+      "(2017-06-22 10:32:32) Start Feature Union on DF (7191, 1)\n",
+      "(2017-06-22 10:32:32)>> MEAN_heart rate\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 10:32:32)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:32)>> STD_heart rate\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 10:32:32)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:32)>> LAST_heart rate\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 10:32:32)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:32)>> COUNT_heart rate\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 10:32:32)<< DONE (0.0s)\n",
+      "(2017-06-22 10:32:32) DONE (0.0s)\n"
+     ]
+    }
+   ],
+   "source": [
+    "test_labels = label_pipeline.transform(X=test_ids)\n",
+    "test_features = feature_pipeline.transform(test_labels)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 70,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(233, 4) (328, 1)\n",
+      "(25, 4) (30, 1)\n"
+     ]
+    }
+   ],
+   "source": [
+    "print df_features.shape, labels.shape\n",
+    "print test_features.shape, test_labels.shape"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Now, we will use this framework to define a more efficient helper method"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 48,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [],
+   "source": [
+    "from sklearn.pipeline import FeatureUnion\n",
+    "def build_features(component,var_type,is_intervention):\n",
+    "    \n",
+    "    count_aggregator = features.segment_count()\n",
+    "    tag = count_aggregator.name + '_' + component\n",
+    "    count_featurizer = features.simple_featurizer(\n",
+    "                count_aggregator, #aggregator\n",
+    "                transformers.fill_zero(), #how to fill empty features\n",
+    "                [{column_names.COMPONENT : component}], #what do we apply this to?\n",
+    "                tag\n",
+    "            )\n",
+    "    \n",
+    "    feature_list = [count_featurizer]\n",
+    "    \n",
+    "    #If this is nominal data, we are done.\n",
+    "    if var_type == variable_type.NOMINAL:\n",
+    "        return feature_list\n",
+    "    \n",
+    "    #Fill interventions with 0, observations with mean\n",
+    "    if is_intervention: \n",
+    "        fill_method=transformers.fill_zero\n",
+    "    else: \n",
+    "        fill_method=transformers.fill_mean\n",
+    "    \n",
+    "    #we will use mean, std, and last to describe each segment\n",
+    "    aggregators = [\n",
+    "        features.segment_mean,\n",
+    "        features.segment_std,\n",
+    "        features.segment_last\n",
+    "    ]\n",
+    "    \n",
+    "    #this will only be applied to this component and variable type\n",
+    "    slice_dict = {\n",
+    "        column_names.COMPONENT : component,\n",
+    "        column_names.VAR_TYPE : variable_type\n",
+    "    }\n",
+    "    \n",
+    "    #create featurizers\n",
+    "    for aggregator in aggregators:\n",
+    "        agg_instace = aggregator()\n",
+    "        tag = agg_instace.name + '_' + component\n",
+    "        featurizer = features.simple_featurizer(\n",
+    "            agg_instace, #aggregator\n",
+    "            fill_method(), #how to fill empty features\n",
+    "            [slice_dict], #what do we apply this to?\n",
+    "            tag\n",
+    "        )\n",
+    "        feature_list.append(featurizer)\n",
+    "\n",
+    "    return feature_list"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 49,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "{'COUNT_lactate': simple_featurizer(aggregator=None, fillna=None, name='COUNT_lactate',\n",
+       "          slice_dict_list=None),\n",
+       " 'COUNT_lactate__aggregator': None,\n",
+       " 'COUNT_lactate__feature_aggregator': segment_count(),\n",
+       " 'COUNT_lactate__feature_fillna': fill_zero(),\n",
+       " 'COUNT_lactate__fillna': None,\n",
+       " 'COUNT_lactate__flatten_columns': flatten_index(axis=1, suffix='COUNT'),\n",
+       " 'COUNT_lactate__flatten_columns__axis': 1,\n",
+       " 'COUNT_lactate__flatten_columns__suffix': 'COUNT',\n",
+       " 'COUNT_lactate__name': 'COUNT_lactate',\n",
+       " 'COUNT_lactate__preprocessor': multislice_filter(slice_dict_list=[{'component': 'lactate'}]),\n",
+       " 'COUNT_lactate__preprocessor__slice_dict_list': [{'component': 'lactate'}],\n",
+       " 'COUNT_lactate__slice_dict_list': None,\n",
+       " 'LAST_lactate': simple_featurizer(aggregator=None, fillna=None, name='LAST_lactate',\n",
+       "          slice_dict_list=None),\n",
+       " 'LAST_lactate__aggregator': None,\n",
+       " 'LAST_lactate__feature_aggregator': segment_last(),\n",
+       " 'LAST_lactate__feature_fillna': fill_mean(),\n",
+       " 'LAST_lactate__fillna': None,\n",
+       " 'LAST_lactate__flatten_columns': flatten_index(axis=1, suffix='LAST'),\n",
+       " 'LAST_lactate__flatten_columns__axis': 1,\n",
+       " 'LAST_lactate__flatten_columns__suffix': 'LAST',\n",
+       " 'LAST_lactate__name': 'LAST_lactate',\n",
+       " 'LAST_lactate__preprocessor': multislice_filter(slice_dict_list=[{'variable_type': <class 'constants.variable_type'>, 'component': 'lactate'}]),\n",
+       " 'LAST_lactate__preprocessor__slice_dict_list': [{'component': 'lactate',\n",
+       "   'variable_type': constants.variable_type}],\n",
+       " 'LAST_lactate__slice_dict_list': None,\n",
+       " 'MEAN_lactate': simple_featurizer(aggregator=None, fillna=None, name='MEAN_lactate',\n",
+       "          slice_dict_list=None),\n",
+       " 'MEAN_lactate__aggregator': None,\n",
+       " 'MEAN_lactate__feature_aggregator': segment_mean(),\n",
+       " 'MEAN_lactate__feature_fillna': fill_mean(),\n",
+       " 'MEAN_lactate__fillna': None,\n",
+       " 'MEAN_lactate__flatten_columns': flatten_index(axis=1, suffix='MEAN'),\n",
+       " 'MEAN_lactate__flatten_columns__axis': 1,\n",
+       " 'MEAN_lactate__flatten_columns__suffix': 'MEAN',\n",
+       " 'MEAN_lactate__name': 'MEAN_lactate',\n",
+       " 'MEAN_lactate__preprocessor': multislice_filter(slice_dict_list=[{'variable_type': <class 'constants.variable_type'>, 'component': 'lactate'}]),\n",
+       " 'MEAN_lactate__preprocessor__slice_dict_list': [{'component': 'lactate',\n",
+       "   'variable_type': constants.variable_type}],\n",
+       " 'MEAN_lactate__slice_dict_list': None,\n",
+       " 'STD_lactate': simple_featurizer(aggregator=None, fillna=None, name='STD_lactate',\n",
+       "          slice_dict_list=None),\n",
+       " 'STD_lactate__aggregator': None,\n",
+       " 'STD_lactate__feature_aggregator': segment_std(),\n",
+       " 'STD_lactate__feature_fillna': fill_mean(),\n",
+       " 'STD_lactate__fillna': None,\n",
+       " 'STD_lactate__flatten_columns': flatten_index(axis=1, suffix='STD'),\n",
+       " 'STD_lactate__flatten_columns__axis': 1,\n",
+       " 'STD_lactate__flatten_columns__suffix': 'STD',\n",
+       " 'STD_lactate__name': 'STD_lactate',\n",
+       " 'STD_lactate__preprocessor': multislice_filter(slice_dict_list=[{'variable_type': <class 'constants.variable_type'>, 'component': 'lactate'}]),\n",
+       " 'STD_lactate__preprocessor__slice_dict_list': [{'component': 'lactate',\n",
+       "   'variable_type': constants.variable_type}],\n",
+       " 'STD_lactate__slice_dict_list': None,\n",
+       " 'n_jobs': 1,\n",
+       " 'transformer_list': [('COUNT_lactate',\n",
+       "   simple_featurizer(aggregator=None, fillna=None, name='COUNT_lactate',\n",
+       "            slice_dict_list=None)),\n",
+       "  ('MEAN_lactate',\n",
+       "   simple_featurizer(aggregator=None, fillna=None, name='MEAN_lactate',\n",
+       "            slice_dict_list=None)),\n",
+       "  ('STD_lactate',\n",
+       "   simple_featurizer(aggregator=None, fillna=None, name='STD_lactate',\n",
+       "            slice_dict_list=None)),\n",
+       "  ('LAST_lactate',\n",
+       "   simple_featurizer(aggregator=None, fillna=None, name='LAST_lactate',\n",
+       "            slice_dict_list=None))],\n",
+       " 'transformer_weights': None}"
+      ]
+     },
+     "execution_count": 49,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "component = data_dict.components.HEART_RATE\n",
+    "featurizers = build_features(component,\n",
+    "                                var_type=variable_type.QUANTITATIVE,\n",
+    "                                is_intervention=False)\n",
+    "lactate_feature_union = FeatureUnion([(f.name,f) for f in featurizers])\n",
+    "lactate_feature_union.get_params()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Now, this should look slightly different for an intervention, lets say normal saline"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 50,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "{'COUNT_normal saline': simple_featurizer(aggregator=None, fillna=None, name='COUNT_normal saline',\n",
+       "          slice_dict_list=None),\n",
+       " 'COUNT_normal saline__aggregator': None,\n",
+       " 'COUNT_normal saline__feature_aggregator': segment_count(),\n",
+       " 'COUNT_normal saline__feature_fillna': fill_zero(),\n",
+       " 'COUNT_normal saline__fillna': None,\n",
+       " 'COUNT_normal saline__flatten_columns': flatten_index(axis=1, suffix='COUNT'),\n",
+       " 'COUNT_normal saline__flatten_columns__axis': 1,\n",
+       " 'COUNT_normal saline__flatten_columns__suffix': 'COUNT',\n",
+       " 'COUNT_normal saline__name': 'COUNT_normal saline',\n",
+       " 'COUNT_normal saline__preprocessor': multislice_filter(slice_dict_list=[{'component': 'normal saline'}]),\n",
+       " 'COUNT_normal saline__preprocessor__slice_dict_list': [{'component': 'normal saline'}],\n",
+       " 'COUNT_normal saline__slice_dict_list': None,\n",
+       " 'LAST_normal saline': simple_featurizer(aggregator=None, fillna=None, name='LAST_normal saline',\n",
+       "          slice_dict_list=None),\n",
+       " 'LAST_normal saline__aggregator': None,\n",
+       " 'LAST_normal saline__feature_aggregator': segment_last(),\n",
+       " 'LAST_normal saline__feature_fillna': fill_zero(),\n",
+       " 'LAST_normal saline__fillna': None,\n",
+       " 'LAST_normal saline__flatten_columns': flatten_index(axis=1, suffix='LAST'),\n",
+       " 'LAST_normal saline__flatten_columns__axis': 1,\n",
+       " 'LAST_normal saline__flatten_columns__suffix': 'LAST',\n",
+       " 'LAST_normal saline__name': 'LAST_normal saline',\n",
+       " 'LAST_normal saline__preprocessor': multislice_filter(slice_dict_list=[{'variable_type': <class 'constants.variable_type'>, 'component': 'normal saline'}]),\n",
+       " 'LAST_normal saline__preprocessor__slice_dict_list': [{'component': 'normal saline',\n",
+       "   'variable_type': constants.variable_type}],\n",
+       " 'LAST_normal saline__slice_dict_list': None,\n",
+       " 'MEAN_normal saline': simple_featurizer(aggregator=None, fillna=None, name='MEAN_normal saline',\n",
+       "          slice_dict_list=None),\n",
+       " 'MEAN_normal saline__aggregator': None,\n",
+       " 'MEAN_normal saline__feature_aggregator': segment_mean(),\n",
+       " 'MEAN_normal saline__feature_fillna': fill_zero(),\n",
+       " 'MEAN_normal saline__fillna': None,\n",
+       " 'MEAN_normal saline__flatten_columns': flatten_index(axis=1, suffix='MEAN'),\n",
+       " 'MEAN_normal saline__flatten_columns__axis': 1,\n",
+       " 'MEAN_normal saline__flatten_columns__suffix': 'MEAN',\n",
+       " 'MEAN_normal saline__name': 'MEAN_normal saline',\n",
+       " 'MEAN_normal saline__preprocessor': multislice_filter(slice_dict_list=[{'variable_type': <class 'constants.variable_type'>, 'component': 'normal saline'}]),\n",
+       " 'MEAN_normal saline__preprocessor__slice_dict_list': [{'component': 'normal saline',\n",
+       "   'variable_type': constants.variable_type}],\n",
+       " 'MEAN_normal saline__slice_dict_list': None,\n",
+       " 'STD_normal saline': simple_featurizer(aggregator=None, fillna=None, name='STD_normal saline',\n",
+       "          slice_dict_list=None),\n",
+       " 'STD_normal saline__aggregator': None,\n",
+       " 'STD_normal saline__feature_aggregator': segment_std(),\n",
+       " 'STD_normal saline__feature_fillna': fill_zero(),\n",
+       " 'STD_normal saline__fillna': None,\n",
+       " 'STD_normal saline__flatten_columns': flatten_index(axis=1, suffix='STD'),\n",
+       " 'STD_normal saline__flatten_columns__axis': 1,\n",
+       " 'STD_normal saline__flatten_columns__suffix': 'STD',\n",
+       " 'STD_normal saline__name': 'STD_normal saline',\n",
+       " 'STD_normal saline__preprocessor': multislice_filter(slice_dict_list=[{'variable_type': <class 'constants.variable_type'>, 'component': 'normal saline'}]),\n",
+       " 'STD_normal saline__preprocessor__slice_dict_list': [{'component': 'normal saline',\n",
+       "   'variable_type': constants.variable_type}],\n",
+       " 'STD_normal saline__slice_dict_list': None,\n",
+       " 'n_jobs': 1,\n",
+       " 'transformer_list': [('COUNT_normal saline',\n",
+       "   simple_featurizer(aggregator=None, fillna=None, name='COUNT_normal saline',\n",
+       "            slice_dict_list=None)),\n",
+       "  ('MEAN_normal saline',\n",
+       "   simple_featurizer(aggregator=None, fillna=None, name='MEAN_normal saline',\n",
+       "            slice_dict_list=None)),\n",
+       "  ('STD_normal saline',\n",
+       "   simple_featurizer(aggregator=None, fillna=None, name='STD_normal saline',\n",
+       "            slice_dict_list=None)),\n",
+       "  ('LAST_normal saline',\n",
+       "   simple_featurizer(aggregator=None, fillna=None, name='LAST_normal saline',\n",
+       "            slice_dict_list=None))],\n",
+       " 'transformer_weights': None}"
+      ]
+     },
+     "execution_count": 50,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "component = data_dict.components.NORMAL_SALINE\n",
+    "featurizers = build_features(component,\n",
+    "                                var_type=variable_type.QUANTITATIVE,\n",
+    "                                is_intervention=True)\n",
+    "ns_feature_union = FeatureUnion([(f.name,f) for f in featurizers])\n",
+    "ns_feature_union.get_params()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Sure enough, for interventions we see that na values will be filled with 0 instead of the population mean!\n",
+    "\n",
+    "Finally, lets put this all together for our data dictionary and a list of data we want to use. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 51,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [],
+   "source": [
+    "from constants import clinical_source\n",
+    "def get_all_featurizers(components,data_dict):\n",
+    "    feature_list = []\n",
+    "    for component in components:\n",
+    "        clinical_src = data_dict.get_clinical_source(component)\n",
+    "        is_intervention = clinical_src == clinical_source.INTERVENTION\n",
+    "        variable_type = data_dict.get_variable_type(component)\n",
+    "        feature_list += build_features(component,\n",
+    "                                       variable_type,\n",
+    "                                       is_intervention=is_intervention)\n",
+    "    \n",
+    "    return feature_list\n",
+    "\n",
+    "# vital signs\n",
+    "components = [data_dict.components.LACTATE,data_dict.components.RESPIRATORY_RATE]\n",
+    "featurizer_list = get_all_featurizers(components,data_dict)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Now, lets put this list of featurizers into a completed pipeline"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 52,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "{(('lactate',\n",
+       "   'all'),): [simple_featurizer(aggregator=None, fillna=None, name='COUNT_lactate',\n",
+       "           slice_dict_list=None),\n",
+       "  simple_featurizer(aggregator=None, fillna=None, name='MEAN_lactate',\n",
+       "           slice_dict_list=None),\n",
+       "  simple_featurizer(aggregator=None, fillna=None, name='STD_lactate',\n",
+       "           slice_dict_list=None),\n",
+       "  simple_featurizer(aggregator=None, fillna=None, name='LAST_lactate',\n",
+       "           slice_dict_list=None)],\n",
+       " (('respiratory rate',\n",
+       "   'all'),): [simple_featurizer(aggregator=None, fillna=None, name='COUNT_respiratory rate',\n",
+       "           slice_dict_list=None),\n",
+       "  simple_featurizer(aggregator=None, fillna=None, name='MEAN_respiratory rate',\n",
+       "           slice_dict_list=None),\n",
+       "  simple_featurizer(aggregator=None, fillna=None, name='STD_respiratory rate',\n",
+       "           slice_dict_list=None),\n",
+       "  simple_featurizer(aggregator=None, fillna=None, name='LAST_respiratory rate',\n",
+       "           slice_dict_list=None)]}"
+      ]
+     },
+     "execution_count": 52,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "#organize by data needs\n",
+    "data_needs_dict = {}\n",
+    "for featurizer in featurizer_list:\n",
+    "    data_needs = tuple(featurizer.get_data_needs())\n",
+    "    data_needs_dict[data_needs] = data_needs_dict.get(data_needs,[]) + [featurizer]\n",
+    "    \n",
+    "data_needs_dict"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 53,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": [
+    "segmenter = n_hrs_before(n_hrs=ALL)\n",
+    "\n",
+    "feature_tuples = []\n",
+    "\n",
+    "for data_needs,featurizers in data_needs_dict.iteritems():\n",
+    "    loader = features.load_and_segment(hdf5_fname,path,data_needs,segmenter)\n",
+    "    featurizer_union = FeatureUnion([(f.name,f) for f in featurizers])\n",
+    "    \n",
+    "    feature_pipeline = Pipeline ([\n",
+    "        ('LOADER',loader),\n",
+    "        ('cleaners',cleaner_pipeline()),\n",
+    "        ('feature_union',featurizer_union)\n",
+    "    ])\n",
+    "    feature_tuples.append((str(data_needs),feature_pipeline))\n",
+    "\n",
+    "all_features = FeatureUnion(feature_tuples)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 57,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-22 01:59:08) Make DF for 1 components...\n",
+      "lactate\n",
+      "(2017-06-22 01:59:08)>> LACTATE: 1/1\n",
+      "(2017-06-22 01:59:08)>>>> Opening...\n",
+      "(2017-06-22 01:59:09)<<<< DONE (1.0s)\n",
+      "(2017-06-22 01:59:09)>>>> Join (2960, 63) to None\n",
+      "(2017-06-22 01:59:09)<<<< DONE (0.0s)\n",
+      "(2017-06-22 01:59:09)<< DONE (1.0s)\n",
+      "(2017-06-22 01:59:09) DONE (1.0s)\n",
+      "482\n",
+      "482\n",
+      "482\n",
+      "(2017-06-22 01:59:09) FIT Combine like columns (2960, 63)\n",
+      "(2017-06-22 01:59:09)>> ('lactate', 'known', 'qn', 'mmol/L')\n",
+      "(2017-06-22 01:59:09)<< DONE (0.0s)\n",
+      "(2017-06-22 01:59:09)>> ('lactate', 'unknown', 'nom', 'no_units')\n",
+      "(2017-06-22 01:59:09)<< DONE (0.0s)\n",
+      "(2017-06-22 01:59:09)>> ('lactate', 'unknown', 'qn', 'no_units')\n",
+      "(2017-06-22 01:59:09)<< DONE (0.0s)\n",
+      "(2017-06-22 01:59:09) DONE (0.0s)\n",
+      "(2017-06-22 01:59:09) TRANSFORM Combine like columns (2960, 63)\n",
+      "(2017-06-22 01:59:09)>> ('lactate', 'unknown', 'qn', 'no_units')\n",
+      "(2017-06-22 01:59:09)<< DONE (0.0s)\n",
+      "(2017-06-22 01:59:09)>> ('lactate', 'known', 'qn', 'mmol/L')\n",
+      "(2017-06-22 01:59:09)<< DONE (0.0s)\n",
+      "(2017-06-22 01:59:09) DONE (0.0s)\n",
+      "328\n",
+      "328\n",
+      "328\n",
+      "328\n"
+     ]
+    }
+   ],
+   "source": [
+    "train_lbl = label_pipeline.fit_transform(X=train_ids)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 58,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-22 01:59:13) Make DF for 1 components...\n",
+      "respiratory rate\n",
+      "(2017-06-22 01:59:13)>> RESPIRATORY RATE: 1/1\n",
+      "(2017-06-22 01:59:13)>>>> Opening...\n",
+      "(2017-06-22 01:59:14)<<<< DONE (1.0s)\n",
+      "(2017-06-22 01:59:14)>>>> Join (69806, 6) to None\n",
+      "(2017-06-22 01:59:14)<<<< DONE (0.0s)\n",
+      "(2017-06-22 01:59:14)<< DONE (1.0s)\n",
+      "(2017-06-22 01:59:14) DONE (1.0s)\n",
+      "(2017-06-22 01:59:14) Segment df (69806, 6)\n",
+      "(2017-06-22 01:59:14)>> Get Segments\n",
+      "(2017-06-22 01:59:14)<< DONE (0.0s)\n",
+      "(2017-06-22 01:59:14)>> Apply Segments\n",
+      "(2017-06-22 01:59:15)<< DONE (1.0s)\n",
+      "(2017-06-22 01:59:15) DONE (1.0s)\n",
+      "(2017-06-22 01:59:15) Drop Small columns, threshold = 50 | (69806, 6)\n",
+      "(2017-06-22 01:59:15) DONE (0.0s)\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "(2017-06-22 01:59:15) FIT Combine like columns (69806, 2)\n",
+      "(2017-06-22 01:59:15)>> ('respiratory rate', 'known', 'qn', 'insp/min')\n",
+      "(2017-06-22 01:59:15)<< DONE (0.0s)\n",
+      "(2017-06-22 01:59:15) DONE (0.0s)\n",
+      "(2017-06-22 01:59:15) TRANSFORM Combine like columns (69806, 2)\n",
+      "(2017-06-22 01:59:15)>> ('respiratory rate', 'known', 'qn', 'insp/min')\n",
+      "(2017-06-22 01:59:17)<< DONE (2.0s)\n",
+      "(2017-06-22 01:59:17) DONE (2.0s)\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 01:59:17) Make DF for 1 components...\n",
+      "lactate\n",
+      "(2017-06-22 01:59:17)>> LACTATE: 1/1\n",
+      "(2017-06-22 01:59:17)>>>> Opening...\n",
+      "(2017-06-22 01:59:17)<<<< DONE (0.0s)\n",
+      "(2017-06-22 01:59:17)>>>> Join (2806, 63) to None\n",
+      "(2017-06-22 01:59:17)<<<< DONE (0.0s)\n",
+      "(2017-06-22 01:59:17)<< DONE (0.0s)\n",
+      "(2017-06-22 01:59:17) DONE (0.0s)\n",
+      "(2017-06-22 01:59:17) Segment df (2806, 63)\n",
+      "(2017-06-22 01:59:17)>> Get Segments\n",
+      "(2017-06-22 01:59:17)<< DONE (0.0s)\n",
+      "(2017-06-22 01:59:17)>> Apply Segments\n",
+      "(2017-06-22 01:59:17)<< DONE (0.0s)\n",
+      "(2017-06-22 01:59:17) DONE (0.0s)\n",
+      "(2017-06-22 01:59:17) Drop Small columns, threshold = 50 | (2806, 63)\n",
+      "(2017-06-22 01:59:17) DONE (0.0s)\n",
+      "328\n",
+      "328\n",
+      "328\n",
+      "(2017-06-22 01:59:17) FIT Combine like columns (2806, 4)\n",
+      "(2017-06-22 01:59:17)>> ('lactate', 'known', 'qn', 'mmol/L')\n",
+      "(2017-06-22 01:59:17)<< DONE (0.0s)\n",
+      "(2017-06-22 01:59:17) DONE (0.0s)\n",
+      "(2017-06-22 01:59:17) TRANSFORM Combine like columns (2806, 4)\n",
+      "(2017-06-22 01:59:17)>> ('lactate', 'known', 'qn', 'mmol/L')\n",
+      "(2017-06-22 01:59:17)<< DONE (0.0s)\n",
+      "(2017-06-22 01:59:17) DONE (0.0s)\n",
+      "328\n",
+      "328\n",
+      "328\n",
+      "328\n",
+      "328\n",
+      "328\n",
+      "328\n",
+      "328\n",
+      "328\n",
+      "328\n",
+      "328\n",
+      "328\n",
+      "328\n",
+      "328\n",
+      "328\n",
+      "328\n"
+     ]
+    },
+    {
+     "ename": "ValueError",
+     "evalue": "all the input array dimensions except for the concatenation axis must match exactly",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[1;31mValueError\u001b[0m                                Traceback (most recent call last)",
+      "\u001b[1;32m<ipython-input-58-ab9dced7f884>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mtrain_ft\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mall_features\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrain_lbl\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
+      "\u001b[1;32mC:\\Users\\genkinjz\\AppData\\Local\\Continuum\\Anaconda2\\lib\\site-packages\\sklearn\\pipeline.pyc\u001b[0m in \u001b[0;36mfit_transform\u001b[1;34m(self, X, y, **fit_params)\u001b[0m\n\u001b[0;32m    745\u001b[0m             \u001b[0mXs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msparse\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhstack\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mXs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtocsr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    746\u001b[0m         \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 747\u001b[1;33m             \u001b[0mXs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhstack\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mXs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    748\u001b[0m         \u001b[1;32mreturn\u001b[0m \u001b[0mXs\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    749\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
+      "\u001b[1;32mC:\\Users\\genkinjz\\AppData\\Local\\Continuum\\Anaconda2\\lib\\site-packages\\numpy\\core\\shape_base.pyc\u001b[0m in \u001b[0;36mhstack\u001b[1;34m(tup)\u001b[0m\n\u001b[0;32m    278\u001b[0m         \u001b[1;32mreturn\u001b[0m \u001b[0m_nx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconcatenate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marrs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    279\u001b[0m     \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 280\u001b[1;33m         \u001b[1;32mreturn\u001b[0m \u001b[0m_nx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconcatenate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marrs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    281\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    282\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mstack\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marrays\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+      "\u001b[1;31mValueError\u001b[0m: all the input array dimensions except for the concatenation axis must match exactly"
+     ]
+    }
+   ],
+   "source": [
+    "train_ft = all_features.fit_transform(train_lbl)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-22 00:04:15) Make DF for 1 components...\n",
+      "lactate\n",
+      "(2017-06-22 00:04:15)>> LACTATE: 1/1\n",
+      "(2017-06-22 00:04:15)>>>> Opening...\n",
+      "(2017-06-22 00:04:15)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:15)>>>> Join (2960, 63) to None\n",
+      "(2017-06-22 00:04:15)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:15)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:15) DONE (0.0s)\n",
+      "482\n",
+      "482\n",
+      "482\n",
+      "(2017-06-22 00:04:15) FIT Combine like columns (2960, 63)\n",
+      "(2017-06-22 00:04:15)>> ('lactate', 'known', 'qn', 'mmol/L')\n",
+      "(2017-06-22 00:04:16)<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:16)>> ('lactate', 'unknown', 'nom', 'no_units')\n",
+      "(2017-06-22 00:04:16)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:16)>> ('lactate', 'unknown', 'qn', 'no_units')\n",
+      "(2017-06-22 00:04:16)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:16) DONE (1.0s)\n",
+      "(2017-06-22 00:04:16) TRANSFORM Combine like columns (2960, 63)\n",
+      "(2017-06-22 00:04:16)>> ('lactate', 'unknown', 'qn', 'no_units')\n",
+      "(2017-06-22 00:04:16)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:16)>> ('lactate', 'known', 'qn', 'mmol/L')\n",
+      "(2017-06-22 00:04:16)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:16) DONE (0.0s)\n",
+      "328\n",
+      "328\n",
+      "328\n",
+      "328\n",
+      "(2017-06-22 00:04:16) FIT features...\n",
+      "(2017-06-22 00:04:16)>> ((u'heart rate', 'all'),)\n",
+      "(2017-06-22 00:04:16)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:16)>> Make DF for 1 components...\n",
+      "heart rate\n",
+      "(2017-06-22 00:04:16)>>>> HEART RATE: 1/1\n",
+      "(2017-06-22 00:04:16)>>>>>> Opening...\n",
+      "(2017-06-22 00:04:22)<<<<<< DONE (6.0s)\n",
+      "(2017-06-22 00:04:22)>>>>>> Join (70798, 6) to None\n",
+      "(2017-06-22 00:04:22)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:22)<<<< DONE (6.0s)\n",
+      "(2017-06-22 00:04:22)<< DONE (6.0s)\n",
+      "(2017-06-22 00:04:22)>> Segment df (70798, 6)\n",
+      "(2017-06-22 00:04:22)>>>> Get Segments\n",
+      "(2017-06-22 00:04:22)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:22)>>>> Apply Segments\n",
+      "(2017-06-22 00:04:23)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:23)<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:23)>> Drop Small columns, threshold = 50 | (70798, 6)\n",
+      "(2017-06-22 00:04:23)<< DONE (0.0s)\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "(2017-06-22 00:04:23)>> FIT Combine like columns (70798, 2)\n",
+      "(2017-06-22 00:04:23)>>>> ('heart rate', 'known', 'qn', 'beats/min')\n",
+      "(2017-06-22 00:04:23)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:23)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:23)>> TRANSFORM Combine like columns (70798, 2)\n",
+      "(2017-06-22 00:04:23)>>>> ('heart rate', 'known', 'qn', 'beats/min')\n",
+      "(2017-06-22 00:04:25)<<<< DONE (2.0s)\n",
+      "(2017-06-22 00:04:25)<< DONE (2.0s)\n",
+      "(2017-06-22 00:04:25)>> FIT features...\n",
+      "(2017-06-22 00:04:25)>>>> COUNT_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:04:25)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:25)>>>> MEAN_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:04:25)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:25)>>>> STD_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:04:25)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:25)>>>> LAST_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:04:25)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:25)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:25)>> ((u'oxygen saturation pulse oximetry', 'all'),)\n",
+      "(2017-06-22 00:04:25)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:25)>> Make DF for 1 components...\n",
+      "oxygen saturation pulse oximetry\n",
+      "(2017-06-22 00:04:25)>>>> OXYGEN SATURATION PULSE OXIMETRY: 1/1\n",
+      "(2017-06-22 00:04:25)>>>>>> Opening...\n",
+      "(2017-06-22 00:04:28)<<<<<< DONE (3.0s)\n",
+      "(2017-06-22 00:04:28)>>>>>> Join (70742, 2) to None\n",
+      "(2017-06-22 00:04:28)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:28)<<<< DONE (3.0s)\n",
+      "(2017-06-22 00:04:28)<< DONE (3.0s)\n",
+      "(2017-06-22 00:04:28)>> Segment df (70742, 2)\n",
+      "(2017-06-22 00:04:28)>>>> Get Segments\n",
+      "(2017-06-22 00:04:28)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:28)>>>> Apply Segments\n",
+      "(2017-06-22 00:04:29)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:29)<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:29)>> Drop Small columns, threshold = 50 | (70742, 2)\n",
+      "(2017-06-22 00:04:29)<< DONE (0.0s)\n",
+      "317\n",
+      "317\n",
+      "317\n",
+      "(2017-06-22 00:04:29)>> FIT Combine like columns (70742, 2)\n",
+      "(2017-06-22 00:04:29)>>>> ('oxygen saturation pulse oximetry', 'known', 'qn', 'percent')\n",
+      "(2017-06-22 00:04:29)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:29)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:29)>> TRANSFORM Combine like columns (70742, 2)\n",
+      "(2017-06-22 00:04:29)>>>> ('oxygen saturation pulse oximetry', 'known', 'qn', 'percent')\n",
+      "(2017-06-22 00:04:30)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:30)<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:30)>> FIT features...\n",
+      "(2017-06-22 00:04:30)>>>> COUNT_oxygen saturation pulse oximetry\n",
+      "317\n",
+      "317\n",
+      "317\n",
+      "232\n",
+      "(2017-06-22 00:04:31)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:31)>>>> MEAN_oxygen saturation pulse oximetry\n",
+      "317\n",
+      "317\n",
+      "317\n",
+      "232\n",
+      "(2017-06-22 00:04:31)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:31)>>>> STD_oxygen saturation pulse oximetry\n",
+      "317\n",
+      "317\n",
+      "317\n",
+      "232\n",
+      "(2017-06-22 00:04:31)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:31)>>>> LAST_oxygen saturation pulse oximetry\n",
+      "317\n",
+      "317\n",
+      "317\n",
+      "232\n",
+      "(2017-06-22 00:04:31)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:31)<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:31)>> ((u'temperature body', 'all'),)\n",
+      "(2017-06-22 00:04:31)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:31)>> Make DF for 1 components...\n",
+      "temperature body\n",
+      "(2017-06-22 00:04:31)>>>> TEMPERATURE BODY: 1/1\n",
+      "(2017-06-22 00:04:31)>>>>>> Opening...\n",
+      "(2017-06-22 00:04:32)<<<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:32)>>>>>> Join (24795, 4) to None\n",
+      "(2017-06-22 00:04:32)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:32)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:32)<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:32)>> Segment df (24795, 4)\n",
+      "(2017-06-22 00:04:32)>>>> Get Segments\n",
+      "(2017-06-22 00:04:32)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:32)>>>> Apply Segments\n",
+      "(2017-06-22 00:04:32)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:32)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:32)>> Drop Small columns, threshold = 50 | (24795, 4)\n",
+      "(2017-06-22 00:04:32)<< DONE (0.0s)\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "(2017-06-22 00:04:32)>> FIT Combine like columns (24795, 4)\n",
+      "(2017-06-22 00:04:32)>>>> ('temperature body', 'known', 'qn', 'degF')\n",
+      "(2017-06-22 00:04:32)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:32)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:32)>> TRANSFORM Combine like columns (24795, 4)\n",
+      "(2017-06-22 00:04:32)>>>> ('temperature body', 'known', 'qn', 'degF')\n",
+      "(2017-06-22 00:04:33)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:33)<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:33)>> FIT features...\n",
+      "(2017-06-22 00:04:33)>>>> COUNT_temperature body\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:04:33)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:33)>>>> MEAN_temperature body\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:04:33)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:33)>>>> STD_temperature body\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:04:33)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:33)>>>> LAST_temperature body\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:04:33)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:33)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:33)>> ((u'blood pressure mean', 'all'),)\n",
+      "(2017-06-22 00:04:33)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:33)>> Make DF for 1 components...\n",
+      "blood pressure mean\n",
+      "(2017-06-22 00:04:33)>>>> BLOOD PRESSURE MEAN: 1/1\n",
+      "(2017-06-22 00:04:33)>>>>>> Opening...\n",
+      "(2017-06-22 00:04:34)<<<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:34)>>>>>> Join (5008, 3) to None\n",
+      "(2017-06-22 00:04:34)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:34)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:34)<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:34)>> Segment df (5008, 3)\n",
+      "(2017-06-22 00:04:34)>>>> Get Segments\n",
+      "(2017-06-22 00:04:34)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:34)>>>> Apply Segments\n",
+      "(2017-06-22 00:04:34)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:34)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:34)>> Drop Small columns, threshold = 50 | (5008, 3)\n",
+      "(2017-06-22 00:04:34)<< DONE (0.0s)\n",
+      "33\n",
+      "33\n",
+      "33\n",
+      "(2017-06-22 00:04:34)>> FIT Combine like columns (5008, 3)\n",
+      "(2017-06-22 00:04:34)>>>> ('blood pressure mean', 'known', 'qn', 'mmHg')\n",
+      "(2017-06-22 00:04:34)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:34)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:34)>> TRANSFORM Combine like columns (5008, 3)\n",
+      "(2017-06-22 00:04:34)>>>> ('blood pressure mean', 'known', 'qn', 'mmHg')\n",
+      "(2017-06-22 00:04:35)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:35)<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:35)>> FIT features...\n",
+      "(2017-06-22 00:04:35)>>>> COUNT_blood pressure mean\n",
+      "33\n",
+      "33\n",
+      "33\n",
+      "21\n",
+      "(2017-06-22 00:04:35)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:35)>>>> MEAN_blood pressure mean\n",
+      "33\n",
+      "33\n",
+      "33\n",
+      "21\n",
+      "(2017-06-22 00:04:35)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:35)>>>> STD_blood pressure mean\n",
+      "33\n",
+      "33\n",
+      "33\n",
+      "21\n",
+      "(2017-06-22 00:04:35)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:35)>>>> LAST_blood pressure mean\n",
+      "33\n",
+      "33\n",
+      "33\n",
+      "21\n",
+      "(2017-06-22 00:04:35)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:35)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:35)>> ((u'respiratory rate', 'all'),)\n",
+      "(2017-06-22 00:04:35)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:35)>> Make DF for 1 components...\n",
+      "respiratory rate\n",
+      "(2017-06-22 00:04:35)>>>> RESPIRATORY RATE: 1/1\n",
+      "(2017-06-22 00:04:35)>>>>>> Opening...\n",
+      "(2017-06-22 00:04:40)<<<<<< DONE (5.0s)\n",
+      "(2017-06-22 00:04:40)>>>>>> Join (69806, 6) to None\n",
+      "(2017-06-22 00:04:40)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:40)<<<< DONE (5.0s)\n",
+      "(2017-06-22 00:04:40)<< DONE (5.0s)\n",
+      "(2017-06-22 00:04:40)>> Segment df (69806, 6)\n",
+      "(2017-06-22 00:04:40)>>>> Get Segments\n",
+      "(2017-06-22 00:04:40)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:40)>>>> Apply Segments\n",
+      "(2017-06-22 00:04:41)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:41)<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:41)>> Drop Small columns, threshold = 50 | (69806, 6)\n",
+      "(2017-06-22 00:04:41)<< DONE (0.0s)\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "(2017-06-22 00:04:41)>> FIT Combine like columns (69806, 2)\n",
+      "(2017-06-22 00:04:41)>>>> ('respiratory rate', 'known', 'qn', 'insp/min')\n",
+      "(2017-06-22 00:04:41)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:41)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:41)>> TRANSFORM Combine like columns (69806, 2)\n",
+      "(2017-06-22 00:04:41)>>>> ('respiratory rate', 'known', 'qn', 'insp/min')\n",
+      "(2017-06-22 00:04:43)<<<< DONE (2.0s)\n",
+      "(2017-06-22 00:04:43)<< DONE (2.0s)\n",
+      "(2017-06-22 00:04:43)>> FIT features...\n",
+      "(2017-06-22 00:04:43)>>>> COUNT_respiratory rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:04:43)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:43)>>>> MEAN_respiratory rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:04:43)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:43)>>>> STD_respiratory rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:04:43)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:43)>>>> LAST_respiratory rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:04:43)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:43)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:43)>> ((u'weight body', 'all'),)\n",
+      "(2017-06-22 00:04:43)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:43)>> Make DF for 1 components...\n",
+      "weight body\n",
+      "(2017-06-22 00:04:43)>>>> WEIGHT BODY: 1/1\n",
+      "(2017-06-22 00:04:43)>>>>>> Opening...\n",
+      "(2017-06-22 00:04:43)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:43)>>>>>> Join (897, 3) to None\n",
+      "(2017-06-22 00:04:43)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:43)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:43)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:43)>> Segment df (897, 3)\n",
+      "(2017-06-22 00:04:43)>>>> Get Segments\n",
+      "(2017-06-22 00:04:43)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:43)>>>> Apply Segments\n",
+      "(2017-06-22 00:04:44)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:44)<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:44)>> Drop Small columns, threshold = 50 | (897, 3)\n",
+      "(2017-06-22 00:04:44)<< DONE (0.0s)\n",
+      "239\n",
+      "239\n",
+      "239\n",
+      "(2017-06-22 00:04:44)>> FIT Combine like columns (897, 2)\n",
+      "(2017-06-22 00:04:44)>>>> ('weight body', 'known', 'qn', 'kg')\n",
+      "(2017-06-22 00:04:44)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:44)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:44)>> TRANSFORM Combine like columns (897, 2)\n",
+      "(2017-06-22 00:04:44)>>>> ('weight body', 'known', 'qn', 'kg')\n",
+      "(2017-06-22 00:04:44)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:44)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:44)>> FIT features...\n",
+      "(2017-06-22 00:04:44)>>>> COUNT_weight body\n",
+      "239\n",
+      "239\n",
+      "239\n",
+      "152\n",
+      "(2017-06-22 00:04:44)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:44)>>>> MEAN_weight body\n",
+      "239\n",
+      "239\n",
+      "239\n",
+      "152\n",
+      "(2017-06-22 00:04:44)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:44)>>>> STD_weight body\n",
+      "239\n",
+      "239\n",
+      "239\n",
+      "152\n",
+      "(2017-06-22 00:04:44)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:44)>>>> LAST_weight body\n",
+      "239\n",
+      "239\n",
+      "239\n",
+      "152\n",
+      "(2017-06-22 00:04:44)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:44)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:44)>> ((u'blood pressure diastolic', 'all'),)\n",
+      "(2017-06-22 00:04:44)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:44)>> Make DF for 1 components...\n",
+      "blood pressure diastolic\n",
+      "(2017-06-22 00:04:44)>>>> BLOOD PRESSURE DIASTOLIC: 1/1\n",
+      "(2017-06-22 00:04:44)>>>>>> Opening...\n",
+      "(2017-06-22 00:04:54)<<<<<< DONE (10.0s)\n",
+      "(2017-06-22 00:04:54)>>>>>> Join (70597, 15) to None\n",
+      "(2017-06-22 00:04:54)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:54)<<<< DONE (10.0s)\n",
+      "(2017-06-22 00:04:54)<< DONE (10.0s)\n",
+      "(2017-06-22 00:04:54)>> Segment df (70597, 15)\n",
+      "(2017-06-22 00:04:54)>>>> Get Segments\n",
+      "(2017-06-22 00:04:54)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:54)>>>> Apply Segments\n",
+      "(2017-06-22 00:04:55)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:55)<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:55)>> Drop Small columns, threshold = 50 | (70597, 15)\n",
+      "(2017-06-22 00:04:55)<< DONE (0.0s)\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "(2017-06-22 00:04:55)>> FIT Combine like columns (70597, 6)\n",
+      "(2017-06-22 00:04:55)>>>> ('blood pressure diastolic', 'known', 'qn', 'mmHg')\n",
+      "(2017-06-22 00:04:55)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:55)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:55)>> TRANSFORM Combine like columns (70597, 6)\n",
+      "(2017-06-22 00:04:55)>>>> ('blood pressure diastolic', 'known', 'qn', 'mmHg')\n",
+      "(2017-06-22 00:04:57)<<<< DONE (2.0s)\n",
+      "(2017-06-22 00:04:57)<< DONE (2.0s)\n",
+      "(2017-06-22 00:04:57)>> FIT features...\n",
+      "(2017-06-22 00:04:57)>>>> COUNT_blood pressure diastolic\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:04:57)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:57)>>>> MEAN_blood pressure diastolic\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:04:57)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:57)>>>> STD_blood pressure diastolic\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:04:57)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:57)>>>> LAST_blood pressure diastolic\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:04:57)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:57)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:57)>> ((u'blood pressure systolic', 'all'),)\n",
+      "(2017-06-22 00:04:57)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:57)>> Make DF for 1 components...\n",
+      "blood pressure systolic\n",
+      "(2017-06-22 00:04:57)>>>> BLOOD PRESSURE SYSTOLIC: 1/1\n",
+      "(2017-06-22 00:04:57)>>>>>> Opening...\n",
+      "(2017-06-22 00:04:58)<<<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:58)>>>>>> Join (70612, 40) to None\n",
+      "(2017-06-22 00:04:58)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:58)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:58)<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:58)>> Segment df (70612, 40)\n",
+      "(2017-06-22 00:04:58)>>>> Get Segments\n",
+      "(2017-06-22 00:04:58)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:58)>>>> Apply Segments\n",
+      "(2017-06-22 00:04:59)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:59)<< DONE (1.0s)\n",
+      "(2017-06-22 00:04:59)>> Drop Small columns, threshold = 50 | (70612, 40)\n",
+      "(2017-06-22 00:04:59)<< DONE (0.0s)\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "(2017-06-22 00:04:59)>> FIT Combine like columns (70612, 6)\n",
+      "(2017-06-22 00:04:59)>>>> ('blood pressure systolic', 'known', 'qn', 'mmHg')\n",
+      "(2017-06-22 00:04:59)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:59)<< DONE (0.0s)\n",
+      "(2017-06-22 00:04:59)>> TRANSFORM Combine like columns (70612, 6)\n",
+      "(2017-06-22 00:04:59)>>>> ('blood pressure systolic', 'known', 'qn', 'mmHg')\n",
+      "(2017-06-22 00:05:01)<<<< DONE (2.0s)\n",
+      "(2017-06-22 00:05:01)<< DONE (2.0s)\n",
+      "(2017-06-22 00:05:01)>> FIT features...\n",
+      "(2017-06-22 00:05:01)>>>> COUNT_blood pressure systolic\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:01)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:01)>>>> MEAN_blood pressure systolic\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:01)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:01)>>>> STD_blood pressure systolic\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:01)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:01)>>>> LAST_blood pressure systolic\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:01)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:01)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:01) DONE (45.0s)\n",
+      "(2017-06-22 00:05:01) Start Feature Union on DF (328, 1)\n",
+      "(2017-06-22 00:05:01)>> ((u'heart rate', 'all'),)\n",
+      "(2017-06-22 00:05:01)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:01)>> Make DF for 1 components...\n",
+      "heart rate\n",
+      "(2017-06-22 00:05:01)>>>> HEART RATE: 1/1\n",
+      "(2017-06-22 00:05:01)>>>>>> Opening...\n",
+      "(2017-06-22 00:05:02)<<<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:02)>>>>>> Join (70798, 6) to None\n",
+      "(2017-06-22 00:05:02)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:02)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:02)<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:02)>> Segment df (70798, 6)\n",
+      "(2017-06-22 00:05:02)>>>> Get Segments\n",
+      "(2017-06-22 00:05:02)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:02)>>>> Apply Segments\n",
+      "(2017-06-22 00:05:03)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:03)<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:03)>> Drop Small columns, threshold = 50 | (70798, 6)\n",
+      "(2017-06-22 00:05:03)<< DONE (0.0s)\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "(2017-06-22 00:05:03)>> TRANSFORM Combine like columns (70798, 2)\n",
+      "(2017-06-22 00:05:03)>>>> ('heart rate', 'known', 'qn', 'beats/min')\n",
+      "(2017-06-22 00:05:05)<<<< DONE (2.0s)\n",
+      "(2017-06-22 00:05:05)<< DONE (2.0s)\n",
+      "(2017-06-22 00:05:05)>> Start Feature Union on DF (70798, 1)\n",
+      "(2017-06-22 00:05:05)>>>> COUNT_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:05)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:05)>>>> MEAN_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:05)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:05)>>>> STD_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:05)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:05)>>>> LAST_heart rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:05)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:05)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:05)>> ((u'oxygen saturation pulse oximetry', 'all'),)\n",
+      "(2017-06-22 00:05:05)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:05)>> Make DF for 1 components...\n",
+      "oxygen saturation pulse oximetry\n",
+      "(2017-06-22 00:05:05)>>>> OXYGEN SATURATION PULSE OXIMETRY: 1/1\n",
+      "(2017-06-22 00:05:05)>>>>>> Opening...\n",
+      "(2017-06-22 00:05:06)<<<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:06)>>>>>> Join (70742, 2) to None\n",
+      "(2017-06-22 00:05:06)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:06)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:06)<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:06)>> Segment df (70742, 2)\n",
+      "(2017-06-22 00:05:06)>>>> Get Segments\n",
+      "(2017-06-22 00:05:06)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:06)>>>> Apply Segments\n",
+      "(2017-06-22 00:05:06)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:06)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:06)>> Drop Small columns, threshold = 50 | (70742, 2)\n",
+      "(2017-06-22 00:05:06)<< DONE (0.0s)\n",
+      "317\n",
+      "317\n",
+      "317\n",
+      "(2017-06-22 00:05:06)>> TRANSFORM Combine like columns (70742, 2)\n",
+      "(2017-06-22 00:05:06)>>>> ('oxygen saturation pulse oximetry', 'known', 'qn', 'percent')\n",
+      "(2017-06-22 00:05:08)<<<< DONE (2.0s)\n",
+      "(2017-06-22 00:05:08)<< DONE (2.0s)\n",
+      "(2017-06-22 00:05:08)>> Start Feature Union on DF (70742, 1)\n",
+      "(2017-06-22 00:05:08)>>>> COUNT_oxygen saturation pulse oximetry\n",
+      "317\n",
+      "317\n",
+      "317\n",
+      "232\n",
+      "(2017-06-22 00:05:08)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:08)>>>> MEAN_oxygen saturation pulse oximetry\n",
+      "317\n",
+      "317\n",
+      "317\n",
+      "232\n",
+      "(2017-06-22 00:05:08)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:08)>>>> STD_oxygen saturation pulse oximetry\n",
+      "317\n",
+      "317\n",
+      "317\n",
+      "232\n",
+      "(2017-06-22 00:05:08)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:08)>>>> LAST_oxygen saturation pulse oximetry\n",
+      "317\n",
+      "317\n",
+      "317\n",
+      "232\n",
+      "(2017-06-22 00:05:09)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:09)<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:09)>> ((u'temperature body', 'all'),)\n",
+      "(2017-06-22 00:05:09)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:09)>> Make DF for 1 components...\n",
+      "temperature body\n",
+      "(2017-06-22 00:05:09)>>>> TEMPERATURE BODY: 1/1\n",
+      "(2017-06-22 00:05:09)>>>>>> Opening...\n",
+      "(2017-06-22 00:05:09)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:09)>>>>>> Join (24795, 4) to None\n",
+      "(2017-06-22 00:05:09)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:09)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:09)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:09)>> Segment df (24795, 4)\n",
+      "(2017-06-22 00:05:09)>>>> Get Segments\n",
+      "(2017-06-22 00:05:09)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:09)>>>> Apply Segments\n",
+      "(2017-06-22 00:05:09)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:09)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:09)>> Drop Small columns, threshold = 50 | (24795, 4)\n",
+      "(2017-06-22 00:05:09)<< DONE (0.0s)\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "(2017-06-22 00:05:09)>> TRANSFORM Combine like columns (24795, 4)\n",
+      "(2017-06-22 00:05:09)>>>> ('temperature body', 'known', 'qn', 'degF')\n",
+      "(2017-06-22 00:05:10)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:10)<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:10)>> Start Feature Union on DF (24795, 1)\n",
+      "(2017-06-22 00:05:10)>>>> COUNT_temperature body\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:10)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)>>>> MEAN_temperature body\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:10)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)>>>> STD_temperature body\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:10)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)>>>> LAST_temperature body\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:10)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)>> ((u'blood pressure mean', 'all'),)\n",
+      "(2017-06-22 00:05:10)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)>> Make DF for 1 components...\n",
+      "blood pressure mean\n",
+      "(2017-06-22 00:05:10)>>>> BLOOD PRESSURE MEAN: 1/1\n",
+      "(2017-06-22 00:05:10)>>>>>> Opening...\n",
+      "(2017-06-22 00:05:10)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)>>>>>> Join (5008, 3) to None\n",
+      "(2017-06-22 00:05:10)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)>> Segment df (5008, 3)\n",
+      "(2017-06-22 00:05:10)>>>> Get Segments\n",
+      "(2017-06-22 00:05:10)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)>>>> Apply Segments\n",
+      "(2017-06-22 00:05:10)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)>> Drop Small columns, threshold = 50 | (5008, 3)\n",
+      "(2017-06-22 00:05:10)<< DONE (0.0s)\n",
+      "33\n",
+      "33\n",
+      "33\n",
+      "(2017-06-22 00:05:10)>> TRANSFORM Combine like columns (5008, 3)\n",
+      "(2017-06-22 00:05:10)>>>> ('blood pressure mean', 'known', 'qn', 'mmHg')\n",
+      "(2017-06-22 00:05:10)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)>> Start Feature Union on DF (5008, 1)\n",
+      "(2017-06-22 00:05:10)>>>> COUNT_blood pressure mean\n",
+      "33\n",
+      "33\n",
+      "33\n",
+      "21\n",
+      "(2017-06-22 00:05:10)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)>>>> MEAN_blood pressure mean\n",
+      "33\n",
+      "33\n",
+      "33\n",
+      "21\n",
+      "(2017-06-22 00:05:10)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)>>>> STD_blood pressure mean\n",
+      "33\n",
+      "33\n",
+      "33\n",
+      "21\n",
+      "(2017-06-22 00:05:10)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)>>>> LAST_blood pressure mean\n",
+      "33\n",
+      "33\n",
+      "33\n",
+      "21\n",
+      "(2017-06-22 00:05:10)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)>> ((u'respiratory rate', 'all'),)\n",
+      "(2017-06-22 00:05:10)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:10)>> Make DF for 1 components...\n",
+      "respiratory rate\n",
+      "(2017-06-22 00:05:10)>>>> RESPIRATORY RATE: 1/1\n",
+      "(2017-06-22 00:05:10)>>>>>> Opening...\n",
+      "(2017-06-22 00:05:11)<<<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:11)>>>>>> Join (69806, 6) to None\n",
+      "(2017-06-22 00:05:11)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:11)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:11)<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:11)>> Segment df (69806, 6)\n",
+      "(2017-06-22 00:05:11)>>>> Get Segments\n",
+      "(2017-06-22 00:05:11)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:11)>>>> Apply Segments\n",
+      "(2017-06-22 00:05:13)<<<< DONE (2.0s)\n",
+      "(2017-06-22 00:05:13)<< DONE (2.0s)\n",
+      "(2017-06-22 00:05:13)>> Drop Small columns, threshold = 50 | (69806, 6)\n",
+      "(2017-06-22 00:05:13)<< DONE (0.0s)\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "(2017-06-22 00:05:13)>> TRANSFORM Combine like columns (69806, 2)\n",
+      "(2017-06-22 00:05:13)>>>> ('respiratory rate', 'known', 'qn', 'insp/min')\n",
+      "(2017-06-22 00:05:15)<<<< DONE (2.0s)\n",
+      "(2017-06-22 00:05:15)<< DONE (2.0s)\n",
+      "(2017-06-22 00:05:15)>> Start Feature Union on DF (69806, 1)\n",
+      "(2017-06-22 00:05:15)>>>> COUNT_respiratory rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:15)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)>>>> MEAN_respiratory rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:15)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)>>>> STD_respiratory rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:15)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)>>>> LAST_respiratory rate\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:15)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)>> ((u'weight body', 'all'),)\n",
+      "(2017-06-22 00:05:15)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)>> Make DF for 1 components...\n",
+      "weight body\n",
+      "(2017-06-22 00:05:15)>>>> WEIGHT BODY: 1/1\n",
+      "(2017-06-22 00:05:15)>>>>>> Opening...\n",
+      "(2017-06-22 00:05:15)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)>>>>>> Join (897, 3) to None\n",
+      "(2017-06-22 00:05:15)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)>> Segment df (897, 3)\n",
+      "(2017-06-22 00:05:15)>>>> Get Segments\n",
+      "(2017-06-22 00:05:15)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)>>>> Apply Segments\n",
+      "(2017-06-22 00:05:15)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)>> Drop Small columns, threshold = 50 | (897, 3)\n",
+      "(2017-06-22 00:05:15)<< DONE (0.0s)\n",
+      "239\n",
+      "239\n",
+      "239\n",
+      "(2017-06-22 00:05:15)>> TRANSFORM Combine like columns (897, 2)\n",
+      "(2017-06-22 00:05:15)>>>> ('weight body', 'known', 'qn', 'kg')\n",
+      "(2017-06-22 00:05:15)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)>> Start Feature Union on DF (897, 1)\n",
+      "(2017-06-22 00:05:15)>>>> COUNT_weight body\n",
+      "239\n",
+      "239\n",
+      "239\n",
+      "152\n",
+      "(2017-06-22 00:05:15)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)>>>> MEAN_weight body\n",
+      "239\n",
+      "239\n",
+      "239\n",
+      "152\n",
+      "(2017-06-22 00:05:15)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)>>>> STD_weight body\n",
+      "239\n",
+      "239\n",
+      "239\n",
+      "152\n",
+      "(2017-06-22 00:05:15)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)>>>> LAST_weight body\n",
+      "239\n",
+      "239\n",
+      "239\n",
+      "152\n",
+      "(2017-06-22 00:05:15)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)>> ((u'blood pressure diastolic', 'all'),)\n",
+      "(2017-06-22 00:05:15)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:15)>> Make DF for 1 components...\n",
+      "blood pressure diastolic\n",
+      "(2017-06-22 00:05:15)>>>> BLOOD PRESSURE DIASTOLIC: 1/1\n",
+      "(2017-06-22 00:05:15)>>>>>> Opening...\n",
+      "(2017-06-22 00:05:16)<<<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:16)>>>>>> Join (70597, 15) to None\n",
+      "(2017-06-22 00:05:16)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:16)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:16)<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:16)>> Segment df (70597, 15)\n",
+      "(2017-06-22 00:05:16)>>>> Get Segments\n",
+      "(2017-06-22 00:05:16)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:16)>>>> Apply Segments\n",
+      "(2017-06-22 00:05:17)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:17)<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:17)>> Drop Small columns, threshold = 50 | (70597, 15)\n",
+      "(2017-06-22 00:05:17)<< DONE (0.0s)\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "(2017-06-22 00:05:17)>> TRANSFORM Combine like columns (70597, 6)\n",
+      "(2017-06-22 00:05:17)>>>> ('blood pressure diastolic', 'known', 'qn', 'mmHg')\n",
+      "(2017-06-22 00:05:19)<<<< DONE (2.0s)\n",
+      "(2017-06-22 00:05:19)<< DONE (2.0s)\n",
+      "(2017-06-22 00:05:19)>> Start Feature Union on DF (70597, 1)\n",
+      "(2017-06-22 00:05:19)>>>> COUNT_blood pressure diastolic\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:19)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:19)>>>> MEAN_blood pressure diastolic\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:19)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:19)>>>> STD_blood pressure diastolic\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:19)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:19)>>>> LAST_blood pressure diastolic\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:19)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:19)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:19)>> ((u'blood pressure systolic', 'all'),)\n",
+      "(2017-06-22 00:05:19)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:19)>> Make DF for 1 components...\n",
+      "blood pressure systolic\n",
+      "(2017-06-22 00:05:19)>>>> BLOOD PRESSURE SYSTOLIC: 1/1\n",
+      "(2017-06-22 00:05:19)>>>>>> Opening...\n",
+      "(2017-06-22 00:05:20)<<<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:20)>>>>>> Join (70612, 40) to None\n",
+      "(2017-06-22 00:05:20)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:20)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:20)<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:20)>> Segment df (70612, 40)\n",
+      "(2017-06-22 00:05:20)>>>> Get Segments\n",
+      "(2017-06-22 00:05:20)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:20)>>>> Apply Segments\n",
+      "(2017-06-22 00:05:21)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:21)<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:21)>> Drop Small columns, threshold = 50 | (70612, 40)\n",
+      "(2017-06-22 00:05:22)<< DONE (1.0s)\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "(2017-06-22 00:05:22)>> TRANSFORM Combine like columns (70612, 6)\n",
+      "(2017-06-22 00:05:22)>>>> ('blood pressure systolic', 'known', 'qn', 'mmHg')\n",
+      "(2017-06-22 00:05:23)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:23)<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:23)>> Start Feature Union on DF (70612, 1)\n",
+      "(2017-06-22 00:05:23)>>>> COUNT_blood pressure systolic\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:23)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:23)>>>> MEAN_blood pressure systolic\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:23)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:23)>>>> STD_blood pressure systolic\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:23)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:23)>>>> LAST_blood pressure systolic\n",
+      "318\n",
+      "318\n",
+      "318\n",
+      "233\n",
+      "(2017-06-22 00:05:24)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:24)<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:24) DONE (23.0s)\n",
+      "(2017-06-22 00:05:24) Make DF for 1 components...\n",
+      "lactate\n",
+      "(2017-06-22 00:05:24)>> LACTATE: 1/1\n",
+      "(2017-06-22 00:05:24)>>>> Opening...\n",
+      "(2017-06-22 00:05:24)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:24)>>>> Join (187, 63) to None\n",
+      "(2017-06-22 00:05:24)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:24)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:24) DONE (0.0s)\n",
+      "51\n",
+      "51\n",
+      "51\n",
+      "(2017-06-22 00:05:24) TRANSFORM Combine like columns (187, 63)\n",
+      "(2017-06-22 00:05:24)>> ('lactate', 'unknown', 'qn', 'no_units')\n",
+      "(2017-06-22 00:05:24)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:24)>> ('lactate', 'known', 'qn', 'mmol/L')\n",
+      "(2017-06-22 00:05:24)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:24) DONE (0.0s)\n",
+      "30\n",
+      "30\n",
+      "30\n",
+      "30\n",
+      "(2017-06-22 00:05:24) Start Feature Union on DF (30, 1)\n",
+      "(2017-06-22 00:05:24)>> ((u'heart rate', 'all'),)\n",
+      "(2017-06-22 00:05:24)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:24)>> Make DF for 1 components...\n",
+      "heart rate\n",
+      "(2017-06-22 00:05:24)>>>> HEART RATE: 1/1\n",
+      "(2017-06-22 00:05:24)>>>>>> Opening...\n",
+      "(2017-06-22 00:05:24)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:24)>>>>>> Join (7191, 6) to None\n",
+      "(2017-06-22 00:05:24)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:24)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:24)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:24)>> Segment df (7191, 6)\n",
+      "(2017-06-22 00:05:24)>>>> Get Segments\n",
+      "(2017-06-22 00:05:24)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:24)>>>> Apply Segments\n",
+      "(2017-06-22 00:05:25)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:25)<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:25)>> Drop Small columns, threshold = 50 | (7191, 6)\n",
+      "(2017-06-22 00:05:25)<< DONE (0.0s)\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "(2017-06-22 00:05:25)>> TRANSFORM Combine like columns (7191, 2)\n",
+      "(2017-06-22 00:05:25)>>>> ('heart rate', 'known', 'qn', 'beats/min')\n",
+      "(2017-06-22 00:05:25)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:25)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:25)>> Start Feature Union on DF (7191, 1)\n",
+      "(2017-06-22 00:05:25)>>>> COUNT_heart rate\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 00:05:25)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:25)>>>> MEAN_heart rate\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 00:05:25)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:25)>>>> STD_heart rate\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 00:05:25)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:25)>>>> LAST_heart rate\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 00:05:25)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:25)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:25)>> ((u'oxygen saturation pulse oximetry', 'all'),)\n",
+      "(2017-06-22 00:05:25)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:25)>> Make DF for 1 components...\n",
+      "oxygen saturation pulse oximetry\n",
+      "(2017-06-22 00:05:25)>>>> OXYGEN SATURATION PULSE OXIMETRY: 1/1\n",
+      "(2017-06-22 00:05:25)>>>>>> Opening...\n",
+      "(2017-06-22 00:05:26)<<<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:26)>>>>>> Join (7292, 2) to None\n",
+      "(2017-06-22 00:05:26)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:26)<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:26)>> Segment df (7292, 2)\n",
+      "(2017-06-22 00:05:26)>>>> Get Segments\n",
+      "(2017-06-22 00:05:26)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>>>> Apply Segments\n",
+      "(2017-06-22 00:05:26)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>> Drop Small columns, threshold = 50 | (7292, 2)\n",
+      "(2017-06-22 00:05:26)<< DONE (0.0s)\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "(2017-06-22 00:05:26)>> TRANSFORM Combine like columns (7292, 2)\n",
+      "(2017-06-22 00:05:26)>>>> ('oxygen saturation pulse oximetry', 'known', 'qn', 'percent')\n",
+      "(2017-06-22 00:05:26)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>> Start Feature Union on DF (7292, 1)\n",
+      "(2017-06-22 00:05:26)>>>> COUNT_oxygen saturation pulse oximetry\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "24\n",
+      "(2017-06-22 00:05:26)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>>>> MEAN_oxygen saturation pulse oximetry\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "24\n",
+      "(2017-06-22 00:05:26)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>>>> STD_oxygen saturation pulse oximetry\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "24\n",
+      "(2017-06-22 00:05:26)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>>>> LAST_oxygen saturation pulse oximetry\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "24\n",
+      "(2017-06-22 00:05:26)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>> ((u'temperature body', 'all'),)\n",
+      "(2017-06-22 00:05:26)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>> Make DF for 1 components...\n",
+      "temperature body\n",
+      "(2017-06-22 00:05:26)>>>> TEMPERATURE BODY: 1/1\n",
+      "(2017-06-22 00:05:26)>>>>>> Opening...\n",
+      "(2017-06-22 00:05:26)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>>>>>> Join (1938, 4) to None\n",
+      "(2017-06-22 00:05:26)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>> Segment df (1938, 4)\n",
+      "(2017-06-22 00:05:26)>>>> Get Segments\n",
+      "(2017-06-22 00:05:26)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>>>> Apply Segments\n",
+      "(2017-06-22 00:05:26)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>> Drop Small columns, threshold = 50 | (1938, 4)\n",
+      "(2017-06-22 00:05:26)<< DONE (0.0s)\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "(2017-06-22 00:05:26)>> TRANSFORM Combine like columns (1938, 4)\n",
+      "(2017-06-22 00:05:26)>>>> ('temperature body', 'known', 'qn', 'degF')\n",
+      "(2017-06-22 00:05:26)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>> Start Feature Union on DF (1938, 1)\n",
+      "(2017-06-22 00:05:26)>>>> COUNT_temperature body\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "24\n",
+      "(2017-06-22 00:05:26)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>>>> MEAN_temperature body\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "24\n",
+      "(2017-06-22 00:05:26)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>>>> STD_temperature body\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "24\n",
+      "(2017-06-22 00:05:26)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>>>> LAST_temperature body\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "24\n",
+      "(2017-06-22 00:05:26)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>> ((u'blood pressure mean', 'all'),)\n",
+      "(2017-06-22 00:05:26)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>> Make DF for 1 components...\n",
+      "blood pressure mean\n",
+      "(2017-06-22 00:05:26)>>>> BLOOD PRESSURE MEAN: 1/1\n",
+      "(2017-06-22 00:05:26)>>>>>> Opening...\n",
+      "(2017-06-22 00:05:26)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>>>>>> Join (1331, 3) to None\n",
+      "(2017-06-22 00:05:26)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>> Segment df (1331, 3)\n",
+      "(2017-06-22 00:05:26)>>>> Get Segments\n",
+      "(2017-06-22 00:05:26)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:26)>>>> Apply Segments\n",
+      "(2017-06-22 00:05:27)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:27)<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:27)>> Drop Small columns, threshold = 50 | (1331, 3)\n",
+      "(2017-06-22 00:05:27)<< DONE (0.0s)\n",
+      "5\n",
+      "5\n",
+      "5\n",
+      "(2017-06-22 00:05:27)>> TRANSFORM Combine like columns (1331, 3)\n",
+      "(2017-06-22 00:05:27)>>>> ('blood pressure mean', 'known', 'qn', 'mmHg')\n",
+      "(2017-06-22 00:05:27)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:27)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:27)>> Start Feature Union on DF (1331, 1)\n",
+      "(2017-06-22 00:05:27)>>>> COUNT_blood pressure mean\n",
+      "5\n",
+      "5\n",
+      "5\n",
+      "4\n",
+      "(2017-06-22 00:05:27)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:27)>>>> MEAN_blood pressure mean\n",
+      "5\n",
+      "5\n",
+      "5\n",
+      "4\n",
+      "(2017-06-22 00:05:27)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:27)>>>> STD_blood pressure mean\n",
+      "5\n",
+      "5\n",
+      "5\n",
+      "4\n",
+      "(2017-06-22 00:05:27)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:27)>>>> LAST_blood pressure mean\n",
+      "5\n",
+      "5\n",
+      "5\n",
+      "4\n",
+      "(2017-06-22 00:05:27)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:27)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:27)>> ((u'respiratory rate', 'all'),)\n",
+      "(2017-06-22 00:05:27)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:27)>> Make DF for 1 components...\n",
+      "respiratory rate\n",
+      "(2017-06-22 00:05:27)>>>> RESPIRATORY RATE: 1/1\n",
+      "(2017-06-22 00:05:27)>>>>>> Opening...\n",
+      "(2017-06-22 00:05:27)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:27)>>>>>> Join (6295, 6) to None\n",
+      "(2017-06-22 00:05:27)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:27)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:27)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:27)>> Segment df (6295, 6)\n",
+      "(2017-06-22 00:05:27)>>>> Get Segments\n",
+      "(2017-06-22 00:05:27)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:27)>>>> Apply Segments\n",
+      "(2017-06-22 00:05:27)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:27)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:27)>> Drop Small columns, threshold = 50 | (6295, 6)\n",
+      "(2017-06-22 00:05:27)<< DONE (0.0s)\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "(2017-06-22 00:05:27)>> TRANSFORM Combine like columns (6295, 2)\n",
+      "(2017-06-22 00:05:27)>>>> ('respiratory rate', 'known', 'qn', 'insp/min')\n",
+      "(2017-06-22 00:05:28)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:28)<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:28)>> Start Feature Union on DF (6295, 1)\n",
+      "(2017-06-22 00:05:28)>>>> COUNT_respiratory rate\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 00:05:28)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)>>>> MEAN_respiratory rate\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 00:05:28)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)>>>> STD_respiratory rate\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 00:05:28)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)>>>> LAST_respiratory rate\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 00:05:28)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)>> ((u'weight body', 'all'),)\n",
+      "(2017-06-22 00:05:28)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)>> Make DF for 1 components...\n",
+      "weight body\n",
+      "(2017-06-22 00:05:28)>>>> WEIGHT BODY: 1/1\n",
+      "(2017-06-22 00:05:28)>>>>>> Opening...\n",
+      "(2017-06-22 00:05:28)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)>>>>>> Join (78, 3) to None\n",
+      "(2017-06-22 00:05:28)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)>> Segment df (78, 3)\n",
+      "(2017-06-22 00:05:28)>>>> Get Segments\n",
+      "(2017-06-22 00:05:28)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)>>>> Apply Segments\n",
+      "(2017-06-22 00:05:28)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)>> Drop Small columns, threshold = 50 | (78, 3)\n",
+      "(2017-06-22 00:05:28)<< DONE (0.0s)\n",
+      "17\n",
+      "17\n",
+      "17\n",
+      "(2017-06-22 00:05:28)>> TRANSFORM Combine like columns (78, 2)\n",
+      "(2017-06-22 00:05:28)>>>> ('weight body', 'known', 'qn', 'kg')\n",
+      "(2017-06-22 00:05:28)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)>> Start Feature Union on DF (78, 1)\n",
+      "(2017-06-22 00:05:28)>>>> COUNT_weight body\n",
+      "17\n",
+      "17\n",
+      "17\n",
+      "10\n",
+      "(2017-06-22 00:05:28)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)>>>> MEAN_weight body\n",
+      "17\n",
+      "17\n",
+      "17\n",
+      "10\n",
+      "(2017-06-22 00:05:28)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)>>>> STD_weight body\n",
+      "17\n",
+      "17\n",
+      "17\n",
+      "10\n",
+      "(2017-06-22 00:05:28)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)>>>> LAST_weight body\n",
+      "17\n",
+      "17\n",
+      "17\n",
+      "10\n",
+      "(2017-06-22 00:05:28)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)>> ((u'blood pressure diastolic', 'all'),)\n",
+      "(2017-06-22 00:05:28)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)>> Make DF for 1 components...\n",
+      "blood pressure diastolic\n",
+      "(2017-06-22 00:05:28)>>>> BLOOD PRESSURE DIASTOLIC: 1/1\n",
+      "(2017-06-22 00:05:28)>>>>>> Opening...\n",
+      "(2017-06-22 00:05:28)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)>>>>>> Join (7055, 15) to None\n",
+      "(2017-06-22 00:05:28)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)>> Segment df (7055, 15)\n",
+      "(2017-06-22 00:05:28)>>>> Get Segments\n",
+      "(2017-06-22 00:05:28)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:28)>>>> Apply Segments\n",
+      "(2017-06-22 00:05:29)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:29)<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:29)>> Drop Small columns, threshold = 50 | (7055, 15)\n",
+      "(2017-06-22 00:05:29)<< DONE (0.0s)\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "(2017-06-22 00:05:29)>> TRANSFORM Combine like columns (7055, 6)\n",
+      "(2017-06-22 00:05:29)>>>> ('blood pressure diastolic', 'known', 'qn', 'mmHg')\n",
+      "(2017-06-22 00:05:29)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:29)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:29)>> Start Feature Union on DF (7055, 1)\n",
+      "(2017-06-22 00:05:29)>>>> COUNT_blood pressure diastolic\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 00:05:29)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:29)>>>> MEAN_blood pressure diastolic\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 00:05:29)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:29)>>>> STD_blood pressure diastolic\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 00:05:29)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:29)>>>> LAST_blood pressure diastolic\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 00:05:29)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:29)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:29)>> ((u'blood pressure systolic', 'all'),)\n",
+      "(2017-06-22 00:05:29)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:29)>> Make DF for 1 components...\n",
+      "blood pressure systolic\n",
+      "(2017-06-22 00:05:29)>>>> BLOOD PRESSURE SYSTOLIC: 1/1\n",
+      "(2017-06-22 00:05:29)>>>>>> Opening...\n",
+      "(2017-06-22 00:05:30)<<<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:30)>>>>>> Join (7057, 40) to None\n",
+      "(2017-06-22 00:05:30)<<<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:30)<<<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:30)<< DONE (1.0s)\n",
+      "(2017-06-22 00:05:30)>> Segment df (7057, 40)\n",
+      "(2017-06-22 00:05:30)>>>> Get Segments\n",
+      "(2017-06-22 00:05:30)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:30)>>>> Apply Segments\n",
+      "(2017-06-22 00:05:30)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:30)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:30)>> Drop Small columns, threshold = 50 | (7057, 40)\n",
+      "(2017-06-22 00:05:30)<< DONE (0.0s)\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "(2017-06-22 00:05:30)>> TRANSFORM Combine like columns (7057, 6)\n",
+      "(2017-06-22 00:05:30)>>>> ('blood pressure systolic', 'known', 'qn', 'mmHg')\n",
+      "(2017-06-22 00:05:30)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:30)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:30)>> Start Feature Union on DF (7057, 1)\n",
+      "(2017-06-22 00:05:30)>>>> COUNT_blood pressure systolic\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 00:05:30)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:30)>>>> MEAN_blood pressure systolic\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 00:05:30)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:30)>>>> STD_blood pressure systolic\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 00:05:30)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:30)>>>> LAST_blood pressure systolic\n",
+      "29\n",
+      "29\n",
+      "29\n",
+      "25\n",
+      "(2017-06-22 00:05:30)<<<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:30)<< DONE (0.0s)\n",
+      "(2017-06-22 00:05:30) DONE (6.0s)\n",
+      "(233, 32) (328, 1)\n",
+      "(25, 32) (30, 1)\n"
+     ]
+    }
+   ],
+   "source": [
+    "test_lbl = label_pipeline.transform(X=test_ids)\n",
+    "test_ft = all_features.transform(test_lbl)\n",
+    "\n",
+    "print train_ft.shape, train_lbl.shape\n",
+    "print test_ft.shape, test_lbl.shape"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Test-train split"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Small train: 11794 > [101710, 163819, 191145, 186834, 190681] ...\n",
+      "Small test: 5898 > [172993, 130996, 105594, 100458, 102476] ...\n"
+     ]
+    }
+   ],
+   "source": [
+    "`from sklearn.model_selection import train_test_split\n",
+    "import mimic\n",
+    "\n",
+    "random_state = 42\n",
+    "\n",
+    "all_ids = mimic.get_all_hadm_ids()\n",
+    "\n",
+    "#these test IDs will never be touched again. They are sacred\n",
+    "train_ids,test_ids = train_test_split(all_ids,test_size=0.1,random_state=random_state)\n",
+    "\n",
+    "print 'Train:', len(train_ids),'>', train_ids[:5],'...'\n",
+    "print 'Test:', len(test_ids),'>',test_ids[:5],'...'\n",
+    "\n",
+    "# Small training set (20% train, 10% test)\n",
+    "\n",
+    "small_ids,ignore = train_test_split(train_ids,test_size=(2.0/3.0),random_state=random_state)\n",
+    "\n",
+    "train_ids_small,test_ids_small = train_test_split(small_ids,test_size=(1.0/3.0),random_state=random_state)\n",
+    "\n",
+    "print 'Small train:', len(train_ids_small),'>',train_ids_small[:5],'...'\n",
+    "print 'Small test:', len(test_ids_small),'>',test_ids_small[:5],'...'"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Lets get our labels now!"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [],
+   "source": [
+    "from sklearn.pipeline import Pipeline"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [],
+   "source": [
+    "train = train_ids_small\n",
+    "test = test_ids_small\n",
+    "\n",
+    "label extractor = lactate_label_extractor(data_dict.components.LACTATE,random_state=random_state)\n",
+    "label_pipeline = Pipeline([\n",
+    "        ('clean',cleaner_pipeline())\n",
+    "        ('label_extractor',extractor)\n",
+    "    ])\n",
+    "\n",
+    "lbl_train = filter_and_transform(df_data,label_pipeline,ids=train,fit_pipeline=True)\n",
+    "lbl_test = filter_and_transform(df_data,label_pipeline,ids=test,fit_pipeline=False)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Now we need to make our **FEATURES**. The first step in this process is to define how we are going to **\"segment\"** the data. What that means is that we need to identify which chunks of each timeseries to use, and then we will create each entry/rows/instance by aggregating the timeseries data in each chunk. \n",
+    "\n",
+    "In this case, we will use once of our pre-made segmenters, the n-hrs before segmenter. This will get fit to the labels, and then determine a block of time n-hours before the label as the segment. Specifically we are going to use all time before"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": [
+    "import segmenting\n",
+    "from constants import ALL\n",
+    "\n",
+    "segmenter = segmenting.n_hrs_before(df_context,n_hrs=ALL)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": [
+    "#4. Which features do we want, and to which columns should those features be applied?\n",
+    "var_type_filter = transformers.filter_var_type([constants.variable_type.ORDINAL,constants.variable_type.QUANTITATIVE])\n",
+    "feature_tuples = [\n",
+    "    ('MEAN',\n",
+    "         features.segment_mean(),\n",
+    "         var_type_filter,\n",
+    "         transformers.fill_mean()),\n",
+    "    ('STD',\n",
+    "         features.segment_std(),\n",
+    "         var_type_filter,\n",
+    "         transformers.fill_mean()),\n",
+    "    ('COUNT',\n",
+    "         features.segment_count(),\n",
+    "         constants.ALL,\n",
+    "         transformers.fill_zero()),\n",
+    "    ('LAST',\n",
+    "         features.segment_last(),\n",
+    "         var_type_filter,\n",
+    "         transformers.fill_mean()),\n",
+    "    ('SUM',\n",
+    "         features.segment_sum(),\n",
+    "         transformers.summable_only(ureg,[data_dict.components.WEIGHT_BODY]),\n",
+    "         transformers.fill_mean())\n",
+    "]\n",
+    "\n",
+    "\n",
+    "valid_ids = labels.index.get_level_values(constants.column_names.ID).unique().tolist()\n",
+    "end_dt = labels.reset_index(constants.column_names.DATETIME,drop=False).iloc[:,0]\n",
+    "\n",
+    "feature_pipeline = Pipeline([\n",
+    "        ('filter_ids',transformers.filter_ids()),\n",
+    "        ('segmenter',), #we are doing multivariate regression, so need to segment in this way for now\n",
+    "        ('featurizer',features.pdFeatureUnion(feature_tuples)),\n",
+    "        ('feature_cleaner',features.feature_cleaner())\n",
+    "    ])\n",
+    "\n",
+    "featurizer = features.pdFeatureUnion(feature_tuples)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": [
+    "import utils\n",
+    "df_all = utils.open_df('data/mimic_data','cleaned/all')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [],
+   "source": [
+    "logger.log('CLEANING',new_level=True)\n",
+    "df_cleaned = cleaners.fit_transform(df_all)\n",
+    "logger.end_log_level()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": [
+    "import pandas as pd\n",
+    "import utils\n",
+    "import icu_data_defs\n",
+    "import mimic\n",
+    "import transformers\n",
+    "import units\n",
+    "import logger\n",
+    "import constants\n",
+    "import segmenting\n",
+    "import features\n",
+    "from sklearn.pipeline import Pipeline\n",
+    "from sklearn.base import TransformerMixin,BaseEstimator\n",
+    "from sklearn.preprocessing import StandardScaler"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Featurize"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:18:55) Make DF for 11794 admission - [u'glasgow coma scale eye opening', u'glasgow coma scale motor', u'blood pressure systolic', u'oxygen saturation pulse oximetry', u'glasgow coma scale verbal', u'hemoglobin', u'lactate', u'blood pressure mean', u'vasopressin', u'weight body', u'normal saline', u'norepinephrine', u'temperature body', u'blood pressure diastolic', u'heart rate', u'output urine', u'lactated ringers', u'respiratory rate']\n",
+      "(2017-06-07 21:18:55)>> GLASGOW COMA SCALE EYE OPENING\n",
+      "(2017-06-07 21:18:55)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>glasgow coma scale eye opening</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>ord</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>184</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>190539.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>3.277445</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.074103</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>3.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>4.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>4.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>4.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     glasgow coma scale eye opening\n",
+       "status                                 known\n",
+       "variable_type                            ord\n",
+       "units                               no_units\n",
+       "description                              184\n",
+       "count                          190539.000000\n",
+       "mean                                3.277445\n",
+       "std                                 1.074103\n",
+       "min                                 1.000000\n",
+       "25%                                 3.000000\n",
+       "50%                                 4.000000\n",
+       "75%                                 4.000000\n",
+       "max                                 4.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:18:55)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:18:55)>>>> Clean (190539, 1)\n",
+      "(2017-06-07 21:18:55)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:18:55)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:18:55)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:18:55)>>>> Drop Small columns, threshold = 5 | (190539, 1)\n",
+      "(2017-06-07 21:18:55)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:18:55)>>>> Drop OOB data | (190539, 1)\n",
+      "(2017-06-07 21:18:55)>>>>>> glasgow coma scale eye opening, no_units, 190539\n",
+      "(2017-06-07 21:18:57)<<<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:18:57)<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:18:57)>>>> Drop Small columns, threshold = 50 | (190539, 1)\n",
+      "(2017-06-07 21:18:57)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:18:57)>>>> Combine like columns (190539, 1)\n",
+      "(2017-06-07 21:18:57)>>>>>> (u'glasgow coma scale eye opening', 'known', u'ord', 'no_units')\n",
+      "(2017-06-07 21:18:57)<<<<<< DONE (0.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>glasgow coma scale eye opening</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>ord</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>190539.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>3.277445</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.074103</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>3.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>4.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>4.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>4.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     glasgow coma scale eye opening\n",
+       "status                                 known\n",
+       "variable_type                            ord\n",
+       "units                               no_units\n",
+       "description                              all\n",
+       "count                          190539.000000\n",
+       "mean                                3.277445\n",
+       "std                                 1.074103\n",
+       "min                                 1.000000\n",
+       "25%                                 3.000000\n",
+       "50%                                 4.000000\n",
+       "75%                                 4.000000\n",
+       "max                                 4.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((190539, 1), (190539, 1), 0L, 0, '0.0% records')\n",
+      "(2017-06-07 21:18:57)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:18:57)>>>> Join (190539, 1) to None\n",
+      "(2017-06-07 21:18:57)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:18:57)<< DONE (2.0s)\n",
+      "(2017-06-07 21:18:57)>> GLASGOW COMA SCALE MOTOR\n",
+      "(2017-06-07 21:18:57)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>glasgow coma scale motor</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>ord</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>454</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>189663.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>5.218493</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.468247</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>5.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>6.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>6.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>6.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     glasgow coma scale motor\n",
+       "status                           known\n",
+       "variable_type                      ord\n",
+       "units                         no_units\n",
+       "description                        454\n",
+       "count                    189663.000000\n",
+       "mean                          5.218493\n",
+       "std                           1.468247\n",
+       "min                           1.000000\n",
+       "25%                           5.000000\n",
+       "50%                           6.000000\n",
+       "75%                           6.000000\n",
+       "max                           6.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:18:57)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:18:57)>>>> Clean (189663, 1)\n",
+      "(2017-06-07 21:18:57)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:18:57)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:18:57)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:18:57)>>>> Drop Small columns, threshold = 5 | (189663, 1)\n",
+      "(2017-06-07 21:18:58)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:18:58)>>>> Drop OOB data | (189663, 1)\n",
+      "(2017-06-07 21:18:58)>>>>>> glasgow coma scale motor, no_units, 189663\n",
+      "(2017-06-07 21:19:00)<<<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:19:00)<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:19:00)>>>> Drop Small columns, threshold = 50 | (189663, 1)\n",
+      "(2017-06-07 21:19:00)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:19:00)>>>> Combine like columns (189663, 1)\n",
+      "(2017-06-07 21:19:00)>>>>>> (u'glasgow coma scale motor', 'known', u'ord', 'no_units')\n",
+      "(2017-06-07 21:19:00)<<<<<< DONE (0.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>glasgow coma scale motor</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>ord</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>189663.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>5.218493</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.468247</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>5.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>6.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>6.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>6.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     glasgow coma scale motor\n",
+       "status                           known\n",
+       "variable_type                      ord\n",
+       "units                         no_units\n",
+       "description                        all\n",
+       "count                    189663.000000\n",
+       "mean                          5.218493\n",
+       "std                           1.468247\n",
+       "min                           1.000000\n",
+       "25%                           5.000000\n",
+       "50%                           6.000000\n",
+       "75%                           6.000000\n",
+       "max                           6.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((189663, 1), (189663, 1), 0L, 0, '0.0% records')\n",
+      "(2017-06-07 21:19:00)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:19:00)>>>> Join (189663, 1) to (190539, 1)\n",
+      "(2017-06-07 21:19:02)<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:19:02)<< DONE (5.0s)\n",
+      "(2017-06-07 21:19:02)>> BLOOD PRESSURE SYSTOLIC\n",
+      "(2017-06-07 21:19:02)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"14\" halign=\"left\">blood pressure systolic</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"9\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"5\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"9\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"5\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"9\" halign=\"left\">mmHg</th>\n",
+       "      <th colspan=\"5\" halign=\"left\">cc/min</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>6</th>\n",
+       "      <th>51</th>\n",
+       "      <th>442</th>\n",
+       "      <th>455</th>\n",
+       "      <th>220050</th>\n",
+       "      <th>220179</th>\n",
+       "      <th>224167</th>\n",
+       "      <th>225309</th>\n",
+       "      <th>227243</th>\n",
+       "      <th>3313</th>\n",
+       "      <th>3315</th>\n",
+       "      <th>3317</th>\n",
+       "      <th>3321</th>\n",
+       "      <th>3323</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>420257.000000</td>\n",
+       "      <td>419.000000</td>\n",
+       "      <td>309232.000000</td>\n",
+       "      <td>225246.00000</td>\n",
+       "      <td>256585.000000</td>\n",
+       "      <td>156.000000</td>\n",
+       "      <td>18089.000000</td>\n",
+       "      <td>105.000000</td>\n",
+       "      <td>28686.000000</td>\n",
+       "      <td>341.000000</td>\n",
+       "      <td>295.000000</td>\n",
+       "      <td>285.000000</td>\n",
+       "      <td>271.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>122.266249</td>\n",
+       "      <td>117.883055</td>\n",
+       "      <td>120.410820</td>\n",
+       "      <td>119.27193</td>\n",
+       "      <td>120.142943</td>\n",
+       "      <td>129.628205</td>\n",
+       "      <td>110.893952</td>\n",
+       "      <td>115.723810</td>\n",
+       "      <td>66.384695</td>\n",
+       "      <td>70.645161</td>\n",
+       "      <td>69.786441</td>\n",
+       "      <td>73.389474</td>\n",
+       "      <td>70.557196</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>26.043698</td>\n",
+       "      <td>26.740167</td>\n",
+       "      <td>23.432058</td>\n",
+       "      <td>48.30003</td>\n",
+       "      <td>277.732478</td>\n",
+       "      <td>36.817110</td>\n",
+       "      <td>24.545781</td>\n",
+       "      <td>24.923535</td>\n",
+       "      <td>12.060643</td>\n",
+       "      <td>11.149791</td>\n",
+       "      <td>10.591928</td>\n",
+       "      <td>10.264764</td>\n",
+       "      <td>10.922431</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>60.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>-2.00000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>48.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>44.000000</td>\n",
+       "      <td>40.000000</td>\n",
+       "      <td>47.000000</td>\n",
+       "      <td>33.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>104.000000</td>\n",
+       "      <td>99.000000</td>\n",
+       "      <td>104.000000</td>\n",
+       "      <td>102.00000</td>\n",
+       "      <td>103.000000</td>\n",
+       "      <td>100.750000</td>\n",
+       "      <td>94.000000</td>\n",
+       "      <td>98.000000</td>\n",
+       "      <td>58.000000</td>\n",
+       "      <td>63.000000</td>\n",
+       "      <td>63.000000</td>\n",
+       "      <td>67.000000</td>\n",
+       "      <td>64.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>120.000000</td>\n",
+       "      <td>118.000000</td>\n",
+       "      <td>118.000000</td>\n",
+       "      <td>117.00000</td>\n",
+       "      <td>117.000000</td>\n",
+       "      <td>129.500000</td>\n",
+       "      <td>108.000000</td>\n",
+       "      <td>115.000000</td>\n",
+       "      <td>67.000000</td>\n",
+       "      <td>71.000000</td>\n",
+       "      <td>71.000000</td>\n",
+       "      <td>73.000000</td>\n",
+       "      <td>71.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>139.000000</td>\n",
+       "      <td>134.000000</td>\n",
+       "      <td>135.000000</td>\n",
+       "      <td>134.00000</td>\n",
+       "      <td>133.000000</td>\n",
+       "      <td>150.000000</td>\n",
+       "      <td>124.000000</td>\n",
+       "      <td>130.000000</td>\n",
+       "      <td>75.000000</td>\n",
+       "      <td>78.000000</td>\n",
+       "      <td>76.000000</td>\n",
+       "      <td>80.000000</td>\n",
+       "      <td>78.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>295.000000</td>\n",
+       "      <td>250.000000</td>\n",
+       "      <td>296.000000</td>\n",
+       "      <td>14868.00000</td>\n",
+       "      <td>119119.020000</td>\n",
+       "      <td>240.000000</td>\n",
+       "      <td>287.000000</td>\n",
+       "      <td>190.000000</td>\n",
+       "      <td>449.000000</td>\n",
+       "      <td>103.000000</td>\n",
+       "      <td>98.000000</td>\n",
+       "      <td>107.000000</td>\n",
+       "      <td>113.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     blood pressure systolic                             \\\n",
+       "status                          known                              \n",
+       "variable_type                      qn                              \n",
+       "units                            mmHg                              \n",
+       "description                    6              51          442      \n",
+       "count                             0.0  420257.000000  419.000000   \n",
+       "mean                              NaN     122.266249  117.883055   \n",
+       "std                               NaN      26.043698   26.740167   \n",
+       "min                               NaN       0.000000   60.000000   \n",
+       "25%                               NaN     104.000000   99.000000   \n",
+       "50%                               NaN     120.000000  118.000000   \n",
+       "75%                               NaN     139.000000  134.000000   \n",
+       "max                               NaN     295.000000  250.000000   \n",
+       "\n",
+       "component                                                              \\\n",
+       "status                                                                  \n",
+       "variable_type                                                           \n",
+       "units                                                                   \n",
+       "description           455           220050         220179      224167   \n",
+       "count          309232.000000  225246.00000  256585.000000  156.000000   \n",
+       "mean              120.410820     119.27193     120.142943  129.628205   \n",
+       "std                23.432058      48.30003     277.732478   36.817110   \n",
+       "min                 0.000000      -2.00000       0.000000    0.000000   \n",
+       "25%               104.000000     102.00000     103.000000  100.750000   \n",
+       "50%               118.000000     117.00000     117.000000  129.500000   \n",
+       "75%               135.000000     134.00000     133.000000  150.000000   \n",
+       "max               296.000000   14868.00000  119119.020000  240.000000   \n",
+       "\n",
+       "component                                                                      \\\n",
+       "status                                        unknown                           \n",
+       "variable_type                                      qn                           \n",
+       "units                                          cc/min                           \n",
+       "description          225309      227243        3313        3315        3317     \n",
+       "count          18089.000000  105.000000  28686.000000  341.000000  295.000000   \n",
+       "mean             110.893952  115.723810     66.384695   70.645161   69.786441   \n",
+       "std               24.545781   24.923535     12.060643   11.149791   10.591928   \n",
+       "min                0.000000   48.000000      0.000000   44.000000   40.000000   \n",
+       "25%               94.000000   98.000000     58.000000   63.000000   63.000000   \n",
+       "50%              108.000000  115.000000     67.000000   71.000000   71.000000   \n",
+       "75%              124.000000  130.000000     75.000000   78.000000   76.000000   \n",
+       "max              287.000000  190.000000    449.000000  103.000000   98.000000   \n",
+       "\n",
+       "component                              \n",
+       "status                                 \n",
+       "variable_type                          \n",
+       "units                                  \n",
+       "description        3321        3323    \n",
+       "count          285.000000  271.000000  \n",
+       "mean            73.389474   70.557196  \n",
+       "std             10.264764   10.922431  \n",
+       "min             47.000000   33.000000  \n",
+       "25%             67.000000   64.000000  \n",
+       "50%             73.000000   71.000000  \n",
+       "75%             80.000000   78.000000  \n",
+       "max            107.000000  113.000000  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:19:06)<<<< DONE (4.0s)\n",
+      "(2017-06-07 21:19:06)>>>> Clean (1186786, 15)\n",
+      "(2017-06-07 21:19:06)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:19:06)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:19:14)<<<< DONE (8.0s)\n",
+      "(2017-06-07 21:19:14)>>>> Drop Small columns, threshold = 5 | (1186786, 40)\n",
+      "(2017-06-07 21:19:15)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:19:15)>>>> Drop OOB data | (1186786, 13)\n",
+      "(2017-06-07 21:19:16)>>>>>> blood pressure systolic, mmHg, 1230089\n",
+      "(2017-06-07 21:20:14)<<<<<< DONE (58.0s)\n",
+      "(2017-06-07 21:20:14)>>>>>> blood pressure systolic, cc/min, 29878\n",
+      "(2017-06-07 21:20:14)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:20:14)<<<< DONE (59.0s)\n",
+      "(2017-06-07 21:20:14)>>>> Drop Small columns, threshold = 50 | (1186786, 13)\n",
+      "(2017-06-07 21:20:14)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:20:14)>>>> Combine like columns (1186786, 13)\n",
+      "(2017-06-07 21:20:14)>>>>>> (u'blood pressure systolic', 'known', u'qn', u'mmHg')\n",
+      "(2017-06-07 21:20:15)<<<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:20:15)>>>>>> (u'blood pressure systolic', 'unknown', u'qn', u'cc/min')\n",
+      "(2017-06-07 21:20:32)<<<<<< DONE (17.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">blood pressure systolic</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "      <th>unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>mmHg</th>\n",
+       "      <th>cc/min</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>1.157847e+06</td>\n",
+       "      <td>28930.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>1.207507e+02</td>\n",
+       "      <td>66.432747</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>2.406445e+01</td>\n",
+       "      <td>12.064723</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000e+00</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>1.040000e+02</td>\n",
+       "      <td>58.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>1.180000e+02</td>\n",
+       "      <td>67.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>1.360000e+02</td>\n",
+       "      <td>75.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>4.110000e+02</td>\n",
+       "      <td>449.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     blood pressure systolic              \n",
+       "status                          known       unknown\n",
+       "variable_type                      qn            qn\n",
+       "units                            mmHg        cc/min\n",
+       "description                       all           all\n",
+       "count                    1.157847e+06  28930.000000\n",
+       "mean                     1.207507e+02     66.432747\n",
+       "std                      2.406445e+01     12.064723\n",
+       "min                      0.000000e+00      0.000000\n",
+       "25%                      1.040000e+02     58.000000\n",
+       "50%                      1.180000e+02     67.000000\n",
+       "75%                      1.360000e+02     75.000000\n",
+       "max                      4.110000e+02    449.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((1186786, 14), (1186777, 2), 73190L, 0, '0.0% records')\n",
+      "(2017-06-07 21:20:32)<<<< DONE (18.0s)\n",
+      "(2017-06-07 21:20:32)>>>> Join (1186777, 2) to (190760, 2)\n",
+      "(2017-06-07 21:20:39)<<<< DONE (7.0s)\n",
+      "(2017-06-07 21:20:39)<< DONE (97.0s)\n",
+      "(2017-06-07 21:20:39)>> OXYGEN SATURATION PULSE OXIMETRY\n",
+      "(2017-06-07 21:20:39)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">oxygen saturation pulse oximetry</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">percent</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>220277(%)</th>\n",
+       "      <th>646(%)</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>553064.000000</td>\n",
+       "      <td>680431.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>96.458469</td>\n",
+       "      <td>97.228694</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>29.151745</td>\n",
+       "      <td>3.761861</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>95.000000</td>\n",
+       "      <td>96.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>97.000000</td>\n",
+       "      <td>98.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>99.000000</td>\n",
+       "      <td>100.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>9891.000000</td>\n",
+       "      <td>109.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     oxygen saturation pulse oximetry               \n",
+       "status                                   known               \n",
+       "variable_type                               qn               \n",
+       "units                                  percent               \n",
+       "description                          220277(%)         646(%)\n",
+       "count                            553064.000000  680431.000000\n",
+       "mean                                 96.458469      97.228694\n",
+       "std                                  29.151745       3.761861\n",
+       "min                                   0.000000       0.000000\n",
+       "25%                                  95.000000      96.000000\n",
+       "50%                                  97.000000      98.000000\n",
+       "75%                                  99.000000     100.000000\n",
+       "max                                9891.000000     109.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:20:41)<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:20:41)>>>> Clean (1233449, 2)\n",
+      "(2017-06-07 21:20:41)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:20:41)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:20:41)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:20:41)>>>> Drop Small columns, threshold = 5 | (1233449, 2)\n",
+      "(2017-06-07 21:20:41)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:20:41)>>>> Drop OOB data | (1233449, 2)\n",
+      "(2017-06-07 21:20:41)>>>>>> oxygen saturation pulse oximetry, percent, 1233495\n",
+      "(2017-06-07 21:21:01)<<<<<< DONE (20.0s)\n",
+      "(2017-06-07 21:21:01)<<<< DONE (20.0s)\n",
+      "(2017-06-07 21:21:01)>>>> Drop Small columns, threshold = 50 | (1233449, 2)\n",
+      "(2017-06-07 21:21:01)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:21:01)>>>> Combine like columns (1233449, 2)\n",
+      "(2017-06-07 21:21:01)>>>>>> (u'oxygen saturation pulse oximetry', 'known', u'qn', u'percent')\n",
+      "(2017-06-07 21:21:08)<<<<<< DONE (7.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>oxygen saturation pulse oximetry</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>percent</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>1.233435e+06</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>9.684161e+01</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>3.834325e+00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000e+00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>9.500000e+01</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>9.800000e+01</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>9.900000e+01</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>1.000000e+02</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     oxygen saturation pulse oximetry\n",
+       "status                                   known\n",
+       "variable_type                               qn\n",
+       "units                                  percent\n",
+       "description                                all\n",
+       "count                             1.233435e+06\n",
+       "mean                              9.684161e+01\n",
+       "std                               3.834325e+00\n",
+       "min                               0.000000e+00\n",
+       "25%                               9.500000e+01\n",
+       "50%                               9.800000e+01\n",
+       "75%                               9.900000e+01\n",
+       "max                               1.000000e+02"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((1233449, 2), (1233435, 1), 60L, 0, '0.0% records')\n",
+      "(2017-06-07 21:21:08)<<<< DONE (7.0s)\n",
+      "(2017-06-07 21:21:08)>>>> Join (1233435, 1) to (1193505, 4)\n",
+      "(2017-06-07 21:21:21)<<<< DONE (13.0s)\n",
+      "(2017-06-07 21:21:21)<< DONE (42.0s)\n",
+      "(2017-06-07 21:21:21)>> GLASGOW COMA SCALE VERBAL\n",
+      "(2017-06-07 21:21:21)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>glasgow coma scale verbal</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>ord</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>723</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>189945.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>2.893353</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.911507</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>2.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>5.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>5.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     glasgow coma scale verbal\n",
+       "status                            known\n",
+       "variable_type                       ord\n",
+       "units                          no_units\n",
+       "description                         723\n",
+       "count                     189945.000000\n",
+       "mean                           2.893353\n",
+       "std                            1.911507\n",
+       "min                            1.000000\n",
+       "25%                            1.000000\n",
+       "50%                            2.000000\n",
+       "75%                            5.000000\n",
+       "max                            5.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:21:21)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:21:21)>>>> Clean (189945, 1)\n",
+      "(2017-06-07 21:21:21)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:21:21)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:21:21)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:21:21)>>>> Drop Small columns, threshold = 5 | (189945, 1)\n",
+      "(2017-06-07 21:21:21)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:21:21)>>>> Drop OOB data | (189945, 1)\n",
+      "(2017-06-07 21:21:21)>>>>>> glasgow coma scale verbal, no_units, 189945\n",
+      "(2017-06-07 21:21:24)<<<<<< DONE (3.0s)\n",
+      "(2017-06-07 21:21:24)<<<< DONE (3.0s)\n",
+      "(2017-06-07 21:21:24)>>>> Drop Small columns, threshold = 50 | (189945, 1)\n",
+      "(2017-06-07 21:21:24)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:21:24)>>>> Combine like columns (189945, 1)\n",
+      "(2017-06-07 21:21:24)>>>>>> (u'glasgow coma scale verbal', 'known', u'ord', 'no_units')\n",
+      "(2017-06-07 21:21:24)<<<<<< DONE (0.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>glasgow coma scale verbal</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>ord</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>189945.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>2.893353</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.911507</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>2.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>5.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>5.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     glasgow coma scale verbal\n",
+       "status                            known\n",
+       "variable_type                       ord\n",
+       "units                          no_units\n",
+       "description                         all\n",
+       "count                     189945.000000\n",
+       "mean                           2.893353\n",
+       "std                            1.911507\n",
+       "min                            1.000000\n",
+       "25%                            1.000000\n",
+       "50%                            2.000000\n",
+       "75%                            5.000000\n",
+       "max                            5.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((189945, 1), (189945, 1), 0L, 0, '0.0% records')\n",
+      "(2017-06-07 21:21:24)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:21:24)>>>> Join (189945, 1) to (1388960, 5)\n",
+      "(2017-06-07 21:21:32)<<<< DONE (8.0s)\n",
+      "(2017-06-07 21:21:32)<< DONE (11.0s)\n",
+      "(2017-06-07 21:21:32)>> HEMOGLOBIN\n",
+      "(2017-06-07 21:21:32)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"11\" halign=\"left\">hemoglobin</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"9\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"9\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"9\" halign=\"left\">g/dL</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>1165</th>\n",
+       "      <th>220228(g/dl)</th>\n",
+       "      <th>50811</th>\n",
+       "      <th>50811(g/dl)</th>\n",
+       "      <th>50811(gm/dl)</th>\n",
+       "      <th>51222</th>\n",
+       "      <th>51222(g/dl)</th>\n",
+       "      <th>51222(gm/dl)</th>\n",
+       "      <th>814(gm/dl)</th>\n",
+       "      <th>50811</th>\n",
+       "      <th>51222</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>27394.000000</td>\n",
+       "      <td>10595.000000</td>\n",
+       "      <td>3097.000000</td>\n",
+       "      <td>4169.000000</td>\n",
+       "      <td>73675.000000</td>\n",
+       "      <td>17720.000000</td>\n",
+       "      <td>23327.000000</td>\n",
+       "      <td>37635.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>10.055235</td>\n",
+       "      <td>10.249825</td>\n",
+       "      <td>10.433904</td>\n",
+       "      <td>10.443536</td>\n",
+       "      <td>10.315149</td>\n",
+       "      <td>10.515125</td>\n",
+       "      <td>10.588340</td>\n",
+       "      <td>10.268957</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>1.800061</td>\n",
+       "      <td>2.175106</td>\n",
+       "      <td>2.919614</td>\n",
+       "      <td>2.030175</td>\n",
+       "      <td>1.932909</td>\n",
+       "      <td>1.959018</td>\n",
+       "      <td>1.956675</td>\n",
+       "      <td>1.615244</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>2.200000</td>\n",
+       "      <td>3.400000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>8.800000</td>\n",
+       "      <td>8.700000</td>\n",
+       "      <td>9.100000</td>\n",
+       "      <td>9.100000</td>\n",
+       "      <td>9.000000</td>\n",
+       "      <td>9.300000</td>\n",
+       "      <td>9.300000</td>\n",
+       "      <td>9.200000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>9.900000</td>\n",
+       "      <td>10.100000</td>\n",
+       "      <td>10.300000</td>\n",
+       "      <td>10.300000</td>\n",
+       "      <td>10.100000</td>\n",
+       "      <td>10.200000</td>\n",
+       "      <td>10.300000</td>\n",
+       "      <td>10.100000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>11.100000</td>\n",
+       "      <td>11.600000</td>\n",
+       "      <td>11.600000</td>\n",
+       "      <td>11.700000</td>\n",
+       "      <td>11.400000</td>\n",
+       "      <td>11.400000</td>\n",
+       "      <td>11.400000</td>\n",
+       "      <td>11.200000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>23.000000</td>\n",
+       "      <td>19.400000</td>\n",
+       "      <td>130.000000</td>\n",
+       "      <td>21.000000</td>\n",
+       "      <td>23.300000</td>\n",
+       "      <td>24.400000</td>\n",
+       "      <td>22.500000</td>\n",
+       "      <td>18.900000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     hemoglobin                                           \\\n",
+       "status             known                                            \n",
+       "variable_type         qn                                            \n",
+       "units               g/dL                                            \n",
+       "description         1165  220228(g/dl)         50811  50811(g/dl)   \n",
+       "count                0.0  27394.000000  10595.000000  3097.000000   \n",
+       "mean                 NaN     10.055235     10.249825    10.433904   \n",
+       "std                  NaN      1.800061      2.175106     2.919614   \n",
+       "min                  NaN      0.000000      0.000000     0.000000   \n",
+       "25%                  NaN      8.800000      8.700000     9.100000   \n",
+       "50%                  NaN      9.900000     10.100000    10.300000   \n",
+       "75%                  NaN     11.100000     11.600000    11.600000   \n",
+       "max                  NaN     23.000000     19.400000   130.000000   \n",
+       "\n",
+       "component                                                             \\\n",
+       "status                                                                 \n",
+       "variable_type                                                          \n",
+       "units                                                                  \n",
+       "description   50811(gm/dl)         51222   51222(g/dl)  51222(gm/dl)   \n",
+       "count          4169.000000  73675.000000  17720.000000  23327.000000   \n",
+       "mean             10.443536     10.315149     10.515125     10.588340   \n",
+       "std               2.030175      1.932909      1.959018      1.956675   \n",
+       "min               0.000000      0.000000      2.200000      3.400000   \n",
+       "25%               9.100000      9.000000      9.300000      9.300000   \n",
+       "50%              10.300000     10.100000     10.200000     10.300000   \n",
+       "75%              11.700000     11.400000     11.400000     11.400000   \n",
+       "max              21.000000     23.300000     24.400000     22.500000   \n",
+       "\n",
+       "component                                   \n",
+       "status                       unknown        \n",
+       "variable_type                     qn        \n",
+       "units                       no_units        \n",
+       "description      814(gm/dl)    50811 51222  \n",
+       "count          37635.000000      0.0   0.0  \n",
+       "mean              10.268957      NaN   NaN  \n",
+       "std                1.615244      NaN   NaN  \n",
+       "min                0.000000      NaN   NaN  \n",
+       "25%                9.200000      NaN   NaN  \n",
+       "50%               10.100000      NaN   NaN  \n",
+       "75%               11.200000      NaN   NaN  \n",
+       "max               18.900000      NaN   NaN  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:21:33)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:21:33)>>>> Clean (134961, 14)\n",
+      "(2017-06-07 21:21:33)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:21:33)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:21:34)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:21:34)>>>> Drop Small columns, threshold = 5 | (134961, 21)\n",
+      "(2017-06-07 21:21:34)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:21:34)>>>> Drop OOB data | (134961, 10)\n",
+      "(2017-06-07 21:21:34)>>>>>> hemoglobin, g/dL, 197612\n",
+      "(2017-06-07 21:21:41)<<<<<< DONE (7.0s)\n",
+      "(2017-06-07 21:21:41)>>>>>> hemoglobin, no_units, 269922\n",
+      "(2017-06-07 21:21:41)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:21:41)<<<< DONE (7.0s)\n",
+      "(2017-06-07 21:21:41)>>>> Drop Small columns, threshold = 50 | (134961, 10)\n",
+      "(2017-06-07 21:21:41)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:21:41)>>>> Combine like columns (134961, 8)\n",
+      "(2017-06-07 21:21:41)>>>>>> ('hemoglobin', 'known', 'qn', 'g/dL')\n",
+      "(2017-06-07 21:21:42)<<<<<< DONE (1.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>hemoglobin</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>g/dL</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>134941.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>10.395801</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.964194</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>9.100000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>10.200000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>11.400000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>24.400000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component         hemoglobin\n",
+       "status                 known\n",
+       "variable_type             qn\n",
+       "units                   g/dL\n",
+       "description              all\n",
+       "count          134941.000000\n",
+       "mean               10.395801\n",
+       "std                 1.964194\n",
+       "min                 0.000000\n",
+       "25%                 9.100000\n",
+       "50%                10.200000\n",
+       "75%                11.400000\n",
+       "max                24.400000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((134961, 13), (134941, 1), 62677L, 0, '0.0% records')\n",
+      "(2017-06-07 21:21:42)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:21:42)>>>> Join (134941, 1) to (1388967, 6)\n",
+      "(2017-06-07 21:21:51)<<<< DONE (9.0s)\n",
+      "(2017-06-07 21:21:51)<< DONE (19.0s)\n",
+      "(2017-06-07 21:21:51)>> LACTATE\n",
+      "(2017-06-07 21:21:51)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"7\" halign=\"left\">lactate</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">mmol/L</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>1531</th>\n",
+       "      <th>225668</th>\n",
+       "      <th>50813</th>\n",
+       "      <th>818</th>\n",
+       "      <th>225668</th>\n",
+       "      <th>50813</th>\n",
+       "      <th>818</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>12763.000000</td>\n",
+       "      <td>14445.000000</td>\n",
+       "      <td>36017.000000</td>\n",
+       "      <td>14604.000000</td>\n",
+       "      <td>2.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>2.740604</td>\n",
+       "      <td>2.554469</td>\n",
+       "      <td>2.648551</td>\n",
+       "      <td>2.816597</td>\n",
+       "      <td>75.400000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>2.807148</td>\n",
+       "      <td>2.945601</td>\n",
+       "      <td>2.548654</td>\n",
+       "      <td>2.937797</td>\n",
+       "      <td>105.500332</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.200000</td>\n",
+       "      <td>0.200000</td>\n",
+       "      <td>0.100000</td>\n",
+       "      <td>0.200000</td>\n",
+       "      <td>0.800000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>1.200000</td>\n",
+       "      <td>1.200000</td>\n",
+       "      <td>1.200000</td>\n",
+       "      <td>1.300000</td>\n",
+       "      <td>38.100000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>1.800000</td>\n",
+       "      <td>1.800000</td>\n",
+       "      <td>1.800000</td>\n",
+       "      <td>1.800000</td>\n",
+       "      <td>75.400000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>3.000000</td>\n",
+       "      <td>2.900000</td>\n",
+       "      <td>3.000000</td>\n",
+       "      <td>3.100000</td>\n",
+       "      <td>112.700000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>31.000000</td>\n",
+       "      <td>170.000000</td>\n",
+       "      <td>32.000000</td>\n",
+       "      <td>31.000000</td>\n",
+       "      <td>150.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component           lactate                                            \\\n",
+       "status                known                                             \n",
+       "variable_type            qn                                             \n",
+       "units                mmol/L                                             \n",
+       "description            1531        225668         50813           818   \n",
+       "count          12763.000000  14445.000000  36017.000000  14604.000000   \n",
+       "mean               2.740604      2.554469      2.648551      2.816597   \n",
+       "std                2.807148      2.945601      2.548654      2.937797   \n",
+       "min                0.200000      0.200000      0.100000      0.200000   \n",
+       "25%                1.200000      1.200000      1.200000      1.300000   \n",
+       "50%                1.800000      1.800000      1.800000      1.800000   \n",
+       "75%                3.000000      2.900000      3.000000      3.100000   \n",
+       "max               31.000000    170.000000     32.000000     31.000000   \n",
+       "\n",
+       "component                             \n",
+       "status            unknown             \n",
+       "variable_type          qn             \n",
+       "units            no_units             \n",
+       "description        225668 50813  818  \n",
+       "count            2.000000   0.0  0.0  \n",
+       "mean            75.400000   NaN  NaN  \n",
+       "std            105.500332   NaN  NaN  \n",
+       "min              0.800000   NaN  NaN  \n",
+       "25%             38.100000   NaN  NaN  \n",
+       "50%             75.400000   NaN  NaN  \n",
+       "75%            112.700000   NaN  NaN  \n",
+       "max            150.000000   NaN  NaN  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:21:52)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:21:52)>>>> Clean (36176, 10)\n",
+      "(2017-06-07 21:21:52)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:21:52)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:21:52)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:21:52)>>>> Drop Small columns, threshold = 5 | (36176, 31)\n",
+      "(2017-06-07 21:21:52)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:21:52)>>>> Drop OOB data | (36176, 5)\n",
+      "(2017-06-07 21:21:52)>>>>>> lactate, mmol/L, 77829\n",
+      "(2017-06-07 21:21:53)<<<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:21:53)>>>>>> lactate, no_units, 36176\n",
+      "(2017-06-07 21:21:53)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:21:53)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:21:53)>>>> Drop Small columns, threshold = 50 | (36176, 5)\n",
+      "(2017-06-07 21:21:53)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:21:53)>>>> Combine like columns (36176, 4)\n",
+      "(2017-06-07 21:21:53)>>>>>> ('lactate', 'known', 'qn', 'mmol/L')\n",
+      "(2017-06-07 21:21:54)<<<<<< DONE (1.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>lactate</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>mmol/L</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>36151.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>2.647771</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>2.550192</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.100000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>1.200000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>1.800000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>3.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>32.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component           lactate\n",
+       "status                known\n",
+       "variable_type            qn\n",
+       "units                mmol/L\n",
+       "description             all\n",
+       "count          36151.000000\n",
+       "mean               2.647771\n",
+       "std                2.550192\n",
+       "min                0.100000\n",
+       "25%                1.200000\n",
+       "50%                1.800000\n",
+       "75%                3.000000\n",
+       "max               32.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((36176, 9), (36151, 1), 41712L, 2, '0.0293% records')\n",
+      "(2017-06-07 21:21:54)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:21:54)>>>> Join (36151, 1) to (1515017, 7)\n",
+      "(2017-06-07 21:22:02)<<<< DONE (8.0s)\n",
+      "(2017-06-07 21:22:02)<< DONE (11.0s)\n",
+      "(2017-06-07 21:22:02)>> BLOOD PRESSURE MEAN\n",
+      "(2017-06-07 21:22:02)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">blood pressure mean</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">mmHg</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>220052</th>\n",
+       "      <th>220181</th>\n",
+       "      <th>225312</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>226772.000000</td>\n",
+       "      <td>256986.000000</td>\n",
+       "      <td>18276.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>79.916207</td>\n",
+       "      <td>76.241892</td>\n",
+       "      <td>78.484187</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>32.658920</td>\n",
+       "      <td>27.999114</td>\n",
+       "      <td>81.573943</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>-40.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>-37.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>68.000000</td>\n",
+       "      <td>65.000000</td>\n",
+       "      <td>66.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>77.000000</td>\n",
+       "      <td>75.000000</td>\n",
+       "      <td>74.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>88.000000</td>\n",
+       "      <td>85.000000</td>\n",
+       "      <td>86.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>9381.000000</td>\n",
+       "      <td>8284.000000</td>\n",
+       "      <td>8684.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     blood pressure mean                             \n",
+       "status                      known                             \n",
+       "variable_type                  qn                             \n",
+       "units                        mmHg                             \n",
+       "description                220052         220181        225312\n",
+       "count               226772.000000  256986.000000  18276.000000\n",
+       "mean                    79.916207      76.241892     78.484187\n",
+       "std                     32.658920      27.999114     81.573943\n",
+       "min                    -40.000000       0.000000    -37.000000\n",
+       "25%                     68.000000      65.000000     66.000000\n",
+       "50%                     77.000000      75.000000     74.000000\n",
+       "75%                     88.000000      85.000000     86.000000\n",
+       "max                   9381.000000    8284.000000   8684.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:22:03)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:22:03)>>>> Clean (475862, 3)\n",
+      "(2017-06-07 21:22:03)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:03)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:22:03)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:03)>>>> Drop Small columns, threshold = 5 | (475862, 3)\n",
+      "(2017-06-07 21:22:03)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:03)>>>> Drop OOB data | (475862, 3)\n",
+      "(2017-06-07 21:22:03)>>>>>> blood pressure mean, mmHg, 502034\n",
+      "(2017-06-07 21:22:14)<<<<<< DONE (11.0s)\n",
+      "(2017-06-07 21:22:14)<<<< DONE (11.0s)\n",
+      "(2017-06-07 21:22:14)>>>> Drop Small columns, threshold = 50 | (475862, 3)\n",
+      "(2017-06-07 21:22:14)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:14)>>>> Combine like columns (475862, 3)\n",
+      "(2017-06-07 21:22:14)>>>>>> (u'blood pressure mean', 'known', u'qn', u'mmHg')\n",
+      "(2017-06-07 21:22:17)<<<<<< DONE (3.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>blood pressure mean</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>mmHg</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>475685.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>77.764329</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>17.291234</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>67.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>76.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>87.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>361.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     blood pressure mean\n",
+       "status                      known\n",
+       "variable_type                  qn\n",
+       "units                        mmHg\n",
+       "description                   all\n",
+       "count               475685.000000\n",
+       "mean                    77.764329\n",
+       "std                     17.291234\n",
+       "min                      0.000000\n",
+       "25%                     67.000000\n",
+       "50%                     76.000000\n",
+       "75%                     87.000000\n",
+       "max                    361.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((475862, 3), (475685, 1), 26349L, 0, '0.0% records')\n",
+      "(2017-06-07 21:22:17)<<<< DONE (3.0s)\n",
+      "(2017-06-07 21:22:17)>>>> Join (475685, 1) to (1542075, 8)\n",
+      "(2017-06-07 21:22:29)<<<< DONE (12.0s)\n",
+      "(2017-06-07 21:22:29)<< DONE (27.0s)\n",
+      "(2017-06-07 21:22:29)>> VASOPRESSIN\n",
+      "(2017-06-07 21:22:29)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"21\" halign=\"left\">vasopressin</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"15\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"6\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"15\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"6\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"8\" halign=\"left\">units</th>\n",
+       "      <th colspan=\"7\" halign=\"left\">units/min</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">ml</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>1136(U)</th>\n",
+       "      <th>1222(U)</th>\n",
+       "      <th>1327(U)</th>\n",
+       "      <th>2248(U)</th>\n",
+       "      <th>2445(U)</th>\n",
+       "      <th>30051(U)</th>\n",
+       "      <th>6255(U)</th>\n",
+       "      <th>7341(U)</th>\n",
+       "      <th>1136(units/hour)</th>\n",
+       "      <th>1222(units/hour)</th>\n",
+       "      <th>...</th>\n",
+       "      <th>30051(Umin)(U/min)</th>\n",
+       "      <th>30051(units/hour)</th>\n",
+       "      <th>6255(units/hour)</th>\n",
+       "      <th>7341(units/hour)</th>\n",
+       "      <th>30051</th>\n",
+       "      <th>42273</th>\n",
+       "      <th>42802</th>\n",
+       "      <th>46570</th>\n",
+       "      <th>30051</th>\n",
+       "      <th>42802</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>3.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>12442.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>3.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>...</td>\n",
+       "      <td>20747.000000</td>\n",
+       "      <td>776.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>33.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>1.026667</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>2.507845</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.033556</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>0.928640</td>\n",
+       "      <td>0.055511</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>4.281212</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>6.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.708957</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>7.126552</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.028483</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>1.186254</td>\n",
+       "      <td>0.077455</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>1.691116</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.040000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.000667</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>6.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>0.040000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>2.200000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.025333</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>0.040000</td>\n",
+       "      <td>0.026250</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>3.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>6.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>0.040000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>2.400000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.050000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>0.040000</td>\n",
+       "      <td>0.040000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>3.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>6.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>1.520000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>2.400000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.050000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>2.400000</td>\n",
+       "      <td>0.050000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>6.020000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>6.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>3.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>722.400000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.050000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>8.000000</td>\n",
+       "      <td>0.800000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>6.020000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>6.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>8 rows × 28 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     vasopressin                                                \\\n",
+       "status              known                                                 \n",
+       "variable_type          qn                                                 \n",
+       "units               units                                                 \n",
+       "description       1136(U) 1222(U) 1327(U) 2248(U) 2445(U)      30051(U)   \n",
+       "count            3.000000     0.0     0.0     0.0     0.0  12442.000000   \n",
+       "mean             1.026667     NaN     NaN     NaN     NaN      2.507845   \n",
+       "std              1.708957     NaN     NaN     NaN     NaN      7.126552   \n",
+       "min              0.040000     NaN     NaN     NaN     NaN      0.000000   \n",
+       "25%              0.040000     NaN     NaN     NaN     NaN      2.200000   \n",
+       "50%              0.040000     NaN     NaN     NaN     NaN      2.400000   \n",
+       "75%              1.520000     NaN     NaN     NaN     NaN      2.400000   \n",
+       "max              3.000000     NaN     NaN     NaN     NaN    722.400000   \n",
+       "\n",
+       "component                                                        ...   \\\n",
+       "status                                                           ...    \n",
+       "variable_type                                                    ...    \n",
+       "units                                units/min                   ...    \n",
+       "description   6255(U) 7341(U) 1136(units/hour) 1222(units/hour)  ...    \n",
+       "count             0.0     0.0         3.000000              0.0  ...    \n",
+       "mean              NaN     NaN         0.033556              NaN  ...    \n",
+       "std               NaN     NaN         0.028483              NaN  ...    \n",
+       "min               NaN     NaN         0.000667              NaN  ...    \n",
+       "25%               NaN     NaN         0.025333              NaN  ...    \n",
+       "50%               NaN     NaN         0.050000              NaN  ...    \n",
+       "75%               NaN     NaN         0.050000              NaN  ...    \n",
+       "max               NaN     NaN         0.050000              NaN  ...    \n",
+       "\n",
+       "component                                                            \\\n",
+       "status                                                                \n",
+       "variable_type                                                         \n",
+       "units                                                                 \n",
+       "description   30051(Umin)(U/min) 30051(units/hour) 6255(units/hour)   \n",
+       "count               20747.000000        776.000000              0.0   \n",
+       "mean                    0.928640          0.055511              NaN   \n",
+       "std                     1.186254          0.077455              NaN   \n",
+       "min                     0.000000          0.000000              NaN   \n",
+       "25%                     0.040000          0.026250              NaN   \n",
+       "50%                     0.040000          0.040000              NaN   \n",
+       "75%                     2.400000          0.050000              NaN   \n",
+       "max                     8.000000          0.800000              NaN   \n",
+       "\n",
+       "component                                                                   \n",
+       "status                            unknown                                   \n",
+       "variable_type                          qn                                   \n",
+       "units                                  ml                   no_units        \n",
+       "description   7341(units/hour)      30051 42273 42802 46570    30051 42802  \n",
+       "count                      0.0  33.000000   0.0   0.0   1.0      1.0   0.0  \n",
+       "mean                       NaN   4.281212   NaN   NaN   6.0      0.0   NaN  \n",
+       "std                        NaN   1.691116   NaN   NaN   NaN      NaN   NaN  \n",
+       "min                        NaN   0.000000   NaN   NaN   6.0      0.0   NaN  \n",
+       "25%                        NaN   3.000000   NaN   NaN   6.0      0.0   NaN  \n",
+       "50%                        NaN   3.000000   NaN   NaN   6.0      0.0   NaN  \n",
+       "75%                        NaN   6.020000   NaN   NaN   6.0      0.0   NaN  \n",
+       "max                        NaN   6.020000   NaN   NaN   6.0      0.0   NaN  \n",
+       "\n",
+       "[8 rows x 28 columns]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:22:29)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:29)>>>> Clean (23280, 31)\n",
+      "(2017-06-07 21:22:29)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:29)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:22:29)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:29)>>>> Drop Small columns, threshold = 5 | (23280, 28)\n",
+      "(2017-06-07 21:22:29)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:29)>>>> Drop OOB data | (23280, 6)\n",
+      "(2017-06-07 21:22:30)>>>>>> vasopressin, units, 12442\n",
+      "(2017-06-07 21:22:30)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:30)>>>>>> vasopressin, units/min, 23422\n",
+      "(2017-06-07 21:22:30)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:30)>>>>>> vasopressin, ml, 33\n",
+      "(2017-06-07 21:22:30)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:30)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:22:30)>>>> Drop Small columns, threshold = 50 | (23280, 6)\n",
+      "(2017-06-07 21:22:30)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:30)>>>> Combine like columns (23280, 5)\n",
+      "(2017-06-07 21:22:30)>>>>>> ('vasopressin', 'known', 'qn', 'units')\n",
+      "(2017-06-07 21:22:30)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:30)>>>>>> ('vasopressin', 'known', 'qn', 'units/min')\n",
+      "(2017-06-07 21:22:31)<<<<<< DONE (1.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">vasopressin</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>units</th>\n",
+       "      <th>units/min</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>12441.000000</td>\n",
+       "      <td>22685.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>2.449981</td>\n",
+       "      <td>0.849527</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>3.021413</td>\n",
+       "      <td>1.139410</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>2.200000</td>\n",
+       "      <td>0.040000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>2.400000</td>\n",
+       "      <td>0.040000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>2.400000</td>\n",
+       "      <td>2.400000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>144.000000</td>\n",
+       "      <td>4.800000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component       vasopressin              \n",
+       "status                known              \n",
+       "variable_type            qn              \n",
+       "units                 units     units/min\n",
+       "description             all           all\n",
+       "count          12441.000000  22685.000000\n",
+       "mean               2.449981      0.849527\n",
+       "std                3.021413      1.139410\n",
+       "min                0.000000      0.000000\n",
+       "25%                2.200000      0.040000\n",
+       "50%                2.400000      0.040000\n",
+       "75%                2.400000      2.400000\n",
+       "max              144.000000      4.800000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((23280, 28), (23258, 2), 781L, 0, '0.0% records')\n",
+      "(2017-06-07 21:22:31)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:22:31)>>>> Join (23258, 2) to (1545464, 9)\n",
+      "(2017-06-07 21:22:39)<<<< DONE (8.0s)\n",
+      "(2017-06-07 21:22:39)<< DONE (10.0s)\n",
+      "(2017-06-07 21:22:39)>> WEIGHT BODY\n",
+      "(2017-06-07 21:22:39)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">weight body</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">kg</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>763</th>\n",
+       "      <th>224639</th>\n",
+       "      <th>3693(gms)(grams)</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>9489.000000</td>\n",
+       "      <td>10119.000000</td>\n",
+       "      <td>178.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>85.255536</td>\n",
+       "      <td>86.870566</td>\n",
+       "      <td>0.003098</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>24.257167</td>\n",
+       "      <td>27.099830</td>\n",
+       "      <td>0.000785</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000675</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>69.099998</td>\n",
+       "      <td>70.200000</td>\n",
+       "      <td>0.002702</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>82.400002</td>\n",
+       "      <td>83.400000</td>\n",
+       "      <td>0.003260</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>97.099998</td>\n",
+       "      <td>100.200000</td>\n",
+       "      <td>0.003559</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>300.000000</td>\n",
+       "      <td>839.800000</td>\n",
+       "      <td>0.004845</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component      weight body                               \n",
+       "status               known                               \n",
+       "variable_type           qn                               \n",
+       "units                   kg                               \n",
+       "description            763        224639 3693(gms)(grams)\n",
+       "count          9489.000000  10119.000000       178.000000\n",
+       "mean             85.255536     86.870566         0.003098\n",
+       "std              24.257167     27.099830         0.000785\n",
+       "min               0.000000      0.000000         0.000675\n",
+       "25%              69.099998     70.200000         0.002702\n",
+       "50%              82.400002     83.400000         0.003260\n",
+       "75%              97.099998    100.200000         0.003559\n",
+       "max             300.000000    839.800000         0.004845"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:22:40)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:22:40)>>>> Clean (19786, 3)\n",
+      "(2017-06-07 21:22:40)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:40)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:22:40)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:40)>>>> Drop Small columns, threshold = 5 | (19786, 3)\n",
+      "(2017-06-07 21:22:40)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:40)>>>> Drop OOB data | (19786, 3)\n",
+      "(2017-06-07 21:22:40)>>>>>> weight body, kg, 19786\n",
+      "(2017-06-07 21:22:40)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:40)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:40)>>>> Drop Small columns, threshold = 50 | (19786, 3)\n",
+      "(2017-06-07 21:22:40)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:40)>>>> Combine like columns (19786, 3)\n",
+      "(2017-06-07 21:22:40)>>>>>> (u'weight body', 'known', u'qn', u'kg')\n",
+      "(2017-06-07 21:22:40)<<<<<< DONE (0.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>weight body</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>kg</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>19784.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>85.239931</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>25.873351</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>69.400002</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>82.600000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>98.400000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>300.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component       weight body\n",
+       "status                known\n",
+       "variable_type            qn\n",
+       "units                    kg\n",
+       "description             all\n",
+       "count          19784.000000\n",
+       "mean              85.239931\n",
+       "std               25.873351\n",
+       "min                0.000000\n",
+       "25%               69.400002\n",
+       "50%               82.600000\n",
+       "75%               98.400000\n",
+       "max              300.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((19786, 3), (19784, 1), 2L, 0, '0.0% records')\n",
+      "(2017-06-07 21:22:40)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:40)>>>> Join (19784, 1) to (1546902, 11)\n",
+      "(2017-06-07 21:22:49)<<<< DONE (9.0s)\n",
+      "(2017-06-07 21:22:49)<< DONE (10.0s)\n",
+      "(2017-06-07 21:22:49)>> NORMAL SALINE\n",
+      "(2017-06-07 21:22:49)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"15\" halign=\"left\">normal saline</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"13\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"13\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"8\" halign=\"left\">mL</th>\n",
+       "      <th colspan=\"5\" halign=\"left\">mL/hr</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>30190</th>\n",
+       "      <th>225158</th>\n",
+       "      <th>225158(L)</th>\n",
+       "      <th>225158(ml)</th>\n",
+       "      <th>30190(ml)</th>\n",
+       "      <th>41913(ml)</th>\n",
+       "      <th>44053(ml)</th>\n",
+       "      <th>44440(ml)</th>\n",
+       "      <th>225158(mL/hour)</th>\n",
+       "      <th>225158(mL/min)</th>\n",
+       "      <th>30190(mL/hour)</th>\n",
+       "      <th>41913(mL/hour)</th>\n",
+       "      <th>44440(mL/hour)</th>\n",
+       "      <th>30190</th>\n",
+       "      <th>44053</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>9.0</td>\n",
+       "      <td>7827.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>588.000000</td>\n",
+       "      <td>775.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>94729.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>60.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>34.0</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>462.549904</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>147.955984</td>\n",
+       "      <td>4.952516</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>77.198774</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>384.448372</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>271.403678</td>\n",
+       "      <td>9.266936</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>287.993454</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.127507</td>\n",
+       "      <td>0.100000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.004152</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>200.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>10.000000</td>\n",
+       "      <td>0.800000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>6.000659</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>500.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>35.798919</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>15.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>500.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>124.999998</td>\n",
+       "      <td>2.050000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>63.500001</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>10000.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>1500.000000</td>\n",
+       "      <td>80.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>51947.999400</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     normal saline                                                   \\\n",
+       "status                known                                                    \n",
+       "variable_type            qn                                                    \n",
+       "units                    mL                                                    \n",
+       "description           30190        225158 225158(L)   225158(ml)   30190(ml)   \n",
+       "count                   9.0   7827.000000       0.0   588.000000  775.000000   \n",
+       "mean                    0.0    462.549904       NaN   147.955984    4.952516   \n",
+       "std                     0.0    384.448372       NaN   271.403678    9.266936   \n",
+       "min                     0.0      0.000000       NaN     0.127507    0.100000   \n",
+       "25%                     0.0    200.000000       NaN    10.000000    0.800000   \n",
+       "50%                     0.0    500.000000       NaN    35.798919    1.000000   \n",
+       "75%                     0.0    500.000000       NaN   124.999998    2.050000   \n",
+       "max                     0.0  10000.000000       NaN  1500.000000   80.000000   \n",
+       "\n",
+       "component                                                                   \\\n",
+       "status                                                                       \n",
+       "variable_type                                                                \n",
+       "units                                                 mL/hr                  \n",
+       "description   41913(ml) 44053(ml) 44440(ml) 225158(mL/hour) 225158(mL/min)   \n",
+       "count               0.0       0.0       0.0    94729.000000            0.0   \n",
+       "mean                NaN       NaN       NaN       77.198774            NaN   \n",
+       "std                 NaN       NaN       NaN      287.993454            NaN   \n",
+       "min                 NaN       NaN       NaN        0.004152            NaN   \n",
+       "25%                 NaN       NaN       NaN        6.000659            NaN   \n",
+       "50%                 NaN       NaN       NaN       15.000000            NaN   \n",
+       "75%                 NaN       NaN       NaN       63.500001            NaN   \n",
+       "max                 NaN       NaN       NaN    51947.999400            NaN   \n",
+       "\n",
+       "component                                                                  \n",
+       "status                                                      unknown        \n",
+       "variable_type                                                    qn        \n",
+       "units                                                      no_units        \n",
+       "description   30190(mL/hour) 41913(mL/hour) 44440(mL/hour)    30190 44053  \n",
+       "count                   60.0            0.0            0.0     34.0   0.0  \n",
+       "mean                     0.0            NaN            NaN      0.0   NaN  \n",
+       "std                      0.0            NaN            NaN      0.0   NaN  \n",
+       "min                      0.0            NaN            NaN      0.0   NaN  \n",
+       "25%                      0.0            NaN            NaN      0.0   NaN  \n",
+       "50%                      0.0            NaN            NaN      0.0   NaN  \n",
+       "75%                      0.0            NaN            NaN      0.0   NaN  \n",
+       "max                      0.0            NaN            NaN      0.0   NaN  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:22:50)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:22:50)>>>> Clean (103822, 17)\n",
+      "(2017-06-07 21:22:50)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:50)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:22:50)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:50)>>>> Drop Small columns, threshold = 5 | (103822, 16)\n",
+      "(2017-06-07 21:22:51)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:22:51)>>>> Drop OOB data | (103822, 8)\n",
+      "(2017-06-07 21:22:51)>>>>>> normal saline, mL, 9199\n",
+      "(2017-06-07 21:22:53)<<<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:22:53)>>>>>> normal saline, mL/hr, 94789\n",
+      "(2017-06-07 21:22:55)<<<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:22:55)>>>>>> normal saline, no_units, 103856\n",
+      "(2017-06-07 21:22:55)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:55)<<<< DONE (4.0s)\n",
+      "(2017-06-07 21:22:55)>>>> Drop Small columns, threshold = 50 | (103822, 8)\n",
+      "(2017-06-07 21:22:55)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:55)>>>> Combine like columns (103822, 5)\n",
+      "(2017-06-07 21:22:55)>>>>>> (u'normal saline', 'known', u'qn', u'mL')\n",
+      "(2017-06-07 21:22:55)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:22:55)>>>>>> (u'normal saline', 'known', u'qn', u'mL/hr')\n",
+      "(2017-06-07 21:22:57)<<<<<< DONE (2.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">normal saline</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>mL</th>\n",
+       "      <th>mL/hr</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>9190.000000</td>\n",
+       "      <td>94782.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>403.831819</td>\n",
+       "      <td>75.628628</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>388.761192</td>\n",
+       "      <td>194.704919</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>100.000000</td>\n",
+       "      <td>6.000001</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>250.000000</td>\n",
+       "      <td>14.995838</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>500.000000</td>\n",
+       "      <td>63.342520</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>10000.000000</td>\n",
+       "      <td>8571.429000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     normal saline              \n",
+       "status                known              \n",
+       "variable_type            qn              \n",
+       "units                    mL         mL/hr\n",
+       "description             all           all\n",
+       "count           9190.000000  94782.000000\n",
+       "mean             403.831819     75.628628\n",
+       "std              388.761192    194.704919\n",
+       "min                0.000000      0.000000\n",
+       "25%              100.000000      6.000001\n",
+       "50%              250.000000     14.995838\n",
+       "75%              500.000000     63.342520\n",
+       "max            10000.000000   8571.429000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((103822, 16), (103772, 2), 50L, 2, '0.0508% records')\n",
+      "(2017-06-07 21:22:57)<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:22:57)>>>> Join (103772, 2) to (1550148, 12)\n",
+      "(2017-06-07 21:23:06)<<<< DONE (9.0s)\n",
+      "(2017-06-07 21:23:06)<< DONE (17.0s)\n",
+      "(2017-06-07 21:23:06)>> NOREPINEPHRINE\n",
+      "(2017-06-07 21:23:06)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"5\" halign=\"left\">norepinephrine</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"5\" halign=\"left\">known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"5\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">mcg</th>\n",
+       "      <th>mcg/kg/min</th>\n",
+       "      <th>mcg/min</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>221906(mg)</th>\n",
+       "      <th>30047(mg)</th>\n",
+       "      <th>30120(mg)</th>\n",
+       "      <th>30120(mcgkgmin)</th>\n",
+       "      <th>30047(mcgmin)</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>16187.000000</td>\n",
+       "      <td>1632.000000</td>\n",
+       "      <td>37019.000000</td>\n",
+       "      <td>58405.000000</td>\n",
+       "      <td>3035.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>159.361275</td>\n",
+       "      <td>913.854309</td>\n",
+       "      <td>649.333353</td>\n",
+       "      <td>0.147238</td>\n",
+       "      <td>13.276772</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>2837.146697</td>\n",
+       "      <td>2065.996665</td>\n",
+       "      <td>1142.376948</td>\n",
+       "      <td>0.397275</td>\n",
+       "      <td>25.624617</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.001595</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>40.006897</td>\n",
+       "      <td>150.000000</td>\n",
+       "      <td>147.360001</td>\n",
+       "      <td>0.040000</td>\n",
+       "      <td>2.666667</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>83.569031</td>\n",
+       "      <td>360.000000</td>\n",
+       "      <td>377.459839</td>\n",
+       "      <td>0.083117</td>\n",
+       "      <td>6.133333</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>181.773259</td>\n",
+       "      <td>900.000000</td>\n",
+       "      <td>794.580017</td>\n",
+       "      <td>0.189630</td>\n",
+       "      <td>13.333333</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>359550.584270</td>\n",
+       "      <td>32000.000000</td>\n",
+       "      <td>96768.000000</td>\n",
+       "      <td>50.000000</td>\n",
+       "      <td>250.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     norepinephrine                                              \\\n",
+       "status                 known                                               \n",
+       "variable_type             qn                                               \n",
+       "units                    mcg                                  mcg/kg/min   \n",
+       "description       221906(mg)     30047(mg)     30120(mg) 30120(mcgkgmin)   \n",
+       "count           16187.000000   1632.000000  37019.000000    58405.000000   \n",
+       "mean              159.361275    913.854309    649.333353        0.147238   \n",
+       "std              2837.146697   2065.996665   1142.376948        0.397275   \n",
+       "min                 0.001595      0.000000      0.000000        0.000000   \n",
+       "25%                40.006897    150.000000    147.360001        0.040000   \n",
+       "50%                83.569031    360.000000    377.459839        0.083117   \n",
+       "75%               181.773259    900.000000    794.580017        0.189630   \n",
+       "max            359550.584270  32000.000000  96768.000000       50.000000   \n",
+       "\n",
+       "component                    \n",
+       "status                       \n",
+       "variable_type                \n",
+       "units               mcg/min  \n",
+       "description   30047(mcgmin)  \n",
+       "count           3035.000000  \n",
+       "mean              13.276772  \n",
+       "std               25.624617  \n",
+       "min                0.000000  \n",
+       "25%                2.666667  \n",
+       "50%                6.133333  \n",
+       "75%               13.333333  \n",
+       "max              250.000000  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:23:06)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:23:06)>>>> Clean (79901, 5)\n",
+      "(2017-06-07 21:23:06)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:23:06)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:23:06)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:23:06)>>>> Drop Small columns, threshold = 5 | (79901, 5)\n",
+      "(2017-06-07 21:23:06)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:23:06)>>>> Drop OOB data | (79901, 5)\n",
+      "(2017-06-07 21:23:06)>>>>>> norepinephrine, mcg, 54838\n",
+      "(2017-06-07 21:23:09)<<<<<< DONE (3.0s)\n",
+      "(2017-06-07 21:23:09)>>>>>> norepinephrine, mcg/kg/min, 58405\n",
+      "(2017-06-07 21:23:09)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:23:09)>>>>>> norepinephrine, mcg/min, 3035\n",
+      "(2017-06-07 21:23:09)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:23:09)<<<< DONE (3.0s)\n",
+      "(2017-06-07 21:23:09)>>>> Drop Small columns, threshold = 50 | (79901, 5)\n",
+      "(2017-06-07 21:23:09)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:23:09)>>>> Combine like columns (79901, 5)\n",
+      "(2017-06-07 21:23:09)>>>>>> ('norepinephrine', 'known', 'qn', 'mcg')\n",
+      "(2017-06-07 21:23:09)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:23:09)>>>>>> ('norepinephrine', 'known', 'qn', 'mcg/kg/min')\n",
+      "(2017-06-07 21:23:11)<<<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:23:11)>>>>>> ('norepinephrine', 'known', 'qn', 'mcg/min')\n",
+      "(2017-06-07 21:23:11)<<<<<< DONE (0.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">norepinephrine</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>mcg</th>\n",
+       "      <th>mcg/kg/min</th>\n",
+       "      <th>mcg/min</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "      <th>all</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>54829.000000</td>\n",
+       "      <td>58390.000000</td>\n",
+       "      <td>2974.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>505.964727</td>\n",
+       "      <td>0.142429</td>\n",
+       "      <td>10.307035</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1042.709780</td>\n",
+       "      <td>0.208669</td>\n",
+       "      <td>13.728729</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>80.048355</td>\n",
+       "      <td>0.040000</td>\n",
+       "      <td>2.666667</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>234.375017</td>\n",
+       "      <td>0.082963</td>\n",
+       "      <td>6.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>576.468018</td>\n",
+       "      <td>0.189461</td>\n",
+       "      <td>12.466667</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>96768.000000</td>\n",
+       "      <td>10.000000</td>\n",
+       "      <td>100.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     norepinephrine                           \n",
+       "status                 known                           \n",
+       "variable_type             qn                           \n",
+       "units                    mcg    mcg/kg/min      mcg/min\n",
+       "description              all           all          all\n",
+       "count           54829.000000  58390.000000  2974.000000\n",
+       "mean              505.964727      0.142429    10.307035\n",
+       "std              1042.709780      0.208669    13.728729\n",
+       "min                 0.000000      0.000000     0.000000\n",
+       "25%                80.048355      0.040000     2.666667\n",
+       "50%               234.375017      0.082963     6.000000\n",
+       "75%               576.468018      0.189461    12.466667\n",
+       "max             96768.000000     10.000000   100.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((79901, 5), (79849, 3), 85L, 0, '0.0% records')\n",
+      "(2017-06-07 21:23:11)<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:23:11)>>>> Join (79849, 3) to (1637026, 14)\n",
+      "(2017-06-07 21:23:21)<<<< DONE (10.0s)\n",
+      "(2017-06-07 21:23:21)<< DONE (15.0s)\n",
+      "(2017-06-07 21:23:21)>> TEMPERATURE BODY\n",
+      "(2017-06-07 21:23:21)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">temperature body</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">degF</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>223761(?F)</th>\n",
+       "      <th>223762(?C)(degC)</th>\n",
+       "      <th>676(Deg. C)(degC)</th>\n",
+       "      <th>678(Deg. F)</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>103803.000000</td>\n",
+       "      <td>14719.00000</td>\n",
+       "      <td>77753.000000</td>\n",
+       "      <td>152788.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>98.381161</td>\n",
+       "      <td>99.25841</td>\n",
+       "      <td>98.816350</td>\n",
+       "      <td>98.573288</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>2.901359</td>\n",
+       "      <td>9.66066</td>\n",
+       "      <td>2.448264</td>\n",
+       "      <td>2.589280</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>32.00000</td>\n",
+       "      <td>32.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>97.500000</td>\n",
+       "      <td>97.52000</td>\n",
+       "      <td>98.060002</td>\n",
+       "      <td>97.599998</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>98.400000</td>\n",
+       "      <td>98.60000</td>\n",
+       "      <td>98.960002</td>\n",
+       "      <td>98.599998</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>99.300000</td>\n",
+       "      <td>99.68000</td>\n",
+       "      <td>99.860002</td>\n",
+       "      <td>99.599998</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>421.000000</td>\n",
+       "      <td>217.40000</td>\n",
+       "      <td>106.160002</td>\n",
+       "      <td>106.900002</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     temperature body                                     \\\n",
+       "status                   known                                      \n",
+       "variable_type               qn                                      \n",
+       "units                     degF                                      \n",
+       "description         223761(?F) 223762(?C)(degC) 676(Deg. C)(degC)   \n",
+       "count            103803.000000      14719.00000      77753.000000   \n",
+       "mean                 98.381161         99.25841         98.816350   \n",
+       "std                   2.901359          9.66066          2.448264   \n",
+       "min                   0.000000         32.00000         32.000000   \n",
+       "25%                  97.500000         97.52000         98.060002   \n",
+       "50%                  98.400000         98.60000         98.960002   \n",
+       "75%                  99.300000         99.68000         99.860002   \n",
+       "max                 421.000000        217.40000        106.160002   \n",
+       "\n",
+       "component                     \n",
+       "status                        \n",
+       "variable_type                 \n",
+       "units                         \n",
+       "description      678(Deg. F)  \n",
+       "count          152788.000000  \n",
+       "mean               98.573288  \n",
+       "std                 2.589280  \n",
+       "min                 0.000000  \n",
+       "25%                97.599998  \n",
+       "50%                98.599998  \n",
+       "75%                99.599998  \n",
+       "max               106.900002  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:23:21)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:23:21)>>>> Clean (348445, 4)\n",
+      "(2017-06-07 21:23:21)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:23:21)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:23:21)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:23:21)>>>> Drop Small columns, threshold = 5 | (348445, 4)\n",
+      "(2017-06-07 21:23:21)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:23:21)>>>> Drop OOB data | (348445, 4)\n",
+      "(2017-06-07 21:23:21)>>>>>> temperature body, degF, 349063\n",
+      "(2017-06-07 21:23:31)<<<<<< DONE (10.0s)\n",
+      "(2017-06-07 21:23:31)<<<< DONE (10.0s)\n",
+      "(2017-06-07 21:23:31)>>>> Drop Small columns, threshold = 50 | (348445, 4)\n",
+      "(2017-06-07 21:23:31)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:23:31)>>>> Combine like columns (348445, 4)\n",
+      "(2017-06-07 21:23:31)>>>>>> (u'temperature body', 'known', u'qn', u'degF')\n",
+      "(2017-06-07 21:23:33)<<<<<< DONE (2.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>temperature body</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>degF</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>348397.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>98.576780</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>2.448804</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>97.699997</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>98.600000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>99.599998</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>107.060000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     temperature body\n",
+       "status                   known\n",
+       "variable_type               qn\n",
+       "units                     degF\n",
+       "description                all\n",
+       "count            348397.000000\n",
+       "mean                 98.576780\n",
+       "std                   2.448804\n",
+       "min                   0.000000\n",
+       "25%                  97.699997\n",
+       "50%                  98.600000\n",
+       "75%                  99.599998\n",
+       "max                 107.060000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((348445, 4), (348397, 1), 666L, 0, '0.0% records')\n",
+      "(2017-06-07 21:23:33)<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:23:33)>>>> Join (348397, 1) to (1638590, 17)\n",
+      "(2017-06-07 21:23:45)<<<< DONE (12.0s)\n",
+      "(2017-06-07 21:23:45)<< DONE (24.0s)\n",
+      "(2017-06-07 21:23:45)>> BLOOD PRESSURE DIASTOLIC\n",
+      "(2017-06-07 21:23:45)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"15\" halign=\"left\">blood pressure diastolic</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"11\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"11\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"11\" halign=\"left\">mmHg</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">cc/min</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>8364</th>\n",
+       "      <th>8368</th>\n",
+       "      <th>8440</th>\n",
+       "      <th>8441</th>\n",
+       "      <th>8555</th>\n",
+       "      <th>220051</th>\n",
+       "      <th>220180</th>\n",
+       "      <th>224643</th>\n",
+       "      <th>225310</th>\n",
+       "      <th>227242</th>\n",
+       "      <th>8503(cmH20)(cmH2O)</th>\n",
+       "      <th>8502</th>\n",
+       "      <th>8504</th>\n",
+       "      <th>8506</th>\n",
+       "      <th>8507</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>420151.000000</td>\n",
+       "      <td>383.000000</td>\n",
+       "      <td>308872.000000</td>\n",
+       "      <td>4253.000000</td>\n",
+       "      <td>225199.000000</td>\n",
+       "      <td>256448.000000</td>\n",
+       "      <td>135.000000</td>\n",
+       "      <td>18076.000000</td>\n",
+       "      <td>94.000000</td>\n",
+       "      <td>341.000000</td>\n",
+       "      <td>28689.000000</td>\n",
+       "      <td>295.000000</td>\n",
+       "      <td>285.000000</td>\n",
+       "      <td>271.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>59.795535</td>\n",
+       "      <td>57.503916</td>\n",
+       "      <td>58.283753</td>\n",
+       "      <td>60.088173</td>\n",
+       "      <td>61.041212</td>\n",
+       "      <td>65.366250</td>\n",
+       "      <td>67.296296</td>\n",
+       "      <td>59.304437</td>\n",
+       "      <td>62.180851</td>\n",
+       "      <td>30.050071</td>\n",
+       "      <td>37.555939</td>\n",
+       "      <td>38.871186</td>\n",
+       "      <td>42.926316</td>\n",
+       "      <td>38.361624</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>14.164921</td>\n",
+       "      <td>16.900056</td>\n",
+       "      <td>15.770894</td>\n",
+       "      <td>13.216323</td>\n",
+       "      <td>301.010444</td>\n",
+       "      <td>420.484995</td>\n",
+       "      <td>14.652733</td>\n",
+       "      <td>35.784021</td>\n",
+       "      <td>16.762069</td>\n",
+       "      <td>6.998469</td>\n",
+       "      <td>10.445309</td>\n",
+       "      <td>8.420720</td>\n",
+       "      <td>22.165308</td>\n",
+       "      <td>9.062450</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>17.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>-12.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>34.000000</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>11.000000</td>\n",
+       "      <td>13.240064</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>12.000000</td>\n",
+       "      <td>4.000000</td>\n",
+       "      <td>11.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>51.000000</td>\n",
+       "      <td>46.000000</td>\n",
+       "      <td>47.000000</td>\n",
+       "      <td>52.000000</td>\n",
+       "      <td>50.000000</td>\n",
+       "      <td>52.000000</td>\n",
+       "      <td>58.000000</td>\n",
+       "      <td>50.000000</td>\n",
+       "      <td>50.000000</td>\n",
+       "      <td>25.744570</td>\n",
+       "      <td>31.000000</td>\n",
+       "      <td>33.000000</td>\n",
+       "      <td>36.000000</td>\n",
+       "      <td>32.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>58.000000</td>\n",
+       "      <td>60.000000</td>\n",
+       "      <td>57.000000</td>\n",
+       "      <td>59.000000</td>\n",
+       "      <td>58.000000</td>\n",
+       "      <td>61.000000</td>\n",
+       "      <td>66.000000</td>\n",
+       "      <td>57.000000</td>\n",
+       "      <td>62.000000</td>\n",
+       "      <td>29.422365</td>\n",
+       "      <td>37.000000</td>\n",
+       "      <td>39.000000</td>\n",
+       "      <td>41.000000</td>\n",
+       "      <td>38.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>68.000000</td>\n",
+       "      <td>70.000000</td>\n",
+       "      <td>68.000000</td>\n",
+       "      <td>67.000000</td>\n",
+       "      <td>67.000000</td>\n",
+       "      <td>72.000000</td>\n",
+       "      <td>76.000000</td>\n",
+       "      <td>66.000000</td>\n",
+       "      <td>72.000000</td>\n",
+       "      <td>34.571279</td>\n",
+       "      <td>43.000000</td>\n",
+       "      <td>45.000000</td>\n",
+       "      <td>48.000000</td>\n",
+       "      <td>44.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>298.000000</td>\n",
+       "      <td>110.000000</td>\n",
+       "      <td>201.000000</td>\n",
+       "      <td>150.000000</td>\n",
+       "      <td>90100.970000</td>\n",
+       "      <td>114108.980000</td>\n",
+       "      <td>100.000000</td>\n",
+       "      <td>4341.000000</td>\n",
+       "      <td>106.000000</td>\n",
+       "      <td>61.051408</td>\n",
+       "      <td>742.000000</td>\n",
+       "      <td>69.000000</td>\n",
+       "      <td>378.000000</td>\n",
+       "      <td>76.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     blood pressure diastolic                             \\\n",
+       "status                           known                              \n",
+       "variable_type                       qn                              \n",
+       "units                             mmHg                              \n",
+       "description                       8364           8368        8440   \n",
+       "count                              0.0  420151.000000  383.000000   \n",
+       "mean                               NaN      59.795535   57.503916   \n",
+       "std                                NaN      14.164921   16.900056   \n",
+       "min                                NaN       0.000000   17.000000   \n",
+       "25%                                NaN      51.000000   46.000000   \n",
+       "50%                                NaN      58.000000   60.000000   \n",
+       "75%                                NaN      68.000000   70.000000   \n",
+       "max                                NaN     298.000000  110.000000   \n",
+       "\n",
+       "component                                                                \\\n",
+       "status                                                                    \n",
+       "variable_type                                                             \n",
+       "units                                                                     \n",
+       "description             8441         8555         220051         220180   \n",
+       "count          308872.000000  4253.000000  225199.000000  256448.000000   \n",
+       "mean               58.283753    60.088173      61.041212      65.366250   \n",
+       "std                15.770894    13.216323     301.010444     420.484995   \n",
+       "min                 0.000000     0.000000     -12.000000       0.000000   \n",
+       "25%                47.000000    52.000000      50.000000      52.000000   \n",
+       "50%                57.000000    59.000000      58.000000      61.000000   \n",
+       "75%                68.000000    67.000000      67.000000      72.000000   \n",
+       "max               201.000000   150.000000   90100.970000  114108.980000   \n",
+       "\n",
+       "component                                                               \\\n",
+       "status                                                                   \n",
+       "variable_type                                                            \n",
+       "units                                                                    \n",
+       "description        224643        225310      227242 8503(cmH20)(cmH2O)   \n",
+       "count          135.000000  18076.000000   94.000000         341.000000   \n",
+       "mean            67.296296     59.304437   62.180851          30.050071   \n",
+       "std             14.652733     35.784021   16.762069           6.998469   \n",
+       "min             34.000000      1.000000   11.000000          13.240064   \n",
+       "25%             58.000000     50.000000   50.000000          25.744570   \n",
+       "50%             66.000000     57.000000   62.000000          29.422365   \n",
+       "75%             76.000000     66.000000   72.000000          34.571279   \n",
+       "max            100.000000   4341.000000  106.000000          61.051408   \n",
+       "\n",
+       "component                                                        \n",
+       "status              unknown                                      \n",
+       "variable_type            qn                                      \n",
+       "units                cc/min                                      \n",
+       "description            8502        8504        8506        8507  \n",
+       "count          28689.000000  295.000000  285.000000  271.000000  \n",
+       "mean              37.555939   38.871186   42.926316   38.361624  \n",
+       "std               10.445309    8.420720   22.165308    9.062450  \n",
+       "min                0.000000   12.000000    4.000000   11.000000  \n",
+       "25%               31.000000   33.000000   36.000000   32.000000  \n",
+       "50%               37.000000   39.000000   41.000000   38.000000  \n",
+       "75%               43.000000   45.000000   48.000000   44.000000  \n",
+       "max              742.000000   69.000000  378.000000   76.000000  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:23:48)<<<< DONE (3.0s)\n",
+      "(2017-06-07 21:23:48)>>>> Clean (1187390, 15)\n",
+      "(2017-06-07 21:23:48)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:23:48)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:23:48)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:23:48)>>>> Drop Small columns, threshold = 5 | (1187390, 15)\n",
+      "(2017-06-07 21:23:49)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:23:49)>>>> Drop OOB data | (1187390, 14)\n",
+      "(2017-06-07 21:23:50)>>>>>> blood pressure diastolic, mmHg, 1233952\n",
+      "(2017-06-07 21:25:00)<<<<<< DONE (70.0s)\n",
+      "(2017-06-07 21:25:00)>>>>>> blood pressure diastolic, cc/min, 29540\n",
+      "(2017-06-07 21:25:00)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:25:00)<<<< DONE (71.0s)\n",
+      "(2017-06-07 21:25:00)>>>> Drop Small columns, threshold = 50 | (1187390, 14)\n",
+      "(2017-06-07 21:25:01)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:25:01)>>>> Combine like columns (1187390, 14)\n",
+      "(2017-06-07 21:25:01)>>>>>> (u'blood pressure diastolic', 'known', u'qn', u'mmHg')\n",
+      "(2017-06-07 21:25:01)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:25:01)>>>>>> (u'blood pressure diastolic', 'unknown', u'qn', u'cc/min')\n",
+      "(2017-06-07 21:25:18)<<<<<< DONE (17.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">blood pressure diastolic</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "      <th>unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>mmHg</th>\n",
+       "      <th>cc/min</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>1.158759e+06</td>\n",
+       "      <td>28914.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>6.018887e+01</td>\n",
+       "      <td>37.571292</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.480046e+01</td>\n",
+       "      <td>10.429457</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000e+00</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>5.000000e+01</td>\n",
+       "      <td>31.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>5.900000e+01</td>\n",
+       "      <td>37.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>6.900000e+01</td>\n",
+       "      <td>43.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>4.450000e+02</td>\n",
+       "      <td>742.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     blood pressure diastolic              \n",
+       "status                           known       unknown\n",
+       "variable_type                       qn            qn\n",
+       "units                             mmHg        cc/min\n",
+       "description                        all           all\n",
+       "count                     1.158759e+06  28914.000000\n",
+       "mean                      6.018887e+01     37.571292\n",
+       "std                       1.480046e+01     10.429457\n",
+       "min                       0.000000e+00      0.000000\n",
+       "25%                       5.000000e+01     31.000000\n",
+       "50%                       5.900000e+01     37.000000\n",
+       "75%                       6.900000e+01     43.000000\n",
+       "max                       4.450000e+02    742.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((1187390, 15), (1187351, 2), 75819L, 0, '0.0% records')\n",
+      "(2017-06-07 21:25:18)<<<< DONE (17.0s)\n",
+      "(2017-06-07 21:25:18)>>>> Join (1187351, 2) to (1644835, 18)\n",
+      "(2017-06-07 21:25:34)<<<< DONE (16.0s)\n",
+      "(2017-06-07 21:25:34)<< DONE (109.0s)\n",
+      "(2017-06-07 21:25:34)>> HEART RATE\n",
+      "(2017-06-07 21:25:34)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"6\" halign=\"left\">heart rate</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">beats/min</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>211(BPM)(beat/min)</th>\n",
+       "      <th>211(bpm)(beat/min)</th>\n",
+       "      <th>220045(bpm)(beat/min)</th>\n",
+       "      <th>1332</th>\n",
+       "      <th>1341</th>\n",
+       "      <th>1725</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>693377.000000</td>\n",
+       "      <td>330413.000000</td>\n",
+       "      <td>567348.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>4.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>86.795088</td>\n",
+       "      <td>154.349049</td>\n",
+       "      <td>87.826761</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>104.250000</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>18.003278</td>\n",
+       "      <td>15.560119</td>\n",
+       "      <td>20.641808</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>9.878428</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>92.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>74.000000</td>\n",
+       "      <td>144.000000</td>\n",
+       "      <td>74.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>100.250000</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>85.000000</td>\n",
+       "      <td>156.000000</td>\n",
+       "      <td>87.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>104.500000</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>98.000000</td>\n",
+       "      <td>166.000000</td>\n",
+       "      <td>100.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>108.500000</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>303.000000</td>\n",
+       "      <td>292.000000</td>\n",
+       "      <td>6632.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>116.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component             heart rate                                           \\\n",
+       "status                     known                                            \n",
+       "variable_type                 qn                                            \n",
+       "units                  beats/min                                            \n",
+       "description   211(BPM)(beat/min) 211(bpm)(beat/min) 220045(bpm)(beat/min)   \n",
+       "count              693377.000000      330413.000000         567348.000000   \n",
+       "mean                   86.795088         154.349049             87.826761   \n",
+       "std                    18.003278          15.560119             20.641808   \n",
+       "min                     0.000000           1.000000              0.000000   \n",
+       "25%                    74.000000         144.000000             74.000000   \n",
+       "50%                    85.000000         156.000000             87.000000   \n",
+       "75%                    98.000000         166.000000            100.000000   \n",
+       "max                   303.000000         292.000000           6632.000000   \n",
+       "\n",
+       "component                                \n",
+       "status         unknown                   \n",
+       "variable_type       qn                   \n",
+       "units         no_units                   \n",
+       "description       1332        1341 1725  \n",
+       "count              0.0    4.000000  0.0  \n",
+       "mean               NaN  104.250000  NaN  \n",
+       "std                NaN    9.878428  NaN  \n",
+       "min                NaN   92.000000  NaN  \n",
+       "25%                NaN  100.250000  NaN  \n",
+       "50%                NaN  104.500000  NaN  \n",
+       "75%                NaN  108.500000  NaN  \n",
+       "max                NaN  116.000000  NaN  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:25:36)<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:25:36)>>>> Clean (1591085, 6)\n",
+      "(2017-06-07 21:25:36)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:25:36)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:25:36)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:25:36)>>>> Drop Small columns, threshold = 5 | (1591085, 6)\n",
+      "(2017-06-07 21:25:37)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:25:37)>>>> Drop OOB data | (1591085, 3)\n",
+      "(2017-06-07 21:25:37)>>>>>> heart rate, beats/min, 1591138\n",
+      "(2017-06-07 21:26:11)<<<<<< DONE (34.0s)\n",
+      "(2017-06-07 21:26:11)<<<< DONE (34.0s)\n",
+      "(2017-06-07 21:26:11)>>>> Drop Small columns, threshold = 50 | (1591085, 3)\n",
+      "(2017-06-07 21:26:11)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:26:11)>>>> Combine like columns (1591085, 3)\n",
+      "(2017-06-07 21:26:11)>>>>>> (u'heart rate', 'known', u'qn', u'beats/min')\n",
+      "(2017-06-07 21:26:19)<<<<<< DONE (8.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>heart rate</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>beats/min</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>1.591080e+06</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>1.011863e+02</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>3.250182e+01</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000e+00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>7.700000e+01</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>9.200000e+01</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>1.180000e+02</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>3.030000e+02</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component        heart rate\n",
+       "status                known\n",
+       "variable_type            qn\n",
+       "units             beats/min\n",
+       "description             all\n",
+       "count          1.591080e+06\n",
+       "mean           1.011863e+02\n",
+       "std            3.250182e+01\n",
+       "min            0.000000e+00\n",
+       "25%            7.700000e+01\n",
+       "50%            9.200000e+01\n",
+       "75%            1.180000e+02\n",
+       "max            3.030000e+02"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((1591085, 6), (1591080, 1), 62L, 0, '0.0% records')\n",
+      "(2017-06-07 21:26:19)<<<< DONE (8.0s)\n",
+      "(2017-06-07 21:26:19)>>>> Join (1591080, 1) to (1644862, 20)\n",
+      "(2017-06-07 21:26:36)<<<< DONE (17.0s)\n",
+      "(2017-06-07 21:26:36)<< DONE (62.0s)\n",
+      "(2017-06-07 21:26:36)>> OUTPUT URINE\n",
+      "(2017-06-07 21:26:36)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"21\" halign=\"left\">output urine</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"10\" halign=\"left\">known</th>\n",
+       "      <th>...</th>\n",
+       "      <th colspan=\"10\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"10\" halign=\"left\">qn</th>\n",
+       "      <th>...</th>\n",
+       "      <th colspan=\"10\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"10\" halign=\"left\">mL</th>\n",
+       "      <th>...</th>\n",
+       "      <th colspan=\"10\" halign=\"left\">no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>226559</th>\n",
+       "      <th>226560</th>\n",
+       "      <th>40055(ml)</th>\n",
+       "      <th>40069(ml)</th>\n",
+       "      <th>40405(ml)</th>\n",
+       "      <th>41857(ml)</th>\n",
+       "      <th>42042(ml)</th>\n",
+       "      <th>42592(ml)</th>\n",
+       "      <th>42666(ml)</th>\n",
+       "      <th>42810(ml)</th>\n",
+       "      <th>...</th>\n",
+       "      <th>44253</th>\n",
+       "      <th>44325</th>\n",
+       "      <th>44684</th>\n",
+       "      <th>44706</th>\n",
+       "      <th>44824</th>\n",
+       "      <th>45415</th>\n",
+       "      <th>45991</th>\n",
+       "      <th>46180</th>\n",
+       "      <th>46578</th>\n",
+       "      <th>46658</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>236361.000000</td>\n",
+       "      <td>12134.000000</td>\n",
+       "      <td>385310.000000</td>\n",
+       "      <td>12063.000000</td>\n",
+       "      <td>322.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>2.000000</td>\n",
+       "      <td>...</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>117.298465</td>\n",
+       "      <td>304.842616</td>\n",
+       "      <td>118.369532</td>\n",
+       "      <td>284.002901</td>\n",
+       "      <td>156.270186</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>696.0</td>\n",
+       "      <td>600.0</td>\n",
+       "      <td>725.000000</td>\n",
+       "      <td>...</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>427.681976</td>\n",
+       "      <td>204.713335</td>\n",
+       "      <td>130.160936</td>\n",
+       "      <td>201.201076</td>\n",
+       "      <td>250.854114</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>35.355339</td>\n",
+       "      <td>...</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>696.0</td>\n",
+       "      <td>600.0</td>\n",
+       "      <td>700.000000</td>\n",
+       "      <td>...</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>40.000000</td>\n",
+       "      <td>160.000000</td>\n",
+       "      <td>40.000000</td>\n",
+       "      <td>150.000000</td>\n",
+       "      <td>50.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>696.0</td>\n",
+       "      <td>600.0</td>\n",
+       "      <td>712.500000</td>\n",
+       "      <td>...</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>80.000000</td>\n",
+       "      <td>250.000000</td>\n",
+       "      <td>80.000000</td>\n",
+       "      <td>250.000000</td>\n",
+       "      <td>80.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>696.0</td>\n",
+       "      <td>600.0</td>\n",
+       "      <td>725.000000</td>\n",
+       "      <td>...</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>150.000000</td>\n",
+       "      <td>400.000000</td>\n",
+       "      <td>150.000000</td>\n",
+       "      <td>400.000000</td>\n",
+       "      <td>123.750000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>696.0</td>\n",
+       "      <td>600.0</td>\n",
+       "      <td>737.500000</td>\n",
+       "      <td>...</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>160220.000000</td>\n",
+       "      <td>2275.000000</td>\n",
+       "      <td>7300.000000</td>\n",
+       "      <td>2400.000000</td>\n",
+       "      <td>2000.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>696.0</td>\n",
+       "      <td>600.0</td>\n",
+       "      <td>750.000000</td>\n",
+       "      <td>...</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>8 rows × 51 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component       output urine                                             \\\n",
+       "status                 known                                              \n",
+       "variable_type             qn                                              \n",
+       "units                     mL                                              \n",
+       "description           226559        226560      40055(ml)     40069(ml)   \n",
+       "count          236361.000000  12134.000000  385310.000000  12063.000000   \n",
+       "mean              117.298465    304.842616     118.369532    284.002901   \n",
+       "std               427.681976    204.713335     130.160936    201.201076   \n",
+       "min                 0.000000      0.000000       0.000000      0.000000   \n",
+       "25%                40.000000    160.000000      40.000000    150.000000   \n",
+       "50%                80.000000    250.000000      80.000000    250.000000   \n",
+       "75%               150.000000    400.000000     150.000000    400.000000   \n",
+       "max            160220.000000   2275.000000    7300.000000   2400.000000   \n",
+       "\n",
+       "component                                                           \\\n",
+       "status                                                               \n",
+       "variable_type                                                        \n",
+       "units                                                                \n",
+       "description      40405(ml) 41857(ml) 42042(ml) 42592(ml) 42666(ml)   \n",
+       "count           322.000000       0.0       0.0       1.0       1.0   \n",
+       "mean            156.270186       NaN       NaN     696.0     600.0   \n",
+       "std             250.854114       NaN       NaN       NaN       NaN   \n",
+       "min               0.000000       NaN       NaN     696.0     600.0   \n",
+       "25%              50.000000       NaN       NaN     696.0     600.0   \n",
+       "50%              80.000000       NaN       NaN     696.0     600.0   \n",
+       "75%             123.750000       NaN       NaN     696.0     600.0   \n",
+       "max            2000.000000       NaN       NaN     696.0     600.0   \n",
+       "\n",
+       "component                  ...                                                \\\n",
+       "status                     ...   unknown                                       \n",
+       "variable_type              ...        qn                                       \n",
+       "units                      ...  no_units                                       \n",
+       "description     42810(ml)  ...     44253 44325 44684 44706 44824 45415 45991   \n",
+       "count            2.000000  ...       0.0   1.0   0.0   0.0   1.0   0.0   0.0   \n",
+       "mean           725.000000  ...       NaN   0.0   NaN   NaN   0.0   NaN   NaN   \n",
+       "std             35.355339  ...       NaN   NaN   NaN   NaN   NaN   NaN   NaN   \n",
+       "min            700.000000  ...       NaN   0.0   NaN   NaN   0.0   NaN   NaN   \n",
+       "25%            712.500000  ...       NaN   0.0   NaN   NaN   0.0   NaN   NaN   \n",
+       "50%            725.000000  ...       NaN   0.0   NaN   NaN   0.0   NaN   NaN   \n",
+       "75%            737.500000  ...       NaN   0.0   NaN   NaN   0.0   NaN   NaN   \n",
+       "max            750.000000  ...       NaN   0.0   NaN   NaN   0.0   NaN   NaN   \n",
+       "\n",
+       "component                        \n",
+       "status                           \n",
+       "variable_type                    \n",
+       "units                            \n",
+       "description   46180 46578 46658  \n",
+       "count           0.0   0.0   0.0  \n",
+       "mean            NaN   NaN   NaN  \n",
+       "std             NaN   NaN   NaN  \n",
+       "min             NaN   NaN   NaN  \n",
+       "25%             NaN   NaN   NaN  \n",
+       "50%             NaN   NaN   NaN  \n",
+       "75%             NaN   NaN   NaN  \n",
+       "max             NaN   NaN   NaN  \n",
+       "\n",
+       "[8 rows x 51 columns]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:26:44)<<<< DONE (8.0s)\n",
+      "(2017-06-07 21:26:44)>>>> Clean (725171, 54)\n",
+      "(2017-06-07 21:26:44)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:26:44)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:26:51)<<<< DONE (7.0s)\n",
+      "(2017-06-07 21:26:51)>>>> Drop Small columns, threshold = 5 | (725171, 55)\n",
+      "(2017-06-07 21:26:52)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:26:52)>>>> Drop OOB data | (725171, 10)\n",
+      "(2017-06-07 21:26:52)>>>>>> output urine, mL, 646190\n",
+      "(2017-06-07 21:27:16)<<<<<< DONE (24.0s)\n",
+      "(2017-06-07 21:27:16)>>>>>> output urine, no_units, 2176313\n",
+      "(2017-06-07 21:27:16)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:27:16)<<<< DONE (24.0s)\n",
+      "(2017-06-07 21:27:16)>>>> Drop Small columns, threshold = 50 | (725171, 10)\n",
+      "(2017-06-07 21:27:16)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:27:16)>>>> Combine like columns (725171, 10)\n",
+      "(2017-06-07 21:27:16)>>>>>> (u'output urine', 'known', u'qn', u'mL')\n",
+      "(2017-06-07 21:27:16)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:27:16)>>>>>> (u'output urine', 'unknown', 'nom', 'no_units')\n",
+      "(2017-06-07 21:27:27)<<<<<< DONE (11.0s)\n",
+      "(2017-06-07 21:27:27)>>>>>> (u'output urine', 'unknown', u'qn', 'no_units')\n",
+      "(2017-06-07 21:27:35)<<<<<< DONE (8.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"5\" halign=\"left\">output urine</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">nom</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>mL</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">no_units</th>\n",
+       "      <th>no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "      <th>3686(ml)_No Void</th>\n",
+       "      <th>3686(ml)_Voiding qs</th>\n",
+       "      <th>3686_Voiding qs</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>645840.000000</td>\n",
+       "      <td>725171.000000</td>\n",
+       "      <td>725171.000000</td>\n",
+       "      <td>725171.000000</td>\n",
+       "      <td>800.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>124.077543</td>\n",
+       "      <td>0.001202</td>\n",
+       "      <td>0.107296</td>\n",
+       "      <td>0.000154</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>132.986829</td>\n",
+       "      <td>0.034656</td>\n",
+       "      <td>0.309490</td>\n",
+       "      <td>0.012427</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>45.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>80.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>160.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>7300.000000</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component       output urine                                       \\\n",
+       "status                 known          unknown                       \n",
+       "variable_type             qn              nom                       \n",
+       "units                     mL         no_units                       \n",
+       "description              all 3686(ml)_No Void 3686(ml)_Voiding qs   \n",
+       "count          645840.000000    725171.000000       725171.000000   \n",
+       "mean              124.077543         0.001202            0.107296   \n",
+       "std               132.986829         0.034656            0.309490   \n",
+       "min                 0.000000         0.000000            0.000000   \n",
+       "25%                45.000000         0.000000            0.000000   \n",
+       "50%                80.000000         0.000000            0.000000   \n",
+       "75%               160.000000         0.000000            0.000000   \n",
+       "max              7300.000000         1.000000            1.000000   \n",
+       "\n",
+       "component                               \n",
+       "status                                  \n",
+       "variable_type                       qn  \n",
+       "units                         no_units  \n",
+       "description   3686_Voiding qs      all  \n",
+       "count           725171.000000    800.0  \n",
+       "mean                 0.000154      0.0  \n",
+       "std                  0.012427      0.0  \n",
+       "min                  0.000000      0.0  \n",
+       "25%                  0.000000      0.0  \n",
+       "50%                  0.000000      0.0  \n",
+       "75%                  0.000000      0.0  \n",
+       "max                  1.000000      0.0  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((725171, 53), (725171, 5), -2096467L, 0, '0.0% records')\n",
+      "(2017-06-07 21:27:36)<<<< DONE (20.0s)\n",
+      "(2017-06-07 21:27:36)>>>> Join (725171, 5) to (1963446, 21)\n",
+      "(2017-06-07 21:27:50)<<<< DONE (14.0s)\n",
+      "(2017-06-07 21:27:50)<< DONE (74.0s)\n",
+      "(2017-06-07 21:27:50)>> LACTATED RINGERS\n",
+      "(2017-06-07 21:27:50)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"20\" halign=\"left\">lactated ringers</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"14\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"6\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"14\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"6\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"12\" halign=\"left\">mL</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">mL/hr</th>\n",
+       "      <th colspan=\"6\" halign=\"left\">no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>1634(ml)</th>\n",
+       "      <th>225828</th>\n",
+       "      <th>225828(ml)</th>\n",
+       "      <th>2971(ml)</th>\n",
+       "      <th>30021</th>\n",
+       "      <th>30021(ml)</th>\n",
+       "      <th>44184(ml)</th>\n",
+       "      <th>44367(ml)</th>\n",
+       "      <th>44521(ml)</th>\n",
+       "      <th>44815(ml)</th>\n",
+       "      <th>46207(ml)</th>\n",
+       "      <th>46781(ml)</th>\n",
+       "      <th>225828(mL/hour)</th>\n",
+       "      <th>30021(mL/hour)</th>\n",
+       "      <th>30021</th>\n",
+       "      <th>44184</th>\n",
+       "      <th>44367</th>\n",
+       "      <th>44521</th>\n",
+       "      <th>44815</th>\n",
+       "      <th>46207</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>97.000000</td>\n",
+       "      <td>9614.000000</td>\n",
+       "      <td>5.0</td>\n",
+       "      <td>104.0</td>\n",
+       "      <td>41253.000000</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>296.000000</td>\n",
+       "      <td>148.0</td>\n",
+       "      <td>954.0</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>1.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>696.855670</td>\n",
+       "      <td>479.561926</td>\n",
+       "      <td>100.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>139.773697</td>\n",
+       "      <td>500.0</td>\n",
+       "      <td>1000.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>500.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>467.222506</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>276.372823</td>\n",
+       "      <td>436.213858</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>211.933281</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>468.711347</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>180.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>100.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>500.0</td>\n",
+       "      <td>1000.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>500.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>5.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>500.000000</td>\n",
+       "      <td>99.999996</td>\n",
+       "      <td>100.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>10.000000</td>\n",
+       "      <td>500.0</td>\n",
+       "      <td>1000.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>500.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>99.980496</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>500.000000</td>\n",
+       "      <td>499.999980</td>\n",
+       "      <td>100.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>100.000000</td>\n",
+       "      <td>500.0</td>\n",
+       "      <td>1000.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>500.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>246.457485</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>1000.000000</td>\n",
+       "      <td>999.999960</td>\n",
+       "      <td>100.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>150.000000</td>\n",
+       "      <td>500.0</td>\n",
+       "      <td>1000.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>500.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>980.400012</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>1000.000000</td>\n",
+       "      <td>6000.000000</td>\n",
+       "      <td>100.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>8000.000000</td>\n",
+       "      <td>500.0</td>\n",
+       "      <td>1000.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>500.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>2999.999996</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     lactated ringers                                            \\\n",
+       "status                   known                                             \n",
+       "variable_type               qn                                             \n",
+       "units                       mL                                             \n",
+       "description           1634(ml)       225828   225828(ml) 2971(ml)  30021   \n",
+       "count                      0.0    97.000000  9614.000000      5.0  104.0   \n",
+       "mean                       NaN   696.855670   479.561926    100.0    0.0   \n",
+       "std                        NaN   276.372823   436.213858      0.0    0.0   \n",
+       "min                        NaN   180.000000     0.000000    100.0    0.0   \n",
+       "25%                        NaN   500.000000    99.999996    100.0    0.0   \n",
+       "50%                        NaN   500.000000   499.999980    100.0    0.0   \n",
+       "75%                        NaN  1000.000000   999.999960    100.0    0.0   \n",
+       "max                        NaN  1000.000000  6000.000000    100.0    0.0   \n",
+       "\n",
+       "component                                                                      \\\n",
+       "status                                                                          \n",
+       "variable_type                                                                   \n",
+       "units                                                                           \n",
+       "description       30021(ml) 44184(ml) 44367(ml) 44521(ml) 44815(ml) 46207(ml)   \n",
+       "count          41253.000000       1.0       1.0       0.0       0.0       1.0   \n",
+       "mean             139.773697     500.0    1000.0       NaN       NaN     500.0   \n",
+       "std              211.933281       NaN       NaN       NaN       NaN       NaN   \n",
+       "min                0.000000     500.0    1000.0       NaN       NaN     500.0   \n",
+       "25%               10.000000     500.0    1000.0       NaN       NaN     500.0   \n",
+       "50%              100.000000     500.0    1000.0       NaN       NaN     500.0   \n",
+       "75%              150.000000     500.0    1000.0       NaN       NaN     500.0   \n",
+       "max             8000.000000     500.0    1000.0       NaN       NaN     500.0   \n",
+       "\n",
+       "component                                                                    \\\n",
+       "status                                                  unknown               \n",
+       "variable_type                                                qn               \n",
+       "units                             mL/hr                no_units               \n",
+       "description   46781(ml) 225828(mL/hour) 30021(mL/hour)    30021 44184 44367   \n",
+       "count               0.0      296.000000          148.0    954.0   1.0   1.0   \n",
+       "mean                NaN      467.222506            0.0      0.0   0.0   0.0   \n",
+       "std                 NaN      468.711347            0.0      0.0   NaN   NaN   \n",
+       "min                 NaN        5.000000            0.0      0.0   0.0   0.0   \n",
+       "25%                 NaN       99.980496            0.0      0.0   0.0   0.0   \n",
+       "50%                 NaN      246.457485            0.0      0.0   0.0   0.0   \n",
+       "75%                 NaN      980.400012            0.0      0.0   0.0   0.0   \n",
+       "max                 NaN     2999.999996            0.0      0.0   0.0   0.0   \n",
+       "\n",
+       "component                        \n",
+       "status                           \n",
+       "variable_type                    \n",
+       "units                            \n",
+       "description   44521 44815 46207  \n",
+       "count           0.0   0.0   1.0  \n",
+       "mean            NaN   NaN   0.0  \n",
+       "std             NaN   NaN   NaN  \n",
+       "min             NaN   NaN   0.0  \n",
+       "25%             NaN   NaN   0.0  \n",
+       "50%             NaN   NaN   0.0  \n",
+       "75%             NaN   NaN   0.0  \n",
+       "max             NaN   NaN   0.0  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:27:51)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:27:51)>>>> Clean (52255, 20)\n",
+      "(2017-06-07 21:27:51)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:27:51)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:27:51)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:27:51)>>>> Drop Small columns, threshold = 5 | (52255, 20)\n",
+      "(2017-06-07 21:27:52)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:27:52)>>>> Drop OOB data | (52255, 7)\n",
+      "(2017-06-07 21:27:52)>>>>>> lactated ringers, mL, 51068\n",
+      "(2017-06-07 21:27:53)<<<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:27:53)>>>>>> lactated ringers, mL/hr, 444\n",
+      "(2017-06-07 21:27:53)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:27:53)>>>>>> lactated ringers, no_units, 954\n",
+      "(2017-06-07 21:27:53)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:27:53)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:27:53)>>>> Drop Small columns, threshold = 50 | (52255, 7)\n",
+      "(2017-06-07 21:27:53)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:27:53)>>>> Combine like columns (52255, 7)\n",
+      "(2017-06-07 21:27:53)>>>>>> ('lactated ringers', 'known', 'qn', 'mL')\n",
+      "(2017-06-07 21:27:53)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:27:53)>>>>>> ('lactated ringers', 'known', 'qn', 'mL/hr')\n",
+      "(2017-06-07 21:27:54)<<<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:27:54)>>>>>> ('lactated ringers', 'unknown', 'qn', 'no_units')\n",
+      "(2017-06-07 21:27:54)<<<<<< DONE (0.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">lactated ringers</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">known</th>\n",
+       "      <th>unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">qn</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>mL</th>\n",
+       "      <th>mL/hr</th>\n",
+       "      <th>no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "      <th>all</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>51061.000000</td>\n",
+       "      <td>444.000000</td>\n",
+       "      <td>954.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>204.541875</td>\n",
+       "      <td>311.481671</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>300.710507</td>\n",
+       "      <td>441.491600</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>15.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>100.000000</td>\n",
+       "      <td>99.972558</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>200.000000</td>\n",
+       "      <td>499.999980</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>8000.000000</td>\n",
+       "      <td>2999.999996</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     lactated ringers                      \n",
+       "status                   known               unknown\n",
+       "variable_type               qn                    qn\n",
+       "units                       mL        mL/hr no_units\n",
+       "description                all          all      all\n",
+       "count             51061.000000   444.000000    954.0\n",
+       "mean                204.541875   311.481671      0.0\n",
+       "std                 300.710507   441.491600      0.0\n",
+       "min                   0.000000     0.000000      0.0\n",
+       "25%                  15.000000     0.000000      0.0\n",
+       "50%                 100.000000    99.972558      0.0\n",
+       "75%                 200.000000   499.999980      0.0\n",
+       "max                8000.000000  2999.999996      0.0"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((52255, 20), (52249, 3), 18L, 2, '0.0593% records')\n",
+      "(2017-06-07 21:27:54)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:27:54)>>>> Join (52249, 3) to (2005450, 26)\n",
+      "(2017-06-07 21:28:05)<<<< DONE (11.0s)\n",
+      "(2017-06-07 21:28:05)<< DONE (15.0s)\n",
+      "(2017-06-07 21:28:05)>> RESPIRATORY RATE\n",
+      "(2017-06-07 21:28:05)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">respiratory rate</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">insp/min</th>\n",
+       "      <th>Breath</th>\n",
+       "      <th>no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>220210</th>\n",
+       "      <th>618(BPM)(breath/min)</th>\n",
+       "      <th>3603</th>\n",
+       "      <th>8113</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>560572.000000</td>\n",
+       "      <td>675421.000000</td>\n",
+       "      <td>326779.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>19.870985</td>\n",
+       "      <td>20.105434</td>\n",
+       "      <td>49.832115</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>7.827766</td>\n",
+       "      <td>6.396381</td>\n",
+       "      <td>13.518997</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>16.000000</td>\n",
+       "      <td>16.000000</td>\n",
+       "      <td>40.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>19.000000</td>\n",
+       "      <td>19.000000</td>\n",
+       "      <td>48.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>23.000000</td>\n",
+       "      <td>24.000000</td>\n",
+       "      <td>59.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>2822.000000</td>\n",
+       "      <td>127.000000</td>\n",
+       "      <td>150.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     respiratory rate                                             \n",
+       "status                   known                             unknown         \n",
+       "variable_type               qn                                  qn         \n",
+       "units                 insp/min                              Breath no_units\n",
+       "description             220210 618(BPM)(breath/min)           3603     8113\n",
+       "count            560572.000000        675421.000000  326779.000000      0.0\n",
+       "mean                 19.870985            20.105434      49.832115      NaN\n",
+       "std                   7.827766             6.396381      13.518997      NaN\n",
+       "min                   0.000000             0.000000       0.000000      NaN\n",
+       "25%                  16.000000            16.000000      40.000000      NaN\n",
+       "50%                  19.000000            19.000000      48.000000      NaN\n",
+       "75%                  23.000000            24.000000      59.000000      NaN\n",
+       "max                2822.000000           127.000000     150.000000      NaN"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:28:08)<<<< DONE (3.0s)\n",
+      "(2017-06-07 21:28:08)>>>> Clean (1562723, 5)\n",
+      "(2017-06-07 21:28:08)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:28:08)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:28:17)<<<< DONE (9.0s)\n",
+      "(2017-06-07 21:28:17)>>>> Drop Small columns, threshold = 5 | (1562723, 5)\n",
+      "(2017-06-07 21:28:18)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:28:18)>>>> Drop OOB data | (1562723, 4)\n",
+      "(2017-06-07 21:28:19)>>>>>> respiratory rate, insp/min, 1235993\n",
+      "(2017-06-07 21:28:44)<<<<<< DONE (25.0s)\n",
+      "(2017-06-07 21:28:44)>>>>>> respiratory rate, no_units, 1562723\n",
+      "(2017-06-07 21:28:44)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:28:44)>>>>>> respiratory rate, Breath, 326779\n",
+      "(2017-06-07 21:28:44)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:28:44)<<<< DONE (26.0s)\n",
+      "(2017-06-07 21:28:44)>>>> Drop Small columns, threshold = 50 | (1562723, 4)\n",
+      "(2017-06-07 21:28:45)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:28:45)>>>> Combine like columns (1562723, 3)\n",
+      "(2017-06-07 21:28:45)>>>>>> (u'respiratory rate', 'known', u'qn', u'insp/min')\n",
+      "(2017-06-07 21:28:45)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:28:45)>>>>>> (u'respiratory rate', 'unknown', u'qn', u'Breath')\n",
+      "(2017-06-07 21:29:07)<<<<<< DONE (22.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">respiratory rate</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "      <th>unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>insp/min</th>\n",
+       "      <th>Breath</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>1.235933e+06</td>\n",
+       "      <td>326779.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>1.999278e+01</td>\n",
+       "      <td>49.832115</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>6.175009e+00</td>\n",
+       "      <td>13.518997</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000e+00</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>1.600000e+01</td>\n",
+       "      <td>40.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>1.900000e+01</td>\n",
+       "      <td>48.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>2.400000e+01</td>\n",
+       "      <td>59.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>1.400000e+02</td>\n",
+       "      <td>150.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     respiratory rate               \n",
+       "status                   known        unknown\n",
+       "variable_type               qn             qn\n",
+       "units                 insp/min         Breath\n",
+       "description                all            all\n",
+       "count             1.235933e+06  326779.000000\n",
+       "mean              1.999278e+01      49.832115\n",
+       "std               6.175009e+00      13.518997\n",
+       "min               0.000000e+00       0.000000\n",
+       "25%               1.600000e+01      40.000000\n",
+       "50%               1.900000e+01      48.000000\n",
+       "75%               2.400000e+01      59.000000\n",
+       "max               1.400000e+02     150.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((1562723, 4), (1562712, 2), 60L, 0, '0.0% records')\n",
+      "(2017-06-07 21:29:07)<<<< DONE (22.0s)\n",
+      "(2017-06-07 21:29:07)>>>> Join (1562712, 2) to (2014264, 29)\n",
+      "(2017-06-07 21:29:25)<<<< DONE (18.0s)\n",
+      "(2017-06-07 21:29:25)<< DONE (80.0s)\n",
+      "(2017-06-07 21:29:25) DONE (630.0s)\n",
+      "(2017-06-07 21:29:25) Extract lactate label\n",
+      "(2017-06-07 21:29:54) DONE (29.0s)\n",
+      "(2017-06-07 21:29:54) Segment df (1421738, 31)\n",
+      "(2017-06-07 21:29:54)>> Get Segments\n",
+      "(2017-06-07 21:29:57)<< DONE (3.0s)\n",
+      "(2017-06-07 21:29:57)>> Apply Segments\n",
+      "(2017-06-07 21:30:09)<< DONE (12.0s)\n",
+      "(2017-06-07 21:30:09) DONE (15.0s)\n",
+      "(2017-06-07 21:30:09) Start Feature Union on DF (1421738, 31)\n",
+      "(2017-06-07 21:30:09)>> MEAN\n",
+      "(2017-06-07 21:30:09)<< DONE (0.0s)\n",
+      "(2017-06-07 21:30:09)>> STD\n",
+      "(2017-06-07 21:30:09)<< DONE (0.0s)\n",
+      "(2017-06-07 21:30:09)>> COUNT\n",
+      "(2017-06-07 21:30:40)<< DONE (31.0s)\n",
+      "(2017-06-07 21:30:40)>> LAST\n",
+      "(2017-06-07 21:32:26)<< DONE (106.0s)\n",
+      "(2017-06-07 21:32:26)>> SUM\n",
+      "(2017-06-07 21:32:26)<< DONE (0.0s)\n",
+      "(2017-06-07 21:32:26)>> HStack\n",
+      "(2017-06-07 21:32:26)<< DONE (0.0s)\n",
+      "(2017-06-07 21:32:26) DONE (137.0s)\n",
+      "(2017-06-07 21:32:26) Make DF for 5898 admission - [u'glasgow coma scale eye opening', u'glasgow coma scale motor', u'blood pressure systolic', u'oxygen saturation pulse oximetry', u'glasgow coma scale verbal', u'hemoglobin', u'lactate', u'blood pressure mean', u'vasopressin', u'weight body', u'normal saline', u'norepinephrine', u'temperature body', u'blood pressure diastolic', u'heart rate', u'output urine', u'lactated ringers', u'respiratory rate']\n",
+      "(2017-06-07 21:32:26)>> GLASGOW COMA SCALE EYE OPENING\n",
+      "(2017-06-07 21:32:26)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>glasgow coma scale eye opening</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>ord</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>184</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>93875.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>3.283430</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.060477</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>3.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>4.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>4.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>4.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     glasgow coma scale eye opening\n",
+       "status                                 known\n",
+       "variable_type                            ord\n",
+       "units                               no_units\n",
+       "description                              184\n",
+       "count                           93875.000000\n",
+       "mean                                3.283430\n",
+       "std                                 1.060477\n",
+       "min                                 1.000000\n",
+       "25%                                 3.000000\n",
+       "50%                                 4.000000\n",
+       "75%                                 4.000000\n",
+       "max                                 4.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:32:27)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:32:27)>>>> Clean (93875, 1)\n",
+      "(2017-06-07 21:32:27)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:32:27)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:32:27)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:32:27)>>>> Drop Small columns, threshold = 5 | (93875, 1)\n",
+      "(2017-06-07 21:32:27)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:32:27)>>>> Drop OOB data | (93875, 1)\n",
+      "(2017-06-07 21:32:27)>>>>>> glasgow coma scale eye opening, no_units, 93875\n",
+      "(2017-06-07 21:32:28)<<<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:32:28)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:32:28)>>>> Drop Small columns, threshold = 50 | (93875, 1)\n",
+      "(2017-06-07 21:32:28)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:32:28)>>>> Combine like columns (93875, 1)\n",
+      "(2017-06-07 21:32:28)>>>>>> (u'glasgow coma scale eye opening', 'known', u'ord', 'no_units')\n",
+      "(2017-06-07 21:32:28)<<<<<< DONE (0.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>glasgow coma scale eye opening</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>ord</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>93875.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>3.283430</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.060477</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>3.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>4.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>4.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>4.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     glasgow coma scale eye opening\n",
+       "status                                 known\n",
+       "variable_type                            ord\n",
+       "units                               no_units\n",
+       "description                              all\n",
+       "count                           93875.000000\n",
+       "mean                                3.283430\n",
+       "std                                 1.060477\n",
+       "min                                 1.000000\n",
+       "25%                                 3.000000\n",
+       "50%                                 4.000000\n",
+       "75%                                 4.000000\n",
+       "max                                 4.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((93875, 1), (93875, 1), 0L, 0, '0.0% records')\n",
+      "(2017-06-07 21:32:28)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:32:28)>>>> Join (93875, 1) to None\n",
+      "(2017-06-07 21:32:28)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:32:28)<< DONE (2.0s)\n",
+      "(2017-06-07 21:32:28)>> GLASGOW COMA SCALE MOTOR\n",
+      "(2017-06-07 21:32:28)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>glasgow coma scale motor</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>ord</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>454</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>93468.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>5.274479</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.404227</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>5.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>6.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>6.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>6.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     glasgow coma scale motor\n",
+       "status                           known\n",
+       "variable_type                      ord\n",
+       "units                         no_units\n",
+       "description                        454\n",
+       "count                     93468.000000\n",
+       "mean                          5.274479\n",
+       "std                           1.404227\n",
+       "min                           1.000000\n",
+       "25%                           5.000000\n",
+       "50%                           6.000000\n",
+       "75%                           6.000000\n",
+       "max                           6.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:32:28)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:32:28)>>>> Clean (93468, 1)\n",
+      "(2017-06-07 21:32:28)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:32:28)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:32:28)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:32:28)>>>> Drop Small columns, threshold = 5 | (93468, 1)\n",
+      "(2017-06-07 21:32:28)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:32:28)>>>> Drop OOB data | (93468, 1)\n",
+      "(2017-06-07 21:32:28)>>>>>> glasgow coma scale motor, no_units, 93468\n",
+      "(2017-06-07 21:32:29)<<<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:32:29)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:32:29)>>>> Drop Small columns, threshold = 50 | (93468, 1)\n",
+      "(2017-06-07 21:32:29)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:32:29)>>>> Combine like columns (93468, 1)\n",
+      "(2017-06-07 21:32:29)>>>>>> (u'glasgow coma scale motor', 'known', u'ord', 'no_units')\n",
+      "(2017-06-07 21:32:29)<<<<<< DONE (0.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>glasgow coma scale motor</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>ord</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>93468.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>5.274479</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.404227</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>5.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>6.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>6.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>6.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     glasgow coma scale motor\n",
+       "status                           known\n",
+       "variable_type                      ord\n",
+       "units                         no_units\n",
+       "description                        all\n",
+       "count                     93468.000000\n",
+       "mean                          5.274479\n",
+       "std                           1.404227\n",
+       "min                           1.000000\n",
+       "25%                           5.000000\n",
+       "50%                           6.000000\n",
+       "75%                           6.000000\n",
+       "max                           6.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((93468, 1), (93468, 1), 0L, 0, '0.0% records')\n",
+      "(2017-06-07 21:32:29)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:32:29)>>>> Join (93468, 1) to (93875, 1)\n",
+      "(2017-06-07 21:32:30)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:32:30)<< DONE (2.0s)\n",
+      "(2017-06-07 21:32:30)>> BLOOD PRESSURE SYSTOLIC\n",
+      "(2017-06-07 21:32:30)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"14\" halign=\"left\">blood pressure systolic</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"9\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"5\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"9\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"5\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"9\" halign=\"left\">mmHg</th>\n",
+       "      <th colspan=\"5\" halign=\"left\">cc/min</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>6</th>\n",
+       "      <th>51</th>\n",
+       "      <th>442</th>\n",
+       "      <th>455</th>\n",
+       "      <th>220050</th>\n",
+       "      <th>220179</th>\n",
+       "      <th>224167</th>\n",
+       "      <th>225309</th>\n",
+       "      <th>227243</th>\n",
+       "      <th>3313</th>\n",
+       "      <th>3315</th>\n",
+       "      <th>3317</th>\n",
+       "      <th>3321</th>\n",
+       "      <th>3323</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>201737.000000</td>\n",
+       "      <td>207.000000</td>\n",
+       "      <td>156265.000000</td>\n",
+       "      <td>105900.000000</td>\n",
+       "      <td>126692.000000</td>\n",
+       "      <td>107.000000</td>\n",
+       "      <td>8024.000000</td>\n",
+       "      <td>54.000000</td>\n",
+       "      <td>12911.000000</td>\n",
+       "      <td>168.000000</td>\n",
+       "      <td>133.000000</td>\n",
+       "      <td>128.000000</td>\n",
+       "      <td>127.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>122.730456</td>\n",
+       "      <td>115.371981</td>\n",
+       "      <td>119.610662</td>\n",
+       "      <td>119.420057</td>\n",
+       "      <td>120.033175</td>\n",
+       "      <td>122.766355</td>\n",
+       "      <td>110.431082</td>\n",
+       "      <td>133.592593</td>\n",
+       "      <td>66.547118</td>\n",
+       "      <td>71.827381</td>\n",
+       "      <td>73.533835</td>\n",
+       "      <td>76.109375</td>\n",
+       "      <td>72.645669</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>26.519557</td>\n",
+       "      <td>26.518574</td>\n",
+       "      <td>23.618350</td>\n",
+       "      <td>292.905918</td>\n",
+       "      <td>357.465107</td>\n",
+       "      <td>26.127618</td>\n",
+       "      <td>79.539756</td>\n",
+       "      <td>26.536922</td>\n",
+       "      <td>11.704124</td>\n",
+       "      <td>15.125027</td>\n",
+       "      <td>13.635709</td>\n",
+       "      <td>12.622461</td>\n",
+       "      <td>12.848030</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>50.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>70.000000</td>\n",
+       "      <td>14.000000</td>\n",
+       "      <td>80.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>48.000000</td>\n",
+       "      <td>45.000000</td>\n",
+       "      <td>45.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>105.000000</td>\n",
+       "      <td>96.000000</td>\n",
+       "      <td>103.000000</td>\n",
+       "      <td>102.000000</td>\n",
+       "      <td>103.000000</td>\n",
+       "      <td>101.500000</td>\n",
+       "      <td>94.000000</td>\n",
+       "      <td>112.750000</td>\n",
+       "      <td>59.000000</td>\n",
+       "      <td>64.750000</td>\n",
+       "      <td>63.000000</td>\n",
+       "      <td>68.000000</td>\n",
+       "      <td>65.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>120.000000</td>\n",
+       "      <td>116.000000</td>\n",
+       "      <td>118.000000</td>\n",
+       "      <td>116.000000</td>\n",
+       "      <td>117.000000</td>\n",
+       "      <td>122.000000</td>\n",
+       "      <td>107.000000</td>\n",
+       "      <td>134.000000</td>\n",
+       "      <td>67.000000</td>\n",
+       "      <td>72.500000</td>\n",
+       "      <td>73.000000</td>\n",
+       "      <td>76.000000</td>\n",
+       "      <td>73.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>139.000000</td>\n",
+       "      <td>134.000000</td>\n",
+       "      <td>135.000000</td>\n",
+       "      <td>133.000000</td>\n",
+       "      <td>133.000000</td>\n",
+       "      <td>142.500000</td>\n",
+       "      <td>124.000000</td>\n",
+       "      <td>147.750000</td>\n",
+       "      <td>75.000000</td>\n",
+       "      <td>80.250000</td>\n",
+       "      <td>82.000000</td>\n",
+       "      <td>84.250000</td>\n",
+       "      <td>79.500000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>298.000000</td>\n",
+       "      <td>215.000000</td>\n",
+       "      <td>266.000000</td>\n",
+       "      <td>95119.040000</td>\n",
+       "      <td>127105.990000</td>\n",
+       "      <td>196.000000</td>\n",
+       "      <td>6918.000000</td>\n",
+       "      <td>205.000000</td>\n",
+       "      <td>129.000000</td>\n",
+       "      <td>119.000000</td>\n",
+       "      <td>130.000000</td>\n",
+       "      <td>120.000000</td>\n",
+       "      <td>120.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     blood pressure systolic                             \\\n",
+       "status                          known                              \n",
+       "variable_type                      qn                              \n",
+       "units                            mmHg                              \n",
+       "description                    6              51          442      \n",
+       "count                             0.0  201737.000000  207.000000   \n",
+       "mean                              NaN     122.730456  115.371981   \n",
+       "std                               NaN      26.519557   26.518574   \n",
+       "min                               NaN       0.000000   50.000000   \n",
+       "25%                               NaN     105.000000   96.000000   \n",
+       "50%                               NaN     120.000000  116.000000   \n",
+       "75%                               NaN     139.000000  134.000000   \n",
+       "max                               NaN     298.000000  215.000000   \n",
+       "\n",
+       "component                                                               \\\n",
+       "status                                                                   \n",
+       "variable_type                                                            \n",
+       "units                                                                    \n",
+       "description           455            220050         220179      224167   \n",
+       "count          156265.000000  105900.000000  126692.000000  107.000000   \n",
+       "mean              119.610662     119.420057     120.033175  122.766355   \n",
+       "std                23.618350     292.905918     357.465107   26.127618   \n",
+       "min                 0.000000       0.000000       0.000000   70.000000   \n",
+       "25%               103.000000     102.000000     103.000000  101.500000   \n",
+       "50%               118.000000     116.000000     117.000000  122.000000   \n",
+       "75%               135.000000     133.000000     133.000000  142.500000   \n",
+       "max               266.000000   95119.040000  127105.990000  196.000000   \n",
+       "\n",
+       "component                                                                     \\\n",
+       "status                                       unknown                           \n",
+       "variable_type                                     qn                           \n",
+       "units                                         cc/min                           \n",
+       "description         225309      227243        3313        3315        3317     \n",
+       "count          8024.000000   54.000000  12911.000000  168.000000  133.000000   \n",
+       "mean            110.431082  133.592593     66.547118   71.827381   73.533835   \n",
+       "std              79.539756   26.536922     11.704124   15.125027   13.635709   \n",
+       "min              14.000000   80.000000      0.000000    0.000000   48.000000   \n",
+       "25%              94.000000  112.750000     59.000000   64.750000   63.000000   \n",
+       "50%             107.000000  134.000000     67.000000   72.500000   73.000000   \n",
+       "75%             124.000000  147.750000     75.000000   80.250000   82.000000   \n",
+       "max            6918.000000  205.000000    129.000000  119.000000  130.000000   \n",
+       "\n",
+       "component                              \n",
+       "status                                 \n",
+       "variable_type                          \n",
+       "units                                  \n",
+       "description        3321        3323    \n",
+       "count          128.000000  127.000000  \n",
+       "mean            76.109375   72.645669  \n",
+       "std             12.622461   12.848030  \n",
+       "min             45.000000   45.000000  \n",
+       "25%             68.000000   65.000000  \n",
+       "50%             76.000000   73.000000  \n",
+       "75%             84.250000   79.500000  \n",
+       "max            120.000000  120.000000  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:32:33)<<<< DONE (3.0s)\n",
+      "(2017-06-07 21:32:33)>>>> Clean (578256, 15)\n",
+      "(2017-06-07 21:32:33)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:32:33)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:32:33)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:32:33)>>>> Drop Small columns, threshold = 5 | (578256, 14)\n",
+      "(2017-06-07 21:32:33)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:32:33)>>>> Drop OOB data | (578256, 13)\n",
+      "(2017-06-07 21:32:34)>>>>>> blood pressure systolic, mmHg, 598986\n",
+      "(2017-06-07 21:33:03)<<<<<< DONE (29.0s)\n",
+      "(2017-06-07 21:33:03)>>>>>> blood pressure systolic, cc/min, 13467\n",
+      "(2017-06-07 21:33:03)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:03)<<<< DONE (30.0s)\n",
+      "(2017-06-07 21:33:03)>>>> Drop Small columns, threshold = 50 | (578256, 13)\n",
+      "(2017-06-07 21:33:03)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:03)>>>> Combine like columns (578256, 13)\n",
+      "(2017-06-07 21:33:03)>>>>>> (u'blood pressure systolic', 'known', u'qn', u'mmHg')\n",
+      "(2017-06-07 21:33:03)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:03)>>>>>> (u'blood pressure systolic', 'unknown', u'qn', u'cc/min')\n",
+      "(2017-06-07 21:33:12)<<<<<< DONE (9.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">blood pressure systolic</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "      <th>unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>mmHg</th>\n",
+       "      <th>cc/min</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>565232.00000</td>\n",
+       "      <td>13022.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>120.54268</td>\n",
+       "      <td>66.621935</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>24.36781</td>\n",
+       "      <td>11.733246</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.00000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>103.00000</td>\n",
+       "      <td>59.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>118.00000</td>\n",
+       "      <td>67.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>136.00000</td>\n",
+       "      <td>75.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>311.00000</td>\n",
+       "      <td>129.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     blood pressure systolic              \n",
+       "status                          known       unknown\n",
+       "variable_type                      qn            qn\n",
+       "units                            mmHg        cc/min\n",
+       "description                       all           all\n",
+       "count                    565232.00000  13022.000000\n",
+       "mean                        120.54268     66.621935\n",
+       "std                          24.36781     11.733246\n",
+       "min                           0.00000      0.000000\n",
+       "25%                         103.00000     59.000000\n",
+       "50%                         118.00000     67.000000\n",
+       "75%                         136.00000     75.000000\n",
+       "max                         311.00000    129.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((578256, 14), (578254, 2), 34199L, 0, '0.0% records')\n",
+      "(2017-06-07 21:33:12)<<<< DONE (9.0s)\n",
+      "(2017-06-07 21:33:12)>>>> Join (578254, 2) to (94010, 2)\n",
+      "(2017-06-07 21:33:16)<<<< DONE (4.0s)\n",
+      "(2017-06-07 21:33:16)<< DONE (46.0s)\n",
+      "(2017-06-07 21:33:16)>> OXYGEN SATURATION PULSE OXIMETRY\n",
+      "(2017-06-07 21:33:16)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">oxygen saturation pulse oximetry</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">percent</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>220277(%)</th>\n",
+       "      <th>646(%)</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>255273.000000</td>\n",
+       "      <td>335406.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>96.966040</td>\n",
+       "      <td>97.243172</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>19.772876</td>\n",
+       "      <td>3.688021</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>95.000000</td>\n",
+       "      <td>96.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>97.000000</td>\n",
+       "      <td>98.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>99.000000</td>\n",
+       "      <td>100.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>9892.000000</td>\n",
+       "      <td>100.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     oxygen saturation pulse oximetry               \n",
+       "status                                   known               \n",
+       "variable_type                               qn               \n",
+       "units                                  percent               \n",
+       "description                          220277(%)         646(%)\n",
+       "count                            255273.000000  335406.000000\n",
+       "mean                                 96.966040      97.243172\n",
+       "std                                  19.772876       3.688021\n",
+       "min                                   0.000000       0.000000\n",
+       "25%                                  95.000000      96.000000\n",
+       "50%                                  97.000000      98.000000\n",
+       "75%                                  99.000000     100.000000\n",
+       "max                                9892.000000     100.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:33:17)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:33:17)>>>> Clean (590655, 2)\n",
+      "(2017-06-07 21:33:17)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:17)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:33:17)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:17)>>>> Drop Small columns, threshold = 5 | (590655, 2)\n",
+      "(2017-06-07 21:33:17)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:17)>>>> Drop OOB data | (590655, 2)\n",
+      "(2017-06-07 21:33:17)>>>>>> oxygen saturation pulse oximetry, percent, 590679\n",
+      "(2017-06-07 21:33:27)<<<<<< DONE (10.0s)\n",
+      "(2017-06-07 21:33:27)<<<< DONE (10.0s)\n",
+      "(2017-06-07 21:33:27)>>>> Drop Small columns, threshold = 50 | (590655, 2)\n",
+      "(2017-06-07 21:33:27)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:27)>>>> Combine like columns (590655, 2)\n",
+      "(2017-06-07 21:33:27)>>>>>> (u'oxygen saturation pulse oximetry', 'known', u'qn', u'percent')\n",
+      "(2017-06-07 21:33:30)<<<<<< DONE (3.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>oxygen saturation pulse oximetry</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>percent</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>590653.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>97.105262</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>3.597904</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>96.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>98.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>99.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>100.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     oxygen saturation pulse oximetry\n",
+       "status                                   known\n",
+       "variable_type                               qn\n",
+       "units                                  percent\n",
+       "description                                all\n",
+       "count                            590653.000000\n",
+       "mean                                 97.105262\n",
+       "std                                   3.597904\n",
+       "min                                   0.000000\n",
+       "25%                                  96.000000\n",
+       "50%                                  98.000000\n",
+       "75%                                  99.000000\n",
+       "max                                 100.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((590655, 2), (590653, 1), 26L, 0, '0.0% records')\n",
+      "(2017-06-07 21:33:30)<<<< DONE (3.0s)\n",
+      "(2017-06-07 21:33:30)>>>> Join (590653, 1) to (582457, 4)\n",
+      "(2017-06-07 21:33:37)<<<< DONE (7.0s)\n",
+      "(2017-06-07 21:33:37)<< DONE (21.0s)\n",
+      "(2017-06-07 21:33:37)>> GLASGOW COMA SCALE VERBAL\n",
+      "(2017-06-07 21:33:37)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>glasgow coma scale verbal</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>ord</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>723</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>93655.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>2.897144</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.913756</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>2.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>5.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>5.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     glasgow coma scale verbal\n",
+       "status                            known\n",
+       "variable_type                       ord\n",
+       "units                          no_units\n",
+       "description                         723\n",
+       "count                      93655.000000\n",
+       "mean                           2.897144\n",
+       "std                            1.913756\n",
+       "min                            1.000000\n",
+       "25%                            1.000000\n",
+       "50%                            2.000000\n",
+       "75%                            5.000000\n",
+       "max                            5.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:33:37)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:37)>>>> Clean (93655, 1)\n",
+      "(2017-06-07 21:33:37)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:37)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:33:37)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:37)>>>> Drop Small columns, threshold = 5 | (93655, 1)\n",
+      "(2017-06-07 21:33:37)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:37)>>>> Drop OOB data | (93655, 1)\n",
+      "(2017-06-07 21:33:37)>>>>>> glasgow coma scale verbal, no_units, 93655\n",
+      "(2017-06-07 21:33:39)<<<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:33:39)<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:33:39)>>>> Drop Small columns, threshold = 50 | (93655, 1)\n",
+      "(2017-06-07 21:33:39)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:39)>>>> Combine like columns (93655, 1)\n",
+      "(2017-06-07 21:33:39)>>>>>> (u'glasgow coma scale verbal', 'known', u'ord', 'no_units')\n",
+      "(2017-06-07 21:33:39)<<<<<< DONE (0.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>glasgow coma scale verbal</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>ord</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>93655.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>2.897144</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.913756</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>2.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>5.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>5.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     glasgow coma scale verbal\n",
+       "status                            known\n",
+       "variable_type                       ord\n",
+       "units                          no_units\n",
+       "description                         all\n",
+       "count                      93655.000000\n",
+       "mean                           2.897144\n",
+       "std                            1.913756\n",
+       "min                            1.000000\n",
+       "25%                            1.000000\n",
+       "50%                            2.000000\n",
+       "75%                            5.000000\n",
+       "max                            5.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((93655, 1), (93655, 1), 0L, 0, '0.0% records')\n",
+      "(2017-06-07 21:33:39)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:39)>>>> Join (93655, 1) to (668033, 5)\n",
+      "(2017-06-07 21:33:43)<<<< DONE (4.0s)\n",
+      "(2017-06-07 21:33:43)<< DONE (6.0s)\n",
+      "(2017-06-07 21:33:43)>> HEMOGLOBIN\n",
+      "(2017-06-07 21:33:43)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"11\" halign=\"left\">hemoglobin</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"9\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"9\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"9\" halign=\"left\">g/dL</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>1165</th>\n",
+       "      <th>220228(g/dl)</th>\n",
+       "      <th>50811</th>\n",
+       "      <th>50811(g/dl)</th>\n",
+       "      <th>50811(gm/dl)</th>\n",
+       "      <th>51222</th>\n",
+       "      <th>51222(g/dl)</th>\n",
+       "      <th>51222(gm/dl)</th>\n",
+       "      <th>814(gm/dl)</th>\n",
+       "      <th>50811</th>\n",
+       "      <th>51222</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>13206.000000</td>\n",
+       "      <td>4780.000000</td>\n",
+       "      <td>1512.000000</td>\n",
+       "      <td>2065.000000</td>\n",
+       "      <td>36859.000000</td>\n",
+       "      <td>8475.000000</td>\n",
+       "      <td>12017.000000</td>\n",
+       "      <td>18565.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>10.087063</td>\n",
+       "      <td>10.359351</td>\n",
+       "      <td>10.211111</td>\n",
+       "      <td>10.346102</td>\n",
+       "      <td>10.346374</td>\n",
+       "      <td>10.489015</td>\n",
+       "      <td>10.478996</td>\n",
+       "      <td>10.292920</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>1.789972</td>\n",
+       "      <td>2.136835</td>\n",
+       "      <td>1.991397</td>\n",
+       "      <td>2.107787</td>\n",
+       "      <td>1.935027</td>\n",
+       "      <td>1.964976</td>\n",
+       "      <td>1.885599</td>\n",
+       "      <td>1.596385</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>3.200000</td>\n",
+       "      <td>3.700000</td>\n",
+       "      <td>2.000000</td>\n",
+       "      <td>3.200000</td>\n",
+       "      <td>2.900000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>8.800000</td>\n",
+       "      <td>8.900000</td>\n",
+       "      <td>8.900000</td>\n",
+       "      <td>9.000000</td>\n",
+       "      <td>9.000000</td>\n",
+       "      <td>9.200000</td>\n",
+       "      <td>9.200000</td>\n",
+       "      <td>9.200000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>9.900000</td>\n",
+       "      <td>10.200000</td>\n",
+       "      <td>10.100000</td>\n",
+       "      <td>10.200000</td>\n",
+       "      <td>10.100000</td>\n",
+       "      <td>10.200000</td>\n",
+       "      <td>10.200000</td>\n",
+       "      <td>10.100000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>11.200000</td>\n",
+       "      <td>11.700000</td>\n",
+       "      <td>11.400000</td>\n",
+       "      <td>11.600000</td>\n",
+       "      <td>11.400000</td>\n",
+       "      <td>11.400000</td>\n",
+       "      <td>11.400000</td>\n",
+       "      <td>11.200000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>19.300000</td>\n",
+       "      <td>19.800000</td>\n",
+       "      <td>20.200000</td>\n",
+       "      <td>20.700000</td>\n",
+       "      <td>21.900000</td>\n",
+       "      <td>23.800000</td>\n",
+       "      <td>23.100000</td>\n",
+       "      <td>26.299999</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     hemoglobin                                                       \\\n",
+       "status             known                                                        \n",
+       "variable_type         qn                                                        \n",
+       "units               g/dL                                                        \n",
+       "description         1165  220228(g/dl)        50811  50811(g/dl) 50811(gm/dl)   \n",
+       "count                0.0  13206.000000  4780.000000  1512.000000  2065.000000   \n",
+       "mean                 NaN     10.087063    10.359351    10.211111    10.346102   \n",
+       "std                  NaN      1.789972     2.136835     1.991397     2.107787   \n",
+       "min                  NaN      0.000000     0.000000     3.200000     3.700000   \n",
+       "25%                  NaN      8.800000     8.900000     8.900000     9.000000   \n",
+       "50%                  NaN      9.900000    10.200000    10.100000    10.200000   \n",
+       "75%                  NaN     11.200000    11.700000    11.400000    11.600000   \n",
+       "max                  NaN     19.300000    19.800000    20.200000    20.700000   \n",
+       "\n",
+       "component                                                                      \\\n",
+       "status                                                                unknown   \n",
+       "variable_type                                                              qn   \n",
+       "units                                                                no_units   \n",
+       "description           51222  51222(g/dl)  51222(gm/dl)    814(gm/dl)    50811   \n",
+       "count          36859.000000  8475.000000  12017.000000  18565.000000      0.0   \n",
+       "mean              10.346374    10.489015     10.478996     10.292920      NaN   \n",
+       "std                1.935027     1.964976      1.885599      1.596385      NaN   \n",
+       "min                2.000000     3.200000      2.900000      0.000000      NaN   \n",
+       "25%                9.000000     9.200000      9.200000      9.200000      NaN   \n",
+       "50%               10.100000    10.200000     10.200000     10.100000      NaN   \n",
+       "75%               11.400000    11.400000     11.400000     11.200000      NaN   \n",
+       "max               21.900000    23.800000     23.100000     26.299999      NaN   \n",
+       "\n",
+       "component            \n",
+       "status               \n",
+       "variable_type        \n",
+       "units                \n",
+       "description   51222  \n",
+       "count           0.0  \n",
+       "mean            NaN  \n",
+       "std             NaN  \n",
+       "min             NaN  \n",
+       "25%             NaN  \n",
+       "50%             NaN  \n",
+       "75%             NaN  \n",
+       "max             NaN  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:33:44)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:33:44)>>>> Clean (66715, 14)\n",
+      "(2017-06-07 21:33:44)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:44)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:33:44)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:44)>>>> Drop Small columns, threshold = 5 | (66715, 16)\n",
+      "(2017-06-07 21:33:44)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:44)>>>> Drop OOB data | (66715, 8)\n",
+      "(2017-06-07 21:33:44)>>>>>> hemoglobin, g/dL, 97479\n",
+      "(2017-06-07 21:33:48)<<<<<< DONE (4.0s)\n",
+      "(2017-06-07 21:33:48)<<<< DONE (4.0s)\n",
+      "(2017-06-07 21:33:48)>>>> Drop Small columns, threshold = 50 | (66715, 8)\n",
+      "(2017-06-07 21:33:48)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:48)>>>> Combine like columns (66715, 8)\n",
+      "(2017-06-07 21:33:48)>>>>>> ('hemoglobin', 'known', 'qn', 'g/dL')\n",
+      "(2017-06-07 21:33:49)<<<<<< DONE (1.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>hemoglobin</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>g/dL</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>66711.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>10.391383</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.948147</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>9.100000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>10.100000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>11.400000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>26.299999</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component        hemoglobin\n",
+       "status                known\n",
+       "variable_type            qn\n",
+       "units                  g/dL\n",
+       "description             all\n",
+       "count          66711.000000\n",
+       "mean              10.391383\n",
+       "std                1.948147\n",
+       "min                0.000000\n",
+       "25%                9.100000\n",
+       "50%               10.100000\n",
+       "75%               11.400000\n",
+       "max               26.299999"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((66715, 13), (66711, 1), 30770L, 0, '0.0% records')\n",
+      "(2017-06-07 21:33:49)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:33:49)>>>> Join (66711, 1) to (668038, 6)\n",
+      "(2017-06-07 21:33:53)<<<< DONE (4.0s)\n",
+      "(2017-06-07 21:33:53)<< DONE (10.0s)\n",
+      "(2017-06-07 21:33:53)>> LACTATE\n",
+      "(2017-06-07 21:33:53)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"7\" halign=\"left\">lactate</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">mmol/L</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>1531</th>\n",
+       "      <th>225668</th>\n",
+       "      <th>50813</th>\n",
+       "      <th>818</th>\n",
+       "      <th>225668</th>\n",
+       "      <th>50813</th>\n",
+       "      <th>818</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>6431.000000</td>\n",
+       "      <td>6832.000000</td>\n",
+       "      <td>17650.000000</td>\n",
+       "      <td>7264.000000</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>2.807416</td>\n",
+       "      <td>2.372753</td>\n",
+       "      <td>2.552463</td>\n",
+       "      <td>2.810871</td>\n",
+       "      <td>4.4</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>2.881607</td>\n",
+       "      <td>3.500056</td>\n",
+       "      <td>2.390068</td>\n",
+       "      <td>2.872278</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.300000</td>\n",
+       "      <td>0.050000</td>\n",
+       "      <td>0.050000</td>\n",
+       "      <td>0.300000</td>\n",
+       "      <td>4.4</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>1.300000</td>\n",
+       "      <td>1.200000</td>\n",
+       "      <td>1.200000</td>\n",
+       "      <td>1.300000</td>\n",
+       "      <td>4.4</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>1.800000</td>\n",
+       "      <td>1.700000</td>\n",
+       "      <td>1.800000</td>\n",
+       "      <td>1.800000</td>\n",
+       "      <td>4.4</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>3.100000</td>\n",
+       "      <td>2.700000</td>\n",
+       "      <td>2.900000</td>\n",
+       "      <td>3.200000</td>\n",
+       "      <td>4.4</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>36.000000</td>\n",
+       "      <td>170.000000</td>\n",
+       "      <td>36.000000</td>\n",
+       "      <td>36.000000</td>\n",
+       "      <td>4.4</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component          lactate                                                   \\\n",
+       "status               known                                          unknown   \n",
+       "variable_type           qn                                               qn   \n",
+       "units               mmol/L                                         no_units   \n",
+       "description           1531       225668         50813          818   225668   \n",
+       "count          6431.000000  6832.000000  17650.000000  7264.000000      1.0   \n",
+       "mean              2.807416     2.372753      2.552463     2.810871      4.4   \n",
+       "std               2.881607     3.500056      2.390068     2.872278      NaN   \n",
+       "min               0.300000     0.050000      0.050000     0.300000      4.4   \n",
+       "25%               1.300000     1.200000      1.200000     1.300000      4.4   \n",
+       "50%               1.800000     1.700000      1.800000     1.800000      4.4   \n",
+       "75%               3.100000     2.700000      2.900000     3.200000      4.4   \n",
+       "max              36.000000   170.000000     36.000000    36.000000      4.4   \n",
+       "\n",
+       "component                 \n",
+       "status                    \n",
+       "variable_type             \n",
+       "units                     \n",
+       "description   50813  818  \n",
+       "count           0.0  0.0  \n",
+       "mean            NaN  NaN  \n",
+       "std             NaN  NaN  \n",
+       "min             NaN  NaN  \n",
+       "25%             NaN  NaN  \n",
+       "50%             NaN  NaN  \n",
+       "75%             NaN  NaN  \n",
+       "max             NaN  NaN  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:33:54)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:33:54)>>>> Clean (17713, 10)\n",
+      "(2017-06-07 21:33:54)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:54)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:33:54)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:54)>>>> Drop Small columns, threshold = 5 | (17713, 14)\n",
+      "(2017-06-07 21:33:54)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:54)>>>> Drop OOB data | (17713, 4)\n",
+      "(2017-06-07 21:33:54)>>>>>> lactate, mmol/L, 38177\n",
+      "(2017-06-07 21:33:54)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:54)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:54)>>>> Drop Small columns, threshold = 50 | (17713, 4)\n",
+      "(2017-06-07 21:33:54)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:33:54)>>>> Combine like columns (17713, 4)\n",
+      "(2017-06-07 21:33:54)>>>>>> ('lactate', 'known', 'qn', 'mmol/L')\n",
+      "(2017-06-07 21:33:55)<<<<<< DONE (1.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>lactate</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>mmol/L</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>17705.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>2.553035</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>2.389333</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.050000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>1.200000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>1.800000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>2.900000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>36.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component           lactate\n",
+       "status                known\n",
+       "variable_type            qn\n",
+       "units                mmol/L\n",
+       "description             all\n",
+       "count          17705.000000\n",
+       "mean               2.553035\n",
+       "std                2.389333\n",
+       "min                0.050000\n",
+       "25%                1.200000\n",
+       "50%                1.800000\n",
+       "75%                2.900000\n",
+       "max               36.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((17713, 9), (17705, 1), 20478L, 0, '0.0% records')\n",
+      "(2017-06-07 21:33:55)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:33:55)>>>> Join (17705, 1) to (730624, 7)\n",
+      "(2017-06-07 21:33:59)<<<< DONE (4.0s)\n",
+      "(2017-06-07 21:33:59)<< DONE (6.0s)\n",
+      "(2017-06-07 21:33:59)>> BLOOD PRESSURE MEAN\n",
+      "(2017-06-07 21:33:59)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">blood pressure mean</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">mmHg</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>220052</th>\n",
+       "      <th>220181</th>\n",
+       "      <th>225312</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>106321.000000</td>\n",
+       "      <td>126912.000000</td>\n",
+       "      <td>8087.00000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>80.828011</td>\n",
+       "      <td>76.854332</td>\n",
+       "      <td>77.33053</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>33.685722</td>\n",
+       "      <td>338.401762</td>\n",
+       "      <td>88.05119</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>-38.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>-30.00000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>69.000000</td>\n",
+       "      <td>65.000000</td>\n",
+       "      <td>67.00000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>78.000000</td>\n",
+       "      <td>74.000000</td>\n",
+       "      <td>74.00000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>90.000000</td>\n",
+       "      <td>85.000000</td>\n",
+       "      <td>84.00000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>8687.000000</td>\n",
+       "      <td>120130.030000</td>\n",
+       "      <td>7763.00000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     blood pressure mean                           \n",
+       "status                      known                           \n",
+       "variable_type                  qn                           \n",
+       "units                        mmHg                           \n",
+       "description                220052         220181      225312\n",
+       "count               106321.000000  126912.000000  8087.00000\n",
+       "mean                    80.828011      76.854332    77.33053\n",
+       "std                     33.685722     338.401762    88.05119\n",
+       "min                    -38.000000       0.000000   -30.00000\n",
+       "25%                     69.000000      65.000000    67.00000\n",
+       "50%                     78.000000      74.000000    74.00000\n",
+       "75%                     90.000000      85.000000    84.00000\n",
+       "max                   8687.000000  120130.030000  7763.00000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:34:00)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:34:00)>>>> Clean (229225, 3)\n",
+      "(2017-06-07 21:34:00)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:00)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:34:00)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:00)>>>> Drop Small columns, threshold = 5 | (229225, 3)\n",
+      "(2017-06-07 21:34:00)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:00)>>>> Drop OOB data | (229225, 3)\n",
+      "(2017-06-07 21:34:00)>>>>>> blood pressure mean, mmHg, 241320\n",
+      "(2017-06-07 21:34:05)<<<<<< DONE (5.0s)\n",
+      "(2017-06-07 21:34:05)<<<< DONE (5.0s)\n",
+      "(2017-06-07 21:34:05)>>>> Drop Small columns, threshold = 50 | (229225, 3)\n",
+      "(2017-06-07 21:34:05)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:05)>>>> Combine like columns (229225, 3)\n",
+      "(2017-06-07 21:34:05)>>>>>> (u'blood pressure mean', 'known', u'qn', u'mmHg')\n",
+      "(2017-06-07 21:34:07)<<<<<< DONE (2.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>blood pressure mean</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>mmHg</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>229141.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>77.960487</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>17.670114</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>67.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>76.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>87.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>361.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     blood pressure mean\n",
+       "status                      known\n",
+       "variable_type                  qn\n",
+       "units                        mmHg\n",
+       "description                   all\n",
+       "count               229141.000000\n",
+       "mean                    77.960487\n",
+       "std                     17.670114\n",
+       "min                      0.000000\n",
+       "25%                     67.000000\n",
+       "50%                     76.000000\n",
+       "75%                     87.000000\n",
+       "max                    361.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((229225, 3), (229141, 1), 12179L, 0, '0.0% records')\n",
+      "(2017-06-07 21:34:07)<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:34:07)>>>> Join (229141, 1) to (744003, 8)\n",
+      "(2017-06-07 21:34:13)<<<< DONE (6.0s)\n",
+      "(2017-06-07 21:34:13)<< DONE (14.0s)\n",
+      "(2017-06-07 21:34:13)>> VASOPRESSIN\n",
+      "(2017-06-07 21:34:13)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"21\" halign=\"left\">vasopressin</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"15\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"6\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"15\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"6\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"8\" halign=\"left\">units</th>\n",
+       "      <th colspan=\"7\" halign=\"left\">units/min</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">ml</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>1136(U)</th>\n",
+       "      <th>1222(U)</th>\n",
+       "      <th>1327(U)</th>\n",
+       "      <th>2248(U)</th>\n",
+       "      <th>2445(U)</th>\n",
+       "      <th>30051(U)</th>\n",
+       "      <th>6255(U)</th>\n",
+       "      <th>7341(U)</th>\n",
+       "      <th>1136(units/hour)</th>\n",
+       "      <th>1222(units/hour)</th>\n",
+       "      <th>...</th>\n",
+       "      <th>30051(Umin)(U/min)</th>\n",
+       "      <th>30051(units/hour)</th>\n",
+       "      <th>6255(units/hour)</th>\n",
+       "      <th>7341(units/hour)</th>\n",
+       "      <th>30051</th>\n",
+       "      <th>42273</th>\n",
+       "      <th>42802</th>\n",
+       "      <th>46570</th>\n",
+       "      <th>30051</th>\n",
+       "      <th>42802</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>5930.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>...</td>\n",
+       "      <td>9941.000000</td>\n",
+       "      <td>516.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>2.484185</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>1.441951</td>\n",
+       "      <td>0.061290</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>2.946331</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>1.184972</td>\n",
+       "      <td>0.090906</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>1.200000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>0.040000</td>\n",
+       "      <td>0.040000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>2.400000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>1.800000</td>\n",
+       "      <td>0.040000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>2.400000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>2.400000</td>\n",
+       "      <td>0.080000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>60.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>10.000000</td>\n",
+       "      <td>0.826667</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>8 rows × 28 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     vasopressin                                               \\\n",
+       "status              known                                                \n",
+       "variable_type          qn                                                \n",
+       "units               units                                                \n",
+       "description       1136(U) 1222(U) 1327(U) 2248(U) 2445(U)     30051(U)   \n",
+       "count                 0.0     0.0     0.0     0.0     0.0  5930.000000   \n",
+       "mean                  NaN     NaN     NaN     NaN     NaN     2.484185   \n",
+       "std                   NaN     NaN     NaN     NaN     NaN     2.946331   \n",
+       "min                   NaN     NaN     NaN     NaN     NaN     0.000000   \n",
+       "25%                   NaN     NaN     NaN     NaN     NaN     1.200000   \n",
+       "50%                   NaN     NaN     NaN     NaN     NaN     2.400000   \n",
+       "75%                   NaN     NaN     NaN     NaN     NaN     2.400000   \n",
+       "max                   NaN     NaN     NaN     NaN     NaN    60.000000   \n",
+       "\n",
+       "component                                                        ...   \\\n",
+       "status                                                           ...    \n",
+       "variable_type                                                    ...    \n",
+       "units                                units/min                   ...    \n",
+       "description   6255(U) 7341(U) 1136(units/hour) 1222(units/hour)  ...    \n",
+       "count             0.0     0.0              0.0              0.0  ...    \n",
+       "mean              NaN     NaN              NaN              NaN  ...    \n",
+       "std               NaN     NaN              NaN              NaN  ...    \n",
+       "min               NaN     NaN              NaN              NaN  ...    \n",
+       "25%               NaN     NaN              NaN              NaN  ...    \n",
+       "50%               NaN     NaN              NaN              NaN  ...    \n",
+       "75%               NaN     NaN              NaN              NaN  ...    \n",
+       "max               NaN     NaN              NaN              NaN  ...    \n",
+       "\n",
+       "component                                                            \\\n",
+       "status                                                                \n",
+       "variable_type                                                         \n",
+       "units                                                                 \n",
+       "description   30051(Umin)(U/min) 30051(units/hour) 6255(units/hour)   \n",
+       "count                9941.000000        516.000000              0.0   \n",
+       "mean                    1.441951          0.061290              NaN   \n",
+       "std                     1.184972          0.090906              NaN   \n",
+       "min                     0.000000          0.000000              NaN   \n",
+       "25%                     0.040000          0.040000              NaN   \n",
+       "50%                     1.800000          0.040000              NaN   \n",
+       "75%                     2.400000          0.080000              NaN   \n",
+       "max                    10.000000          0.826667              NaN   \n",
+       "\n",
+       "component                                                                \n",
+       "status                         unknown                                   \n",
+       "variable_type                       qn                                   \n",
+       "units                               ml                   no_units        \n",
+       "description   7341(units/hour)   30051 42273 42802 46570    30051 42802  \n",
+       "count                      0.0     0.0   0.0   0.0   0.0      0.0   0.0  \n",
+       "mean                       NaN     NaN   NaN   NaN   NaN      NaN   NaN  \n",
+       "std                        NaN     NaN   NaN   NaN   NaN      NaN   NaN  \n",
+       "min                        NaN     NaN   NaN   NaN   NaN      NaN   NaN  \n",
+       "25%                        NaN     NaN   NaN   NaN   NaN      NaN   NaN  \n",
+       "50%                        NaN     NaN   NaN   NaN   NaN      NaN   NaN  \n",
+       "75%                        NaN     NaN   NaN   NaN   NaN      NaN   NaN  \n",
+       "max                        NaN     NaN   NaN   NaN   NaN      NaN   NaN  \n",
+       "\n",
+       "[8 rows x 28 columns]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:34:13)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:13)>>>> Clean (11209, 31)\n",
+      "(2017-06-07 21:34:13)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:13)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:34:13)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:13)>>>> Drop Small columns, threshold = 5 | (11209, 33)\n",
+      "(2017-06-07 21:34:13)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:13)>>>> Drop OOB data | (11209, 5)\n",
+      "(2017-06-07 21:34:13)>>>>>> vasopressin, units, 5930\n",
+      "(2017-06-07 21:34:13)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:13)>>>>>> vasopressin, units/min, 11415\n",
+      "(2017-06-07 21:34:14)<<<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:34:14)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:34:14)>>>> Drop Small columns, threshold = 50 | (11209, 5)\n",
+      "(2017-06-07 21:34:14)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:14)>>>> Combine like columns (11209, 5)\n",
+      "(2017-06-07 21:34:14)>>>>>> ('vasopressin', 'known', 'qn', 'units')\n",
+      "(2017-06-07 21:34:14)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:14)>>>>>> ('vasopressin', 'known', 'qn', 'units/min')\n",
+      "(2017-06-07 21:34:14)<<<<<< DONE (0.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">vasopressin</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>units</th>\n",
+       "      <th>units/min</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>5930.000000</td>\n",
+       "      <td>10948.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>2.484185</td>\n",
+       "      <td>1.316514</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>2.946331</td>\n",
+       "      <td>1.193791</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>1.200000</td>\n",
+       "      <td>0.040000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>2.400000</td>\n",
+       "      <td>1.200000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>2.400000</td>\n",
+       "      <td>2.400000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>60.000000</td>\n",
+       "      <td>5.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component      vasopressin              \n",
+       "status               known              \n",
+       "variable_type           qn              \n",
+       "units                units     units/min\n",
+       "description            all           all\n",
+       "count          5930.000000  10948.000000\n",
+       "mean              2.484185      1.316514\n",
+       "std               2.946331      1.193791\n",
+       "min               0.000000      0.000000\n",
+       "25%               1.200000      0.040000\n",
+       "50%               2.400000      1.200000\n",
+       "75%               2.400000      2.400000\n",
+       "max              60.000000      5.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((11209, 30), (11200, 2), 475L, 1, '0.4274% records')\n",
+      "(2017-06-07 21:34:14)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:14)>>>> Join (11200, 2) to (745692, 9)\n",
+      "(2017-06-07 21:34:18)<<<< DONE (4.0s)\n",
+      "(2017-06-07 21:34:18)<< DONE (5.0s)\n",
+      "(2017-06-07 21:34:18)>> WEIGHT BODY\n",
+      "(2017-06-07 21:34:18)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">weight body</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">kg</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>763</th>\n",
+       "      <th>224639</th>\n",
+       "      <th>3693(gms)(grams)</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>4596.000000</td>\n",
+       "      <td>4105.000000</td>\n",
+       "      <td>97.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>84.717737</td>\n",
+       "      <td>88.638685</td>\n",
+       "      <td>0.003049</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>24.173361</td>\n",
+       "      <td>27.543902</td>\n",
+       "      <td>0.000888</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000782</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>68.500000</td>\n",
+       "      <td>72.400000</td>\n",
+       "      <td>0.002600</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>82.099998</td>\n",
+       "      <td>84.800000</td>\n",
+       "      <td>0.003200</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>97.300003</td>\n",
+       "      <td>102.000000</td>\n",
+       "      <td>0.003690</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>283.000000</td>\n",
+       "      <td>927.000000</td>\n",
+       "      <td>0.004595</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component      weight body                              \n",
+       "status               known                              \n",
+       "variable_type           qn                              \n",
+       "units                   kg                              \n",
+       "description            763       224639 3693(gms)(grams)\n",
+       "count          4596.000000  4105.000000        97.000000\n",
+       "mean             84.717737    88.638685         0.003049\n",
+       "std              24.173361    27.543902         0.000888\n",
+       "min               0.000000     0.000000         0.000782\n",
+       "25%              68.500000    72.400000         0.002600\n",
+       "50%              82.099998    84.800000         0.003200\n",
+       "75%              97.300003   102.000000         0.003690\n",
+       "max             283.000000   927.000000         0.004595"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:34:18)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:18)>>>> Clean (8798, 3)\n",
+      "(2017-06-07 21:34:18)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:18)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:34:18)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:18)>>>> Drop Small columns, threshold = 5 | (8798, 3)\n",
+      "(2017-06-07 21:34:18)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:18)>>>> Drop OOB data | (8798, 3)\n",
+      "(2017-06-07 21:34:18)>>>>>> weight body, kg, 8798\n",
+      "(2017-06-07 21:34:19)<<<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:34:19)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:34:19)>>>> Drop Small columns, threshold = 50 | (8798, 3)\n",
+      "(2017-06-07 21:34:19)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:19)>>>> Combine like columns (8798, 3)\n",
+      "(2017-06-07 21:34:19)>>>>>> (u'weight body', 'known', u'qn', u'kg')\n",
+      "(2017-06-07 21:34:19)<<<<<< DONE (0.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>weight body</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>kg</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>8797.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>85.517542</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>25.773247</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>69.700000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>83.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>99.300003</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>283.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component      weight body\n",
+       "status               known\n",
+       "variable_type           qn\n",
+       "units                   kg\n",
+       "description            all\n",
+       "count          8797.000000\n",
+       "mean             85.517542\n",
+       "std              25.773247\n",
+       "min               0.000000\n",
+       "25%              69.700000\n",
+       "50%              83.000000\n",
+       "75%              99.300003\n",
+       "max             283.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((8798, 3), (8797, 1), 1L, 0, '0.0% records')\n",
+      "(2017-06-07 21:34:19)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:19)>>>> Join (8797, 1) to (746358, 11)\n",
+      "(2017-06-07 21:34:23)<<<< DONE (4.0s)\n",
+      "(2017-06-07 21:34:23)<< DONE (5.0s)\n",
+      "(2017-06-07 21:34:23)>> NORMAL SALINE\n",
+      "(2017-06-07 21:34:23)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"15\" halign=\"left\">normal saline</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"13\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"13\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"8\" halign=\"left\">mL</th>\n",
+       "      <th colspan=\"5\" halign=\"left\">mL/hr</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>30190</th>\n",
+       "      <th>225158</th>\n",
+       "      <th>225158(L)</th>\n",
+       "      <th>225158(ml)</th>\n",
+       "      <th>30190(ml)</th>\n",
+       "      <th>41913(ml)</th>\n",
+       "      <th>44053(ml)</th>\n",
+       "      <th>44440(ml)</th>\n",
+       "      <th>225158(mL/hour)</th>\n",
+       "      <th>225158(mL/min)</th>\n",
+       "      <th>30190(mL/hour)</th>\n",
+       "      <th>41913(mL/hour)</th>\n",
+       "      <th>44440(mL/hour)</th>\n",
+       "      <th>30190</th>\n",
+       "      <th>44053</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>3.0</td>\n",
+       "      <td>3776.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>986.000000</td>\n",
+       "      <td>513.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>43877.000000</td>\n",
+       "      <td>70.000000</td>\n",
+       "      <td>28.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>12.0</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>476.925662</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>122.512144</td>\n",
+       "      <td>5.421131</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>78.148208</td>\n",
+       "      <td>7028.571429</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>373.842501</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>251.742402</td>\n",
+       "      <td>9.628846</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>197.985623</td>\n",
+       "      <td>2697.134435</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.016678</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.020988</td>\n",
+       "      <td>6000.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>200.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>8.294235</td>\n",
+       "      <td>1.100000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>6.013423</td>\n",
+       "      <td>6000.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>500.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>20.122664</td>\n",
+       "      <td>2.100000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>15.300982</td>\n",
+       "      <td>6000.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>500.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>99.999996</td>\n",
+       "      <td>4.700000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>62.075080</td>\n",
+       "      <td>6000.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>6000.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>3000.000000</td>\n",
+       "      <td>117.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>7500.000000</td>\n",
+       "      <td>18000.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     normal saline                                                  \\\n",
+       "status                known                                                   \n",
+       "variable_type            qn                                                   \n",
+       "units                    mL                                                   \n",
+       "description           30190       225158 225158(L)   225158(ml)   30190(ml)   \n",
+       "count                   3.0  3776.000000       0.0   986.000000  513.000000   \n",
+       "mean                    0.0   476.925662       NaN   122.512144    5.421131   \n",
+       "std                     0.0   373.842501       NaN   251.742402    9.628846   \n",
+       "min                     0.0     0.000000       NaN     0.016678    0.000000   \n",
+       "25%                     0.0   200.000000       NaN     8.294235    1.100000   \n",
+       "50%                     0.0   500.000000       NaN    20.122664    2.100000   \n",
+       "75%                     0.0   500.000000       NaN    99.999996    4.700000   \n",
+       "max                     0.0  6000.000000       NaN  3000.000000  117.000000   \n",
+       "\n",
+       "component                                                                   \\\n",
+       "status                                                                       \n",
+       "variable_type                                                                \n",
+       "units                                                 mL/hr                  \n",
+       "description   41913(ml) 44053(ml) 44440(ml) 225158(mL/hour) 225158(mL/min)   \n",
+       "count               0.0       0.0       0.0    43877.000000      70.000000   \n",
+       "mean                NaN       NaN       NaN       78.148208    7028.571429   \n",
+       "std                 NaN       NaN       NaN      197.985623    2697.134435   \n",
+       "min                 NaN       NaN       NaN        0.020988    6000.000000   \n",
+       "25%                 NaN       NaN       NaN        6.013423    6000.000000   \n",
+       "50%                 NaN       NaN       NaN       15.300982    6000.000000   \n",
+       "75%                 NaN       NaN       NaN       62.075080    6000.000000   \n",
+       "max                 NaN       NaN       NaN     7500.000000   18000.000000   \n",
+       "\n",
+       "component                                                                  \n",
+       "status                                                      unknown        \n",
+       "variable_type                                                    qn        \n",
+       "units                                                      no_units        \n",
+       "description   30190(mL/hour) 41913(mL/hour) 44440(mL/hour)    30190 44053  \n",
+       "count                   28.0            0.0            0.0     12.0   0.0  \n",
+       "mean                     0.0            NaN            NaN      0.0   NaN  \n",
+       "std                      0.0            NaN            NaN      0.0   NaN  \n",
+       "min                      0.0            NaN            NaN      0.0   NaN  \n",
+       "25%                      0.0            NaN            NaN      0.0   NaN  \n",
+       "50%                      0.0            NaN            NaN      0.0   NaN  \n",
+       "75%                      0.0            NaN            NaN      0.0   NaN  \n",
+       "max                      0.0            NaN            NaN      0.0   NaN  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:34:24)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:34:24)>>>> Clean (49143, 17)\n",
+      "(2017-06-07 21:34:24)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:24)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:34:24)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:24)>>>> Drop Small columns, threshold = 5 | (49143, 15)\n",
+      "(2017-06-07 21:34:24)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:24)>>>> Drop OOB data | (49143, 7)\n",
+      "(2017-06-07 21:34:24)>>>>>> normal saline, mL, 5275\n",
+      "(2017-06-07 21:34:25)<<<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:34:25)>>>>>> normal saline, mL/hr, 43975\n",
+      "(2017-06-07 21:34:26)<<<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:34:26)>>>>>> normal saline, no_units, 12\n",
+      "(2017-06-07 21:34:26)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:26)<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:34:26)>>>> Drop Small columns, threshold = 50 | (49143, 7)\n",
+      "(2017-06-07 21:34:26)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:26)>>>> Combine like columns (49143, 5)\n",
+      "(2017-06-07 21:34:26)>>>>>> (u'normal saline', 'known', u'qn', u'mL')\n",
+      "(2017-06-07 21:34:26)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:26)>>>>>> (u'normal saline', 'known', u'qn', u'mL/hr')\n",
+      "(2017-06-07 21:34:27)<<<<<< DONE (1.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">normal saline</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>mL</th>\n",
+       "      <th>mL/hr</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>5275.000000</td>\n",
+       "      <td>43935.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>364.824514</td>\n",
+       "      <td>85.965834</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>380.025542</td>\n",
+       "      <td>292.200820</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.020988</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>49.999999</td>\n",
+       "      <td>6.017431</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>250.000000</td>\n",
+       "      <td>15.357691</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>500.000000</td>\n",
+       "      <td>62.833339</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>6000.000000</td>\n",
+       "      <td>7500.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     normal saline              \n",
+       "status                known              \n",
+       "variable_type            qn              \n",
+       "units                    mL         mL/hr\n",
+       "description             all           all\n",
+       "count           5275.000000  43935.000000\n",
+       "mean             364.824514     85.965834\n",
+       "std              380.025542    292.200820\n",
+       "min                0.000000      0.020988\n",
+       "25%               49.999999      6.017431\n",
+       "50%              250.000000     15.357691\n",
+       "75%              500.000000     62.833339\n",
+       "max             6000.000000   7500.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((49143, 15), (49092, 2), 55L, 3, '0.1501% records')\n",
+      "(2017-06-07 21:34:27)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:34:27)>>>> Join (49092, 2) to (747628, 12)\n",
+      "(2017-06-07 21:34:32)<<<< DONE (5.0s)\n",
+      "(2017-06-07 21:34:32)<< DONE (9.0s)\n",
+      "(2017-06-07 21:34:32)>> NOREPINEPHRINE\n",
+      "(2017-06-07 21:34:32)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"5\" halign=\"left\">norepinephrine</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"5\" halign=\"left\">known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"5\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">mcg</th>\n",
+       "      <th>mcg/kg/min</th>\n",
+       "      <th>mcg/min</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>221906(mg)</th>\n",
+       "      <th>30047(mg)</th>\n",
+       "      <th>30120(mg)</th>\n",
+       "      <th>30120(mcgkgmin)</th>\n",
+       "      <th>30047(mcgmin)</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>8148.000000</td>\n",
+       "      <td>438.000000</td>\n",
+       "      <td>19680.000000</td>\n",
+       "      <td>29898.000000</td>\n",
+       "      <td>903.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>126.284480</td>\n",
+       "      <td>685.164003</td>\n",
+       "      <td>686.694749</td>\n",
+       "      <td>0.136690</td>\n",
+       "      <td>9.294083</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>213.561785</td>\n",
+       "      <td>1388.862177</td>\n",
+       "      <td>962.666821</td>\n",
+       "      <td>0.196081</td>\n",
+       "      <td>11.256667</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.001600</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>31.658734</td>\n",
+       "      <td>120.000000</td>\n",
+       "      <td>160.000000</td>\n",
+       "      <td>0.037647</td>\n",
+       "      <td>2.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>80.024033</td>\n",
+       "      <td>320.000000</td>\n",
+       "      <td>384.000000</td>\n",
+       "      <td>0.080000</td>\n",
+       "      <td>6.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>179.931926</td>\n",
+       "      <td>655.000000</td>\n",
+       "      <td>863.100098</td>\n",
+       "      <td>0.190000</td>\n",
+       "      <td>12.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>9797.541298</td>\n",
+       "      <td>14400.000000</td>\n",
+       "      <td>25200.000000</td>\n",
+       "      <td>9.000000</td>\n",
+       "      <td>60.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     norepinephrine                                              \\\n",
+       "status                 known                                               \n",
+       "variable_type             qn                                               \n",
+       "units                    mcg                                  mcg/kg/min   \n",
+       "description       221906(mg)     30047(mg)     30120(mg) 30120(mcgkgmin)   \n",
+       "count            8148.000000    438.000000  19680.000000    29898.000000   \n",
+       "mean              126.284480    685.164003    686.694749        0.136690   \n",
+       "std               213.561785   1388.862177    962.666821        0.196081   \n",
+       "min                 0.001600      0.000000      0.000000        0.000000   \n",
+       "25%                31.658734    120.000000    160.000000        0.037647   \n",
+       "50%                80.024033    320.000000    384.000000        0.080000   \n",
+       "75%               179.931926    655.000000    863.100098        0.190000   \n",
+       "max              9797.541298  14400.000000  25200.000000        9.000000   \n",
+       "\n",
+       "component                    \n",
+       "status                       \n",
+       "variable_type                \n",
+       "units               mcg/min  \n",
+       "description   30047(mcgmin)  \n",
+       "count            903.000000  \n",
+       "mean               9.294083  \n",
+       "std               11.256667  \n",
+       "min                0.000000  \n",
+       "25%                2.000000  \n",
+       "50%                6.000000  \n",
+       "75%               12.000000  \n",
+       "max               60.000000  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:34:32)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:32)>>>> Clean (40268, 5)\n",
+      "(2017-06-07 21:34:32)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:32)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:34:32)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:32)>>>> Drop Small columns, threshold = 5 | (40268, 5)\n",
+      "(2017-06-07 21:34:32)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:32)>>>> Drop OOB data | (40268, 5)\n",
+      "(2017-06-07 21:34:32)>>>>>> norepinephrine, mcg, 28266\n",
+      "(2017-06-07 21:34:33)<<<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:34:33)>>>>>> norepinephrine, mcg/kg/min, 29898\n",
+      "(2017-06-07 21:34:33)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:33)>>>>>> norepinephrine, mcg/min, 903\n",
+      "(2017-06-07 21:34:33)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:33)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:34:33)>>>> Drop Small columns, threshold = 50 | (40268, 5)\n",
+      "(2017-06-07 21:34:33)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:33)>>>> Combine like columns (40268, 5)\n",
+      "(2017-06-07 21:34:33)>>>>>> ('norepinephrine', 'known', 'qn', 'mcg')\n",
+      "(2017-06-07 21:34:33)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:33)>>>>>> ('norepinephrine', 'known', 'qn', 'mcg/kg/min')\n",
+      "(2017-06-07 21:34:34)<<<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:34:34)>>>>>> ('norepinephrine', 'known', 'qn', 'mcg/min')\n",
+      "(2017-06-07 21:34:34)<<<<<< DONE (0.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">norepinephrine</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>mcg</th>\n",
+       "      <th>mcg/kg/min</th>\n",
+       "      <th>mcg/min</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "      <th>all</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>28265.000000</td>\n",
+       "      <td>29898.000000</td>\n",
+       "      <td>903.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>525.119421</td>\n",
+       "      <td>0.136690</td>\n",
+       "      <td>9.294083</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>867.548814</td>\n",
+       "      <td>0.196081</td>\n",
+       "      <td>11.256667</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>79.995710</td>\n",
+       "      <td>0.037647</td>\n",
+       "      <td>2.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>240.363680</td>\n",
+       "      <td>0.080000</td>\n",
+       "      <td>6.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>612.000061</td>\n",
+       "      <td>0.190000</td>\n",
+       "      <td>12.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>25200.000000</td>\n",
+       "      <td>9.000000</td>\n",
+       "      <td>60.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     norepinephrine                          \n",
+       "status                 known                          \n",
+       "variable_type             qn                          \n",
+       "units                    mcg    mcg/kg/min     mcg/min\n",
+       "description              all           all         all\n",
+       "count           28265.000000  29898.000000  903.000000\n",
+       "mean              525.119421      0.136690    9.294083\n",
+       "std               867.548814      0.196081   11.256667\n",
+       "min                 0.000000      0.000000    0.000000\n",
+       "25%                79.995710      0.037647    2.000000\n",
+       "50%               240.363680      0.080000    6.000000\n",
+       "75%               612.000061      0.190000   12.000000\n",
+       "max             25200.000000      9.000000   60.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((40268, 5), (40268, 3), 1L, 0, '0.0% records')\n",
+      "(2017-06-07 21:34:34)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:34:34)>>>> Join (40268, 3) to (788924, 14)\n",
+      "(2017-06-07 21:34:40)<<<< DONE (6.0s)\n",
+      "(2017-06-07 21:34:40)<< DONE (8.0s)\n",
+      "(2017-06-07 21:34:40)>> TEMPERATURE BODY\n",
+      "(2017-06-07 21:34:40)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">temperature body</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">degF</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>223761(?F)</th>\n",
+       "      <th>223762(?C)(degC)</th>\n",
+       "      <th>676(Deg. C)(degC)</th>\n",
+       "      <th>678(Deg. F)</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>51128.000000</td>\n",
+       "      <td>8556.000000</td>\n",
+       "      <td>37088.000000</td>\n",
+       "      <td>74823.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>98.388801</td>\n",
+       "      <td>99.676010</td>\n",
+       "      <td>98.795385</td>\n",
+       "      <td>98.520238</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>9.432410</td>\n",
+       "      <td>10.395099</td>\n",
+       "      <td>2.509944</td>\n",
+       "      <td>2.558967</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>32.000000</td>\n",
+       "      <td>32.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>97.500000</td>\n",
+       "      <td>97.700000</td>\n",
+       "      <td>98.060002</td>\n",
+       "      <td>97.599998</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>98.300000</td>\n",
+       "      <td>98.960000</td>\n",
+       "      <td>98.960002</td>\n",
+       "      <td>98.500000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>99.200000</td>\n",
+       "      <td>100.040000</td>\n",
+       "      <td>99.860002</td>\n",
+       "      <td>99.500000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>1111.000000</td>\n",
+       "      <td>214.880000</td>\n",
+       "      <td>106.879998</td>\n",
+       "      <td>109.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     temperature body                                     \\\n",
+       "status                   known                                      \n",
+       "variable_type               qn                                      \n",
+       "units                     degF                                      \n",
+       "description         223761(?F) 223762(?C)(degC) 676(Deg. C)(degC)   \n",
+       "count             51128.000000      8556.000000      37088.000000   \n",
+       "mean                 98.388801        99.676010         98.795385   \n",
+       "std                   9.432410        10.395099          2.509944   \n",
+       "min                   0.000000        32.000000         32.000000   \n",
+       "25%                  97.500000        97.700000         98.060002   \n",
+       "50%                  98.300000        98.960000         98.960002   \n",
+       "75%                  99.200000       100.040000         99.860002   \n",
+       "max                1111.000000       214.880000        106.879998   \n",
+       "\n",
+       "component                    \n",
+       "status                       \n",
+       "variable_type                \n",
+       "units                        \n",
+       "description     678(Deg. F)  \n",
+       "count          74823.000000  \n",
+       "mean              98.520238  \n",
+       "std                2.558967  \n",
+       "min                0.000000  \n",
+       "25%               97.599998  \n",
+       "50%               98.500000  \n",
+       "75%               99.500000  \n",
+       "max              109.000000  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:34:40)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:40)>>>> Clean (171306, 4)\n",
+      "(2017-06-07 21:34:40)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:40)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:34:40)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:40)>>>> Drop Small columns, threshold = 5 | (171306, 4)\n",
+      "(2017-06-07 21:34:40)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:40)>>>> Drop OOB data | (171306, 4)\n",
+      "(2017-06-07 21:34:40)>>>>>> temperature body, degF, 171595\n",
+      "(2017-06-07 21:34:45)<<<<<< DONE (5.0s)\n",
+      "(2017-06-07 21:34:45)<<<< DONE (5.0s)\n",
+      "(2017-06-07 21:34:45)>>>> Drop Small columns, threshold = 50 | (171306, 4)\n",
+      "(2017-06-07 21:34:45)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:45)>>>> Combine like columns (171306, 4)\n",
+      "(2017-06-07 21:34:45)>>>>>> (u'temperature body', 'known', u'qn', u'degF')\n",
+      "(2017-06-07 21:34:46)<<<<<< DONE (1.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>temperature body</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>degF</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>171258.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>98.537549</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>2.476494</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>97.600000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>98.599998</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>99.500000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>109.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     temperature body\n",
+       "status                   known\n",
+       "variable_type               qn\n",
+       "units                     degF\n",
+       "description                all\n",
+       "count            171258.000000\n",
+       "mean                 98.537549\n",
+       "std                   2.476494\n",
+       "min                   0.000000\n",
+       "25%                  97.600000\n",
+       "50%                  98.599998\n",
+       "75%                  99.500000\n",
+       "max                 109.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((171306, 4), (171258, 1), 337L, 0, '0.0% records')\n",
+      "(2017-06-07 21:34:46)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:34:46)>>>> Join (171258, 1) to (789883, 17)\n",
+      "(2017-06-07 21:34:52)<<<< DONE (6.0s)\n",
+      "(2017-06-07 21:34:52)<< DONE (12.0s)\n",
+      "(2017-06-07 21:34:52)>> BLOOD PRESSURE DIASTOLIC\n",
+      "(2017-06-07 21:34:52)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"15\" halign=\"left\">blood pressure diastolic</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"11\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"11\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"11\" halign=\"left\">mmHg</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">cc/min</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>8364</th>\n",
+       "      <th>8368</th>\n",
+       "      <th>8440</th>\n",
+       "      <th>8441</th>\n",
+       "      <th>8555</th>\n",
+       "      <th>220051</th>\n",
+       "      <th>220180</th>\n",
+       "      <th>224643</th>\n",
+       "      <th>225310</th>\n",
+       "      <th>227242</th>\n",
+       "      <th>8503(cmH20)(cmH2O)</th>\n",
+       "      <th>8502</th>\n",
+       "      <th>8504</th>\n",
+       "      <th>8506</th>\n",
+       "      <th>8507</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>201694.000000</td>\n",
+       "      <td>193.000000</td>\n",
+       "      <td>156096.000000</td>\n",
+       "      <td>2142.000000</td>\n",
+       "      <td>105866.00000</td>\n",
+       "      <td>126625.000000</td>\n",
+       "      <td>97.000000</td>\n",
+       "      <td>8020.000000</td>\n",
+       "      <td>51.000000</td>\n",
+       "      <td>166.000000</td>\n",
+       "      <td>12913.000000</td>\n",
+       "      <td>133.00000</td>\n",
+       "      <td>128.000000</td>\n",
+       "      <td>127.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>59.708504</td>\n",
+       "      <td>62.316062</td>\n",
+       "      <td>57.992835</td>\n",
+       "      <td>56.979458</td>\n",
+       "      <td>64.22657</td>\n",
+       "      <td>64.386472</td>\n",
+       "      <td>66.422680</td>\n",
+       "      <td>57.914339</td>\n",
+       "      <td>68.352941</td>\n",
+       "      <td>31.190366</td>\n",
+       "      <td>37.754124</td>\n",
+       "      <td>40.75188</td>\n",
+       "      <td>43.437500</td>\n",
+       "      <td>40.456693</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>14.172999</td>\n",
+       "      <td>15.289519</td>\n",
+       "      <td>15.497842</td>\n",
+       "      <td>13.526784</td>\n",
+       "      <td>480.58826</td>\n",
+       "      <td>331.364549</td>\n",
+       "      <td>17.126268</td>\n",
+       "      <td>14.396624</td>\n",
+       "      <td>16.369268</td>\n",
+       "      <td>6.976237</td>\n",
+       "      <td>10.500318</td>\n",
+       "      <td>9.74400</td>\n",
+       "      <td>10.232533</td>\n",
+       "      <td>11.288958</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>30.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>-2.00000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>35.000000</td>\n",
+       "      <td>5.000000</td>\n",
+       "      <td>35.000000</td>\n",
+       "      <td>16.182301</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>21.00000</td>\n",
+       "      <td>22.000000</td>\n",
+       "      <td>18.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>50.000000</td>\n",
+       "      <td>50.000000</td>\n",
+       "      <td>47.000000</td>\n",
+       "      <td>48.000000</td>\n",
+       "      <td>52.00000</td>\n",
+       "      <td>52.000000</td>\n",
+       "      <td>53.000000</td>\n",
+       "      <td>49.000000</td>\n",
+       "      <td>57.000000</td>\n",
+       "      <td>26.480129</td>\n",
+       "      <td>32.000000</td>\n",
+       "      <td>34.00000</td>\n",
+       "      <td>36.000000</td>\n",
+       "      <td>34.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>58.000000</td>\n",
+       "      <td>60.000000</td>\n",
+       "      <td>57.000000</td>\n",
+       "      <td>56.000000</td>\n",
+       "      <td>60.00000</td>\n",
+       "      <td>61.000000</td>\n",
+       "      <td>66.000000</td>\n",
+       "      <td>57.000000</td>\n",
+       "      <td>65.000000</td>\n",
+       "      <td>30.157925</td>\n",
+       "      <td>37.000000</td>\n",
+       "      <td>40.00000</td>\n",
+       "      <td>42.500000</td>\n",
+       "      <td>40.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>67.000000</td>\n",
+       "      <td>72.000000</td>\n",
+       "      <td>67.000000</td>\n",
+       "      <td>64.000000</td>\n",
+       "      <td>69.00000</td>\n",
+       "      <td>72.000000</td>\n",
+       "      <td>77.000000</td>\n",
+       "      <td>66.000000</td>\n",
+       "      <td>80.000000</td>\n",
+       "      <td>35.858508</td>\n",
+       "      <td>43.000000</td>\n",
+       "      <td>46.00000</td>\n",
+       "      <td>50.250000</td>\n",
+       "      <td>47.500000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>294.000000</td>\n",
+       "      <td>100.000000</td>\n",
+       "      <td>226.000000</td>\n",
+       "      <td>155.000000</td>\n",
+       "      <td>85100.98000</td>\n",
+       "      <td>75104.970000</td>\n",
+       "      <td>110.000000</td>\n",
+       "      <td>232.000000</td>\n",
+       "      <td>110.000000</td>\n",
+       "      <td>57.373613</td>\n",
+       "      <td>647.000000</td>\n",
+       "      <td>74.00000</td>\n",
+       "      <td>87.000000</td>\n",
+       "      <td>81.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     blood pressure diastolic                             \\\n",
+       "status                           known                              \n",
+       "variable_type                       qn                              \n",
+       "units                             mmHg                              \n",
+       "description                       8364           8368        8440   \n",
+       "count                              0.0  201694.000000  193.000000   \n",
+       "mean                               NaN      59.708504   62.316062   \n",
+       "std                                NaN      14.172999   15.289519   \n",
+       "min                                NaN       0.000000   30.000000   \n",
+       "25%                                NaN      50.000000   50.000000   \n",
+       "50%                                NaN      58.000000   60.000000   \n",
+       "75%                                NaN      67.000000   72.000000   \n",
+       "max                                NaN     294.000000  100.000000   \n",
+       "\n",
+       "component                                                               \\\n",
+       "status                                                                   \n",
+       "variable_type                                                            \n",
+       "units                                                                    \n",
+       "description             8441         8555        220051         220180   \n",
+       "count          156096.000000  2142.000000  105866.00000  126625.000000   \n",
+       "mean               57.992835    56.979458      64.22657      64.386472   \n",
+       "std                15.497842    13.526784     480.58826     331.364549   \n",
+       "min                 0.000000     0.000000      -2.00000       0.000000   \n",
+       "25%                47.000000    48.000000      52.00000      52.000000   \n",
+       "50%                57.000000    56.000000      60.00000      61.000000   \n",
+       "75%                67.000000    64.000000      69.00000      72.000000   \n",
+       "max               226.000000   155.000000   85100.98000   75104.970000   \n",
+       "\n",
+       "component                                                              \\\n",
+       "status                                                                  \n",
+       "variable_type                                                           \n",
+       "units                                                                   \n",
+       "description        224643       225310      227242 8503(cmH20)(cmH2O)   \n",
+       "count           97.000000  8020.000000   51.000000         166.000000   \n",
+       "mean            66.422680    57.914339   68.352941          31.190366   \n",
+       "std             17.126268    14.396624   16.369268           6.976237   \n",
+       "min             35.000000     5.000000   35.000000          16.182301   \n",
+       "25%             53.000000    49.000000   57.000000          26.480129   \n",
+       "50%             66.000000    57.000000   65.000000          30.157925   \n",
+       "75%             77.000000    66.000000   80.000000          35.858508   \n",
+       "max            110.000000   232.000000  110.000000          57.373613   \n",
+       "\n",
+       "component                                                       \n",
+       "status              unknown                                     \n",
+       "variable_type            qn                                     \n",
+       "units                cc/min                                     \n",
+       "description            8502       8504        8506        8507  \n",
+       "count          12913.000000  133.00000  128.000000  127.000000  \n",
+       "mean              37.754124   40.75188   43.437500   40.456693  \n",
+       "std               10.500318    9.74400   10.232533   11.288958  \n",
+       "min                0.000000   21.00000   22.000000   18.000000  \n",
+       "25%               32.000000   34.00000   36.000000   34.000000  \n",
+       "50%               37.000000   40.00000   42.500000   40.000000  \n",
+       "75%               43.000000   46.00000   50.250000   47.500000  \n",
+       "max              647.000000   74.00000   87.000000   81.000000  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:34:54)<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:34:54)>>>> Clean (578689, 15)\n",
+      "(2017-06-07 21:34:54)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:54)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:34:54)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:34:54)>>>> Drop Small columns, threshold = 5 | (578689, 15)\n",
+      "(2017-06-07 21:34:55)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:34:55)>>>> Drop OOB data | (578689, 14)\n",
+      "(2017-06-07 21:34:55)>>>>>> blood pressure diastolic, mmHg, 600950\n",
+      "(2017-06-07 21:35:30)<<<<<< DONE (35.0s)\n",
+      "(2017-06-07 21:35:30)>>>>>> blood pressure diastolic, cc/min, 13301\n",
+      "(2017-06-07 21:35:30)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:35:30)<<<< DONE (35.0s)\n",
+      "(2017-06-07 21:35:30)>>>> Drop Small columns, threshold = 50 | (578689, 14)\n",
+      "(2017-06-07 21:35:30)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:35:30)>>>> Combine like columns (578689, 14)\n",
+      "(2017-06-07 21:35:30)>>>>>> (u'blood pressure diastolic', 'known', u'qn', u'mmHg')\n",
+      "(2017-06-07 21:35:31)<<<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:35:31)>>>>>> (u'blood pressure diastolic', 'unknown', u'qn', u'cc/min')\n",
+      "(2017-06-07 21:35:39)<<<<<< DONE (8.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">blood pressure diastolic</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "      <th>unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>mmHg</th>\n",
+       "      <th>cc/min</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>565812.000000</td>\n",
+       "      <td>13012.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>60.228537</td>\n",
+       "      <td>37.783354</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>14.861842</td>\n",
+       "      <td>10.494939</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>50.000000</td>\n",
+       "      <td>32.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>59.000000</td>\n",
+       "      <td>37.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>69.000000</td>\n",
+       "      <td>43.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>448.000000</td>\n",
+       "      <td>647.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     blood pressure diastolic              \n",
+       "status                           known       unknown\n",
+       "variable_type                       qn            qn\n",
+       "units                             mmHg        cc/min\n",
+       "description                        all           all\n",
+       "count                    565812.000000  13012.000000\n",
+       "mean                         60.228537     37.783354\n",
+       "std                          14.861842     10.494939\n",
+       "min                           0.000000      0.000000\n",
+       "25%                          50.000000     32.000000\n",
+       "50%                          59.000000     37.000000\n",
+       "75%                          69.000000     43.000000\n",
+       "max                         448.000000    647.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((578689, 15), (578670, 2), 35427L, 0, '0.0% records')\n",
+      "(2017-06-07 21:35:39)<<<< DONE (9.0s)\n",
+      "(2017-06-07 21:35:39)>>>> Join (578670, 2) to (792967, 18)\n",
+      "(2017-06-07 21:35:48)<<<< DONE (9.0s)\n",
+      "(2017-06-07 21:35:48)<< DONE (56.0s)\n",
+      "(2017-06-07 21:35:48)>> HEART RATE\n",
+      "(2017-06-07 21:35:48)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"6\" halign=\"left\">heart rate</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">beats/min</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>211(BPM)(beat/min)</th>\n",
+       "      <th>211(bpm)(beat/min)</th>\n",
+       "      <th>220045(bpm)(beat/min)</th>\n",
+       "      <th>1332</th>\n",
+       "      <th>1341</th>\n",
+       "      <th>1725</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>342633.000000</td>\n",
+       "      <td>153000.000000</td>\n",
+       "      <td>264113.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>85.993935</td>\n",
+       "      <td>154.783721</td>\n",
+       "      <td>90.048595</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>17.964728</td>\n",
+       "      <td>15.873190</td>\n",
+       "      <td>170.147868</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>73.000000</td>\n",
+       "      <td>144.000000</td>\n",
+       "      <td>75.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>84.000000</td>\n",
+       "      <td>156.000000</td>\n",
+       "      <td>87.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>97.000000</td>\n",
+       "      <td>166.000000</td>\n",
+       "      <td>103.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>300.000000</td>\n",
+       "      <td>218.000000</td>\n",
+       "      <td>86101.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component             heart rate                                           \\\n",
+       "status                     known                                            \n",
+       "variable_type                 qn                                            \n",
+       "units                  beats/min                                            \n",
+       "description   211(BPM)(beat/min) 211(bpm)(beat/min) 220045(bpm)(beat/min)   \n",
+       "count              342633.000000      153000.000000         264113.000000   \n",
+       "mean                   85.993935         154.783721             90.048595   \n",
+       "std                    17.964728          15.873190            170.147868   \n",
+       "min                     0.000000           0.000000              0.000000   \n",
+       "25%                    73.000000         144.000000             75.000000   \n",
+       "50%                    84.000000         156.000000             87.000000   \n",
+       "75%                    97.000000         166.000000            103.000000   \n",
+       "max                   300.000000         218.000000          86101.000000   \n",
+       "\n",
+       "component                         \n",
+       "status         unknown            \n",
+       "variable_type       qn            \n",
+       "units         no_units            \n",
+       "description       1332 1341 1725  \n",
+       "count              0.0  0.0  0.0  \n",
+       "mean               NaN  NaN  NaN  \n",
+       "std                NaN  NaN  NaN  \n",
+       "min                NaN  NaN  NaN  \n",
+       "25%                NaN  NaN  NaN  \n",
+       "50%                NaN  NaN  NaN  \n",
+       "75%                NaN  NaN  NaN  \n",
+       "max                NaN  NaN  NaN  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:35:49)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:35:49)>>>> Clean (759724, 6)\n",
+      "(2017-06-07 21:35:49)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:35:49)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:35:49)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:35:49)>>>> Drop Small columns, threshold = 5 | (759724, 6)\n",
+      "(2017-06-07 21:35:49)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:35:49)>>>> Drop OOB data | (759724, 3)\n",
+      "(2017-06-07 21:35:50)>>>>>> heart rate, beats/min, 759746\n",
+      "(2017-06-07 21:36:06)<<<<<< DONE (16.0s)\n",
+      "(2017-06-07 21:36:06)<<<< DONE (17.0s)\n",
+      "(2017-06-07 21:36:06)>>>> Drop Small columns, threshold = 50 | (759724, 3)\n",
+      "(2017-06-07 21:36:06)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:36:06)>>>> Combine like columns (759724, 3)\n",
+      "(2017-06-07 21:36:06)>>>>>> (u'heart rate', 'known', u'qn', u'beats/min')\n",
+      "(2017-06-07 21:36:10)<<<<<< DONE (4.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th>heart rate</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>beats/min</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>759721.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>101.127339</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>32.758477</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>77.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>92.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>120.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>300.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component         heart rate\n",
+       "status                 known\n",
+       "variable_type             qn\n",
+       "units              beats/min\n",
+       "description              all\n",
+       "count          759721.000000\n",
+       "mean              101.127339\n",
+       "std                32.758477\n",
+       "min                 0.000000\n",
+       "25%                77.000000\n",
+       "50%                92.000000\n",
+       "75%               120.000000\n",
+       "max               300.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((759724, 6), (759721, 1), 25L, 0, '0.0% records')\n",
+      "(2017-06-07 21:36:10)<<<< DONE (4.0s)\n",
+      "(2017-06-07 21:36:10)>>>> Join (759721, 1) to (793006, 20)\n",
+      "(2017-06-07 21:36:19)<<<< DONE (9.0s)\n",
+      "(2017-06-07 21:36:19)<< DONE (31.0s)\n",
+      "(2017-06-07 21:36:19)>> OUTPUT URINE\n",
+      "(2017-06-07 21:36:19)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"21\" halign=\"left\">output urine</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"10\" halign=\"left\">known</th>\n",
+       "      <th>...</th>\n",
+       "      <th colspan=\"10\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"10\" halign=\"left\">qn</th>\n",
+       "      <th>...</th>\n",
+       "      <th colspan=\"10\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"10\" halign=\"left\">mL</th>\n",
+       "      <th>...</th>\n",
+       "      <th colspan=\"10\" halign=\"left\">no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>226559</th>\n",
+       "      <th>226560</th>\n",
+       "      <th>40055(ml)</th>\n",
+       "      <th>40069(ml)</th>\n",
+       "      <th>40405(ml)</th>\n",
+       "      <th>41857(ml)</th>\n",
+       "      <th>42042(ml)</th>\n",
+       "      <th>42592(ml)</th>\n",
+       "      <th>42666(ml)</th>\n",
+       "      <th>42810(ml)</th>\n",
+       "      <th>...</th>\n",
+       "      <th>44253</th>\n",
+       "      <th>44325</th>\n",
+       "      <th>44684</th>\n",
+       "      <th>44706</th>\n",
+       "      <th>44824</th>\n",
+       "      <th>45415</th>\n",
+       "      <th>45991</th>\n",
+       "      <th>46180</th>\n",
+       "      <th>46578</th>\n",
+       "      <th>46658</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>114944.000000</td>\n",
+       "      <td>6175.000000</td>\n",
+       "      <td>185482.000000</td>\n",
+       "      <td>6459.000000</td>\n",
+       "      <td>855.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>2.00000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>...</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>117.290454</td>\n",
+       "      <td>313.692955</td>\n",
+       "      <td>113.807256</td>\n",
+       "      <td>283.836352</td>\n",
+       "      <td>104.824561</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>362.50000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>121.702750</td>\n",
+       "      <td>201.128231</td>\n",
+       "      <td>122.603773</td>\n",
+       "      <td>198.742273</td>\n",
+       "      <td>78.220562</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>371.23106</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>-1500.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>100.00000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>40.000000</td>\n",
+       "      <td>200.000000</td>\n",
+       "      <td>40.000000</td>\n",
+       "      <td>150.000000</td>\n",
+       "      <td>50.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>231.25000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>80.000000</td>\n",
+       "      <td>300.000000</td>\n",
+       "      <td>80.000000</td>\n",
+       "      <td>250.000000</td>\n",
+       "      <td>90.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>362.50000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>150.000000</td>\n",
+       "      <td>400.000000</td>\n",
+       "      <td>140.000000</td>\n",
+       "      <td>400.000000</td>\n",
+       "      <td>130.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>493.75000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>4000.000000</td>\n",
+       "      <td>1800.000000</td>\n",
+       "      <td>3105.000000</td>\n",
+       "      <td>3350.000000</td>\n",
+       "      <td>850.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>625.00000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>...</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>8 rows × 51 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component       output urine                                           \\\n",
+       "status                 known                                            \n",
+       "variable_type             qn                                            \n",
+       "units                     mL                                            \n",
+       "description           226559       226560      40055(ml)    40069(ml)   \n",
+       "count          114944.000000  6175.000000  185482.000000  6459.000000   \n",
+       "mean              117.290454   313.692955     113.807256   283.836352   \n",
+       "std               121.702750   201.128231     122.603773   198.742273   \n",
+       "min                 0.000000 -1500.000000       0.000000     0.000000   \n",
+       "25%                40.000000   200.000000      40.000000   150.000000   \n",
+       "50%                80.000000   300.000000      80.000000   250.000000   \n",
+       "75%               150.000000   400.000000     140.000000   400.000000   \n",
+       "max              4000.000000  1800.000000    3105.000000  3350.000000   \n",
+       "\n",
+       "component                                                                     \\\n",
+       "status                                                                         \n",
+       "variable_type                                                                  \n",
+       "units                                                                          \n",
+       "description     40405(ml) 41857(ml)  42042(ml) 42592(ml) 42666(ml) 42810(ml)   \n",
+       "count          855.000000       0.0    2.00000       0.0       0.0       0.0   \n",
+       "mean           104.824561       NaN  362.50000       NaN       NaN       NaN   \n",
+       "std             78.220562       NaN  371.23106       NaN       NaN       NaN   \n",
+       "min              0.000000       NaN  100.00000       NaN       NaN       NaN   \n",
+       "25%             50.000000       NaN  231.25000       NaN       NaN       NaN   \n",
+       "50%             90.000000       NaN  362.50000       NaN       NaN       NaN   \n",
+       "75%            130.000000       NaN  493.75000       NaN       NaN       NaN   \n",
+       "max            850.000000       NaN  625.00000       NaN       NaN       NaN   \n",
+       "\n",
+       "component      ...                                                            \\\n",
+       "status         ...   unknown                                                   \n",
+       "variable_type  ...        qn                                                   \n",
+       "units          ...  no_units                                                   \n",
+       "description    ...     44253 44325 44684 44706 44824 45415 45991 46180 46578   \n",
+       "count          ...       1.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   \n",
+       "mean           ...       0.0   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   \n",
+       "std            ...       NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   \n",
+       "min            ...       0.0   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   \n",
+       "25%            ...       0.0   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   \n",
+       "50%            ...       0.0   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   \n",
+       "75%            ...       0.0   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   \n",
+       "max            ...       0.0   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   \n",
+       "\n",
+       "component            \n",
+       "status               \n",
+       "variable_type        \n",
+       "units                \n",
+       "description   46658  \n",
+       "count           0.0  \n",
+       "mean            NaN  \n",
+       "std             NaN  \n",
+       "min             NaN  \n",
+       "25%             NaN  \n",
+       "50%             NaN  \n",
+       "75%             NaN  \n",
+       "max             NaN  \n",
+       "\n",
+       "[8 rows x 51 columns]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:36:25)<<<< DONE (6.0s)\n",
+      "(2017-06-07 21:36:25)>>>> Clean (350906, 54)\n",
+      "(2017-06-07 21:36:25)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:36:25)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:36:28)<<<< DONE (3.0s)\n",
+      "(2017-06-07 21:36:28)>>>> Drop Small columns, threshold = 5 | (350906, 54)\n",
+      "(2017-06-07 21:36:28)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:36:28)>>>> Drop OOB data | (350906, 10)\n",
+      "(2017-06-07 21:36:28)>>>>>> output urine, mL, 313915\n",
+      "(2017-06-07 21:36:40)<<<<<< DONE (12.0s)\n",
+      "(2017-06-07 21:36:40)>>>>>> output urine, no_units, 1053076\n",
+      "(2017-06-07 21:36:40)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:36:40)<<<< DONE (12.0s)\n",
+      "(2017-06-07 21:36:40)>>>> Drop Small columns, threshold = 50 | (350906, 10)\n",
+      "(2017-06-07 21:36:40)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:36:40)>>>> Combine like columns (350906, 10)\n",
+      "(2017-06-07 21:36:40)>>>>>> (u'output urine', 'known', u'qn', u'mL')\n",
+      "(2017-06-07 21:36:40)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:36:40)>>>>>> (u'output urine', 'unknown', 'nom', 'no_units')\n",
+      "(2017-06-07 21:36:46)<<<<<< DONE (6.0s)\n",
+      "(2017-06-07 21:36:46)>>>>>> (u'output urine', 'unknown', u'qn', 'no_units')\n",
+      "(2017-06-07 21:36:50)<<<<<< DONE (4.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"5\" halign=\"left\">output urine</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">nom</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>mL</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">no_units</th>\n",
+       "      <th>no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "      <th>3686(ml)_No Void</th>\n",
+       "      <th>3686(ml)_Voiding qs</th>\n",
+       "      <th>3686_Voiding qs</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>313743.000000</td>\n",
+       "      <td>350906.000000</td>\n",
+       "      <td>350906.000000</td>\n",
+       "      <td>350906.000000</td>\n",
+       "      <td>355.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>122.412638</td>\n",
+       "      <td>0.001200</td>\n",
+       "      <td>0.103891</td>\n",
+       "      <td>0.000180</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>131.133621</td>\n",
+       "      <td>0.034617</td>\n",
+       "      <td>0.305120</td>\n",
+       "      <td>0.013398</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>40.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>80.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>150.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>4000.000000</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component       output urine                                       \\\n",
+       "status                 known          unknown                       \n",
+       "variable_type             qn              nom                       \n",
+       "units                     mL         no_units                       \n",
+       "description              all 3686(ml)_No Void 3686(ml)_Voiding qs   \n",
+       "count          313743.000000    350906.000000       350906.000000   \n",
+       "mean              122.412638         0.001200            0.103891   \n",
+       "std               131.133621         0.034617            0.305120   \n",
+       "min                 0.000000         0.000000            0.000000   \n",
+       "25%                40.000000         0.000000            0.000000   \n",
+       "50%                80.000000         0.000000            0.000000   \n",
+       "75%               150.000000         0.000000            0.000000   \n",
+       "max              4000.000000         1.000000            1.000000   \n",
+       "\n",
+       "component                               \n",
+       "status                                  \n",
+       "variable_type                       qn  \n",
+       "units                         no_units  \n",
+       "description   3686_Voiding qs      all  \n",
+       "count           350906.000000    355.0  \n",
+       "mean                 0.000180      0.0  \n",
+       "std                  0.013398      0.0  \n",
+       "min                  0.000000      0.0  \n",
+       "25%                  0.000000      0.0  \n",
+       "50%                  0.000000      0.0  \n",
+       "75%                  0.000000      0.0  \n",
+       "max                  1.000000      0.0  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((350906, 53), (350906, 5), -1015657L, 0, '0.0% records')\n",
+      "(2017-06-07 21:36:50)<<<< DONE (10.0s)\n",
+      "(2017-06-07 21:36:50)>>>> Join (350906, 5) to (942361, 21)\n",
+      "(2017-06-07 21:36:58)<<<< DONE (8.0s)\n",
+      "(2017-06-07 21:36:58)<< DONE (39.0s)\n",
+      "(2017-06-07 21:36:58)>> LACTATED RINGERS\n",
+      "(2017-06-07 21:36:58)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"20\" halign=\"left\">lactated ringers</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"14\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"6\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"14\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"6\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"12\" halign=\"left\">mL</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">mL/hr</th>\n",
+       "      <th colspan=\"6\" halign=\"left\">no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>1634(ml)</th>\n",
+       "      <th>225828</th>\n",
+       "      <th>225828(ml)</th>\n",
+       "      <th>2971(ml)</th>\n",
+       "      <th>30021</th>\n",
+       "      <th>30021(ml)</th>\n",
+       "      <th>44184(ml)</th>\n",
+       "      <th>44367(ml)</th>\n",
+       "      <th>44521(ml)</th>\n",
+       "      <th>44815(ml)</th>\n",
+       "      <th>46207(ml)</th>\n",
+       "      <th>46781(ml)</th>\n",
+       "      <th>225828(mL/hour)</th>\n",
+       "      <th>30021(mL/hour)</th>\n",
+       "      <th>30021</th>\n",
+       "      <th>44184</th>\n",
+       "      <th>44367</th>\n",
+       "      <th>44521</th>\n",
+       "      <th>44815</th>\n",
+       "      <th>46207</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>0.0</td>\n",
+       "      <td>58.000000</td>\n",
+       "      <td>4985.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>53.0</td>\n",
+       "      <td>17887.00000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>186.000000</td>\n",
+       "      <td>71.0</td>\n",
+       "      <td>461.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>666.379310</td>\n",
+       "      <td>457.298098</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>152.96111</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>390.569193</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>306.277585</td>\n",
+       "      <td>558.438082</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>241.34666</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>456.754619</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>200.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.00000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>2.502769</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>500.000000</td>\n",
+       "      <td>100.003500</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>10.00000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>80.475401</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>500.000000</td>\n",
+       "      <td>357.782820</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>100.00000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>199.976871</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>1000.000000</td>\n",
+       "      <td>999.550425</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>150.00000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>582.863952</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>2000.000000</td>\n",
+       "      <td>28500.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>9050.00000</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>3113.564575</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     lactated ringers                                            \\\n",
+       "status                   known                                             \n",
+       "variable_type               qn                                             \n",
+       "units                       mL                                             \n",
+       "description           1634(ml)       225828    225828(ml) 2971(ml) 30021   \n",
+       "count                      0.0    58.000000   4985.000000      0.0  53.0   \n",
+       "mean                       NaN   666.379310    457.298098      NaN   0.0   \n",
+       "std                        NaN   306.277585    558.438082      NaN   0.0   \n",
+       "min                        NaN   200.000000      0.000000      NaN   0.0   \n",
+       "25%                        NaN   500.000000    100.003500      NaN   0.0   \n",
+       "50%                        NaN   500.000000    357.782820      NaN   0.0   \n",
+       "75%                        NaN  1000.000000    999.550425      NaN   0.0   \n",
+       "max                        NaN  2000.000000  28500.000000      NaN   0.0   \n",
+       "\n",
+       "component                                                                     \\\n",
+       "status                                                                         \n",
+       "variable_type                                                                  \n",
+       "units                                                                          \n",
+       "description      30021(ml) 44184(ml) 44367(ml) 44521(ml) 44815(ml) 46207(ml)   \n",
+       "count          17887.00000       0.0       0.0       0.0       0.0       0.0   \n",
+       "mean             152.96111       NaN       NaN       NaN       NaN       NaN   \n",
+       "std              241.34666       NaN       NaN       NaN       NaN       NaN   \n",
+       "min                0.00000       NaN       NaN       NaN       NaN       NaN   \n",
+       "25%               10.00000       NaN       NaN       NaN       NaN       NaN   \n",
+       "50%              100.00000       NaN       NaN       NaN       NaN       NaN   \n",
+       "75%              150.00000       NaN       NaN       NaN       NaN       NaN   \n",
+       "max             9050.00000       NaN       NaN       NaN       NaN       NaN   \n",
+       "\n",
+       "component                                                                    \\\n",
+       "status                                                  unknown               \n",
+       "variable_type                                                qn               \n",
+       "units                             mL/hr                no_units               \n",
+       "description   46781(ml) 225828(mL/hour) 30021(mL/hour)    30021 44184 44367   \n",
+       "count               0.0      186.000000           71.0    461.0   0.0   0.0   \n",
+       "mean                NaN      390.569193            0.0      0.0   NaN   NaN   \n",
+       "std                 NaN      456.754619            0.0      0.0   NaN   NaN   \n",
+       "min                 NaN        2.502769            0.0      0.0   NaN   NaN   \n",
+       "25%                 NaN       80.475401            0.0      0.0   NaN   NaN   \n",
+       "50%                 NaN      199.976871            0.0      0.0   NaN   NaN   \n",
+       "75%                 NaN      582.863952            0.0      0.0   NaN   NaN   \n",
+       "max                 NaN     3113.564575            0.0      0.0   NaN   NaN   \n",
+       "\n",
+       "component                        \n",
+       "status                           \n",
+       "variable_type                    \n",
+       "units                            \n",
+       "description   44521 44815 46207  \n",
+       "count           0.0   0.0   0.0  \n",
+       "mean            NaN   NaN   NaN  \n",
+       "std             NaN   NaN   NaN  \n",
+       "min             NaN   NaN   NaN  \n",
+       "25%             NaN   NaN   NaN  \n",
+       "50%             NaN   NaN   NaN  \n",
+       "75%             NaN   NaN   NaN  \n",
+       "max             NaN   NaN   NaN  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:36:58)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:36:58)>>>> Clean (23566, 20)\n",
+      "(2017-06-07 21:36:58)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:36:58)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:36:58)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:36:58)>>>> Drop Small columns, threshold = 5 | (23566, 20)\n",
+      "(2017-06-07 21:36:59)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:36:59)>>>> Drop OOB data | (23566, 7)\n",
+      "(2017-06-07 21:36:59)>>>>>> lactated ringers, mL, 22983\n",
+      "(2017-06-07 21:36:59)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:36:59)>>>>>> lactated ringers, mL/hr, 257\n",
+      "(2017-06-07 21:37:00)<<<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:37:00)>>>>>> lactated ringers, no_units, 461\n",
+      "(2017-06-07 21:37:00)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:37:00)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:37:00)>>>> Drop Small columns, threshold = 50 | (23566, 7)\n",
+      "(2017-06-07 21:37:00)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:37:00)>>>> Combine like columns (23566, 7)\n",
+      "(2017-06-07 21:37:00)>>>>>> ('lactated ringers', 'known', 'qn', 'mL')\n",
+      "(2017-06-07 21:37:00)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:37:00)>>>>>> ('lactated ringers', 'known', 'qn', 'mL/hr')\n",
+      "(2017-06-07 21:37:00)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:37:00)>>>>>> ('lactated ringers', 'unknown', 'qn', 'no_units')\n",
+      "(2017-06-07 21:37:00)<<<<<< DONE (0.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"3\" halign=\"left\">lactated ringers</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">known</th>\n",
+       "      <th>unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">qn</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>mL</th>\n",
+       "      <th>mL/hr</th>\n",
+       "      <th>no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "      <th>all</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>22978.000000</td>\n",
+       "      <td>257.000000</td>\n",
+       "      <td>461.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>219.918896</td>\n",
+       "      <td>282.668754</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>359.912106</td>\n",
+       "      <td>425.891097</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>30.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>100.000000</td>\n",
+       "      <td>99.999996</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>248.401788</td>\n",
+       "      <td>411.476382</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>28500.000000</td>\n",
+       "      <td>3113.564575</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     lactated ringers                      \n",
+       "status                   known               unknown\n",
+       "variable_type               qn                    qn\n",
+       "units                       mL        mL/hr no_units\n",
+       "description                all          all      all\n",
+       "count             22978.000000   257.000000    461.0\n",
+       "mean                219.918896   282.668754      0.0\n",
+       "std                 359.912106   425.891097      0.0\n",
+       "min                   0.000000     0.000000      0.0\n",
+       "25%                  30.000000     0.000000      0.0\n",
+       "50%                 100.000000    99.999996      0.0\n",
+       "75%                 248.401788   411.476382      0.0\n",
+       "max               28500.000000  3113.564575      0.0"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((23566, 20), (23566, 3), 5L, 0, '0.0% records')\n",
+      "(2017-06-07 21:37:00)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:37:00)>>>> Join (23566, 3) to (964641, 26)\n",
+      "(2017-06-07 21:37:06)<<<< DONE (6.0s)\n",
+      "(2017-06-07 21:37:06)<< DONE (8.0s)\n",
+      "(2017-06-07 21:37:06)>> RESPIRATORY RATE\n",
+      "(2017-06-07 21:37:06)>>>> Opening...\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"4\" halign=\"left\">respiratory rate</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">known</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">qn</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">insp/min</th>\n",
+       "      <th>Breath</th>\n",
+       "      <th>no_units</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>220210</th>\n",
+       "      <th>618(BPM)(breath/min)</th>\n",
+       "      <th>3603</th>\n",
+       "      <th>8113</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>262083.000000</td>\n",
+       "      <td>332289.000000</td>\n",
+       "      <td>150731.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>20.097110</td>\n",
+       "      <td>20.108883</td>\n",
+       "      <td>50.193185</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>9.195059</td>\n",
+       "      <td>6.406466</td>\n",
+       "      <td>13.773678</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>16.000000</td>\n",
+       "      <td>16.000000</td>\n",
+       "      <td>40.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>19.000000</td>\n",
+       "      <td>20.000000</td>\n",
+       "      <td>49.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>23.000000</td>\n",
+       "      <td>24.000000</td>\n",
+       "      <td>60.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>2615.000000</td>\n",
+       "      <td>123.000000</td>\n",
+       "      <td>148.000000</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     respiratory rate                                             \n",
+       "status                   known                             unknown         \n",
+       "variable_type               qn                                  qn         \n",
+       "units                 insp/min                              Breath no_units\n",
+       "description             220210 618(BPM)(breath/min)           3603     8113\n",
+       "count            262083.000000        332289.000000  150731.000000      0.0\n",
+       "mean                 20.097110            20.108883      50.193185      NaN\n",
+       "std                   9.195059             6.406466      13.773678      NaN\n",
+       "min                   0.000000             0.000000       0.000000      NaN\n",
+       "25%                  16.000000            16.000000      40.000000      NaN\n",
+       "50%                  19.000000            20.000000      49.000000      NaN\n",
+       "75%                  23.000000            24.000000      60.000000      NaN\n",
+       "max                2615.000000           123.000000     148.000000      NaN"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(2017-06-07 21:37:08)<<<< DONE (2.0s)\n",
+      "(2017-06-07 21:37:08)>>>> Clean (745082, 5)\n",
+      "(2017-06-07 21:37:08)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:37:08)>>>> Nominal to OneHot\n",
+      "(2017-06-07 21:37:12)<<<< DONE (4.0s)\n",
+      "(2017-06-07 21:37:12)>>>> Drop Small columns, threshold = 5 | (745082, 5)\n",
+      "(2017-06-07 21:37:13)<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:37:13)>>>> Drop OOB data | (745082, 3)\n",
+      "(2017-06-07 21:37:13)>>>>>> respiratory rate, insp/min, 594372\n",
+      "(2017-06-07 21:37:25)<<<<<< DONE (12.0s)\n",
+      "(2017-06-07 21:37:25)>>>>>> respiratory rate, Breath, 150731\n",
+      "(2017-06-07 21:37:25)<<<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:37:25)<<<< DONE (12.0s)\n",
+      "(2017-06-07 21:37:25)>>>> Drop Small columns, threshold = 50 | (745082, 3)\n",
+      "(2017-06-07 21:37:25)<<<< DONE (0.0s)\n",
+      "(2017-06-07 21:37:25)>>>> Combine like columns (745082, 3)\n",
+      "(2017-06-07 21:37:25)>>>>>> (u'respiratory rate', 'known', u'qn', u'insp/min')\n",
+      "(2017-06-07 21:37:26)<<<<<< DONE (1.0s)\n",
+      "(2017-06-07 21:37:26)>>>>>> (u'respiratory rate', 'unknown', u'qn', u'Breath')\n",
+      "(2017-06-07 21:37:37)<<<<<< DONE (11.0s)\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr>\n",
+       "      <th>component</th>\n",
+       "      <th colspan=\"2\" halign=\"left\">respiratory rate</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>status</th>\n",
+       "      <th>known</th>\n",
+       "      <th>unknown</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable_type</th>\n",
+       "      <th>qn</th>\n",
+       "      <th>qn</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>units</th>\n",
+       "      <th>insp/min</th>\n",
+       "      <th>Breath</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>description</th>\n",
+       "      <th>all</th>\n",
+       "      <th>all</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>594344.000000</td>\n",
+       "      <td>150731.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>20.093735</td>\n",
+       "      <td>50.193185</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>6.210768</td>\n",
+       "      <td>13.773678</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>16.000000</td>\n",
+       "      <td>40.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>20.000000</td>\n",
+       "      <td>49.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>24.000000</td>\n",
+       "      <td>60.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>126.000000</td>\n",
+       "      <td>148.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "component     respiratory rate               \n",
+       "status                   known        unknown\n",
+       "variable_type               qn             qn\n",
+       "units                 insp/min         Breath\n",
+       "description                all            all\n",
+       "count            594344.000000  150731.000000\n",
+       "mean                 20.093735      50.193185\n",
+       "std                   6.210768      13.773678\n",
+       "min                   0.000000       0.000000\n",
+       "25%                  16.000000      40.000000\n",
+       "50%                  20.000000      49.000000\n",
+       "75%                  24.000000      60.000000\n",
+       "max                 126.000000     148.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "((745082, 4), (745075, 2), 28L, 0, '0.0% records')\n",
+      "(2017-06-07 21:37:37)<<<< DONE (12.0s)\n",
+      "(2017-06-07 21:37:37)>>>> Join (745075, 2) to (969222, 29)\n",
+      "(2017-06-07 21:37:46)<<<< DONE (9.0s)\n",
+      "(2017-06-07 21:37:46)<< DONE (40.0s)\n",
+      "(2017-06-07 21:37:46) DONE (320.0s)\n",
+      "(2017-06-07 21:37:46) Extract lactate label\n",
+      "(2017-06-07 21:38:01) DONE (15.0s)\n",
+      "(2017-06-07 21:38:01) Segment df (699465, 31)\n",
+      "(2017-06-07 21:38:01)>> Get Segments\n",
+      "(2017-06-07 21:38:03)<< DONE (2.0s)\n",
+      "(2017-06-07 21:38:03)>> Apply Segments\n",
+      "(2017-06-07 21:38:09)<< DONE (6.0s)\n",
+      "(2017-06-07 21:38:09) DONE (8.0s)\n",
+      "(2017-06-07 21:38:09) Start Feature Union on DF (699465, 31)\n",
+      "(2017-06-07 21:38:09)>> MEAN\n",
+      "(2017-06-07 21:38:09)<< DONE (0.0s)\n",
+      "(2017-06-07 21:38:09)>> STD\n",
+      "(2017-06-07 21:38:09)<< DONE (0.0s)\n",
+      "(2017-06-07 21:38:09)>> COUNT\n",
+      "(2017-06-07 21:38:25)<< DONE (16.0s)\n",
+      "(2017-06-07 21:38:25)>> LAST\n",
+      "(2017-06-07 21:39:20)<< DONE (55.0s)\n",
+      "(2017-06-07 21:39:20)>> SUM\n",
+      "(2017-06-07 21:39:20)<< DONE (0.0s)\n",
+      "(2017-06-07 21:39:20)>> HStack\n",
+      "(2017-06-07 21:39:20)<< DONE (0.0s)\n"
+     ]
+    }
+   ],
+   "source": [
+    "#small data set for now\n",
+    "train_ids = train_ids_small\n",
+    "test_ids = test_ids_small\n",
+    "\n",
+    "train_ft,train_lbl = lin_reg_features_and_labels(train_ids,hdf5_fname,feature_components,label_components,cleaners,feature_tuples)\n",
+    "oh = lin_reg_features_and_labels(test_ids,hdf5_fname,feature_components,label_components,cleaners,feature_tuples)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Train: (6616, 119) (6616L,)\n",
+      "Test: (3344, 119) (3344L,)\n"
+     ]
+    }
+   ],
+   "source": [
+    "print \"Train:\",train_ft.shape, train_lbl.shape\n",
+    "print \"Test:\",test_ft.shape, test_lbl.shape"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 96,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>0</th>\n",
+       "      <th>1</th>\n",
+       "      <th>2</th>\n",
+       "      <th>3</th>\n",
+       "      <th>4</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>glasgow coma scale eye opening_known_ord_no_units_all_MEAN</th>\n",
+       "      <td>2.981695</td>\n",
+       "      <td>2.981695</td>\n",
+       "      <td>2.981695</td>\n",
+       "      <td>2.981695</td>\n",
+       "      <td>2.981695</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>glasgow coma scale motor_known_ord_no_units_all_MEAN</th>\n",
+       "      <td>4.896178</td>\n",
+       "      <td>4.896178</td>\n",
+       "      <td>4.896178</td>\n",
+       "      <td>4.896178</td>\n",
+       "      <td>4.896178</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>blood pressure systolic_known_qn_mmHg_all_MEAN</th>\n",
+       "      <td>118.585375</td>\n",
+       "      <td>135.551724</td>\n",
+       "      <td>121.176471</td>\n",
+       "      <td>118.585375</td>\n",
+       "      <td>138.829268</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>blood pressure systolic_unknown_qn_cc/min_all_MEAN</th>\n",
+       "      <td>67.213383</td>\n",
+       "      <td>67.213383</td>\n",
+       "      <td>67.213383</td>\n",
+       "      <td>67.213383</td>\n",
+       "      <td>67.213383</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>oxygen saturation pulse oximetry_known_qn_percent_all_MEAN</th>\n",
+       "      <td>97.086505</td>\n",
+       "      <td>94.655172</td>\n",
+       "      <td>98.529412</td>\n",
+       "      <td>97.086505</td>\n",
+       "      <td>94.936170</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>glasgow coma scale verbal_known_ord_no_units_all_MEAN</th>\n",
+       "      <td>2.822271</td>\n",
+       "      <td>2.822271</td>\n",
+       "      <td>2.822271</td>\n",
+       "      <td>2.822271</td>\n",
+       "      <td>2.822271</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>hemoglobin_known_qn_g/dL_all_MEAN</th>\n",
+       "      <td>13.000000</td>\n",
+       "      <td>11.725000</td>\n",
+       "      <td>10.912500</td>\n",
+       "      <td>16.000000</td>\n",
+       "      <td>8.933333</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>lactate_known_qn_mmol/L_all_MEAN</th>\n",
+       "      <td>2.487958</td>\n",
+       "      <td>1.100000</td>\n",
+       "      <td>2.000000</td>\n",
+       "      <td>2.487958</td>\n",
+       "      <td>2.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>blood pressure mean_known_qn_mmHg_all_MEAN</th>\n",
+       "      <td>78.098120</td>\n",
+       "      <td>87.103448</td>\n",
+       "      <td>76.117647</td>\n",
+       "      <td>78.098120</td>\n",
+       "      <td>85.428571</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>vasopressin_known_qn_units_all_MEAN</th>\n",
+       "      <td>2.438013</td>\n",
+       "      <td>2.438013</td>\n",
+       "      <td>2.438013</td>\n",
+       "      <td>2.438013</td>\n",
+       "      <td>2.438013</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>vasopressin_known_qn_units/min_all_MEAN</th>\n",
+       "      <td>0.662927</td>\n",
+       "      <td>0.662927</td>\n",
+       "      <td>0.662927</td>\n",
+       "      <td>0.662927</td>\n",
+       "      <td>0.662927</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>weight body_known_qn_kg_all_MEAN</th>\n",
+       "      <td>83.453349</td>\n",
+       "      <td>83.453349</td>\n",
+       "      <td>83.453349</td>\n",
+       "      <td>83.453349</td>\n",
+       "      <td>83.453349</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>normal saline_known_qn_mL_all_MEAN</th>\n",
+       "      <td>616.280061</td>\n",
+       "      <td>616.280061</td>\n",
+       "      <td>20.000000</td>\n",
+       "      <td>616.280061</td>\n",
+       "      <td>616.280061</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>normal saline_known_qn_mL/hr_all_MEAN</th>\n",
+       "      <td>88.819017</td>\n",
+       "      <td>88.819017</td>\n",
+       "      <td>4.521185</td>\n",
+       "      <td>88.819017</td>\n",
+       "      <td>300.265113</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>norepinephrine_known_qn_mcg_all_MEAN</th>\n",
+       "      <td>442.367701</td>\n",
+       "      <td>442.367701</td>\n",
+       "      <td>442.367701</td>\n",
+       "      <td>442.367701</td>\n",
+       "      <td>442.367701</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>norepinephrine_known_qn_mcg/kg/min_all_MEAN</th>\n",
+       "      <td>0.151286</td>\n",
+       "      <td>0.151286</td>\n",
+       "      <td>0.151286</td>\n",
+       "      <td>0.151286</td>\n",
+       "      <td>0.151286</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>norepinephrine_known_qn_mcg/min_all_MEAN</th>\n",
+       "      <td>11.641748</td>\n",
+       "      <td>11.641748</td>\n",
+       "      <td>11.641748</td>\n",
+       "      <td>11.641748</td>\n",
+       "      <td>11.641748</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>temperature body_known_qn_degF_all_MEAN</th>\n",
+       "      <td>98.122104</td>\n",
+       "      <td>95.920000</td>\n",
+       "      <td>97.604706</td>\n",
+       "      <td>98.122104</td>\n",
+       "      <td>99.572000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>blood pressure diastolic_known_qn_mmHg_all_MEAN</th>\n",
+       "      <td>61.010500</td>\n",
+       "      <td>72.206897</td>\n",
+       "      <td>57.823529</td>\n",
+       "      <td>61.010500</td>\n",
+       "      <td>69.951220</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>blood pressure diastolic_unknown_qn_cc/min_all_MEAN</th>\n",
+       "      <td>41.533994</td>\n",
+       "      <td>41.533994</td>\n",
+       "      <td>41.533994</td>\n",
+       "      <td>41.533994</td>\n",
+       "      <td>41.533994</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>heart rate_known_qn_beats/min_all_MEAN</th>\n",
+       "      <td>88.502874</td>\n",
+       "      <td>62.655172</td>\n",
+       "      <td>75.764706</td>\n",
+       "      <td>88.502874</td>\n",
+       "      <td>83.717391</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>output urine_known_qn_mL_all_MEAN</th>\n",
+       "      <td>150.213438</td>\n",
+       "      <td>487.500000</td>\n",
+       "      <td>94.444444</td>\n",
+       "      <td>150.213438</td>\n",
+       "      <td>287.857143</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>output urine_unknown_qn_no_units_all_MEAN</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>lactated ringers_known_qn_mL_all_MEAN</th>\n",
+       "      <td>440.510867</td>\n",
+       "      <td>440.510867</td>\n",
+       "      <td>800.000000</td>\n",
+       "      <td>440.510867</td>\n",
+       "      <td>440.510867</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>lactated ringers_known_qn_mL/hr_all_MEAN</th>\n",
+       "      <td>207.151224</td>\n",
+       "      <td>207.151224</td>\n",
+       "      <td>207.151224</td>\n",
+       "      <td>207.151224</td>\n",
+       "      <td>207.151224</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>lactated ringers_unknown_qn_no_units_all_MEAN</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>respiratory rate_known_qn_insp/min_all_MEAN</th>\n",
+       "      <td>19.336424</td>\n",
+       "      <td>15.068966</td>\n",
+       "      <td>16.562500</td>\n",
+       "      <td>19.336424</td>\n",
+       "      <td>19.446809</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>respiratory rate_unknown_qn_Breath_all_MEAN</th>\n",
+       "      <td>46.714318</td>\n",
+       "      <td>46.714318</td>\n",
+       "      <td>46.714318</td>\n",
+       "      <td>46.714318</td>\n",
+       "      <td>46.714318</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>glasgow coma scale eye opening_known_ord_no_units_all_STD</th>\n",
+       "      <td>0.564250</td>\n",
+       "      <td>0.564250</td>\n",
+       "      <td>0.564250</td>\n",
+       "      <td>0.564250</td>\n",
+       "      <td>0.564250</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>glasgow coma scale motor_known_ord_no_units_all_STD</th>\n",
+       "      <td>0.761486</td>\n",
+       "      <td>0.761486</td>\n",
+       "      <td>0.761486</td>\n",
+       "      <td>0.761486</td>\n",
+       "      <td>0.761486</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>blood pressure systolic_known_qn_mmHg_all_LAST</th>\n",
+       "      <td>119.025309</td>\n",
+       "      <td>144.000000</td>\n",
+       "      <td>107.000000</td>\n",
+       "      <td>119.025309</td>\n",
+       "      <td>136.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>blood pressure systolic_unknown_qn_cc/min_all_LAST</th>\n",
+       "      <td>70.000000</td>\n",
+       "      <td>70.000000</td>\n",
+       "      <td>70.000000</td>\n",
+       "      <td>70.000000</td>\n",
+       "      <td>70.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>oxygen saturation pulse oximetry_known_qn_percent_all_LAST</th>\n",
+       "      <td>96.865129</td>\n",
+       "      <td>95.000000</td>\n",
+       "      <td>94.000000</td>\n",
+       "      <td>96.865129</td>\n",
+       "      <td>97.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>glasgow coma scale verbal_known_ord_no_units_all_LAST</th>\n",
+       "      <td>2.827318</td>\n",
+       "      <td>2.827318</td>\n",
+       "      <td>2.827318</td>\n",
+       "      <td>2.827318</td>\n",
+       "      <td>2.827318</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>hemoglobin_known_qn_g/dL_all_LAST</th>\n",
+       "      <td>13.000000</td>\n",
+       "      <td>13.000000</td>\n",
+       "      <td>11.100000</td>\n",
+       "      <td>15.600000</td>\n",
+       "      <td>8.800000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>lactate_known_qn_mmol/L_all_LAST</th>\n",
+       "      <td>2.424450</td>\n",
+       "      <td>1.100000</td>\n",
+       "      <td>2.600000</td>\n",
+       "      <td>2.424450</td>\n",
+       "      <td>2.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>blood pressure mean_known_qn_mmHg_all_LAST</th>\n",
+       "      <td>78.002572</td>\n",
+       "      <td>90.000000</td>\n",
+       "      <td>69.000000</td>\n",
+       "      <td>78.002572</td>\n",
+       "      <td>81.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>vasopressin_known_qn_units_all_LAST</th>\n",
+       "      <td>1.944078</td>\n",
+       "      <td>1.944078</td>\n",
+       "      <td>1.944078</td>\n",
+       "      <td>1.944078</td>\n",
+       "      <td>1.944078</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>vasopressin_known_qn_units/min_all_LAST</th>\n",
+       "      <td>0.580697</td>\n",
+       "      <td>0.580697</td>\n",
+       "      <td>0.580697</td>\n",
+       "      <td>0.580697</td>\n",
+       "      <td>0.580697</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>weight body_known_qn_kg_all_LAST</th>\n",
+       "      <td>83.437229</td>\n",
+       "      <td>83.437229</td>\n",
+       "      <td>83.437229</td>\n",
+       "      <td>83.437229</td>\n",
+       "      <td>83.437229</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>normal saline_known_qn_mL_all_LAST</th>\n",
+       "      <td>608.646326</td>\n",
+       "      <td>608.646326</td>\n",
+       "      <td>20.000000</td>\n",
+       "      <td>608.646326</td>\n",
+       "      <td>608.646326</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>normal saline_known_qn_mL/hr_all_LAST</th>\n",
+       "      <td>102.570817</td>\n",
+       "      <td>102.570817</td>\n",
+       "      <td>2.998982</td>\n",
+       "      <td>102.570817</td>\n",
+       "      <td>1000.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>norepinephrine_known_qn_mcg_all_LAST</th>\n",
+       "      <td>404.510889</td>\n",
+       "      <td>404.510889</td>\n",
+       "      <td>404.510889</td>\n",
+       "      <td>404.510889</td>\n",
+       "      <td>404.510889</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>norepinephrine_known_qn_mcg/kg/min_all_LAST</th>\n",
+       "      <td>0.126223</td>\n",
+       "      <td>0.126223</td>\n",
+       "      <td>0.126223</td>\n",
+       "      <td>0.126223</td>\n",
+       "      <td>0.126223</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>norepinephrine_known_qn_mcg/min_all_LAST</th>\n",
+       "      <td>8.396190</td>\n",
+       "      <td>8.396190</td>\n",
+       "      <td>8.396190</td>\n",
+       "      <td>8.396190</td>\n",
+       "      <td>8.396190</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>temperature body_known_qn_degF_all_LAST</th>\n",
+       "      <td>98.237947</td>\n",
+       "      <td>96.400000</td>\n",
+       "      <td>98.240000</td>\n",
+       "      <td>98.237947</td>\n",
+       "      <td>99.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>blood pressure diastolic_known_qn_mmHg_all_LAST</th>\n",
+       "      <td>60.584437</td>\n",
+       "      <td>71.000000</td>\n",
+       "      <td>52.000000</td>\n",
+       "      <td>60.584437</td>\n",
+       "      <td>67.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>blood pressure diastolic_unknown_qn_cc/min_all_LAST</th>\n",
+       "      <td>43.285714</td>\n",
+       "      <td>43.285714</td>\n",
+       "      <td>43.285714</td>\n",
+       "      <td>43.285714</td>\n",
+       "      <td>43.285714</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>heart rate_known_qn_beats/min_all_LAST</th>\n",
+       "      <td>88.100059</td>\n",
+       "      <td>72.000000</td>\n",
+       "      <td>85.000000</td>\n",
+       "      <td>88.100059</td>\n",
+       "      <td>83.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>output urine_known_qn_mL_all_LAST</th>\n",
+       "      <td>134.812808</td>\n",
+       "      <td>300.000000</td>\n",
+       "      <td>50.000000</td>\n",
+       "      <td>134.812808</td>\n",
+       "      <td>150.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>output urine_unknown_qn_no_units_all_LAST</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>lactated ringers_known_qn_mL_all_LAST</th>\n",
+       "      <td>421.071475</td>\n",
+       "      <td>421.071475</td>\n",
+       "      <td>1000.000000</td>\n",
+       "      <td>421.071475</td>\n",
+       "      <td>421.071475</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>lactated ringers_known_qn_mL/hr_all_LAST</th>\n",
+       "      <td>269.133890</td>\n",
+       "      <td>269.133890</td>\n",
+       "      <td>269.133890</td>\n",
+       "      <td>269.133890</td>\n",
+       "      <td>269.133890</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>lactated ringers_unknown_qn_no_units_all_LAST</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>respiratory rate_known_qn_insp/min_all_LAST</th>\n",
+       "      <td>19.578249</td>\n",
+       "      <td>20.000000</td>\n",
+       "      <td>21.000000</td>\n",
+       "      <td>19.578249</td>\n",
+       "      <td>27.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>respiratory rate_unknown_qn_Breath_all_LAST</th>\n",
+       "      <td>45.428571</td>\n",
+       "      <td>45.428571</td>\n",
+       "      <td>45.428571</td>\n",
+       "      <td>45.428571</td>\n",
+       "      <td>45.428571</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>normal saline_known_qn_mL_all_SUM</th>\n",
+       "      <td>2242.123639</td>\n",
+       "      <td>2242.123639</td>\n",
+       "      <td>60.000000</td>\n",
+       "      <td>2242.123639</td>\n",
+       "      <td>2242.123639</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>norepinephrine_known_qn_mcg_all_SUM</th>\n",
+       "      <td>13543.870106</td>\n",
+       "      <td>13543.870106</td>\n",
+       "      <td>13543.870106</td>\n",
+       "      <td>13543.870106</td>\n",
+       "      <td>13543.870106</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>output urine_known_qn_mL_all_SUM</th>\n",
+       "      <td>4157.734811</td>\n",
+       "      <td>1950.000000</td>\n",
+       "      <td>850.000000</td>\n",
+       "      <td>4157.734811</td>\n",
+       "      <td>4030.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>lactated ringers_known_qn_mL_all_SUM</th>\n",
+       "      <td>2747.836982</td>\n",
+       "      <td>2747.836982</td>\n",
+       "      <td>2400.000000</td>\n",
+       "      <td>2747.836982</td>\n",
+       "      <td>2747.836982</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>119 rows × 5 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                                                               0  \\\n",
+       "glasgow coma scale eye opening_known_ord_no_uni...      2.981695   \n",
+       "glasgow coma scale motor_known_ord_no_units_all...      4.896178   \n",
+       "blood pressure systolic_known_qn_mmHg_all_MEAN        118.585375   \n",
+       "blood pressure systolic_unknown_qn_cc/min_all_MEAN     67.213383   \n",
+       "oxygen saturation pulse oximetry_known_qn_perce...     97.086505   \n",
+       "glasgow coma scale verbal_known_ord_no_units_al...      2.822271   \n",
+       "hemoglobin_known_qn_g/dL_all_MEAN                      13.000000   \n",
+       "lactate_known_qn_mmol/L_all_MEAN                        2.487958   \n",
+       "blood pressure mean_known_qn_mmHg_all_MEAN             78.098120   \n",
+       "vasopressin_known_qn_units_all_MEAN                     2.438013   \n",
+       "vasopressin_known_qn_units/min_all_MEAN                 0.662927   \n",
+       "weight body_known_qn_kg_all_MEAN                       83.453349   \n",
+       "normal saline_known_qn_mL_all_MEAN                    616.280061   \n",
+       "normal saline_known_qn_mL/hr_all_MEAN                  88.819017   \n",
+       "norepinephrine_known_qn_mcg_all_MEAN                  442.367701   \n",
+       "norepinephrine_known_qn_mcg/kg/min_all_MEAN             0.151286   \n",
+       "norepinephrine_known_qn_mcg/min_all_MEAN               11.641748   \n",
+       "temperature body_known_qn_degF_all_MEAN                98.122104   \n",
+       "blood pressure diastolic_known_qn_mmHg_all_MEAN        61.010500   \n",
+       "blood pressure diastolic_unknown_qn_cc/min_all_...     41.533994   \n",
+       "heart rate_known_qn_beats/min_all_MEAN                 88.502874   \n",
+       "output urine_known_qn_mL_all_MEAN                     150.213438   \n",
+       "output urine_unknown_qn_no_units_all_MEAN               0.000000   \n",
+       "lactated ringers_known_qn_mL_all_MEAN                 440.510867   \n",
+       "lactated ringers_known_qn_mL/hr_all_MEAN              207.151224   \n",
+       "lactated ringers_unknown_qn_no_units_all_MEAN           0.000000   \n",
+       "respiratory rate_known_qn_insp/min_all_MEAN            19.336424   \n",
+       "respiratory rate_unknown_qn_Breath_all_MEAN            46.714318   \n",
+       "glasgow coma scale eye opening_known_ord_no_uni...      0.564250   \n",
+       "glasgow coma scale motor_known_ord_no_units_all...      0.761486   \n",
+       "...                                                          ...   \n",
+       "blood pressure systolic_known_qn_mmHg_all_LAST        119.025309   \n",
+       "blood pressure systolic_unknown_qn_cc/min_all_LAST     70.000000   \n",
+       "oxygen saturation pulse oximetry_known_qn_perce...     96.865129   \n",
+       "glasgow coma scale verbal_known_ord_no_units_al...      2.827318   \n",
+       "hemoglobin_known_qn_g/dL_all_LAST                      13.000000   \n",
+       "lactate_known_qn_mmol/L_all_LAST                        2.424450   \n",
+       "blood pressure mean_known_qn_mmHg_all_LAST             78.002572   \n",
+       "vasopressin_known_qn_units_all_LAST                     1.944078   \n",
+       "vasopressin_known_qn_units/min_all_LAST                 0.580697   \n",
+       "weight body_known_qn_kg_all_LAST                       83.437229   \n",
+       "normal saline_known_qn_mL_all_LAST                    608.646326   \n",
+       "normal saline_known_qn_mL/hr_all_LAST                 102.570817   \n",
+       "norepinephrine_known_qn_mcg_all_LAST                  404.510889   \n",
+       "norepinephrine_known_qn_mcg/kg/min_all_LAST             0.126223   \n",
+       "norepinephrine_known_qn_mcg/min_all_LAST                8.396190   \n",
+       "temperature body_known_qn_degF_all_LAST                98.237947   \n",
+       "blood pressure diastolic_known_qn_mmHg_all_LAST        60.584437   \n",
+       "blood pressure diastolic_unknown_qn_cc/min_all_...     43.285714   \n",
+       "heart rate_known_qn_beats/min_all_LAST                 88.100059   \n",
+       "output urine_known_qn_mL_all_LAST                     134.812808   \n",
+       "output urine_unknown_qn_no_units_all_LAST               0.000000   \n",
+       "lactated ringers_known_qn_mL_all_LAST                 421.071475   \n",
+       "lactated ringers_known_qn_mL/hr_all_LAST              269.133890   \n",
+       "lactated ringers_unknown_qn_no_units_all_LAST           0.000000   \n",
+       "respiratory rate_known_qn_insp/min_all_LAST            19.578249   \n",
+       "respiratory rate_unknown_qn_Breath_all_LAST            45.428571   \n",
+       "normal saline_known_qn_mL_all_SUM                    2242.123639   \n",
+       "norepinephrine_known_qn_mcg_all_SUM                 13543.870106   \n",
+       "output urine_known_qn_mL_all_SUM                     4157.734811   \n",
+       "lactated ringers_known_qn_mL_all_SUM                 2747.836982   \n",
+       "\n",
+       "                                                               1  \\\n",
+       "glasgow coma scale eye opening_known_ord_no_uni...      2.981695   \n",
+       "glasgow coma scale motor_known_ord_no_units_all...      4.896178   \n",
+       "blood pressure systolic_known_qn_mmHg_all_MEAN        135.551724   \n",
+       "blood pressure systolic_unknown_qn_cc/min_all_MEAN     67.213383   \n",
+       "oxygen saturation pulse oximetry_known_qn_perce...     94.655172   \n",
+       "glasgow coma scale verbal_known_ord_no_units_al...      2.822271   \n",
+       "hemoglobin_known_qn_g/dL_all_MEAN                      11.725000   \n",
+       "lactate_known_qn_mmol/L_all_MEAN                        1.100000   \n",
+       "blood pressure mean_known_qn_mmHg_all_MEAN             87.103448   \n",
+       "vasopressin_known_qn_units_all_MEAN                     2.438013   \n",
+       "vasopressin_known_qn_units/min_all_MEAN                 0.662927   \n",
+       "weight body_known_qn_kg_all_MEAN                       83.453349   \n",
+       "normal saline_known_qn_mL_all_MEAN                    616.280061   \n",
+       "normal saline_known_qn_mL/hr_all_MEAN                  88.819017   \n",
+       "norepinephrine_known_qn_mcg_all_MEAN                  442.367701   \n",
+       "norepinephrine_known_qn_mcg/kg/min_all_MEAN             0.151286   \n",
+       "norepinephrine_known_qn_mcg/min_all_MEAN               11.641748   \n",
+       "temperature body_known_qn_degF_all_MEAN                95.920000   \n",
+       "blood pressure diastolic_known_qn_mmHg_all_MEAN        72.206897   \n",
+       "blood pressure diastolic_unknown_qn_cc/min_all_...     41.533994   \n",
+       "heart rate_known_qn_beats/min_all_MEAN                 62.655172   \n",
+       "output urine_known_qn_mL_all_MEAN                     487.500000   \n",
+       "output urine_unknown_qn_no_units_all_MEAN               0.000000   \n",
+       "lactated ringers_known_qn_mL_all_MEAN                 440.510867   \n",
+       "lactated ringers_known_qn_mL/hr_all_MEAN              207.151224   \n",
+       "lactated ringers_unknown_qn_no_units_all_MEAN           0.000000   \n",
+       "respiratory rate_known_qn_insp/min_all_MEAN            15.068966   \n",
+       "respiratory rate_unknown_qn_Breath_all_MEAN            46.714318   \n",
+       "glasgow coma scale eye opening_known_ord_no_uni...      0.564250   \n",
+       "glasgow coma scale motor_known_ord_no_units_all...      0.761486   \n",
+       "...                                                          ...   \n",
+       "blood pressure systolic_known_qn_mmHg_all_LAST        144.000000   \n",
+       "blood pressure systolic_unknown_qn_cc/min_all_LAST     70.000000   \n",
+       "oxygen saturation pulse oximetry_known_qn_perce...     95.000000   \n",
+       "glasgow coma scale verbal_known_ord_no_units_al...      2.827318   \n",
+       "hemoglobin_known_qn_g/dL_all_LAST                      13.000000   \n",
+       "lactate_known_qn_mmol/L_all_LAST                        1.100000   \n",
+       "blood pressure mean_known_qn_mmHg_all_LAST             90.000000   \n",
+       "vasopressin_known_qn_units_all_LAST                     1.944078   \n",
+       "vasopressin_known_qn_units/min_all_LAST                 0.580697   \n",
+       "weight body_known_qn_kg_all_LAST                       83.437229   \n",
+       "normal saline_known_qn_mL_all_LAST                    608.646326   \n",
+       "normal saline_known_qn_mL/hr_all_LAST                 102.570817   \n",
+       "norepinephrine_known_qn_mcg_all_LAST                  404.510889   \n",
+       "norepinephrine_known_qn_mcg/kg/min_all_LAST             0.126223   \n",
+       "norepinephrine_known_qn_mcg/min_all_LAST                8.396190   \n",
+       "temperature body_known_qn_degF_all_LAST                96.400000   \n",
+       "blood pressure diastolic_known_qn_mmHg_all_LAST        71.000000   \n",
+       "blood pressure diastolic_unknown_qn_cc/min_all_...     43.285714   \n",
+       "heart rate_known_qn_beats/min_all_LAST                 72.000000   \n",
+       "output urine_known_qn_mL_all_LAST                     300.000000   \n",
+       "output urine_unknown_qn_no_units_all_LAST               0.000000   \n",
+       "lactated ringers_known_qn_mL_all_LAST                 421.071475   \n",
+       "lactated ringers_known_qn_mL/hr_all_LAST              269.133890   \n",
+       "lactated ringers_unknown_qn_no_units_all_LAST           0.000000   \n",
+       "respiratory rate_known_qn_insp/min_all_LAST            20.000000   \n",
+       "respiratory rate_unknown_qn_Breath_all_LAST            45.428571   \n",
+       "normal saline_known_qn_mL_all_SUM                    2242.123639   \n",
+       "norepinephrine_known_qn_mcg_all_SUM                 13543.870106   \n",
+       "output urine_known_qn_mL_all_SUM                     1950.000000   \n",
+       "lactated ringers_known_qn_mL_all_SUM                 2747.836982   \n",
+       "\n",
+       "                                                               2  \\\n",
+       "glasgow coma scale eye opening_known_ord_no_uni...      2.981695   \n",
+       "glasgow coma scale motor_known_ord_no_units_all...      4.896178   \n",
+       "blood pressure systolic_known_qn_mmHg_all_MEAN        121.176471   \n",
+       "blood pressure systolic_unknown_qn_cc/min_all_MEAN     67.213383   \n",
+       "oxygen saturation pulse oximetry_known_qn_perce...     98.529412   \n",
+       "glasgow coma scale verbal_known_ord_no_units_al...      2.822271   \n",
+       "hemoglobin_known_qn_g/dL_all_MEAN                      10.912500   \n",
+       "lactate_known_qn_mmol/L_all_MEAN                        2.000000   \n",
+       "blood pressure mean_known_qn_mmHg_all_MEAN             76.117647   \n",
+       "vasopressin_known_qn_units_all_MEAN                     2.438013   \n",
+       "vasopressin_known_qn_units/min_all_MEAN                 0.662927   \n",
+       "weight body_known_qn_kg_all_MEAN                       83.453349   \n",
+       "normal saline_known_qn_mL_all_MEAN                     20.000000   \n",
+       "normal saline_known_qn_mL/hr_all_MEAN                   4.521185   \n",
+       "norepinephrine_known_qn_mcg_all_MEAN                  442.367701   \n",
+       "norepinephrine_known_qn_mcg/kg/min_all_MEAN             0.151286   \n",
+       "norepinephrine_known_qn_mcg/min_all_MEAN               11.641748   \n",
+       "temperature body_known_qn_degF_all_MEAN                97.604706   \n",
+       "blood pressure diastolic_known_qn_mmHg_all_MEAN        57.823529   \n",
+       "blood pressure diastolic_unknown_qn_cc/min_all_...     41.533994   \n",
+       "heart rate_known_qn_beats/min_all_MEAN                 75.764706   \n",
+       "output urine_known_qn_mL_all_MEAN                      94.444444   \n",
+       "output urine_unknown_qn_no_units_all_MEAN               0.000000   \n",
+       "lactated ringers_known_qn_mL_all_MEAN                 800.000000   \n",
+       "lactated ringers_known_qn_mL/hr_all_MEAN              207.151224   \n",
+       "lactated ringers_unknown_qn_no_units_all_MEAN           0.000000   \n",
+       "respiratory rate_known_qn_insp/min_all_MEAN            16.562500   \n",
+       "respiratory rate_unknown_qn_Breath_all_MEAN            46.714318   \n",
+       "glasgow coma scale eye opening_known_ord_no_uni...      0.564250   \n",
+       "glasgow coma scale motor_known_ord_no_units_all...      0.761486   \n",
+       "...                                                          ...   \n",
+       "blood pressure systolic_known_qn_mmHg_all_LAST        107.000000   \n",
+       "blood pressure systolic_unknown_qn_cc/min_all_LAST     70.000000   \n",
+       "oxygen saturation pulse oximetry_known_qn_perce...     94.000000   \n",
+       "glasgow coma scale verbal_known_ord_no_units_al...      2.827318   \n",
+       "hemoglobin_known_qn_g/dL_all_LAST                      11.100000   \n",
+       "lactate_known_qn_mmol/L_all_LAST                        2.600000   \n",
+       "blood pressure mean_known_qn_mmHg_all_LAST             69.000000   \n",
+       "vasopressin_known_qn_units_all_LAST                     1.944078   \n",
+       "vasopressin_known_qn_units/min_all_LAST                 0.580697   \n",
+       "weight body_known_qn_kg_all_LAST                       83.437229   \n",
+       "normal saline_known_qn_mL_all_LAST                     20.000000   \n",
+       "normal saline_known_qn_mL/hr_all_LAST                   2.998982   \n",
+       "norepinephrine_known_qn_mcg_all_LAST                  404.510889   \n",
+       "norepinephrine_known_qn_mcg/kg/min_all_LAST             0.126223   \n",
+       "norepinephrine_known_qn_mcg/min_all_LAST                8.396190   \n",
+       "temperature body_known_qn_degF_all_LAST                98.240000   \n",
+       "blood pressure diastolic_known_qn_mmHg_all_LAST        52.000000   \n",
+       "blood pressure diastolic_unknown_qn_cc/min_all_...     43.285714   \n",
+       "heart rate_known_qn_beats/min_all_LAST                 85.000000   \n",
+       "output urine_known_qn_mL_all_LAST                      50.000000   \n",
+       "output urine_unknown_qn_no_units_all_LAST               0.000000   \n",
+       "lactated ringers_known_qn_mL_all_LAST                1000.000000   \n",
+       "lactated ringers_known_qn_mL/hr_all_LAST              269.133890   \n",
+       "lactated ringers_unknown_qn_no_units_all_LAST           0.000000   \n",
+       "respiratory rate_known_qn_insp/min_all_LAST            21.000000   \n",
+       "respiratory rate_unknown_qn_Breath_all_LAST            45.428571   \n",
+       "normal saline_known_qn_mL_all_SUM                      60.000000   \n",
+       "norepinephrine_known_qn_mcg_all_SUM                 13543.870106   \n",
+       "output urine_known_qn_mL_all_SUM                      850.000000   \n",
+       "lactated ringers_known_qn_mL_all_SUM                 2400.000000   \n",
+       "\n",
+       "                                                               3             4  \n",
+       "glasgow coma scale eye opening_known_ord_no_uni...      2.981695      2.981695  \n",
+       "glasgow coma scale motor_known_ord_no_units_all...      4.896178      4.896178  \n",
+       "blood pressure systolic_known_qn_mmHg_all_MEAN        118.585375    138.829268  \n",
+       "blood pressure systolic_unknown_qn_cc/min_all_MEAN     67.213383     67.213383  \n",
+       "oxygen saturation pulse oximetry_known_qn_perce...     97.086505     94.936170  \n",
+       "glasgow coma scale verbal_known_ord_no_units_al...      2.822271      2.822271  \n",
+       "hemoglobin_known_qn_g/dL_all_MEAN                      16.000000      8.933333  \n",
+       "lactate_known_qn_mmol/L_all_MEAN                        2.487958      2.000000  \n",
+       "blood pressure mean_known_qn_mmHg_all_MEAN             78.098120     85.428571  \n",
+       "vasopressin_known_qn_units_all_MEAN                     2.438013      2.438013  \n",
+       "vasopressin_known_qn_units/min_all_MEAN                 0.662927      0.662927  \n",
+       "weight body_known_qn_kg_all_MEAN                       83.453349     83.453349  \n",
+       "normal saline_known_qn_mL_all_MEAN                    616.280061    616.280061  \n",
+       "normal saline_known_qn_mL/hr_all_MEAN                  88.819017    300.265113  \n",
+       "norepinephrine_known_qn_mcg_all_MEAN                  442.367701    442.367701  \n",
+       "norepinephrine_known_qn_mcg/kg/min_all_MEAN             0.151286      0.151286  \n",
+       "norepinephrine_known_qn_mcg/min_all_MEAN               11.641748     11.641748  \n",
+       "temperature body_known_qn_degF_all_MEAN                98.122104     99.572000  \n",
+       "blood pressure diastolic_known_qn_mmHg_all_MEAN        61.010500     69.951220  \n",
+       "blood pressure diastolic_unknown_qn_cc/min_all_...     41.533994     41.533994  \n",
+       "heart rate_known_qn_beats/min_all_MEAN                 88.502874     83.717391  \n",
+       "output urine_known_qn_mL_all_MEAN                     150.213438    287.857143  \n",
+       "output urine_unknown_qn_no_units_all_MEAN               0.000000      0.000000  \n",
+       "lactated ringers_known_qn_mL_all_MEAN                 440.510867    440.510867  \n",
+       "lactated ringers_known_qn_mL/hr_all_MEAN              207.151224    207.151224  \n",
+       "lactated ringers_unknown_qn_no_units_all_MEAN           0.000000      0.000000  \n",
+       "respiratory rate_known_qn_insp/min_all_MEAN            19.336424     19.446809  \n",
+       "respiratory rate_unknown_qn_Breath_all_MEAN            46.714318     46.714318  \n",
+       "glasgow coma scale eye opening_known_ord_no_uni...      0.564250      0.564250  \n",
+       "glasgow coma scale motor_known_ord_no_units_all...      0.761486      0.761486  \n",
+       "...                                                          ...           ...  \n",
+       "blood pressure systolic_known_qn_mmHg_all_LAST        119.025309    136.000000  \n",
+       "blood pressure systolic_unknown_qn_cc/min_all_LAST     70.000000     70.000000  \n",
+       "oxygen saturation pulse oximetry_known_qn_perce...     96.865129     97.000000  \n",
+       "glasgow coma scale verbal_known_ord_no_units_al...      2.827318      2.827318  \n",
+       "hemoglobin_known_qn_g/dL_all_LAST                      15.600000      8.800000  \n",
+       "lactate_known_qn_mmol/L_all_LAST                        2.424450      2.000000  \n",
+       "blood pressure mean_known_qn_mmHg_all_LAST             78.002572     81.000000  \n",
+       "vasopressin_known_qn_units_all_LAST                     1.944078      1.944078  \n",
+       "vasopressin_known_qn_units/min_all_LAST                 0.580697      0.580697  \n",
+       "weight body_known_qn_kg_all_LAST                       83.437229     83.437229  \n",
+       "normal saline_known_qn_mL_all_LAST                    608.646326    608.646326  \n",
+       "normal saline_known_qn_mL/hr_all_LAST                 102.570817   1000.000000  \n",
+       "norepinephrine_known_qn_mcg_all_LAST                  404.510889    404.510889  \n",
+       "norepinephrine_known_qn_mcg/kg/min_all_LAST             0.126223      0.126223  \n",
+       "norepinephrine_known_qn_mcg/min_all_LAST                8.396190      8.396190  \n",
+       "temperature body_known_qn_degF_all_LAST                98.237947     99.000000  \n",
+       "blood pressure diastolic_known_qn_mmHg_all_LAST        60.584437     67.000000  \n",
+       "blood pressure diastolic_unknown_qn_cc/min_all_...     43.285714     43.285714  \n",
+       "heart rate_known_qn_beats/min_all_LAST                 88.100059     83.000000  \n",
+       "output urine_known_qn_mL_all_LAST                     134.812808    150.000000  \n",
+       "output urine_unknown_qn_no_units_all_LAST               0.000000      0.000000  \n",
+       "lactated ringers_known_qn_mL_all_LAST                 421.071475    421.071475  \n",
+       "lactated ringers_known_qn_mL/hr_all_LAST              269.133890    269.133890  \n",
+       "lactated ringers_unknown_qn_no_units_all_LAST           0.000000      0.000000  \n",
+       "respiratory rate_known_qn_insp/min_all_LAST            19.578249     27.000000  \n",
+       "respiratory rate_unknown_qn_Breath_all_LAST            45.428571     45.428571  \n",
+       "normal saline_known_qn_mL_all_SUM                    2242.123639   2242.123639  \n",
+       "norepinephrine_known_qn_mcg_all_SUM                 13543.870106  13543.870106  \n",
+       "output urine_known_qn_mL_all_SUM                     4157.734811   4030.000000  \n",
+       "lactated ringers_known_qn_mL_all_SUM                 2747.836982   2747.836982  \n",
+       "\n",
+       "[119 rows x 5 columns]"
+      ]
+     },
+     "execution_count": 96,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "train_ft.head().T"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 167,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "id      datetime           \n",
+       "100010  2109-12-10 12:11:00    0.9\n",
+       "100011  2177-08-29 06:55:00    2.3\n",
+       "100109  2166-04-11 20:47:00    6.7\n",
+       "100188  2193-04-11 13:36:00    1.4\n",
+       "100250  2106-02-18 10:14:00    2.0\n",
+       "100271  2103-02-20 14:57:00    2.2\n",
+       "100337  2174-12-21 10:14:00    1.6\n",
+       "100364  2124-02-03 09:50:00    1.3\n",
+       "100434  2142-07-17 11:30:00    7.3\n",
+       "100445  2132-07-05 08:18:00    2.5\n",
+       "100458  2148-05-28 00:42:00    0.6\n",
+       "100490  2133-03-08 01:16:00    1.0\n",
+       "100543  2176-04-22 08:33:00    1.3\n",
+       "100621  2147-06-16 11:48:00    1.0\n",
+       "100635  2102-11-08 02:23:00    3.7\n",
+       "100653  2157-07-29 15:22:00    3.0\n",
+       "100686  2157-11-30 02:08:00    1.0\n",
+       "100724  2118-07-14 20:42:00    2.3\n",
+       "100787  2168-07-10 05:04:00    1.3\n",
+       "100789  2152-10-20 12:53:00    0.7\n",
+       "100834  2128-10-25 01:17:00    5.4\n",
+       "100918  2123-08-17 06:47:00    2.9\n",
+       "100938  2197-12-08 15:25:00    1.6\n",
+       "101018  2116-07-01 04:14:00    1.2\n",
+       "101062  2171-02-08 23:27:00    2.7\n",
+       "101073  2125-09-01 16:57:00    1.9\n",
+       "101077  2157-08-01 10:41:00    3.1\n",
+       "101104  2183-06-13 15:00:00    1.3\n",
+       "101170  2106-02-11 13:23:00    1.9\n",
+       "101263  2195-02-17 05:25:00    2.1\n",
+       "                              ... \n",
+       "198773  2109-09-03 09:00:00    2.3\n",
+       "198826  2128-07-11 20:29:00    4.8\n",
+       "198851  2148-04-12 17:52:00    1.6\n",
+       "198866  2139-09-02 12:52:00    2.7\n",
+       "198927  2177-12-11 03:47:00    1.6\n",
+       "198985  2150-03-11 12:23:00    1.1\n",
+       "199008  2127-09-19 17:47:00    1.5\n",
+       "199033  2189-02-17 13:04:00    2.7\n",
+       "199113  2189-08-12 12:41:00    1.2\n",
+       "199117  2133-04-24 16:00:00    1.9\n",
+       "199172  2111-11-12 06:19:00    1.6\n",
+       "199334  2169-04-06 18:13:00    1.7\n",
+       "199342  2163-06-06 15:20:00    1.1\n",
+       "199365  2111-01-10 16:00:00    1.6\n",
+       "199370  2127-12-24 21:14:00    1.6\n",
+       "199374  2183-08-15 03:11:00    2.5\n",
+       "199452  2155-03-22 17:58:00    1.1\n",
+       "199492  2168-03-03 21:12:00    1.7\n",
+       "199510  2187-12-29 06:48:00    2.4\n",
+       "199565  2190-11-08 10:52:00    2.3\n",
+       "199698  2194-02-20 17:42:00    1.5\n",
+       "199714  2128-02-02 15:31:00    1.8\n",
+       "199723  2125-10-17 14:31:00    2.0\n",
+       "199779  2198-08-25 04:05:00    1.9\n",
+       "199813  2181-07-23 13:32:00    0.7\n",
+       "199877  2195-10-27 04:07:00    1.0\n",
+       "199922  2177-07-27 14:05:00    1.9\n",
+       "199925  2140-02-11 20:56:00    1.6\n",
+       "199963  2101-08-25 05:48:00    1.6\n",
+       "199999  2136-04-06 15:29:00    1.8\n",
+       "Name: (known, qn, mmol/L, all), dtype: float64"
+      ]
+     },
+     "execution_count": 167,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "hdf5_fname_features = 'data/feature_sets'\n",
+    "utils.save_df(train_ft,hdf5_fname,'simple_mvr/train_ft')\n",
+    "utils.save_df(train_lbl,hdf5_fname,'simple_mvr/train_lbl')\n",
+    "utils.save_df(test_ft,hdf5_fname,'simple_mvr/test_ft')\n",
+    "utils.save_df(test_lbl,hdf5_fname,'simple_mvr/test_lbl')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Models!!"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [
+    {
+     "ename": "KeyError",
+     "evalue": "'No object named simple_mvr/train_ft in the file'",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[1;31mKeyError\u001b[0m                                  Traceback (most recent call last)",
+      "\u001b[1;32m<ipython-input-6-28af48515f76>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[0mhdf5_fname_features\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m'data/feature_sets'\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mtrain_ft\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mutils\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mopen_df\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhdf5_fname\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;34m'simple_mvr/train_ft'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m      3\u001b[0m \u001b[0mtrain_lbl\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mutils\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mopen_df\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhdf5_fname\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;34m'simple_mvr/train_ft'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      4\u001b[0m \u001b[0mtest_ft\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mutils\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mopen_df\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhdf5_fname\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;34m'simple_mvr/test_ft'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      5\u001b[0m \u001b[0mtest_lbl\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mutils\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mopen_df\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhdf5_fname\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;34m'simple_mvr/test_lbl'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+      "\u001b[1;32mC:\\Users\\genkinjz\\icu_ml_project\\v5\\utils.pyc\u001b[0m in \u001b[0;36mopen_df\u001b[1;34m(hdf5_fname, path)\u001b[0m\n\u001b[0;32m     30\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mopen_df\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhdf5_fname\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpath\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     31\u001b[0m     \u001b[0mstore\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mHDFStore\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mhdf5_fname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 32\u001b[1;33m     \u001b[0mdf\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mstore\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mpath\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     33\u001b[0m     \u001b[0mstore\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mclose\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     34\u001b[0m     \u001b[1;32mreturn\u001b[0m \u001b[0mdf\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+      "\u001b[1;32mC:\\Users\\genkinjz\\AppData\\Local\\Continuum\\Anaconda2\\lib\\site-packages\\pandas\\io\\pytables.pyc\u001b[0m in \u001b[0;36m__getitem__\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m    459\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    460\u001b[0m     \u001b[1;32mdef\u001b[0m \u001b[0m__getitem__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 461\u001b[1;33m         \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    462\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    463\u001b[0m     \u001b[1;32mdef\u001b[0m \u001b[0m__setitem__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+      "\u001b[1;32mC:\\Users\\genkinjz\\AppData\\Local\\Continuum\\Anaconda2\\lib\\site-packages\\pandas\\io\\pytables.pyc\u001b[0m in \u001b[0;36mget\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m    675\u001b[0m         \u001b[0mgroup\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_node\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    676\u001b[0m         \u001b[1;32mif\u001b[0m \u001b[0mgroup\u001b[0m \u001b[1;32mis\u001b[0m \u001b[0mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 677\u001b[1;33m             \u001b[1;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'No object named %s in the file'\u001b[0m \u001b[1;33m%\u001b[0m \u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    678\u001b[0m         \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_read_group\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mgroup\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    679\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
+      "\u001b[1;31mKeyError\u001b[0m: 'No object named simple_mvr/train_ft in the file'"
+     ]
+    }
+   ],
+   "source": [
+    "hdf5_fname_features = 'data/feature_sets'\n",
+    "\n",
+    "train_ft = utils.open_df(hdf5_fname,'simple_mvr/train_ft')\n",
+    "train_lbl = utils.open_df(hdf5_fname,'simple_mvr/train_ft')\n",
+    "test_ft = utils.open_df(hdf5_fnaame,'simple_mvr/test_ft')\n",
+    "test_lbl = utils.open_df(hdf5_fname,'simple_mvr/test_lbl')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 218,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [],
+   "source": [
+    "from sklearn.metrics import mean_squared_error\n",
+    "\n",
+    "def try_model(train_ft,train_lbl,test_ft,test_lbl,prep_pipeline,model):\n",
+    "    # apply final cleaning to our data\n",
+    "    X_train = prep_pipeline.fit_transform(train_ft)\n",
+    "    y_train = train_lbl.reset_index(drop=True)\n",
+    "    X_test = prep_pipeline.fit_transform(test_ft)\n",
+    "    y_test = test_lbl.reset_index(drop=True).values\n",
+    "        \n",
+    "    model = model.fit(X_train,y_train)\n",
+    "    y_pred = model.predict(X_test)\n",
+    "    \n",
+    "    rmse = pd.np.sqrt(mean_squared_error(y_test,y_pred))\n",
+    "\n",
+    "    results = pd.DataFrame(zip(y_test,y_pred), columns=['actual','predicted'])\n",
+    "    \n",
+    "    display(results.head())\n",
+    "    display(results.describe())\n",
+    "    print(\"Training set score: %f\" % model.score(X_train, y_train))\n",
+    "    print(\"Test set score: %f\" % model.score(X_test, y_test))\n",
+    "    \n",
+    "    print \"RMSE:\",rmse\n",
+    "    \n",
+    "    return model,results,rmse\n",
+    "    "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Linear Regression"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 193,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>actual</th>\n",
+       "      <th>predicted</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>0.9</td>\n",
+       "      <td>-4.735030e+09</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2.3</td>\n",
+       "      <td>-4.735030e+09</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>6.7</td>\n",
+       "      <td>-4.735030e+09</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>1.4</td>\n",
+       "      <td>-4.735030e+09</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>2.0</td>\n",
+       "      <td>-4.735030e+09</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   actual     predicted\n",
+       "0     0.9 -4.735030e+09\n",
+       "1     2.3 -4.735030e+09\n",
+       "2     6.7 -4.735030e+09\n",
+       "3     1.4 -4.735030e+09\n",
+       "4     2.0 -4.735030e+09"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>actual</th>\n",
+       "      <th>predicted</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>3344.000000</td>\n",
+       "      <td>3.344000e+03</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>2.223583</td>\n",
+       "      <td>1.749131e+00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.849955</td>\n",
+       "      <td>4.585368e+12</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.300000</td>\n",
+       "      <td>-1.152666e+14</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>1.200000</td>\n",
+       "      <td>-4.735030e+09</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>1.700000</td>\n",
+       "      <td>-4.735030e+09</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>2.600000</td>\n",
+       "      <td>-4.735030e+09</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>19.800000</td>\n",
+       "      <td>1.460645e+14</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "            actual     predicted\n",
+       "count  3344.000000  3.344000e+03\n",
+       "mean      2.223583  1.749131e+00\n",
+       "std       1.849955  4.585368e+12\n",
+       "min       0.300000 -1.152666e+14\n",
+       "25%       1.200000 -4.735030e+09\n",
+       "50%       1.700000 -4.735030e+09\n",
+       "75%       2.600000 -4.735030e+09\n",
+       "max      19.800000  1.460645e+14"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Training set score: 0.420901\n",
+      "Test set score: -6143647084954342802849792.000000\n",
+      "RMSE: 4.58468261388e+12\n"
+     ]
+    }
+   ],
+   "source": [
+    "from sklearn.linear_model import LinearRegression\n",
+    "lin_reg = LinearRegression()\n",
+    "\n",
+    "model,results,rmse = try_model(train_ft,train_lbl,test_ft,test_lbl,StandardScaler(),lin_reg)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Elastic Net"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "ename": "NameError",
+     "evalue": "name 'try_model' is not defined",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[1;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+      "\u001b[1;32m<ipython-input-10-c7a0eae13a62>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mlinear_model\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mElasticNet\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mmodel\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mresults\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mrmse\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtry_model\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrain_ft\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mtrain_lbl\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mtest_ft\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mtest_lbl\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mStandardScaler\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mElasticNet\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
+      "\u001b[1;31mNameError\u001b[0m: name 'try_model' is not defined"
+     ]
+    }
+   ],
+   "source": [
+    "from sklearn.linear_model import ElasticNet\n",
+    "model,results,rmse = try_model(train_ft,train_lbl,test_ft,test_lbl,StandardScaler(),ElasticNet())"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "ElasticNet(alpha=1.0, copy_X=True, fit_intercept=True, l1_ratio=0.5,\n",
+       "      max_iter=1000, normalize=False, positive=False, precompute=False,\n",
+       "      random_state=None, selection='cyclic', tol=0.0001, warm_start=False)"
+      ]
+     },
+     "execution_count": 12,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "ElasticNet()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 195,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>lactate_known_qn_mmol/L_all_MEAN</th>\n",
+       "      <th>lactate_known_qn_mmol/L_all_LAST</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>2.487958</td>\n",
+       "      <td>2.42445</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>1.100000</td>\n",
+       "      <td>1.10000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>2.000000</td>\n",
+       "      <td>2.60000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>2.487958</td>\n",
+       "      <td>2.42445</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>2.000000</td>\n",
+       "      <td>2.00000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   lactate_known_qn_mmol/L_all_MEAN  lactate_known_qn_mmol/L_all_LAST\n",
+       "0                          2.487958                           2.42445\n",
+       "1                          1.100000                           1.10000\n",
+       "2                          2.000000                           2.60000\n",
+       "3                          2.487958                           2.42445\n",
+       "4                          2.000000                           2.00000"
+      ]
+     },
+     "execution_count": 195,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "train_ft.loc[:,model.coef_ > 0].head()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 196,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>actual</th>\n",
+       "      <th>predicted</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>0.9</td>\n",
+       "      <td>2.232344</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2.3</td>\n",
+       "      <td>2.258501</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>6.7</td>\n",
+       "      <td>2.265061</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>1.4</td>\n",
+       "      <td>2.232344</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>2.0</td>\n",
+       "      <td>2.232344</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   actual  predicted\n",
+       "0     0.9   2.232344\n",
+       "1     2.3   2.258501\n",
+       "2     6.7   2.265061\n",
+       "3     1.4   2.232344\n",
+       "4     2.0   2.232344"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>actual</th>\n",
+       "      <th>predicted</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>3344.000000</td>\n",
+       "      <td>3344.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>2.223583</td>\n",
+       "      <td>2.232323</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.849955</td>\n",
+       "      <td>0.134357</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.300000</td>\n",
+       "      <td>1.254813</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>1.200000</td>\n",
+       "      <td>2.232344</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>1.700000</td>\n",
+       "      <td>2.232345</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>2.600000</td>\n",
+       "      <td>2.254982</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>19.800000</td>\n",
+       "      <td>6.962132</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "            actual    predicted\n",
+       "count  3344.000000  3344.000000\n",
+       "mean      2.223583     2.232323\n",
+       "std       1.849955     0.134357\n",
+       "min       0.300000     1.254813\n",
+       "25%       1.200000     2.232344\n",
+       "50%       1.700000     2.232345\n",
+       "75%       2.600000     2.254982\n",
+       "max      19.800000     6.962132"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Training set score: 0.004094\n",
+      "Test set score: 0.005918\n",
+      "RMSE: 1.84419716799\n"
+     ]
+    },
+    {
+     "data": {
+      "text/plain": [
+       "array([  8.01371947e-06,  -1.13534758e-05])"
+      ]
+     },
+     "execution_count": 196,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "#enet with pca\n",
+    "from sklearn.decomposition import PCA\n",
+    "\n",
+    "pipeline = Pipeline([\n",
+    "#         ('scaler',StandardScaler()),\n",
+    "        ('pca',PCA(n_components=0.95))\n",
+    "    ])\n",
+    "\n",
+    "model,results,rmse = try_model(train_ft,train_lbl,test_ft,test_lbl,pipeline,ElasticNet())\n",
+    "model.coef_"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 203,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": [
+    "# lets try DELTA lactate\n",
+    "train_ft_delta = train_ft.loc[train_ft.loc[:,train_ft.columns.str.contains('lactate_')].iloc[:,2] > 0]\n",
+    "last_lactate = train_ft_delta.loc[:,train_ft.columns.str.contains('lactate_')].iloc[:,3]\n",
+    "train_lbl_delta = train_lbl.reset_index(drop=True).loc[train_ft_delta.index] - last_lactate\n",
+    "\n",
+    "test_ft_delta = test_ft.loc[train_ft.loc[:,test_ft.columns.str.contains('lactate_')].iloc[:,2] > 0]\n",
+    "last_lactate = test_ft_delta.loc[:,test_ft.columns.str.contains('lactate_')].iloc[:,3]\n",
+    "test_lbl_delta = test_lbl.reset_index(drop=True).loc[test_ft_delta.index] - last_lactate"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 204,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>actual</th>\n",
+       "      <th>predicted</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>-1.500000</td>\n",
+       "      <td>-0.266715</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>4.331777</td>\n",
+       "      <td>-0.172069</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>0.300000</td>\n",
+       "      <td>-0.152334</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>-0.768223</td>\n",
+       "      <td>-0.172069</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>-1.700000</td>\n",
+       "      <td>-0.618851</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "     actual  predicted\n",
+       "0 -1.500000  -0.266715\n",
+       "1  4.331777  -0.172069\n",
+       "2  0.300000  -0.152334\n",
+       "3 -0.768223  -0.172069\n",
+       "4 -1.700000  -0.618851"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>actual</th>\n",
+       "      <th>predicted</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>1877.000000</td>\n",
+       "      <td>1877.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>-0.148187</td>\n",
+       "      <td>-0.171677</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.526032</td>\n",
+       "      <td>0.099309</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>-12.100000</td>\n",
+       "      <td>-1.356982</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>-0.968223</td>\n",
+       "      <td>-0.172069</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>-0.300000</td>\n",
+       "      <td>-0.172069</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>0.300000</td>\n",
+       "      <td>-0.124506</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>15.600000</td>\n",
+       "      <td>-0.036472</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "            actual    predicted\n",
+       "count  1877.000000  1877.000000\n",
+       "mean     -0.148187    -0.171677\n",
+       "std       1.526032     0.099309\n",
+       "min     -12.100000    -1.356982\n",
+       "25%      -0.968223    -0.172069\n",
+       "50%      -0.300000    -0.172069\n",
+       "75%       0.300000    -0.124506\n",
+       "max      15.600000    -0.036472"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Training set score: 0.054252\n",
+      "Test set score: 0.033211\n",
+      "RMSE: 1.5000780178\n"
+     ]
+    }
+   ],
+   "source": [
+    "model,results,rmse = try_model(train_ft_delta,train_lbl_delta,test_ft_delta,test_lbl_delta,StandardScaler(),ElasticNet())"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 205,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>lactate_known_qn_mmol/L_all_MEAN</th>\n",
+       "      <th>lactate_known_qn_mmol/L_all_LAST</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>3.800000</td>\n",
+       "      <td>3.800000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>2.413916</td>\n",
+       "      <td>2.368223</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>2.250000</td>\n",
+       "      <td>1.700000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>2.413916</td>\n",
+       "      <td>2.368223</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>9.000000</td>\n",
+       "      <td>9.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   lactate_known_qn_mmol/L_all_MEAN  lactate_known_qn_mmol/L_all_LAST\n",
+       "1                          3.800000                          3.800000\n",
+       "2                          2.413916                          2.368223\n",
+       "4                          2.250000                          1.700000\n",
+       "6                          2.413916                          2.368223\n",
+       "8                          9.000000                          9.000000"
+      ]
+     },
+     "execution_count": 205,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "test_ft_delta.loc[:,abs(model.coef_) > 0].head()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 206,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>actual</th>\n",
+       "      <th>predicted</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>-1.500000</td>\n",
+       "      <td>-0.190492</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>4.331777</td>\n",
+       "      <td>-0.195569</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>0.300000</td>\n",
+       "      <td>-0.172998</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>-0.768223</td>\n",
+       "      <td>-0.172998</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>-1.700000</td>\n",
+       "      <td>-0.172998</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "     actual  predicted\n",
+       "0 -1.500000  -0.190492\n",
+       "1  4.331777  -0.195569\n",
+       "2  0.300000  -0.172998\n",
+       "3 -0.768223  -0.172998\n",
+       "4 -1.700000  -0.172998"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>actual</th>\n",
+       "      <th>predicted</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>1877.000000</td>\n",
+       "      <td>1877.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>-0.148187</td>\n",
+       "      <td>-0.171677</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.526032</td>\n",
+       "      <td>0.105956</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>-12.100000</td>\n",
+       "      <td>-0.283685</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>-0.968223</td>\n",
+       "      <td>-0.194433</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>-0.300000</td>\n",
+       "      <td>-0.172998</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>0.300000</td>\n",
+       "      <td>-0.172998</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>15.600000</td>\n",
+       "      <td>2.654343</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "            actual    predicted\n",
+       "count  1877.000000  1877.000000\n",
+       "mean     -0.148187    -0.171677\n",
+       "std       1.526032     0.105956\n",
+       "min     -12.100000    -0.283685\n",
+       "25%      -0.968223    -0.194433\n",
+       "50%      -0.300000    -0.172998\n",
+       "75%       0.300000    -0.172998\n",
+       "max      15.600000     2.654343"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Training set score: 0.005331\n",
+      "Test set score: -0.002815\n",
+      "RMSE: 1.52777172148\n"
+     ]
+    }
+   ],
+   "source": [
+    "pipeline = Pipeline([\n",
+    "#         ('scaler',StandardScaler()),\n",
+    "        ('pca',PCA(n_components=0.95))\n",
+    "    ])\n",
+    "\n",
+    "model,results,rmse = try_model(train_ft_delta,train_lbl_delta,test_ft_delta,test_lbl_delta,pipeline,ElasticNet())"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Random Forest"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 207,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [],
+   "source": [
+    "from sklearn.ensemble import RandomForestClassifier"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 208,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": [
+    "train_lbl_clf = (train_lbl > 2).astype(int)\n",
+    "test_lbl_clf = (test_lbl > 2).astype(int)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 209,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>actual</th>\n",
+       "      <th>predicted</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   actual  predicted\n",
+       "0       0          0\n",
+       "1       1          1\n",
+       "2       1          0\n",
+       "3       0          0\n",
+       "4       0          0"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>actual</th>\n",
+       "      <th>predicted</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>3344.000000</td>\n",
+       "      <td>3344.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>0.365730</td>\n",
+       "      <td>0.238038</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>0.481706</td>\n",
+       "      <td>0.425946</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "            actual    predicted\n",
+       "count  3344.000000  3344.000000\n",
+       "mean      0.365730     0.238038\n",
+       "std       0.481706     0.425946\n",
+       "min       0.000000     0.000000\n",
+       "25%       0.000000     0.000000\n",
+       "50%       0.000000     0.000000\n",
+       "75%       1.000000     0.000000\n",
+       "max       1.000000     1.000000"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Training set score: 0.903416\n",
+      "Test set score: 0.694677\n",
+      "RMSE: 0.552560373631\n"
+     ]
+    }
+   ],
+   "source": [
+    "clf,results,rmse = try_model(train_ft,train_lbl_clf,test_ft,test_lbl_clf,StandardScaler(),RandomForestClassifier(n_jobs=2))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 210,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th>predicted</th>\n",
+       "      <th>abnormal</th>\n",
+       "      <th>normal</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>actual</th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>abnormal</th>\n",
+       "      <td>499</td>\n",
+       "      <td>724</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>normal</th>\n",
+       "      <td>297</td>\n",
+       "      <td>1824</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "predicted  abnormal  normal\n",
+       "actual                     \n",
+       "abnormal        499     724\n",
+       "normal          297    1824"
+      ]
+     },
+     "execution_count": 210,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "str_results = results.replace(to_replace=[0,1],value=['normal','abnormal'])\n",
+    "pd.crosstab(str_results['actual'],str_results['predicted'])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 211,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>0</th>\n",
+       "      <th>1</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>94</th>\n",
+       "      <td>lactate_known_qn_mmol/L_all_LAST</td>\n",
+       "      <td>0.105640</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>hemoglobin_known_qn_g/dL_all_MEAN</td>\n",
+       "      <td>0.096484</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>93</th>\n",
+       "      <td>hemoglobin_known_qn_g/dL_all_LAST</td>\n",
+       "      <td>0.088996</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>34</th>\n",
+       "      <td>hemoglobin_known_qn_g/dL_all_STD</td>\n",
+       "      <td>0.081528</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>lactate_known_qn_mmol/L_all_MEAN</td>\n",
+       "      <td>0.074967</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>62</th>\n",
+       "      <td>hemoglobin_known_qn_g/dL_all_COUNT</td>\n",
+       "      <td>0.034051</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>107</th>\n",
+       "      <td>heart rate_known_qn_beats/min_all_LAST</td>\n",
+       "      <td>0.018052</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>17</th>\n",
+       "      <td>temperature body_known_qn_degF_all_MEAN</td>\n",
+       "      <td>0.017661</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>20</th>\n",
+       "      <td>heart rate_known_qn_beats/min_all_MEAN</td>\n",
+       "      <td>0.017269</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>blood pressure systolic_known_qn_mmHg_all_MEAN</td>\n",
+       "      <td>0.013622</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>85</th>\n",
+       "      <td>respiratory rate_known_qn_insp/min_all_COUNT</td>\n",
+       "      <td>0.013351</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>63</th>\n",
+       "      <td>lactate_known_qn_mmol/L_all_COUNT</td>\n",
+       "      <td>0.012803</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>105</th>\n",
+       "      <td>blood pressure diastolic_known_qn_mmHg_all_LAST</td>\n",
+       "      <td>0.012785</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>32</th>\n",
+       "      <td>oxygen saturation pulse oximetry_known_qn_perc...</td>\n",
+       "      <td>0.011848</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>46</th>\n",
+       "      <td>blood pressure diastolic_known_qn_mmHg_all_STD</td>\n",
+       "      <td>0.011683</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>108</th>\n",
+       "      <td>output urine_known_qn_mL_all_LAST</td>\n",
+       "      <td>0.011472</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>104</th>\n",
+       "      <td>temperature body_known_qn_degF_all_LAST</td>\n",
+       "      <td>0.011305</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>18</th>\n",
+       "      <td>blood pressure diastolic_known_qn_mmHg_all_MEAN</td>\n",
+       "      <td>0.011030</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>48</th>\n",
+       "      <td>heart rate_known_qn_beats/min_all_STD</td>\n",
+       "      <td>0.010999</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>35</th>\n",
+       "      <td>lactate_known_qn_mmol/L_all_STD</td>\n",
+       "      <td>0.010906</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>79</th>\n",
+       "      <td>output urine_unknown_nom_no_units_3686(ml)_Voi...</td>\n",
+       "      <td>0.010892</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>30</th>\n",
+       "      <td>blood pressure systolic_known_qn_mmHg_all_STD</td>\n",
+       "      <td>0.010776</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>117</th>\n",
+       "      <td>output urine_known_qn_mL_all_SUM</td>\n",
+       "      <td>0.010145</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>oxygen saturation pulse oximetry_known_qn_perc...</td>\n",
+       "      <td>0.010020</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>26</th>\n",
+       "      <td>respiratory rate_known_qn_insp/min_all_MEAN</td>\n",
+       "      <td>0.009950</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>89</th>\n",
+       "      <td>blood pressure systolic_known_qn_mmHg_all_LAST</td>\n",
+       "      <td>0.009950</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>54</th>\n",
+       "      <td>respiratory rate_known_qn_insp/min_all_STD</td>\n",
+       "      <td>0.009800</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>113</th>\n",
+       "      <td>respiratory rate_known_qn_insp/min_all_LAST</td>\n",
+       "      <td>0.009220</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>74</th>\n",
+       "      <td>blood pressure diastolic_known_qn_mmHg_all_COUNT</td>\n",
+       "      <td>0.009123</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>45</th>\n",
+       "      <td>temperature body_known_qn_degF_all_STD</td>\n",
+       "      <td>0.008873</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>66</th>\n",
+       "      <td>vasopressin_known_qn_units/min_all_COUNT</td>\n",
+       "      <td>0.000466</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>37</th>\n",
+       "      <td>vasopressin_known_qn_units_all_STD</td>\n",
+       "      <td>0.000379</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>24</th>\n",
+       "      <td>lactated ringers_known_qn_mL/hr_all_MEAN</td>\n",
+       "      <td>0.000283</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>27</th>\n",
+       "      <td>respiratory rate_unknown_qn_Breath_all_MEAN</td>\n",
+       "      <td>0.000219</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>103</th>\n",
+       "      <td>norepinephrine_known_qn_mcg/min_all_LAST</td>\n",
+       "      <td>0.000193</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>47</th>\n",
+       "      <td>blood pressure diastolic_unknown_qn_cc/min_all...</td>\n",
+       "      <td>0.000184</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>83</th>\n",
+       "      <td>lactated ringers_known_qn_mL/hr_all_COUNT</td>\n",
+       "      <td>0.000131</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>114</th>\n",
+       "      <td>respiratory rate_unknown_qn_Breath_all_LAST</td>\n",
+       "      <td>0.000120</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>106</th>\n",
+       "      <td>blood pressure diastolic_unknown_qn_cc/min_all...</td>\n",
+       "      <td>0.000085</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>59</th>\n",
+       "      <td>blood pressure systolic_unknown_qn_cc/min_all_...</td>\n",
+       "      <td>0.000076</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>84</th>\n",
+       "      <td>lactated ringers_unknown_qn_no_units_all_COUNT</td>\n",
+       "      <td>0.000076</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>111</th>\n",
+       "      <td>lactated ringers_known_qn_mL/hr_all_LAST</td>\n",
+       "      <td>0.000073</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>65</th>\n",
+       "      <td>vasopressin_known_qn_units_all_COUNT</td>\n",
+       "      <td>0.000071</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>52</th>\n",
+       "      <td>lactated ringers_known_qn_mL/hr_all_STD</td>\n",
+       "      <td>0.000054</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>90</th>\n",
+       "      <td>blood pressure systolic_unknown_qn_cc/min_all_...</td>\n",
+       "      <td>0.000053</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>blood pressure systolic_unknown_qn_cc/min_all_...</td>\n",
+       "      <td>0.000026</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>55</th>\n",
+       "      <td>respiratory rate_unknown_qn_Breath_all_STD</td>\n",
+       "      <td>0.000014</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>72</th>\n",
+       "      <td>norepinephrine_known_qn_mcg/min_all_COUNT</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>53</th>\n",
+       "      <td>lactated ringers_unknown_qn_no_units_all_STD</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75</th>\n",
+       "      <td>blood pressure diastolic_unknown_qn_cc/min_all...</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>112</th>\n",
+       "      <td>lactated ringers_unknown_qn_no_units_all_LAST</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>31</th>\n",
+       "      <td>blood pressure systolic_unknown_qn_cc/min_all_STD</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25</th>\n",
+       "      <td>lactated ringers_unknown_qn_no_units_all_MEAN</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50</th>\n",
+       "      <td>output urine_unknown_qn_no_units_all_STD</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>16</th>\n",
+       "      <td>norepinephrine_known_qn_mcg/min_all_MEAN</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>44</th>\n",
+       "      <td>norepinephrine_known_qn_mcg/min_all_STD</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>19</th>\n",
+       "      <td>blood pressure diastolic_unknown_qn_cc/min_all...</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>22</th>\n",
+       "      <td>output urine_unknown_qn_no_units_all_MEAN</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>86</th>\n",
+       "      <td>respiratory rate_unknown_qn_Breath_all_COUNT</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>109</th>\n",
+       "      <td>output urine_unknown_qn_no_units_all_LAST</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>119 rows × 2 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                                                     0         1\n",
+       "94                    lactate_known_qn_mmol/L_all_LAST  0.105640\n",
+       "6                    hemoglobin_known_qn_g/dL_all_MEAN  0.096484\n",
+       "93                   hemoglobin_known_qn_g/dL_all_LAST  0.088996\n",
+       "34                    hemoglobin_known_qn_g/dL_all_STD  0.081528\n",
+       "7                     lactate_known_qn_mmol/L_all_MEAN  0.074967\n",
+       "62                  hemoglobin_known_qn_g/dL_all_COUNT  0.034051\n",
+       "107             heart rate_known_qn_beats/min_all_LAST  0.018052\n",
+       "17             temperature body_known_qn_degF_all_MEAN  0.017661\n",
+       "20              heart rate_known_qn_beats/min_all_MEAN  0.017269\n",
+       "2       blood pressure systolic_known_qn_mmHg_all_MEAN  0.013622\n",
+       "85        respiratory rate_known_qn_insp/min_all_COUNT  0.013351\n",
+       "63                   lactate_known_qn_mmol/L_all_COUNT  0.012803\n",
+       "105    blood pressure diastolic_known_qn_mmHg_all_LAST  0.012785\n",
+       "32   oxygen saturation pulse oximetry_known_qn_perc...  0.011848\n",
+       "46      blood pressure diastolic_known_qn_mmHg_all_STD  0.011683\n",
+       "108                  output urine_known_qn_mL_all_LAST  0.011472\n",
+       "104            temperature body_known_qn_degF_all_LAST  0.011305\n",
+       "18     blood pressure diastolic_known_qn_mmHg_all_MEAN  0.011030\n",
+       "48               heart rate_known_qn_beats/min_all_STD  0.010999\n",
+       "35                     lactate_known_qn_mmol/L_all_STD  0.010906\n",
+       "79   output urine_unknown_nom_no_units_3686(ml)_Voi...  0.010892\n",
+       "30       blood pressure systolic_known_qn_mmHg_all_STD  0.010776\n",
+       "117                   output urine_known_qn_mL_all_SUM  0.010145\n",
+       "4    oxygen saturation pulse oximetry_known_qn_perc...  0.010020\n",
+       "26         respiratory rate_known_qn_insp/min_all_MEAN  0.009950\n",
+       "89      blood pressure systolic_known_qn_mmHg_all_LAST  0.009950\n",
+       "54          respiratory rate_known_qn_insp/min_all_STD  0.009800\n",
+       "113        respiratory rate_known_qn_insp/min_all_LAST  0.009220\n",
+       "74    blood pressure diastolic_known_qn_mmHg_all_COUNT  0.009123\n",
+       "45              temperature body_known_qn_degF_all_STD  0.008873\n",
+       "..                                                 ...       ...\n",
+       "66            vasopressin_known_qn_units/min_all_COUNT  0.000466\n",
+       "37                  vasopressin_known_qn_units_all_STD  0.000379\n",
+       "24            lactated ringers_known_qn_mL/hr_all_MEAN  0.000283\n",
+       "27         respiratory rate_unknown_qn_Breath_all_MEAN  0.000219\n",
+       "103           norepinephrine_known_qn_mcg/min_all_LAST  0.000193\n",
+       "47   blood pressure diastolic_unknown_qn_cc/min_all...  0.000184\n",
+       "83           lactated ringers_known_qn_mL/hr_all_COUNT  0.000131\n",
+       "114        respiratory rate_unknown_qn_Breath_all_LAST  0.000120\n",
+       "106  blood pressure diastolic_unknown_qn_cc/min_all...  0.000085\n",
+       "59   blood pressure systolic_unknown_qn_cc/min_all_...  0.000076\n",
+       "84      lactated ringers_unknown_qn_no_units_all_COUNT  0.000076\n",
+       "111           lactated ringers_known_qn_mL/hr_all_LAST  0.000073\n",
+       "65                vasopressin_known_qn_units_all_COUNT  0.000071\n",
+       "52             lactated ringers_known_qn_mL/hr_all_STD  0.000054\n",
+       "90   blood pressure systolic_unknown_qn_cc/min_all_...  0.000053\n",
+       "3    blood pressure systolic_unknown_qn_cc/min_all_...  0.000026\n",
+       "55          respiratory rate_unknown_qn_Breath_all_STD  0.000014\n",
+       "72           norepinephrine_known_qn_mcg/min_all_COUNT  0.000000\n",
+       "53        lactated ringers_unknown_qn_no_units_all_STD  0.000000\n",
+       "75   blood pressure diastolic_unknown_qn_cc/min_all...  0.000000\n",
+       "112      lactated ringers_unknown_qn_no_units_all_LAST  0.000000\n",
+       "31   blood pressure systolic_unknown_qn_cc/min_all_STD  0.000000\n",
+       "25       lactated ringers_unknown_qn_no_units_all_MEAN  0.000000\n",
+       "50            output urine_unknown_qn_no_units_all_STD  0.000000\n",
+       "16            norepinephrine_known_qn_mcg/min_all_MEAN  0.000000\n",
+       "44             norepinephrine_known_qn_mcg/min_all_STD  0.000000\n",
+       "19   blood pressure diastolic_unknown_qn_cc/min_all...  0.000000\n",
+       "22           output urine_unknown_qn_no_units_all_MEAN  0.000000\n",
+       "86        respiratory rate_unknown_qn_Breath_all_COUNT  0.000000\n",
+       "109          output urine_unknown_qn_no_units_all_LAST  0.000000\n",
+       "\n",
+       "[119 rows x 2 columns]"
+      ]
+     },
+     "execution_count": 211,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "pd.DataFrame(list(zip(train_ft.columns, clf.feature_importances_))).sort_values(1,ascending=False)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Multilayer Perceptron (MLP)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 221,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "MLPRegressor(activation='relu', alpha=0.0001, batch_size='auto', beta_1=0.9,\n",
+       "       beta_2=0.999, early_stopping=False, epsilon=1e-08,\n",
+       "       hidden_layer_sizes=(50, 50, 50), learning_rate='constant',\n",
+       "       learning_rate_init=0.001, max_iter=10, momentum=0.9,\n",
+       "       nesterovs_momentum=True, power_t=0.5, random_state=42, shuffle=True,\n",
+       "       solver='adam', tol=0.0001, validation_fraction=0.1, verbose=10,\n",
+       "       warm_start=False)"
+      ]
+     },
+     "execution_count": 221,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "from sklearn.neural_network import MLPRegressor\n",
+    "mlp = MLPRegressor(hidden_layer_sizes=(50,50,50), max_iter=10,\n",
+    "                    verbose=10, random_state=random_state)\n",
+    "mlp"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 222,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Iteration 1, loss = 3.02117880\n",
+      "Iteration 2, loss = 1.67737187\n",
+      "Iteration 3, loss = 1.31006102\n",
+      "Iteration 4, loss = 1.18114299\n",
+      "Iteration 5, loss = 1.10769512\n",
+      "Iteration 6, loss = 1.07136569\n",
+      "Iteration 7, loss = 1.03435899\n",
+      "Iteration 8, loss = 1.01107775\n",
+      "Iteration 9, loss = 0.99628229\n",
+      "Iteration 10, loss = 0.96720048\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>actual</th>\n",
+       "      <th>predicted</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>0.9</td>\n",
+       "      <td>1.700520</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2.3</td>\n",
+       "      <td>3.023481</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>6.7</td>\n",
+       "      <td>3.531821</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>1.4</td>\n",
+       "      <td>1.885652</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>2.0</td>\n",
+       "      <td>2.015354</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   actual  predicted\n",
+       "0     0.9   1.700520\n",
+       "1     2.3   3.023481\n",
+       "2     6.7   3.531821\n",
+       "3     1.4   1.885652\n",
+       "4     2.0   2.015354"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>actual</th>\n",
+       "      <th>predicted</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>3344.000000</td>\n",
+       "      <td>3344.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>2.223583</td>\n",
+       "      <td>2.320773</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.849955</td>\n",
+       "      <td>1.183730</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.300000</td>\n",
+       "      <td>0.139628</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>1.200000</td>\n",
+       "      <td>1.703305</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>1.700000</td>\n",
+       "      <td>2.275739</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>2.600000</td>\n",
+       "      <td>2.596062</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>19.800000</td>\n",
+       "      <td>17.974408</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "            actual    predicted\n",
+       "count  3344.000000  3344.000000\n",
+       "mean      2.223583     2.320773\n",
+       "std       1.849955     1.183730\n",
+       "min       0.300000     0.139628\n",
+       "25%       1.200000     1.703305\n",
+       "50%       1.700000     2.275739\n",
+       "75%       2.600000     2.596062\n",
+       "max      19.800000    17.974408"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Training set score: 0.495340\n",
+      "Test set score: 0.348530\n",
+      "RMSE: 1.49294383274\n"
+     ]
+    }
+   ],
+   "source": [
+    "mlp,results,rmse = try_model(train_ft,train_lbl,test_ft,test_lbl,StandardScaler(),mlp)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 223,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Iteration 1, loss = 2.71985045\n",
+      "Iteration 2, loss = 1.42103496\n",
+      "Iteration 3, loss = 1.17207591\n",
+      "Iteration 4, loss = 1.08982518\n",
+      "Iteration 5, loss = 1.03187321\n",
+      "Iteration 6, loss = 0.99369883\n",
+      "Iteration 7, loss = 0.97197471\n",
+      "Iteration 8, loss = 0.94572791\n",
+      "Iteration 9, loss = 0.98458782\n",
+      "Iteration 10, loss = 0.97873262\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>actual</th>\n",
+       "      <th>predicted</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>0.9</td>\n",
+       "      <td>1.527006</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2.3</td>\n",
+       "      <td>3.131615</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>6.7</td>\n",
+       "      <td>4.002848</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>1.4</td>\n",
+       "      <td>1.631142</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>2.0</td>\n",
+       "      <td>2.001493</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   actual  predicted\n",
+       "0     0.9   1.527006\n",
+       "1     2.3   3.131615\n",
+       "2     6.7   4.002848\n",
+       "3     1.4   1.631142\n",
+       "4     2.0   2.001493"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>actual</th>\n",
+       "      <th>predicted</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>3344.000000</td>\n",
+       "      <td>3344.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>2.223583</td>\n",
+       "      <td>2.273984</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>1.849955</td>\n",
+       "      <td>1.299995</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>0.300000</td>\n",
+       "      <td>-0.344607</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>1.200000</td>\n",
+       "      <td>1.675261</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>1.700000</td>\n",
+       "      <td>2.200784</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>2.600000</td>\n",
+       "      <td>2.517554</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>19.800000</td>\n",
+       "      <td>25.244543</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "            actual    predicted\n",
+       "count  3344.000000  3344.000000\n",
+       "mean      2.223583     2.273984\n",
+       "std       1.849955     1.299995\n",
+       "min       0.300000    -0.344607\n",
+       "25%       1.200000     1.675261\n",
+       "50%       1.700000     2.200784\n",
+       "75%       2.600000     2.517554\n",
+       "max      19.800000    25.244543"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Training set score: 0.519520\n",
+      "Test set score: 0.312346\n",
+      "RMSE: 1.53384389398\n"
+     ]
+    }
+   ],
+   "source": [
+    "mlp.set_params(hidden_layer_sizes=(100,100,100))\n",
+    "mlp,results,rmse = try_model(train_ft,train_lbl,test_ft,test_lbl,StandardScaler(),mlp)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Visualize"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 102,
+   "metadata": {
+    "collapsed": false,
+    "scrolled": false
+   },
+   "outputs": [],
+   "source": [
+    "import seaborn as sns\n",
+    "import matplotlib.pyplot as plt\n",
+    "\n",
+    "def heatmap(df_ts):\n",
+    "    sns.set(context=\"paper\", font=\"monospace\")\n",
+    "    corrmat = df_ts.corr()\n",
+    "    # Set up the matplotlib figure\n",
+    "    f, ax = plt.subplots(figsize=(50, 50))\n",
+    "    # Draw the heatmap using seaborn\n",
+    "    sns.heatmap(corrmat, vmax=1, square=True)\n",
+    "    return"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 103,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAACxsAAAsCCAYAAACIK3S4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X2Q1XXd//HX2V1IcOkS767U1EWZBinTpJzypmm00fxN\nlvIbcZeRJe/KTHIaNQUdHTPXxnHKG2osxBsWEUWzG29CHR0rsSxIzREbJSkFvGVRAVdcdq8/GHcu\n5EPXUt/rOto+Hv84u5zz+b73nO/Zc/bs08/W+vr6+gIAAAAAAAAAAAAA8C4N9R4AAAAAAAAAAAAA\nAHhvEhsDAAAAAAAAAAAAAEViYwAAAAAAAAAAAACgSGwMAAAAAAAAAAAAABSJjQEAAAAAAAAAAACA\nIrExAAAAAAAAAAAAAFDUVO8BAAAAAAAAAAAAAAabU2ot9R6B94mr+5bW9fh2NgYAAAAAAAAAAAAA\nisTGAAAAAAAAAAAAAECR2BgAAAAAAAAAAAAAKBIbAwAAAAAAAAAAAABFYmMAAAAAAAAAAAAAoEhs\nDAAAAAAAAAAAAAAUiY0BAAAAAAAAAAAAgCKxMQAAAAAAAAAAAABQJDYGAAAAAAAAAAAAAIrExgAA\nAAAAAAAAAABAUVO9BwAAAAAAAAAAAAAYbBpr9Z4ABsbOxgAAAAAAAAAAAABAkdgYAAAAAAAAAAAA\nACgSGwMAAAAAAAAAAAAARWJjAAAAAAAAAAAAAKBIbAwAAAAAAAAAAAAAFImNAQAAAAAAAAAAAIAi\nsTEAAAAAAAAAAAAAUCQ2BgAAAAAAAAAAAACKxMYAAAAAAAAAAAAAQJHYGAAAAAAAAAAAAAAoaqr3\nAAAAAAAAAAAAAACDTWOtVu8RYEDsbAwAAAAAAAAAAAAAFImNAQAAAAAAAAAAAIAisTEAAAAAAAAA\nAAAAUCQ2BgAAAAAAAAAAAACKxMYAAAAAAAAAAAAAQJHYGAAAAAAAAAAAAAAoEhsDAAAAAAAAAAAA\nAEViYwAAAAAAAAAAAACgSGwMAAAAAAAAAAAAABSJjQEAAAAAAAAAAACAoqZ6DwAAAAAAAAAAAAAw\n2DTW6j0BDIydjQEAAAAAAAAAAACAIrExAAAAAAAAAAAAAFAkNgYAAAAAAAAAAAAAisTGAAAAAAAA\nAAAAAECR2BgAAAAAAAAAAAAAKBIbAwAAAAAAAAAAAABFYmMAAAAAAAAAAAAAoEhsDAAAAAAAAAAA\nAAAUiY0BAAAAAAAAAAAAgCKxMQAAAAAAAAAAAABQ1FTvAQAAAAAAAAAAAAAGm8Zard4jwIDY2RgA\nAAAAAAAAAAAAKBIbAwAAAAAAAAAAAABFYmMAAAAAAAAAAAAAoEhsDAAAAAAAAAAAAAAUiY0BAAAA\nAAAAAAAAgCKxMQAAAAAAAAAAAABQJDYGAAAAAAAAAAAAAIrExgAAAAAAAAAAAABAkdgYAAAAAAAA\nAAAAACgSGwMAAAAAAAAAAAAARU31HgAAAAAAAAAAAABgsGms1XsCGBg7GwMAAAAAAAAAAAAARWJj\nAAAAAAAAAAAAAKBIbAwAAAAAAAAAAAAAFImNAQAAAAAAAAAAAIAisTEAAAAAAAAAAAAAUCQ2BgAA\nAAAAAAAAAACKxMYAAAAAAAAAAAAAQJHYGAAAAAAAAAAAAAAoEhsDAAAAAAAAAAAAAEVN9R4AAAAA\nAAAAAAAAYLBprNXqPQIMiJ2NAQAAAAAAAAAAAIAisTEAAAAAAAAAAAAAUCQ2BgAAAAAAAAAAAACK\nxMYAAAAAAAAAAAAAQJHYGAAAAAAAAAAAAAAoEhsDAAAAAAAAAAAAAEViYwAAAAAAAAAAAACgSGwM\nAAAAAAAAAAAAABSJjQEAAAAAAAAAAACAIrExAAAAAAAAAAAAAFDUVO8BAAAAAAAAAAAAAAabxlq9\nJ4CBsbMxAAAAAAAAAAAAAFAkNgYAAAAAAAAAAAAAisTGAAAAAAAAAAAAAECR2BgAAAAAAAAAAAAA\nKBIbAwAAAAAAAAAAAABFYmMAAAAAAAAAAAAAoEhsDAAAAAAAAAAAAAAUiY0BAAAAAAAAAAAAgCKx\nMQAAAAAAAAAAAABQJDYGAAAAAAAAAAAAAIqa6j0AAAAAAAAAAAAAwGDTWKvVewQYEDsbAwAAAAAA\nAAAAAABFYmMAAAAAAAAAAAAAoEhsDAAAAAAAAAAAAAAUiY0BAAAAAAAAAAAAgCKxMQAAAAAAAAAA\nAABQJDYGAAAAAAAAAAAAAIrExgAAAAAAAAAAAABAkdgYAAAAAAAAAAAAACgSGwMAAAAAAAAAAAAA\nRWJjAAAAAAAAAAAAAKCoqd4DAAAAAAAAAAAAAAw2dovl/cK5CgAAAAAAAAAAAAAUiY0BAAAAAAAA\nAAAAgCKxMQAAAAAAAAAAAABQJDYGAAAAAAAAAAAAAIrExgAAAAAAAAAAAABAkdgYAAAAAAAAAAAA\nACgSGwMAAAAAAAAAAAAARWJjAAAAAAAAAAAAAKBIbAwAAAAAAAAAAAAAFImNAQAAAAAAAAAAAICi\npnoPAAAAAAAAAAAAADDYNNZq9R4BBsTOxgAAAAAAAAAAAABAkdgYAAAAAAAAAAAAACgSGwMAAAAA\nAAAAAAAARWJjAAAAAAAAAAAAAKBIbAwAAAAAAAAAAAAAFImNAQAAAAAAAAAAAIAisTEAAAAAAAAA\nAAAAUCQ2BgAAAAAAAAAAAACKxMYAAAAAAAAAAAAAQJHYGAAAAAAAAAAAAAAoaqr3AAAAAAAAAAAA\nAACDTWOt3hPAwNjZGAAAAAAAAAAAAAAoEhsDAAAAAAAAAAAAAEViYwAAAAAAAAAAAACgSGwMAAAA\nAAAAAAAAABSJjQEAAAAAAAAAAACAIrExAAAAAAAAAAAAAFAkNgYAAAAAAAAAAAAAisTGAAAAAAAA\nAAAAAECR2BgAAAAAAAAAAAAAKBIbAwAAAAAAAAAAAABFTfUeAAAAAAAAAAAAAGCwaazV6j0CDIid\njQEAAAAAAAAAAACAIrExAAAAAAAAAAAAAFAkNgYAAAAAAAAAAAAAisTGAAAAAAAAAAAAAECR2BgA\nAAAAAAAAAAAAKBIbAwAAAAAAAAAAAABFYmMAAAAAAAAAAAAAoEhsDAAAAAAAAAAAAAAUiY0BAAAA\nAAAAAAAAgCKxMQAAAAAAAAAAAABQ1FTvAQAAAAAAAAAAAAAGm8ZavSeAgbGzMQAAAAAAAAAAAABQ\nJDYGAAAAAAAAAAAAAIrExgAAAAAAAAAAAABAkdgYAAAAAAAAAAAAACgSGwMAAAAAAAAAAAAARWJj\nAAAAAAAAAAAAAKBIbAwAAAAAAAAAAAAAFImNAQAAAAAAAAAAAIAisTEAAAAAAAAAAAAAUCQ2BgAA\nAAAAAAAAAACKmuo9AAAAAAAAAAAAAMBg01ir1XsEGBA7GwMAAAAAAAAAAAAARWJjAAAAAAAAAAAA\nAKBIbAwAAAAAAAAAAAAAFImNAQAAAAAAAAAAAIAisTEAAAAAAAAAAAAAUCQ2BgAAAAAAAAAAAACK\nxMYAAAAAAAAAAAAAQJHYGAAAAAAAAAAAAAAoEhsDAAAAAAAAAAAAAEViYwAAAAAAAAAAAACgqKne\nAwAAAAAAAAAAAAAMNo21ek8AA2NnYwAAAAAAAAAAAACgSGwMAAAAAAAAAAAAABSJjQEAAAAAAAAA\nAACAIrExAAAAAAAAAAAAAFAkNgYAAAAAAAAAAAAAisTGAAAAAAAAAAAAAECR2BgAAAAAAAAAAAAA\nKBIbAwAAAAAAAAAAAABFYmMAAAAAAAAAAAAAoKip3gMAAAAAAAAAAAAADDaNtVq9R4ABsbMxAAAA\nAAAAAAAAAFAkNgYAAAAAAAAAAAAAisTGAAAAAAAAAAAAAECR2BgAAAAAAAAAAAAAKBIbAwAAAAAA\nAAAAAABFYmMAAAAAAAAAAAAAoEhsDAAAAAAAAAAAAAAUiY0BAAAAAAAAAAAAgCKxMQAAAAAAAAAA\nAABQJDYGAAAAAAAAAAAAAIqa6j0AAAAAAAAAAAAAwGDTWKv3BDAwdjYGAAAAAAAAAAAAAIrExgAA\nAAAAAAAAAABAkdgYAAAAAAAAAAAAACgSGwMAAAAAAAAAAAAARWJjAAAAAAAAAAAAAKBIbAwAAAAA\nAAAAAAAAFImNAQAAAAAAAAAAAIAisTEAAAAAAAAAAAAAUCQ2BgAAAAAAAAAAAACKxMYAAAAAAAAA\nAAAAQFFTvQcAAAAAAAAAAAAAGGwaa/WeAAbGzsYAAAAAAAAAAAAAQJHYGAAAAAAAAAAAAAAoEhsD\nAAAAAAAAAAAAAEViYwAAAAAAAAAAAACgSGwMAAAAAAAAAAAAABSJjQEAAAAAAAAAAACAIrExAAAA\nAAAAAAAAAFAkNgYAAAAAAAAAAAAAisTGAAAAAAAAAAAAAECR2BgAAAAAAAAAAAAAKGqq9wAAAAAA\nAAAAAAAAg01jrVbvEWBA7GwMAAAAAAAAAAAAABSJjQEAAAAAAAAAAACAIrExAAAAAAAAAAAAAFAk\nNgYAAAAAAAAAAAAAisTGAAAAAAAAAAAAAECR2BgAAAAAAAAAAAAAKBIbAwAAAAAAAAAAAABFYmMA\nAAAAAAAAAAAAoEhsDAAAAAAAAAAAAAAUiY0BAAAAAAAAAAAAgKKmeg8AAAAAAAAAAAAAMNg01uo9\nAQyMnY0BAAAAAAAAAAAAgCKxMQAAAAAAAAAAAABQJDYGAAAAAAAAAAAAAIrExgAAAAAAAAAAAABA\nkdgYAAAAAAAAAAAAACgSGwMAAAAAAAAAAAAARWJjAAAAAAAAAAAAAKBIbAwAAAAAAAAAAAAAFImN\nAQAAAAAAAAAAAIAisTEAAAAAAAAAAAAAUNRU7wEAAAAAAAAAAAAABpvGWq3eI8CA2NkYAAAAAAAA\nAAAAACgSGwMAAAAAAAAAAAAARWJjAAAAAAAAAAAAAKBIbAwAAAAAAAAAAAAAFImNAQAAAAAAAAAA\nAIAisTEAAAAAAAAAAAAAUCQ2BgAAAAAAAAAAAACKxMYAAAAAAAAAAAAAQJHYGAAAAAAAAAAAAAAo\nEhsDAAAAAAAAAAAAAEVN9R4AAAAAAAAAAAAAYLBprNV7AhgYOxsDAAAAAAAAAAAAAEViYwAAAAAA\nAAAAAACgSGwMAAAAAAAAAAAAABSJjQEAAAAAAAAAAACAIrExAAAAAAAAAAAAAFAkNgYAAAAAAAAA\nAAAAisTGAAAAAAAAAAAAAECR2BgAAAAAAAAAAAAAKBIbAwAAAAAAAAAAAABFYmMAAAAAAAAAAAAA\noKip3gMAAAAAAAAAAAAADDaNtVq9R4ABsbMxAAAAAAAAAAAAAFAkNgYAAAAAAAAAAAAAisTGAAAA\nAAAAAAAAAECR2BgAAAAAAAAAAAAAKBIbAwAAAAAAAAAAAABFYmMAAAAAAAAAAAAAoEhsDAAAAAAA\nAAAAAAAUiY0BAAAAAAAAAAAAgCKxMQAAAAAAAAAAAABQJDYGAAAAAAAAAAAAAIqa6j0AAAAAAAAA\nAAAAwGDTWKv3BDAwdjYGAAAAAAAAAAAAAIrExgAAAAAAAAAAAABAkdgYAAAAAAAAAAAAACgSGwMA\nAAAAAAAAAAAARWJjAAAAAAAAAAAAAKBIbAwAAAAAAAAAAAAAFImNAQAAAAAAAAAAAIAisTEAAAAA\nAAAAAAAAUCQ2BgAAAAAAAAAAAACKxMYAAAAAAAAAAAAAQFFTvQcAAAAAAAAAAAAAGGwaa7V6jwAD\nYmdjAAAAAAAAAAAAAKBIbAwAAAAAAAAAAAAA71PnnXde2traMmfOnOK/P/3002ltbU1ra2vuvffe\nLV5fbAwAAAAAAAAAAAAA70OPPvpompubc9NNN+Xuu+/OunXrNrnMzTffnHPOOSezZ8/Oddddt8XH\nEBsDAAAAAAAAAAAAwPvQE088kXHjxiVJ9tprrzz77LObXGbUqFFZvXp11q5dmxEjRmzxMZr+5SkB\nAAAAAAAAAAAAgP9zq1evzq677prLLrssW2+9dd54441NLnPAAQfklFNOSU9PTy644IItPobYGHjf\nOKXWUtlan91+eCXr/P+/LqhknSTpa/pAJeu8vq63knWS5E+fOriytQ589KFK1nn1zfWVrJMkO25d\nzdNgX18lyyRJ1q2v7v7rrWiu4U21ahZK0lerZq1V3dWdBx9orO7rq+q2ervCc2p9RSfCVhXeTm9V\nd5qnobqx0r2mp5J1GrZqrGSdYU3V/hGSNavfrmSdkeuer2Sdnm1bKlknSf78cncl6yzpWlvJOkny\nuZZtKltrm6HVnAu19Zv+qZx/VsOalZWss2rYf1ayTpL0VfiE/MGKbvM1PdXN1Fyr5jHc1zi0knWq\nVtVrhFfXVvO9PElGfKCa7+db9VX32FvXUN39V9VTaIUvFSt7jTCkyhcIqe45dMTW1Xxv6Wuo5tx8\nx+o3/vWv74NbVff6vKqfjZNqn/uq0tdQ0duxtffmH6yr6jav8vmqqufj4UOqu83feKu6x8z6il5u\njKzwJULV36eqsPbt6n4Qfbuin7OrfL6q6r2NplT4A/t78PtUrbe614r/7mpvbfoLyX/G+uHbVrJO\nktR6q/ne2VPhH32t8rVwVX6627jK1moZu30l64y74xeVrJNU+1qxqp8/njrq/1WzUJKxP7+rknVe\nq/D98+2Gv/dygjcrfF6vynvx9yhJsrKi36k1Vvi0/h8Vvd9S5XkwtMLff1R1KlT5e6KmCl93VvEe\nQlLd71GSan+XUtV7QNukq5J11jfvUMk6Vavq5+yq3vNOUtnPH6+sq+582mXk1pWtBTAQzc3NWbdu\nXc4888x0dHQUdy6+6qqr8sMf/jC77bZbTjjhhHz2s5/domO8997tAQAAAAAAAAAAAAD+R2PHjs2i\nRYuSJE899VRGjRqV7u7urFixov8yPT09GT58eIYMGZI333xzi48hNgYAAAAAAAAAAACA96H99tsv\nr732Wtra2nL44Ydn6NChefzxx3P22Wf3X+bEE0/Mt771rbS1teXoo4/e4mO89/7uCQAAAAAAAAAA\nAAAwIB0dHRt9vP/++2fWrFn9H++zzz65+eab/+n1xcYAAAAAAAAAAAAA/8caarV6jwAD0lDFIrfc\nckuOOOKI3HrrrVUs92/p/vvvz1FHHZUrrrii3qNU7qmnnsptt91WyVoTJ06sZJ3/TZdffnn+8Ic/\n1HWGGTNm5KWXXur/eNmyZfnd735XydoXXnhhDjrooDz33HP9n5syZUr233//9Pb2bvZ6t99+e774\nxS8mSa677rpMnDgxy5Yty4EHHpj29va0t7dn0aJFSZInn3wy++yzT956660kydSpU3PppZcmSc46\n66wsX768kq8FAAAAAAAAAAAA+NdUsrPxhAkTMnTo0PT09FSx3L+lQw45JCNGjMiCBQvqPUrlxowZ\nkzFjxlSyVs3/qTEgJ5988kYfvxMbf/rTn/6X177gggvS3d290eeuuuqqtLe3/4/XHTp0aF588cW8\n/PLL/fflgQce2B8Sv+P3v/99Dj300CxatCif+cxnkqQ/RAYAAAAAAAAAAADeO7Z4Z+O33norJ598\nck488cRMmDChfwfSvr6+jS73m9/8Jq2trZk4cWLuuuuuJBt2wB0/fnwmTZqUX//610mSu+66K8cc\nc0zOOuusTJ06NUnS2dmZ1tbWHH/88Vm5cmXOPPPMrF69un/tb3zjG5udb/bs2Wltbc3kyZOzcuXK\nrFy5Ml/5ylfS2tqaG2+8MUly3HHHZcKECTnrrLMyYcKEdHd357bbbuuf9x/tWnv77bfn6KOPzqRJ\nk/LKK68kSf74xz+mra0tkyZNysMPP5yenp4cd9xxmTx5cr797W/3X/fdt9HatWvzzW9+M+3t7bn8\n8ss3e8wlS5akvb09bW1tuf/++9Pb29sffvb19eX4449PksyfP79/jv++K+27nX322TnuuONyzjnn\nJEkeeeSRTJo0KSeeeGLOOOOMzc42ffr0TJ06NW1tbbn++uuTbLif371j86RJk3LZZZflyCOP7A9I\nr7/++rS1tWXKlCmZPn36ZmdLNpxjU6ZMydKlS/PII4/kq1/9ar72ta9lypQpSbLRfTp79uwsXbo0\nl1xySf/1Fy5cmGuuuSZTp07NRRddlPHjx+fuu+/e7PHeOWfeOd+SDffzueeem/b29px33nlJkjPO\nOCMnnHBCFi5cuNm1br/99px++uk5/vjjc/HFFydJnn322UycODHHHnts7rvvvs1ed9KkSent7c3f\n//73/sfCsccemwsvvDBHHnlk/va3vyVJOjo6Ntp5+L777ktHR0d+8YtfpL29PS+99FL6+vpy2mmn\nZeLEifnud7+72WOWHqeb8+7zt+SAAw7IPffck2HDhv3D6z322GM56aSTNtqN+eMf/3gWLlwoOAcA\nAAAAAAAAAID3kC2Oje+9994cdNBBmTlzZt5+++3NXu4Tn/hE5s6dmxtuuCE33HBDkuShhx5Ke3t7\nOjs7c9BBByXZEHrOmTMnhx9+eJKkp6cnd955Z+bOnZu2trbMmzcve++9dxYvXpx58+alp6cnDQ3l\nsV999dU88MADmTt3bq699to0NzfnlltuycSJEzN37tz88pe/TE9PT7bffvtccskl2WGHHXLUUUfl\nmWeeyWGHHZa5c+fmyiuvzE9+8pPNfl3z58/Pj370o3R2dma77bZLkvzgBz/IjBkz0tnZmX333TdN\nTU25+uqrc8MNN2TYsGF5/PHHi2vdcsstOeSQQzJr1qwsW7YsL730UvFy3//+99PR0ZEbb7wxs2fP\nTkNDQ0aPHp1nn302ixYtyrhx49Lb25uZM2dm9uzZueiiizJjxoziWosWLcqIESMye/bsNDc359FH\nH02SfPCDH8zMmTOz3Xbb5U9/+tMms7344otJkn322Sc33nhjfvWrXyVJDj744Jx77rkbHaNWq2X8\n+PG5+OKLc9ddd6Wnpyfz58/PTTfdlHHjxm32tk2S9evXZ9q0aTnllFPS0tKSJGlubs6Pf/zjdHd3\n57XXXtvoPr3jjjuy6667ZtmyZVmxYkUefPDBLF68OHvvvXeS5HOf+1xmzJiRn//858Xj9fT05I47\n7sjcuXPT2tqaW2+9tf/fent7M2vWrHznO9/JwoULs9122+Xaa6/NiBEj/uHXsNtuu+W6667rv22v\nvfbanHfeeens7Mw111yz2euVItvXX389Z5xxRr7+9a/ngQceSJJMmzYtBx98cP9lPv/5z+fcc8/N\nl7/85cyaNSs77rhjurq6snr16syZMyfTpk3b7DFLj9Mtme/ddt9999x555351Kc+1f+5BQsWpL29\nPe3t7Xnuueeyfv36rF+/PmPHjs1f/vKX/st94Qtf6D+vAAAAAAAAAAAAgPeGpi29wvLly7PXXnsl\n2RAWbs7ixYszffr09Pb2ZtWqVUmSo48+OtOnT8/999+fU089NWPGjEljY2OGDBmSUaNGJUm6urqy\n8847J0n23HPPLFiwIF/60pfyxBNPZP78+Wlubs6HP/zh4jGXLVuWMWPGJEkaGxvT2NiY5cuX57DD\nDkuS7LTTTlm1alWGDRuWYcOGZfjw4Rk+fHi6u7vz8MMPp7OzM8k/3sH1tNNOyxVXXJHe3t6cf/75\naW5uTpL+/w4bNixr167N+eefn1deeSXLli3LEUccUVxr6dKlefLJJ3Pbbbdl9erVefnll7Pjjjtu\ncrnnnnsu06ZNS19fX/9tefjhh2f+/PlZtWpVjjnmmHR1deX555/v3+X4Qx/6UPGYK1asyOjRo5Mk\ne+yxR5YvX57tt98+e+yxR5KkpaUlK1as2GS2d3Zx3n333dPQ0JDGxsb+NUu3V0tLS55//vmsWbMm\nXV1d2WmnnZIko0aNyp///OfN3r6LFy/OkCFDNgpb3znPRo4cmTVr1mxyn3Z1daWpqSkPPvhgnn76\n6axbty5HHXVUfvazn6WlpSXbbLNN1q5dWzzefz/fRo8enYcffrj/3/bdd98kSUNDQ1544YX+2+id\nc3Vz3pl36NChSTY8ZkaPHp2hQ4dmyJAhm71e6Xbcdttt09zcnJEjR+avf/3rgK+77bbb5tBDD83p\np5+e/fbbL5MnTy5er/Q43ZL5SiZPnpz99tsvyYZA+cADD8yll17a/++PPfZYnn766Zx00kl55pln\n+u+bHXbYIV1dXQM+DgAAAAAAAAAAAPC/b4t3Nt5pp52yZMmSJBti2XdstdVW6erq6v945syZ6ejo\nyNVXX92/E3Fzc3POP//8TJ48OfPmzUuyYSfbdevW9YeUI0eOzPLly5MkS5Ysyc4775yxY8fmnnvu\nyfjx4zNnzpx87GMfK862yy67ZPHixUk27Er79ttvZ5dddsmSJUvS19eXF154ISNHjtzker29vZkx\nY0auueaadHR0pLe3d7Nf/0c+8pF873vfy6hRo/LQQw/1f/71119PknR3d+e3v/1t9thjj8yaNSuf\n/OQn++PJd99GLS0tOfXUU9PZ2Zl58+blox/9aPGYe+65Z6688sp0dnbmpz/9aZJk//33z8KFC7N0\n6dLsueeeGTlyZP6LvTsPj6o8/z/+nskkZEJAkgDKIosoBURRFDdAEEXEYsVUISSZAQTCImHRIg3y\nBReWQmVTFAUCkiGIgk21lQoIlsbKIhJcg7IqW4FAICRkm8z8/uDHlJAJDPBoIv28rosLODnnPvd5\nzvacM/c8ad68OSkpKaSkpDBx4kS/sc7ef7t27fIV2p5p/z179lCnTp0yubVo0aJUnHMLQs/+/7k/\ni4iI4ODBgwDs3r3bb15ntGzZklmzZjFlypQy++FMXH/7tEGDBnz99ddcffXV5OTk+Iq/y8vp7NzO\nPd7OOLuguk6dOr7cL7QN/vLdsWMHRUVFuN3ucuevWrUqp06dKjXC9fkKb8/+mc1mKzXSuNvtJi4u\njlmzZvmOGX/8nadwumj+7GMVICwsrMy0c1ksFrp27UpISIgvv3O3YcOGDTz//PPMnz+fPn36sHnz\nZt/P7rzzTj7//PPzrkNEREREREREREREREREREREREREfjkXXWzcuXNnPv30U/r160dQUJCvQPGu\nu+5i1aq4oM8IAAAgAElEQVRVDBo0yDffU089xeTJk6lWrRoAf//734mPj2fixIm+0X7j4+OJi4vj\no48+wmq1YrPZ6NatGzExMbz99ts8/vjjhIaGkpubS8eOHfF4POUWG0dFRXHfffcRExNDnz59OHny\nJE888QSpqan06tWLbt26lSogPcNisXDffffhcDhYsmRJqVF1zzV16lTi4uJIT0+nTZs2AAwfPpyE\nhAQcDgcZGRm0atWKtWvXMmjQIE6cOOFbtnnz5uzcuROn00l+fj49evQgLS2N3r17M3DgQPLz8/2u\nc+jQoYwcORKn08mkSZN8OV977bW+trBarfTs2ZP4+Hh69+5NWlqa31itW7cmJyeH+Ph4cnNzfaP3\nnjhxgr59+5KVlcWtt95aJreCgoIybQbw6quvMnnyZD744APfvj+3/Ww2G126dKFXr15s2rSpVFGr\nP5GRkXTr1o358+eXinXm3/726U033URISIjv73OVt09tNhuPPPJIqeOtvHbLysryHVeBOLPOvn37\nMmHCBBwOB/369St3/kceeYQxY8awZs2acvMuLCzE4XCQnp7OqFGjSE1NBeA3v/kNX375Jc8++yzH\njh3j+PHjOJ1OevToQfv27ctdp7/zFODhhx9m3LhxzJo1yzft0UcfZcCAAb51Brr9n332GU6nE6fT\nybp169i0aZOvsL5ly5Zs2LDBt8yDDz54wYJmEREREREREREREREREREREREREfnlWLznGzq1HG63\nG5vNhsPhIDk52W9x58XG+vTTT8nIyCAxMfGSY/2vmTBhAr169aJJkyaXFWfTpk2sX7+e4cOHG8qs\nrDP7+Z133iE4OJjo6OifbV1y5RpkaWQs1r01w4zE+f2uz4zEAfDaqhiJk1NU/ujsFyujTfnF6her\n7dZ/X3imABzNLzESB6B2VZuROBd/Jy1fUYm5/ecxlFeYrfwv4Vws73m+0HMxjheYOw6qBJnbPlNt\nVWzwmCoxdCCEGmynQnOHOVZzaVGQV/5vILgY1tCyX267FHbbRX8v8LzycosvPFMAIor2GYnjjmxk\nJA7A10cKLjxTAHZmnzISB6BjoxrGYtUIMXMsWEqKjMQBsOYdMxLnuP1qI3Hg/L8V5GJVN9TmeW5z\nOYVbzJzD3qBLf37/OZnqIxw9ZeZaDlCtipnreajX3LlXZDW3/0zdQg12FY31EYJNdhAwdw+tVtXM\ntcVrNXNsnpF78vK3r3qouf65qWdjMHvvM8VrNfMcisVsX9EUU21u8n5l6n4cFmyuzU8WmjtnSgx1\nNyIMdhFMX6dMOFVs7kG02NBztsn7lal3GzYMPrBXwuuUxWOur3ilsxQGNujKhZSERRqJA2DxmLl2\nui9+HKZymewLm/KXBrcZi9WoRU0jcW77+wdG4oDZvqKp549t3R82Ewho8f4KI3FOGHx/HhVmqP9q\nUL7B+7oplfFzFIBjhj5TCzJ4W7/K0PsWk8dBiMHPP0wdCiY/J7IZ7HeaeIcA5j5HAbOfpZh6B1QD\nMwOslYTXMhLHNFPP2abeeQPGnj+yiswdT/UiqhqLJVe+v9e9qaJTkF+Jbge+rtD1X/TTgdfrpVev\nXgQHB9OxY8fLKjQGWL58Oe+//z42m42XX375smL9L5k6dSoFBQWXXWj8S3n99dfZuHEjdrudWbNm\nMWnSJDIzM4HTI+COGTOGZs2a/aw5pKWl8Ze//MU34m50dDTdu3e/5HgOhwOLxYLX68VisZCSkhLQ\ncunp6cydO9eXR/v27RkwYMAl5xGIrKwsRo4c6cu3du3aTJs27ZLjzZ07l/T0dOD0/ktISKBdu3am\n0hURERERERERERERERERERERERGRSuKSRjYWEakIGtk4MBrZOHAa2TgwlfEb+RrZOHAa2ThwGtk4\nMBrZODAa2TgwGtk4cBrZODAa2ThwGtk4cBrZ+MI0snHgNLJxYDSyceA0snFgNLJxYDSysZyhkY0D\no5GNA6ORjQOnkY0Do5GNA6eRjQOjkY0Dp5GNA6ORjQOjkY1F/ksjG0ugfnUjG4uIiIiIiIiIiIiI\niIiIiIiIiIiIyOWxGPzii8jPqfJ9tVxEREREREREREREREREREREREREREQqBRUbi4iIiIiIiIiI\niIiIiIiIiIiIiIiIiF8qNhYRERERERERERERERERERERERERERG/bBWdgIhIoO6tGWYs1r+yThmJ\n87jHbSQOgJcqRuLYg819j+Tqm2oZi2W1WIzEKfF6jcQxqTLmBGA10+SVUrHHXJsHGWwnj6HvcQVb\nzG2fx9C5Z1KJwf1nNbkDDSkqMbN99kraU/cGhVR0CmVUDQkyEqfQ7TESByCoEp57XmvlO6i8Bu+h\nhk49o4weBZ4SM3HMnC6VlsnjwNgtxmBOBm+hBBvrLBq8rxtKqRJegk+zXLnf+fcGBVd0CnKFcVfG\n+3ol7bcYe76yXOGdhCuc29BxYLtyb1VysQz1WyymnmMMqoS3GKMatahpLNae77KMxLnNSBTzQgw9\n9EX9xtznKKaYfH9usg/kMfSmxOR5XAlfLxtlqo9g8mMwU/3XYIM7rzLeG0y+AzJ5Hpti6nMUqJyf\npXiDQys6hTK8Rl+YmXoONfgAYqjfWVj5uq8iIpWKXh2JiIiIiIiIiIiIiIiIiIiIiIiIiIiIXyo2\nFhEREREREREREREREREREREREREREb9UbCwiIiIiIiIiIiIiIiIiIiIiIiIiIiJ+qdhYRERERERE\nRERERERERERERERERERE/PrVFhu/++67dO3aleXLl1d0KpXW2rVr6d69O7NmzfpZ1/Pee+8ZibNp\n0yZmzpxpJNbPKTY2tqJTYMKECaX+v2nTJvbt23fZcYuLi3E4HHTp0sU37eDBgzgcDuLi4s67bFJS\nEi+99BIAgwcPZtasWaSlpfHQQw/hcDhwOp3k5+cD8NZbbxEfH+9btlOnTqxbtw6oHO0rIiIiIiIi\nIiIiIiIiIiIiIiIiIqf9aouNe/TowcCBAys6jUqtU6dOPPfccz/7ekwVGwNYLBZjsX4ulSHHsWPH\nlvr/pk2b2Lt372XHDQ4OxuVyUbNmTd+0OnXq4HK5Alr+yJEjFBUVkZOTA5xuq/79++NyuUhJScFu\ntwPw1VdfERkZSUFBAQBXXXUVa9as8S0jIiIiIiIiIiIiIiIiIiIiIiIiIpWDraITCERhYSFDhw7F\n4/Fw8uRJZs6cSd26dfF6vaXmS09P57XXXsNqtRIfH8/DDz/Mtm3bGDNmDFWrVmXAgAHce++9rFix\ngoULF9KoUSNsNhuTJ0/G5XLx4YcfYrfbmTZtGpMmTeL5558nPDwcgKeeeorXXnvNb36LFy/m73//\nO1WqVGHGjBkAPP300xQUFPDII48QFxdHfHw8RUVFNGzYkB9//JGUlBQ+/PBDli1bhtVqZeTIkbRp\n08Zv/LS0NFJSUggPD2fGjBnUrFmTzZs3M23aNGw2G0OGDKFNmzb06dOHoKAgrr76aqZOnQpQpo1O\nnTrFH//4R44fP07r1q0ZMWKE33U+/PDDhISE0Lx5cw4cOMCiRYtYtWoV8+fPJzg4mIkTJ2Kz2UhK\nSmL79u04nU769etHhw4dmDZtGl988QU1atRg5syZhISEMHv2bLKzs/nhhx+4/fbbGT58eLn7e+/e\nvUyZMoWXX36Z+fPns3//fvbs2UOXLl3o06cPW7ZsYcqUKQCMHj2aHTt2EBUVxf333w/AnDlzaNu2\nLRMnTqRFixZs3ryZ2bNn07BhQ7/rGz16NPv376d+/fr86U9/Ak6P0hsREcHXX39N165defDBBxkx\nYgTVqlUjOzu73NyTkpIICwsjIyODAQMG0LVr1zLt1qhRI7/LxsbGsmTJEpYtW0ZwcDBt2rRh9OjR\n1KhRg+zsbFwuF1arFYfDweHDh1m5ciUAr776KmlpaXz88cc0atSImTNncujQIRITE6lSpQqPPfYY\n0dHRftc5Z84c0tPTCQoK4vnnn6dJkyblblsgGjRoQFpaGq1bt/ZNO/cY9Hg8uN1u7rzzTrZs2cI9\n99yD3W7H7XZTWFhYZn4REREREREREREREREREREREZErkTVIAzPKr8OvYmTj1atX065dO5KTkyku\nLi53vltvvZWlS5eyaNEiFi1aBMC///1vnE4nLpeLdu3aAaeLg5csWUKXLl0AcLvdfPjhhyxdupRe\nvXqxbNkybrrpJjIzM1m2bBlutxur1X9THT16lE8++YSlS5eyYMECwsPDeffdd4mNjWXp0qX87W9/\nw+12U7NmTSZPnkytWrXo3r07O3bs4MEHH2Tp0qW88sorzJ07t9ztWrlyJa+//joul4uoqCgAZsyY\nwbx583C5XNxyyy3YbDbeeOMNFi1ahN1u56uvvvIb691336VTp06kpKSwf/9+Dh8+7He+pk2bMnLk\nSFq2bEnLli05duwYCxYsIDU1laSkJBYsWED9+vVxuVw0bdqUlJQUOnTowKFDh9i5cydLlizh9ttv\nZ/Xq1b6YERERuFwuEhMTy93WI0eOMGHCBCZPnkxoaCgArVq1IjU1lY8++gg4XSA7Z84cXn/9dd54\n4w1uvvlmMjMz2bhxI7t372bHjh00a9aMnJwcnnnmGQYPHswnn3zid31btmyhWrVqLF68mKpVq7J1\n61bfz2644QZcLhc9e/Zk2bJl9O3bl1mzZnHixIly8wfo2LEj8+bN44MPPgAo027l8Teir9vtZvbs\n2dxwww1s27YNoMzIw4mJiURHRzN69GhmzpwJQEZGBh06dMDlctG9e/dy1xkfH8+SJUv4wx/+EPDo\nxefTtm1b5s6dS5s2bfB6vXi9XpKTk3E6nQwaNAiAb775hubNm9OmTRs2bNjgW7ZDhw7885//1MjG\nIiIiIiIiIiIiIiIiIiIiIiIiIpXIr2Jk4wMHDtC8eXOAckenBcjMzGT27Nl4PB6OHz8OwGOPPcbs\n2bNZu3YtQ4YMoVmzZgQFBREcHEzjxo0ByM7Opm7dugA0adKEzz77jN/97nd88803rFy5kvDwcOrX\nr+93nfv376dZs2YABAUFERQUxIEDB3jwwQcBqFOnDsePH8dut2O32wkLCyMsLIyCggLWr1/vK/A8\n32iuQ4cOZdasWXg8HsaNG+cbbfnM33a7nVOnTjFu3DiysrLYv38/Xbt29Rtrz549fPfdd7z33nvk\n5uZy5MgRateuXWa+s3O12+0UFBQQHBxMcHAw119/PQcPHvTNe3buBw8e9I2O26RJE3744Qffz265\n5RaAcgu3ATZs2ECdOnUICgryTWvYsCFWq9U3LT8/n8jISN+/b7jhBubNm0dhYSGRkZG43W5CQkKI\njIwkPDyciIgIdu3a5Xd9Bw8e5Prrr/fle+DAAV+eZ/4OCgri4MGDdOnShZCQEOrVq1du/gCNGjWi\nRo0a5OXlAWCz2fy2WyAaNGgAUCpeIDp06MCXX37JsGHD6NWrF3fffbff+T744AP+8Y9/4Ha7S51b\n/o7HQEYcrl+/PomJib5CcYvFQv/+/Xn88cd982zYsIF169axefNmioqKfPPdd999jB8/PuBtFBER\nEREREREREREREREREREREZGf369iZOM6deqwc+dO4HSx7BmhoaFkZ2f7/p+cnMykSZN44403fAWt\n4eHhjBs3jt69e7Ns2TIASkpKKCoq8hWgRkREcODAAQB27txJ3bp1adGiBatWrSI6OpolS5bQsmVL\nv7nVq1ePzMxMADweD8XFxdSrV4+dO3fi9Xr5z3/+Q0RERJnlPB4P8+bNY/78+UyaNAmPx1Pu9jdt\n2pQ//elPNG7cmH//+9++6Tk5OQAUFBTw6aefct1115GSksLtt9/uKww9t40aNWrEkCFDcLlcLFu2\njBtvvLHc9Z7N6/XidrspKipix44d1KlTx+98derU8bXrrl27fEXcQKkC4vI88sgjDBo0iGnTppU7\nT1hYGMeOHePo0aOEhYURFBSExWIhNDSUw4cP+9o7kOLYs4+tc/O12f5bi1+vXj127dpFUVER+/bt\nu2Dcs5053s7XbvDfkY2PHDlywZjnbpvNZis16ndQUBCjR4/mueee843y7c8777zD4sWLGTFiRKmY\nxcXFZY7JgoKCC+YFlBpJ+czoxmf74osvWLx4McnJyURERJCXl4fX6yUkJASbzUZ+fn5A6xERERER\nERERERERERERERERERGRn9+voti4c+fOfPrpp/Tr14+goCBfIfFdd93FqlWrGDRokG++p556ismT\nJ1OtWjUA/v73vxMfH8/EiRN9o/3Gx8cTFxfHRx99hNVqxWaz0a1bN2JiYnj77bd5/PHHCQ0NJTc3\nl44dO+LxeMotNo6KiuK+++4jJiaGPn36cPLkSZ544glSU1Pp1asX3bp181tke2YkV4fDwZIlS3yF\npv5MnTqVuLg40tPTadOmDQDDhw8nISEBh8NBRkYGrVq1Yu3atQwaNIgTJ074lm3evDk7d+7E6XSS\nn59Pjx49SEtLo3fv3gwcODDgwk6LxcKTTz5JfHw8kydP5sknn/T9rEGDBjzzzDN8/vnnXH311Vx3\n3XXExcXx+eef07lz54Din61t27bk5uaSkZHh9+eDBg1i8ODBPPXUUwwePBg4XTDeuHFjQkNDfQXU\n52vTM1q3bk1OTg7x8fHk5ub6RjM+1+OPP87ChQsZNmyY3+Lx8+nbt6/fdjtXixYteOGFF9i2bVuZ\nn53Zlq1bt+JwONi+fTtOp5MtW7YAcM899zBv3jwmTpwIwMaNG4mLi2Pw4MFER0eXu85bbrkFh8PB\nqlWrSk3v2rUrMTExpabfdtttxMbG+tZ5IRaLBYvFwoIFC3A6nTidTg4cOEBOTo6vkLtZs2Zs3rzZ\nt333339/qeNXRERERERERERERERERERERERERCqWxRvI8K+VgNvtxmaz4XA4SE5OJiQk5LJjffrp\np2RkZJCYmGgwUxH5uSyp1cJYrH9lnTIS55Xjm43EAfCEVDUSp9jgVX2no/uFZwpQ08XvG4nzn7zi\nC88UoDrhwUbiuD3mGr3EYCxTQoMu/OWNQHkD+CJIII6cchuJA2a3LzzkwqP4B8KKueOgsPxfnnBR\nqhj8itopt7ntCza4/wryzBxX7mAzjXVVFTPH0xl5uWaunzVKDhuJU3JV3QvPFKBdJ8xs2+f7zX3p\n6eEboozFqhZs6Dj3GrogAEEnzRwH2aG1jcQBKDF4C40wdNEzeb2r6g3sN41ciDfYbiSOaab6CIcN\nXcsBouxmrsPBniIjcQAKLJf+LuRcwVYzbW6y32LqWcZmaNvOyD1p5j5TLdx24ZkCYOp8OcPE9lWr\narCzaDEXy1Ji7vwzxWs1cxyYbCeTTLV5sdXc9a7QUCehqs3cuZdt6kENc+8Rahq674H565QJp4rN\ntXmxoTY3dS8GMPVoHGo12KmuhNcpi8dcX/FKZynKMxLHU6WakTgmFRsch8nU47pJWx7qYizWnu+y\njMT5/a7PjMQB8NqqmItl6H61/w9OI3EArp5a/m8rvRhZBt+f16lqqP8KeDDT5vlug++4TN1DK+Hn\nKGDuPYnBzaNGqJl+Z+X7NO00U/cGg48MRj/fOZlbuT5HAbOfpZj6HOWqYDO/zdlkX8rktcXU81W4\ntcRIHAA8ZmLtLzR3PF1Xs/L1haXy+kejVhWdgvxKdN3zZYWu39zTwc/I6/XSq1cvgoOD6dix42UV\nGgMsX76c999/H5vNxssvv2woS7kYDocDi8WC1+vFYrGQkpLys69z0qRJZGZmAqdH3R0zZgzNmjW7\npFjbtm1j4sSJvhF5mzdvTlJSUkDLzp07l/T0dF8eCQkJtGvX7pLyCFR6ejpz58715du+fXsGDBhw\nyfGefvppsrKyfPtvxowZREWZK6gRERERERERERERERERERERERERkcrhV1FsbLFYWLZsmbF4MTEx\nxMTEGIsnF8/lcv3i6xwzZoyxWM2aNbvkbUhISCAhIcFYLoFo37497du3NxZv+vTpxmKJiIiIiIiI\niIiIiIiIiIiIiIiISOVV+X6PlYiIiIiIiIiIiIiIiIiIiIiIiIiIiFQKKjYWERERERERERERERER\nERERERERERERv1RsLCIiIiIiIiIiIiIiIiIiIiIiIiIiIn5ZvF6vt6KTEBEJROHJ48ZiWTxuI3GG\n1bjdSByAmacyjcQJOnnISBwAT1iEsViWojwjcY5arzISB8Az62kjcSJHzzISB6DEY+62bLVYjMUy\nxVRKhW6PmUCAwSYnOMjMBobmHTESB2DHs0ONxGn8+jtG4gDkuc01+lU5PxqLlR1S30ickhAz3+er\nYSjOGSdzzdz7wqsFG4ljMfgYYuqQchu8INgpNhbLGxRiJE5WfomROACRdpuROPkGr+dVDF2DAYLd\n+UbieIPtRuIAeA3dRE32NWyY239YzFzzCg2mFGLomDJ5bTHZbzG1fSav56aOc1vOf4zEOeO4JcpI\nnKDQICNxwmxm+/km+gimtg3Mbp/V0HOoSZ6QqhWdQhmmzj2AoMJcI3HybebaydR12G4z1z8vMNgH\nKjF0GbYbPPfyDXXQgw0+EuUWmWvzIKuZtqph8Nppisn7ukkezLR5kMfcc9qVzmuof+42OOaRqXed\nVgz2zw0dm2AuL4u70Egck9bf19VYrLvS1xqLZS04YSSO1xZqJA6ApfiUkThHLOY+R6mZ8Z6xWJ57\nehiJUxlvVyUGkwopMXce52HmvaLJJjf1Ds/U+zuAgmXTjcWqEvuckTgFpjr6QNU8c58dH7fWNBLH\narAvXNXgs4ypz1GqhxkJg9dq5j08QLHBEznI1Du8IjPvEABOBZlp9BMGXzA3jAo3FkuufB81ubWi\nU5BfiYd2ZlTo+jWysYiIiIiIiIiIiIiIiIiIiIiIiIiIiPilYmMRERERERERERERERERERERERER\nERHxS8XGIiIiIiIiIiIiIiIiIiIiIiIiIiIi4peKjUVERERERERERERERERERERERERERMQvFRuf\nx6ZNm5g5c2apae+++y5du3Zl+fLllxz3p59+Iikp6XLTuyJ8/PHH5OTknHeexMRE7rjjDjweT6np\nf/3rX/nuu+8uan379+9n1KhRF51nZRcbG+v335fiq6++omfPnjz77LO+aWvXrqV79+7MmjXrvMs+\n8MAD/OMf/8Dj8XDnnXeyfv16kpKS6NGjB06nk//7v//zzZuYmOiLt3//flq2bMnJkyd1foiIiIiI\niIiIiIiIiIiIiIiIiIhUIraKTqCys1gspf7fo0cPQkJCcLvdFZTRlWXNmjU0bdqU6tWrlzvPq6++\nitPpLDO9e/ful7TOc/fpleDsbbrc7bv55puZPn16qcLiTp06Ua1aNT777LPzLlurVi22bdtG7dq1\nqVevnm/6tGnTuPbaa33/93g8WCwWfvjhB9+0yMhIVq5cyR133HFZ+YuIiIiIiIiIiIiIiIiIiIiI\niIiIOSo2voDNmzfTr18/atSowbRp0wDwer2l5tm9ezfPPfccJSUlDBgwgAceeIAtW7YwZcoUAP74\nxz9y6623smLFCt566y0aNmyIzVZ+03ft2pXGjRuTk5PDK6+8QmRkJLNnzyY7O5sffviB22+/nWHD\nhjFmzBgOHDjAtddey4QJE8jPz2fgwIF4PB7uvfdeEhISOHToEImJiVSpUoXHHnuM6OhokpKSGDJk\nCHXr1qVPnz64XC7279/Piy++iNfr5fjx47zzzjusWrWKt956C5vNxqRJk0oVi55t/PjxfP/991xz\nzTXMnDmTxYsXU6tWLbp06cLbb79NZGQk9957b5ncxo0bR3p6Ort27eKmm25i7NixftvNX5vPnTuX\npUuXMnHiRO6++27fvpo2bRo2m40hQ4b4pvuTnZ1NUlISkyZNYt26dfzzn/8kJyeH66+/nueee67U\nPu3fvz9hYWHs3LnTV/T8wQcfEBwczJIlS2jVqhX/+te/eP7552ndurXf9f3pT38iMzOT4OBgunXr\nRps2bRg9ejQ1atQgOzsbl8uF1Vp2oPGhQ4dy4sQJoqKi2LdvH6+88grPPvssRUVFNGzYkB9//JFF\nixaVaR+AFStWsHDhQho1aoTNZmPy5Ml+c0tMTOT48eNUr16dP//5z4SFhfmdz986zmWxWPB4PKxf\nv54777yz3GW//fZbWrRowfbt2ykoKACgTZs2bNy4UcXGIiIiIiIiIiIiIiIiIiIiIiIiIpVI2epG\nKaV69eokJycTGRlJRkaG33kWLFjA2LFjcblczJ8/H4A5c+YwZ84cXnvtNebMmQNASkoKqampdOnS\n5bzrPFNk3KdPH5YvX+6bHhERgcvlIjExkTVr1lCvXj0WLVpEVFQUX375JTt27KB+/fosXryY/v37\nA5CRkUGHDh1wuVx+RwI+exTcPXv2MGfOHN555x28Xi/JycksXryYl156iXnz5pWbb0ZGBkuXLmX6\n9OkAdOnShdWrVwOQnp5Ox44d/eb24osv0r59e15++WXGjh1bbrudmydAQkIC0dHRpabNmDGDefPm\n4XK5uOWWW8rN99SpU4wZM4Zx48YRGRkJQIMGDVi4cCFbt24FSu/T5ORkbrrpJrZt28a2bdvYunUr\nmZmZ3HTTTVgsFqKjo5kwYQIrVqzwu75Dhw6xb98+Fi1aROPGjX3T3W43s2fP5oYbbmDbtm1+l7XZ\nbMybNw+v10tiYiJfffUVNWvWZPLkydSqVYvu3buzY8cOjh07htPpxOFwcOzYMQAWL17MkiVLLni8\nTZo0CZfLRatWrVi3bt155w1EkyZN2L59O1WrVvVN+8Mf/oDT6fSNlrxx40batGnDrbfeyhdffAGA\n1WolIiKCrKysy85BRERERERERERERERERERERERERMzQyMYXcN111wHQuHFjDh486Btp92wHDhzg\n+uuvJyQkhODgYADy8/N9haz5+fnA6cLR4ODgUgWn/tSvXx+bzUbjxo359NNPfdPPFNBarVZ2797N\n6u1pNtwAACAASURBVNWr2bRpE6dOneLmm2+mU6dO1K1bl2HDhvHggw/SrVs3OnTowJdffsmwYcPo\n1avXeUf7bdmyJUFBQQAcO3aMffv20bdvXwCuueaacpcbOHAgI0eOpH79+jzzzDPUqlWL3NxcDh8+\njN1up0qVKtx4441lcvPn7HY7deqUb3qgo+qGh4cDYLfby53v888/p2nTpr5tBWjYsCEAISEhQNl9\nWr16dfLy8vjnP/+J2+3m4MGD1K9fH6/XS6NGjdi3bx95eXl+13fw4EHfPj973zdo0ACAGjVqlLus\n3W4nNDSUsLAwwsLCyM7Oxm63Y7fbfdMKCgqIiooiJSUFgLi4OOD0cXKh483j8fDyyy+za9cujh49\nSr9+/cqdNxAWi4UOHTr4CuDPmDZtWqmRsTdv3sz69espKCjgtttuo1GjRsDpQvWPPvrosnIQERER\nEREREREREREREREREREREXM0svEF7Nq1Czg96m/dunUBCA0NJTs72zdPvXr12LFjB0VFRbjdbgDC\nwsI4duwYR48eJSwsDDhd2FlcXOyLWZ69e/dSVFTE7t27qVOnjm/62cWxjRo1okePHqSkpLB8+XI6\nduxIcXExQ4cOZdq0abz11lu+ZUaPHs1zzz3HokWLfLnl5eVx5MiRUkW8Vut/D4eIiAiaN29OSkoK\nKSkpTJw4sdx8O3fuzIwZM/jmm2987dK+fXtefPFFOnfuDJwexffc3ACCg4MpKiry/f/sdjt7ZNwz\nhbbn4/V6ycnJAaCgoKDc+Tp06MD48eOZMGGC3xhQ/j4tLCzEarWW2hcXcs0117Bnzx4A39+Xyl/R\ntdfr9Tvd4/H4jqPyZGZmUlRUhMvl4qGHHvLFsdvtZdr73OO+vPwiIiJo3759uXm73W48Hg/Jycmk\npqby7bffAqcLlW+77Tbf6NIiIiIiIiIiIiIiIiIiIiIiIiIiUvE0svEF5OTk0LdvXyIjI30jC991\n110kJCTwxRdf8MYbb9C3b1+ee+45SkpKGDBgAACDBg1i8ODBWCwWRo8eDUB8fDxxcXE0aNDANwKy\nP1dddRXDhg3j5MmTzJo1y+88DzzwAGPHjqV3795YLBYmTpzIyZMnefHFFykoKCA6OhqAjRs38sYb\nb5Cfn8+gQYMA6Nq1K9OmTeOWW27BYrH4Yp79b6vVSs+ePYmPjycoKIjf/va39OjRo0weXq+Xfv36\nUVxczLXXXktERAQADz30ENOnT2fatGnA6aLtc3MDuPfee5kwYQJ33HEHgwcP9ttuAI8++igDBgzg\n97//PXFxcQwZMoTvv/+ejz/+mPvuu4/hw4czfPhwEhISCA4OZsiQIecdxfn666+nSZMmrFixwm8b\n+Nunv/nNb3C73dSoUYPCwsIybVaea665hmuuuQan00lISAgtWrQo9fNAYlyIvxhnH2+hoaF+l2vc\nuDE//fQTAwYMoGrVqr6C+sjISOx2Ow6Hg0mTJnHttdfSvHlzdu7cidPp5M033/Q7enR52zJq1Ciq\nVKlCZGQkTqfTN5LxGWeP7Hzbbbdx/PjxQDddRERERERERERERERERERERETkV8kSdPm1YyK/BIvX\n35CoUqFiY2NZsmRJRadxWbKyspg8ebKv2FhOW7ZsGcHBwXTv3v1nX5fb7cZms/Hpp5+SkZFBYmLi\nz77On1vhSXNFyBaP20icYTVuNxIHYOapTCNxgk4eMhIHwBMWYSyWpSjvwjMF4Kj1KiNxADyznjYS\nJ3K0/y+GXIoSj7nbstXAlxlMM5VSodtjJhBgsMkJNvQQEJp3xEgcgB3PDjUSp/Hr7xiJA5DnNtfo\nV+X8aCxWdkh9I3FKQsz88pAahuKccTLXzL0vvFr5X5q7GBaDjyGmDim3wQuCnWJjsbxBIUbiZOWX\nGIkDEGk3873VfIPX8yoGX8QEu/ONxPEGl/2C3iXHMnQTNdnXsGFu/2Exc80rNJhSiKFjyuS1xWS/\nxdT2mbyemzrObTn/MRLnjOOWKCNxgkID/y1J5xNmM9vPN9FHMLVtYHb7rIaeQ03yhFS98Ey/MFPn\nHkBQYa6ROPk2c+1k6jpst5nrnxcY7AOVGLoM2w2ee/mGOujBBh+JcovMtXmQ1Uxb1TB47TTF5H3d\nJA9m2jzIY+457UrnNdQ/dxv8Baum3nVaMdg/N3Rsgrm8LO5CI3FMWn9fV2Ox7kpfayyWteCEkThe\nm/8Bfy6FpfiUkThHLOY+R6mZ8Z6xWJ57yg5sdSkq4+2qxGBSISXmzuM8zLxXNNnkpt7hmXp/B1Cw\nbLqxWFVinzMSp8BURx+ommfus+Pj1ppG4lgN9oWrGnyWMfU5SvUwI2HwWs2NH1ls8EQOMvUOr8jM\nOwSAU0FmGv2EwRfMDaPCjcWSK9/Kpq0rOgX5lejyw5YKXb9GNq6ETIx0W5G2bdvGSy+9xJgxYyo0\nj6effpqsrCy8Xi8Wi4UZM2YQFWXmA8LyzJ07l/T0dOD0fkxISKBdu3YBLetwOLBYLL58U1JSLiuX\n5cuX8/7772Oz2Xj55ZcvK7dzZWVlMXLkSF++tWvXVmG5iIiIiIiIiIiIiIiIiIiIiIiIyBVIxcaV\nUGpqakWncFmaNWtWKbZh+nRz30AMVEJCAgkJCeX+/Iknnij3Zy6Xy2guMTExxMTEBJzbxahZs6bx\nfEVERERERERERERERERERERERESk8jH7u5lFRERERERERERERERERERERERERETkiqFiYxERERER\nEREREREREREREREREREREfFLxcYiIiIiIiIiIiIiIiIiIiIiIiIiIiLil4qNRURERERERERERERE\nRERERERERERExC+L1+v1VnQSIiKBKMjPr+gUflYjwpobiTPzVKaROKZZPG4jcbxWm5E4chG8HnOx\nLPqe0y/O0P6bGtXKSByAp49+bSyWzWIsFCdzzVynqoVXzutUZdu+/LdeMBIHwN5nvLFYldEtf1xl\nJM7WPz1oJI5JHsydxFb0aCtSEZ5c9o2xWAseb2EmkOE+Z2W7h5pmYvtMbtutY1Ybi7Vlspl7n6US\nvj41eu490dJYLFO8FoMd/UqoMh5TJlXG/ac2/+X1e9fcs//cx81cp0y+Q3Bf2YcUQdbKd0yZOo9N\nni8mry0D3vvWSJx5v7/RSJzKyrvyDWOxLF0GGYtljKl38XoP/8vT5yjy/1k3v28kTn7rR43EAahi\n8JDSO5LAmNq+H08WG4kD0LBasLFYVzKTfUV7aKixWHLlW9m0dUWnIL8SXX7YUqHrV09VRERERERE\nRERERERERERERERERERE/FKxsYiIiIiIiIiIiIiIiIiIiIiIiIiIiPhVOX83gYiIiIiIiIiIiIiI\niIiIiIiIiIjIFcwaZKnoFEQCopGNRURERERERERERERERERERERERERExK8rqth406ZNzJw5s9S0\nd999l65du7J8+fJLjvvTTz+RlJR0ueldET7++GNycnLOO09iYiJ33HEHHo+n1PS//vWvfPfddz9L\nXmlpaZe1jyu7Dz74gPfee++880yePBmv13vZ63rhhRdo164de/fu9U0rb5+eLS0tjW7dugGwcOFC\nYmNj2b9/P23btsXpdOJ0OtmyZQsA3333Ha1ataKwsBCApKQkpk6dCsCoUaM4cODAZW+HiIiIiIiI\niIiIiIiIiIiIiIiIiFw+W0UnYJrFUnpY8R49ehASEoLb7a6gjK4sa9asoWnTplSvXr3ceV599VWc\nTmeZ6d27d/85U7uiffjhh7zyyivnncdUQfz48eMpKCgoNa28fXqukJAQDh06xJEjR3znYtu2bX2F\nxGds3LiR+++/ny1btnD33XcD+AqRRURERERERERERERERERERERERKTyuKJGNgbYvHkz/fr145ln\nnvFNO3e01927dxMbG0vPnj35+OOPgdOFjj179qRnz55kZGQAsGLFCnr06MGrr7563nV27dqVIUOG\nEB8fz7FjxwCYPXs2L730Eg6Hg1mzZuH1eklKSqJ3796MHTsWgPz8fJxOJ/Hx8cydOxeAQ4cO0aNH\nDxwOB3/5y1+A00Wke/fupaSkBIfDAcD+/fsZOHAgCQkJ9OjRA6/Xy8qVK+nVqxcOh6PUqLTnGj9+\nPDExMYwYMQKAxYsXs3LlSgDefvttVq5c6Te3cePGkZ6ezqhRo5gwYUK57eavzefOnUunTp1Yv359\nqX11Jt+zp59t06ZNzJo1C/jviLdpaWkMHz6cvn37MmnSpFLzf/XVVzz77LO+9n7ppZeIjo7mH//4\nBwCrVq2iR48exMXFsXv3bmbMmMH333/vW37s2LEcO3aM3/3ud4waNYro6OhyR3IuKChgwIAB9OvX\njyeeeKJMbhMnTix3H+Tl5ZGYmIjT6WTKlCkAHD58mP79++N0OlmwYIFv3u+//55GjRpRpUoV0tLS\nePLJJ3E6nfTr149FixYB8PTTT9OmTRvfyMObNm0iISGBgQMHkpiYWG4e6enpxMTEEBsby4oVK8qd\nD8ruU3/uueceVq1ahd1uP+9yX375Jf3792fDhg2+aTfffDNffPFFmS8MiIiIiIiIiIiIiIiIiIiI\niIiIiEjFueKKjatXr05ycjKRkZGlil/PtmDBAsaOHYvL5WL+/PkAzJkzhzlz5vDaa68xZ84cAFJS\nUkhNTaVLly7nXWdOTg6vvPIKffr0Yfny5b7pERERuFwuEhMTWbNmDfXq1WPRokVERUXx5ZdfsmPH\nDurXr8/ixYvp378/ABkZGXTo0AGXy+V3JOCzCzH37NnDnDlzeOedd/B6vSQnJ7N48WJeeukl5s2b\nV26+GRkZLF26lOnTpwPQpUsXVq9eDZwuPu3YsaPf3F588UXat2/Pyy+/7CuY9tdu5+YJkJCQQHR0\ndKlpM2bMYN68ebhcLm655ZbztvG5MRs0aMDChQtLjYa7c+dO5s+fz6RJk3zzduzYkXnz5vHBBx8A\np/d9amoqY8aMYeHChdx0001kZmayatUqjh07xokTJ4iMjOTEiRNMmTKFrl27snHjRr/5rF69mnbt\n2pGcnFxq5OwzuZV3/AEsW7aMTp06kZKSwrBhw4DTBdkJCQmkpKTQq1cv37zvvPMOMTExvv/37t2b\nyMhIXnvtNTIzMwGYPn06zZs3L7WO8PBw3nzzTfLz8zlx4oTfPG699VaWLl3KokWLfIXL5QmkCLhh\nw4Z8+OGHtGnTxjfts88+w+l04nQ6fUXzJSUltGjRolSh90MPPcRHH310wXWIiIiIiIiIiIiIiIiI\niIiIiIiIyC/niis2vu666wBo3LgxBw8e9DvPgQMHuP766wkJCSE4OBg4PcpwZGQkNWvWJD8/HwCb\nzUZwcDCNGzc+7zrr16+PzWajcePGHDhwwDf9TAGt1Wpl9+7drF69GqfTyb///W+ysrJo2bIldevW\nZdiwYb5RZTt06EBubi7Dhg0rt8j1jJYtWxIUFITFYiE7O5t9+/bRt29fxo0bR0FBQbnLDRw4kJEj\nRzJjxgwAatWqRW5uLocPH8Zut1OlShVuvPHGMrn5c3a7nTp1yjc9kFFwLRYL4eHhAKVGwi3P2TEb\nNmwIQJUqVXzTNm7cSF5eHkFBQb5pjRo1okaNGuTl5QH/3adNmjTh4MGD3HTTTWzbto2PP/6Y9PR0\nX7z69etjtVpLLXuugwcP+o63M/mUl9u59uzZw80331xq23/88ccy006dOsXhw4dLHYN2ux273U5o\naOh5C4DP5BEREVHuNmRmZtK7d2+efPJJjh8/Xm4sCGyfwuli6NatWwOn93Hbtm1JSUkhJSWFa6+9\nlm+++Ybt27fTv39/tm3b5jtuatWqRXZ2NiUlJQGtR0RERERERERERERERERERERERER+fraKTsC0\nXbt2AaeLOR9++GEAQkND2bdvn2+eevXqsWPHDq6//nrfiLRhYWEcO3YMr9dLWFgYAB6Ph+LiYl/M\n8uzdu5eioiJ2795NnTp1fNPPLXrt0aMHcXFxAJSUlFBcXMzQoUMpLi6mV69edOvWjaCgIEaPHs2h\nQ4cYP348d999N2FhYeTl5XHkyJFSBZ9W639rxSMiImjevDnJyckAFBcXl5tv586d+e1vf0vfvn3J\nzs4mIiKC9u3b8+KLL9KtWzcA3G53mdwAgoODKSoq8sU6u92qVq1aanp2djZRUVHl5uH1esnJyaF6\n9eoUFBQQGhpaZp6wsDBf8feRI0f8xjgjNjYWr9fLwoULefLJJ/2us6SkhKKiInbs2EGdOnW4+uqr\n+emnn7jjjjtYu3YtN954Y5m45bnmmmvYvXs37du358cffzxvbudq1KgRW7dupUmTJr5tb9iwIVu3\nbuWuu+7yTfvb3/7GI488csFczqwv0ILgM5KTk5k0aRI1atTg8ccf90232+1kZ2dz7bXX+qYFsk8t\nFgtdu3b15XP232ds2LCB559/nrvuuou33nqLzZs3+35255138uqrr17UNoiIiIiIiIiIiIiIiIiI\niIiIiIjIz+eKG9k4JyeHvn37cvToUd/IwnfddRerVq1i0KBBAPTt25cJEybgcDjo168fAIMGDWLw\n4ME89dRTvvni4+OJi4tj5cqV513nVVddxbBhw1i4cCG///3v/c7zwAMP8N1339G7d2/69OnDf/7z\nH3bt2kVsbCw9e/ake/fuwOnReePi4hg8eDDR0dEAdO3alWnTpvHee++VGsn27H9brVZ69uxJfHw8\nvXv3Ji0tzW8eXq+Xfv36ERMTQ82aNYmIiADgoYceYv369dx3330AfnMDuPfee5kwYQJz5swpt90A\nHn30UQYMGEBqaioAQ4YMIS0tjSlTpjBr1iwAhg8fTkJCAg6Hg4yMDL/5NmvWjB07dvDnP//Z7+i8\n547s+8QTT/DZZ5+xd+9ev/H69u1LfHw8kydPLlWQ3Lp1a6pUqULLli39xvWnc+fOrFu3jieffNI3\nQvb5cjs3z7Vr1+JwOHztMWDAAObOnYvD4fC125o1a3jggQfOG3P//v04HA6+//57+vTpw6pVqwLO\no3Pnzjz11FNMnjyZatWq+aY//PDDjBs3zpcblN2nF3JmvZ999hlOpxOn08m6devYtGmTr6i7ZcuW\nbNiwwbfMgw8+SHZ2dkDxRUREREREREREREREREREREREROTnZ/Fe7FCoUkZsbCxLliyp6DQuS1ZW\nFpMnT2batGkVncqv0qhRoxg5ciR169Y1FjM3N5dNmzbRqVMnYzF/7Qr+/yjXV6oRYc2NxJl5KtNI\nHNMsHreROF7rFTcof+Xn9ZiLZbnivudU+Rnaf1OjWhmJA/D00a+NxbJd+PtBATuZa+Y6VS28cl6n\nKtv25b/1gpE4APY+443Fqoxu+eOqC88UgK1/etBIHJM8mDuJrejRVqQiPLnsG2OxFjzewkwgw33O\nynYPNc3E9pnctlvHrDYWa8tkM/c+SyV8fWr03HuipbFYpngDGAjg16wyHlMmVcb9pzb/5fV719yz\n/9zHzVynTL5DcF/ZhxRB1sp3TJk6j02eLyavLQPe+9ZInHm/v9FInMrKu/INY7EsXQZdeKZfmql3\n8XoP/8vT5yjy/1k3v28kTn7rR43EAahi8JDSO5LAmNq+H0+W/xvNL1bDamUH0JOyTPYV7X5+u7tI\neVY3v62iU5Bfic6ZX1To+ivnHfxXJpBRcCuzbdu28dJLLzFmzJgKzePpp58mKysLr9eLxWJhxowZ\nREVFVWhOZ1wot/KOgW3btjFx4kTfz5s3b05SUlJA6wwPDzdWaJyVlcXIkSOxWCx4vV5q1659WYXl\nc+fOJT09HTi97QkJCbRr185IriIiIiIiIiIiIiIiIiIiIiIiIiJSeajY2IDU1NSKTuGyNGvWrFJs\nw/Tp0ys6hXJdKLepU6f6nd6sWTNcLtfPkdJFqVmzptE8EhISSEhIMBZPRERERERERERERERERERE\nRETkf43Fqt9sIL8OOlJFRERERERERERERERERERERERERETELxUbi4iIiIiIiIiIiIiIiIiIiIiI\niIiIiF8qNhYRERERERERERERERERERERERERERG/LF6v11vRSYiIBOLwiTxjsezBZr5rEZp7yEgc\ngJJqVxuJMyKsuZE4AGOOfmMsVk27zUic7IISI3EAaga7jcQptoYYiQNgsxgLxSm3mVt8mMGkDKVE\nvqlAhp0q9hiJc7XdXJtb3IVG4niD7UbiABw6Ze48NtlWJ/PM7L9qVc3cY7zWICNxzsg9WWwkzmFD\n51+TGsFG4gBYiwz1ETxm7gsA7tAaxmJZMdPmT7i2GokDsCz+ZiNxTF2jAHIINRYr1NC9L9jgfd1r\nMRPM4jF3DTZ5nSrxmDnOcw3diwGqGnpmqKxMtXlokLkD3Vj/NchsX9FUHyG8mrl7n0km+ghug+dL\nRBVzsSwlRcZimeKxVanoFMpwG7oeAIR4zLS512rmHQKAx2LmfuUx+Bo9yGru2mnqem7yfYQpJh/9\nrYb6UgAGQxljqo9n+jnUFFPXqWDM9RWveBYz92Oj92JDOZlUZDF3v7IZujcUlZi7eFaxmDlnrKey\njcQB8FSNMhYrs9ejRuLUW5RmJA5AtSpmrsP/yTXzHhCgTpi5c6/QayaWwUcGY8+hpj53BHP9O4BC\nQ9eEYpM5GWpzo5+jGHwv7A0y85nh4Xxz7/Bqh165n6OA2T6sqc9RThm6r18dVkn754YuCSafQ03l\ndDDX3PXghtrVjMWSK9/HN7ap6BTkV+KBbz+v0PVXvidzERERERERERERERERERERERERERERqRRU\nbCwiIiIiIiIiIiIiIiIiIiIiIiIiIiJ+qdhYRERERERERERERERERERERERERERE/FKxsYiIiIiI\niIiIiIiIiIiIiIiIiIiIiPj1P1FsvGnTJvbt22cs3nvvvVdm2rx58zh8+LCxdVxIYmIid9xxBx6P\n5xdbJ0BWVhZvvvnmJS3rr90uxaZNm5g5c6aRWFeybdu28d133130ci+88ALt2rVj7969vmmBHG9p\naWl069YNgIULFxIbG8v+/ftp27YtTqcTp9PJli1bAPjuu+9o1aoVhYWFACQlJTF16lQARo0axYED\nBy46bxEREREREREREREREREREREREREx73+m2PjswsnL5a9odsCAAdSuXdvYOi7k1VdfpVmzZr/Y\n+s6oWbMmAwcOvKRlTRUbA1gsFmOxrlSZmZl8++23F73c+PHjad++falpgR5vISEhHDp0iCNHjvj2\nUdu2bUlJSSElJYXWrVsDsHHjRu6//35f8TFQ6t8iIiIiIiIiIiIiIiIiIiIiIiIiUjlcdLFxYWEh\ngwcPJi4ujunTpwOwYsUK3nrrLYqKiujXrx/5+fmMGDGCY8eOAfDMM89w9OhRNm/eTHR0NP/3f/+H\nw+EAYPPmzcTGxhIbG8tXX30FQM+ePXnhhRd45JFH+PHHH8vNZfz48cTExDBixAgADh8+TK9evXA4\nHEyZMgU4XST5l7/8hSlTpvjmmz17NuvXrwcgNjbWF++JJ55gxIgRxMTEcOjQIebMmUNsbCwOh4Od\nO3eyb98+HA4H27dvx+l0sm7dOgAmTZpUZiTY0aNHEx8fzx//+EfgdMFzQkICAwcOJDExsdxtmj17\nNomJicTFxfHWW28Bp0d93bt3LyUlJb52A/B6vaWWTUtL47HHHsPhcJCVlQXA4sWLiY2NpX///hw/\nftzvOgPdp9u2baNnz548++yzvmUffvhhunfvTlJSEr179wbK7tPy2i0tLY3nnnsOp9PJ2LFj+eST\nT0hOTgbgX//6FwsWLCi3nQD27t3L0KFDKSgoYPbs2SQlJdGrVy9fu23ZsoWePXvSs2dPtmzZwrvv\nvsuaNWt8y8+ZM4evvvoq4OPtmWee4cknn8ThcPD5559f1j7duXMnTqeTXr16sXbtWgD279/PwIED\nSUhIoEePHni9Xnbu3InD4cDpdPLBBx8AZffp/v37iY+PZ+jQocTFxeHxeHj77beZO3cuCxYswOl0\nljlWzkhPTycmJobY2FhWrFhx3vYuL8bZ7rnnHlatWoXdbj/vcl9++SX9+/dnw4YNvmk333wzX3zx\nhQrJRURERERERERERERERERERETkf4I1yKI/+hPQn4p20cXGq1at4o477iA1NZXt27dz6NAhHn74\nYb7++muef/55EhISsNvtdOnShdWrV1NUVEReXh5RUVG+4sfY2FhfQeHMmTOZO3cuc+fO5c033wQg\nJyeHZ555hsGDB/PJJ5+Um0tGRgZLly71FcjWqFGDRYsW4XK52L59O8eOHSMxMZHo6GhGjx7NzJkz\ny8Q4u7Dxxx9/ZMKECSxdupTatWsTHx/PkiVL+MMf/oDL5aJ+/fq4XC6aNm1KSkoKHTp0AGDMmDGl\nRoLdsmUL1apVY/HixYSHh7N161YAwsPDefPNN8nPz+fEiRPlbtftt99Oamoqq1atoqSkpNx8zy3K\nXLlyJa+//joul4uoqCiOHTvGJ598wpIlS+jbty/vvvuu3/VdaJ8OGDAAu91Os2bNfG19RtOmTRk5\nciQtW7akZcuWHDt2rMw+La/dADweDykpKbz44ou0a9fOV3y6evVqunTpUm4bHTlyhAkTJjB58mRC\nQ0MBaNWqFampqXz00UfA6WLiOXPm8Prrr/PGG29w8803k5mZycaNG9m9ezc7duygWbNmAR1vW7Zs\nISoqigULFlC9enXf9EvZp263m+nTpzNp0iRSU1NZvHixb749e/bw/9i78/Aoqnz/4+/eknQIkASQ\nVXYVEBRQuCowKiMgXnWQUYatmx0EBHUYHEAHmREB/YkCxkFZJQFkE0YcUOMyzqDIpojXERQIqCQI\nQtiykXS6f39w6WsggQa/mOh8Xs+TB1Jd9anTVdWnTlWdPpk5cyZLly7F4XCE50tOTqZDhw4l7tNA\nIEBSUhINGzZkx44d9OjRgyFDhjBgwACSk5NL7MDbokULlixZwoIFC1iwYEGJ5YfIRpOuU6cOoEU8\nDAAAIABJREFUa9asoVWrVuFp69evx+/34/f7w53mCwsLadKkCV9++WV4vttvvz2870RERERERERE\nRERERERERERERESkbHBf6AL79++ncePGANSvX58DBw5QtWpVunTpwlNPPcWkSZMAuOWWWxg1ahRV\nqlThV7/6FQA5OTnEx8eHO4cCpKWlMWzYMEKhEB6PB4DExETi4uJISEggLS2txLIMGTKEhx9+mFq1\najFq1CiOHj3K448/TnZ2NmlpaWRnZ5OYmHjO9/PDUVfr169PXFwccKpj5erVq3njjTcIBALUqVOn\n2GVK2kYNGzYMZ2ZkZFC5cuVwRkJCAtnZ2VSsWLHY5evXrw9A1apVSxyNuLhyPPDAA0yfPp1gMMj4\n8ePZt28faWlp+P1+CgsLue6660osbyT7tDher5fY2FhiY2Pxer3k5eUVu0+LKy9A8+bNAXA6nTid\nTqpUqUJGRgYHDx6kZs2aJa53w4YNVK9eHZfLFZ5Wp04dnE5neFpubm54/+fm5nLFFVcwe/ZsTp48\nSWJiIoFAgKioqIiOt/3794f3S926dYusEy58n3777beMGzeOUChUZB83bdq0yHs6duwYl19+OXBq\nW+/cubPYfVq7du0i5YDIRiLevn07SUlJBIPBcx5rkeYB9OnTh5YtWwKnPkdt2rTh6aefDr++bds2\ndu7cycCBA9m1axc5OTkAVKlShSNHjkS8HhERERERERERERERERERERERERG59C54ZOPq1auze/du\nAPbs2UPVqlUJBAIkJyfTtWvX8EirXq8Xr9fLypUrwyPUxsbGkpmZWaRDZ9OmTZkzZw4pKSnhkY0j\n7WzYoUMHnnvuOT7//HOOHDnCmjVr6NixI8nJydSrVy88n9vtpqCgIPx7bGwsubm55OfnFxmN1uks\nujmWLl3KwoULeeihh4qUqaQRXk/P88NtlJaWRo0aNSJ6P6elpaURCoU4cOAA8fHxxMbGkp2dzfff\nf1+kHLGxsRw5ciT8+5VXXsmUKVOoV68eH374IbVq1aJly5YkJyezaNEiRowYUez6It2np9/jufZP\nKBQqdp9C8dvthx1rATp16sSkSZNo3br1ObfRXXfdxf3338/UqVNLnOf08Xb48GFiY2NxuVw4HA5i\nYmI4ePAgCQkJ4TKfT7Vq1dizZw9wavThC/XDfZqQkECDBg2YMWMGKSkprFy5MjzfmcdgxYoV+eab\nbwDIy8uLeJ/C2cd9cebOncukSZN48cUXi6zb6/UWObbg7OOtOA6Hg86dOxMVFRXermdu3w0bNjBh\nwgTmzJlD37592bJlS/i1//qv/2Lz5s3nXIeIiIiIiIiIiIiIiIiIiIiIiIiI/HQuuLNxx44d2bhx\nI7179+aKK66gatWqvPjii/zud7+jf//+vP/++xw4cAA41Rn4+PHjVKpUCYBBgwYxcOBAFi5cGO7Y\nOHjwYAYMGECfPn2YNWsWUHJn3h8KhUIMGDCA7t27U6VKFRISErjhhhuYP38+w4cPLzLvTTfdxOzZ\ns3nyyScBuPXWW0lOTmbmzJl4vd7wfGeut3nz5vh8PlJTU4tMv/zyyxk1ahSbN2/m5MmT+Hw+1q1b\nx+jRo1m0aBEtW7bk+PHj9O7dm6ysrPDovSWt50ybN2+mV69edOjQAZfLRefOnZk6dSorV64ssuxv\nfvMbBg0axKJFiwB4+umn6dWrF+vWraNVq1YkJibSokULfD4ffr+fdevWFbu+SPfpK6+8wqhRo/jo\no4/w+/3hEWnPfG/F7dMzt1tJbrrpJjZv3sztt99+zm0E0KZNG7Kysti6dWuxr99///0MHTqU4cOH\nM3ToUODUyL/16tUjJiaGq6++Olzm87nuuus4ePAg/fr14/jx42e9fqH79IEHHuDhhx/G7/cXGTn6\nzJyHHnqIcePGhY/D8+3THy7fokUL1qxZwyOPPFJiuTp06MDw4cOZPHky5cuXD0+/4447GD9+PNOn\nTw9PO/N4O5/TZVm/fj1+vx+/388///lPNm3aFN72TZs2ZcOGDeFlOnbseN4OzSIiIiIiIiIiIiIi\nIiIiIiIiIiLy03GEIh1G+CKkpqZy6NAhevbsCUAgEMDtdrNnzx5eeuklpkyZcqlW/bOVlJTEdddd\nx4033ljaRSkV+fn5DB8+nNmzZ5d2UUo0bdo02rRpQ6tWrSKa/z99n1o6eCzbLMvrueDvWhQrJuuA\nSQ5AYfmqJjkPxTY2yQEYd/hzs6zKXrdJzpG8QpMcgMqegElOgTPKJAfAff7vP0QsJ2Bzio81LJRR\nkci1CjKWUxA0yanqtdvmjsBJk5yQx3v+mSJ0IMfuc2y5rU5k2+y/8uVszjEhp+v8M12ArBPn/osH\nkTpo9PlrEO8xyQFw5hu1EYI25wWAQEy8WZYTm21+X8qnJjkAy3tfY5JjVUcBHCfGLCvG6NznMTyv\nhyL4kmQkHEG7OtiynioM2hznWUbnYoByRtcMZZXVNo9x2R3oZu1Xl21b0aqNEFfe7txnyaKNEDD8\nvCRE22U5CvPNsqwE3dGlXYSzBIzqA4CooM02Dzlt7iEABB0256ug4W10l9Ou7rSqzy3vR1ixvPR3\nGrWlAAyjzFi18ayvQ61Y1VMe7NqKv3gOm/Ox6bnYqEyW8h125yu30bkhv9Cu8ox22HxmnDl2g8wE\ny1Uyy9re4zcmOTUXrDLJASgfbVMPf5dlcx8QoHqs3WfvZMgmy/CSwew61Oq5I9i17wBOGtUJBZZl\nMtrmps9RDO8Lh1w2zwwP5trdw7ss5pf7HAVs27BWz1FyjM7rVWPLaPvcqEqwvA61KtP+LLv64IrL\nyp9/JpH/9d41rUu7CPIz0f6zTaW6frur4DO8/vrrrFy5kueffz487V//+ld4pNsJEyZcqlXLz9TB\ngwcZNWoU/fv3D0/z+Xw4HA5CoRAOh4Pk5ORLXo5Jkyaxfft24NTovOPGjaNRo0bh10saxfjQoUM8\n/PDD4fJedtllTJ069ZKXNxLWZZs1a1Z4VOXTo1m3bdvWqrgiIiIiIiIiIiIiIiIiIiIiIiIiUkZc\n0pGNRUQsaWTjyGhk48hpZOPIaGTjyGlk48hoZOPIaGTjyGlk48hoZOPIaWTjyGhk4583jWwcOY1s\nfH4a2ThyGtk4MhrZOHIa2TgyGtk4MhrZWMI0snFENLJxZDSyceQ0snFkNLJx5DSycWQ0snHkytpz\nFNDIxqVBIxtHRiMby4XQyMYSqdIe2bjsXZmLiIiIiIiIiIiIiIiIiIiIiIiIiIhImaDOxiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIlIsdTYWERERERERERERERERERERERERERGRYrlLuwAiIiIiIiIiIiIi\nIiIiIiIiIiIiIv9pHC5HaRdBJCLqbCwiPxtbW7Uzy6rarIpJTuMFy0xyLI07/LlZ1qRKTc2ypuVs\nN8nxGI7JH3RHm+S4TFJOOVkYMsvylMEGqctpUyaXw247eQ0PqgquQpOcrEK7MkW7vSY5lo3GRK/d\np8ZReNIsy+rTHHTY5DhDdse5pUaBr01yCmhokgOwcGeOSU5Ogc1nGODuq+LMsi4z+sws732NSQ6A\no7DAJOc4MSY5AEanGAA8RlkngzY5ANEOo+PTYXeOcRjWU1ZtBI/hgWCV5AnkGiVBvtF5HSDKZXUs\n2B0HuQGbrHKOgEnO/7HZVk6jujPkLHu38+JjDK+KDOuWI4Vlb1t5QjYnh3Luslffgd02dwXtSnUi\n3+azV6Oc3fF09KRdu7PQqL1RMdqujWB37W8SA8D3OXbnhsKgTT2VYFh3Hs83Ood67BqwZbGeOmpT\nHfxHqJT/vUnOQXclkxywu590zLAOjvOYRZldX+1/sIdJDkCFutVNchJHPWuSY61W8t9MclbXbWmS\nA9Az41OTHMtzTMhp10aIMbomyg/ZtcuijBocZfEeCYDLqN3ijbI7ppwem3r4RMBuO5Xz2DwvBHAa\n3SdJNPwcO4L5ZllW90gChn+E3V0Gn6XUCGaa5BRi06cBIOSw+8xk5dt8ji3v5bqNsqrEWj75FxH5\n5THssiUiIiIiIiIiIiIiIiIiIiIiIiIiIiK/JOpsLCIiIiIiIiIiIiIiIiIiIiIiIiIiIsVSZ2MR\nEREREREREREREREREREREREREREpljobi4iIiIiIiIiIiIiIiIiIiIiIiIiISLF+Fp2Nly1bRufO\nnVmxYkVpF6XMeu+99+jSpQvTp0//Sdfbs2fP884TadlWrVr1s9jHkbznS23ixIlFfn/nnXc4fvz4\nj87dv38/Pp+PXr16had99tln/O53v+ORRx4557I+n4958+YBcPfdd7NixQqSkpL4zW9+g8/n4/77\n7w/PO2nSJP74xz+Gf2/UqBG7du2isLAQn8/3o9+HiIiIiIiIiIiIiIiIiIiIiIiIiNhwl3YBItGt\nWzeioqIIBAKlXZQyq3379pQvX57169f/pOt1OBznnae0ynapRPKeL7XHHnusyO/vvvsuV155JRUq\nVPhRudWrVyclJaVIZ+NrrrmGZ599NqKO7N9//z0HDhzA7f6/qmXMmDHceOONRebLyMggGAyGf69S\npQpr165l+PDhZWL7ioiIiIiIiIiIiIiIiIiIiIiIiMgpZW5k45MnTzJo0CAGDBhAt27dyMjIACAU\nChWZb926dXTv3p2ePXuydu1aAHbs2EHXrl3x+Xz861//AmDt2rXcd999jB49mrFjxwKQkpJC9+7d\n6devH5mZmfzhD38gKysrnD18+PASy7dw4UK6d+9Onz59yMzMJDMzk759+9K9e3cWLVoEQO/evenW\nrRujR4+mW7du5OXl8eqrr4bLu3nz5hLzV61axT333IPP5+PQoUMAbNmyhR49euDz+fjoo48IBAL0\n7t2bPn36FBlt9sxtlJOTw8iRI/H7/UybNq3Edfbr1y/8/wEDBoTX2bNnT3r27Mlnn30GwKZNmxg1\nahR9+/YNj1KbmZnJsGHD6N27N5mZmRGX7Vw+++wzHnnkEUKhEGPHjuWJJ56ga9euvPHGGwCkpqbS\nrVs3evXqxZ49e3juuef48ssvw8s/9thjZGZmcvfddzN69Gi6du1a4qi/J0+eZOjQofTq1Ytnn302\nPN3n8zF9+nR69+7NO++8w+7du7nvvvsYNWoU+fn5JZbd5/PxzDPPcNddd/HJJ58AZx9vxUlPT2f0\n6NEATJs2jc2bN7Np0yYGDx7MkCFDGDFiBACHDh06a+Th8ePHs27dOkaPHh0e8bi4z0Jx/vKXv+Dz\n+RgwYADff/99ifNFKjY2ltTUVNq0aVPiPs/MzCQxMZE6derw9ddfA3D55ZeH/38hx4qIiIiIiIiI\niIiIiIiIiIiIiIiIXFplrrPx22+/Tdu2bZk7dy4FBQUlzteiRQuWLFnCggULWLBgAQAffvghfr+f\nlJQU2rZtC5zqHLx48WI6deoEQCAQYM2aNSxZsoQePXqwfPlymjVrxvbt21m+fDmBQACns/jNcvjw\nYf7xj3+wZMkS5s2bR1xcHMuWLaNnz54sWbKE119/nUAgQOXKlZk8eTJVqlShS5cu7Nq1i44dO7Jk\nyRJmzJjBrFmzSnxfb731Fn/9619JSUmhUqVKADz33HPMnj2blJQUmjdvjtvt5sUXX2TBggV4vd5w\nZ+AzLVu2jPbt25OcnEx6ejoHDx4sdr7mzZvz2Wef8fXXX1OvXj3gVIfXWbNmMWvWLF566aXwvN9/\n/z0vv/wyf/3rXwE4fvw4M2bMoG/fvixbtizispVk9+7dzJkzh0mTJoVHuL3llluYPXs2q1evBmDe\nvHksWrSIcePGMX/+/PD+S01NJTMzk2PHjpGYmMixY8d46qmn6Ny5Mxs3bix2fampqbRu3ZpFixax\nc+dODhw4EH7txhtvZOHChdx6663Mnz+fJ554gkcffbTEjstwatTjrl278uSTT7J27doix1v37t1Z\nvnz5OZc9U1xcHC+99BK5ubkcO3aMypUrk5KSUmSev/zlL7Rr145nnnkmPOJxcZ+F4jz88MOkpKTw\n29/+ltdee63E+SJ1/fXX89prr9GgQYPwtClTpuD3+/nTn/4EwMaNG7n++utp3bp1kf1y9dVX8/nn\nn2tkYxEREREREREREREREREREREREZEyxF3aBThTRkYGjRs3BqBOnTolzrd9+3aSkpIIBoMcPXoU\ngHvuuYekpCTee+89hg0bRqNGjXC5XHg8nnAn2iNHjlCjRg0AGjRowPr167n77rv5/PPPeeutt4iL\ni6NWrVrFrjM9PZ1GjRoB4HK5cLlcZGRk0LFjRwCqV6/O0aNH8Xq9eL1eYmNjiY2NJS8vj48++ijc\nSfRcI7c+8MADTJ8+nWAwyPjx44mLiwMI/+v1esnJyWH8+PEcOnSI9PR0OnfuXGzW3r17+eKLL3j1\n1VfJysri+++/57LLLjtrvl//+te88847VKhQgV//+tcApKWlMWzYMEKhEB6PJzxv8+bNAcIdsmvV\nqoXb7aZevXp88MEHEZetJBs3biQhIQGXyxWeVrduXeLj48nOzgbA7Xbj8Xho0KAB+/fvp1mzZsyf\nP5/MzExyc3OJjo4Ol83pdBZZ9kz79+8PH2/169fnwIEDVK1atch7dblc7N+/n/r16xMVFUXFihXP\n+R7q1q3Lvn37yM7OLnK8NWzYkI8++uiCtsfpz0BCQgLZ2dnnXfdpP/wsDB06NPwezzRv3jw2b95M\ndnY2t956a3j6xYwu7HA4uO666+jfv3+R0Z/HjBnDjTfeGP5948aNpKWl4XK5qFSpEt26dQPgjjvu\n4OWXX77g9YqIiIiIiIiIiIiIiIiIiIiIiIjIpVPmRjauXr06u3fvBk51lj0tJiaGI0eOhH+fO3cu\nkyZN4sUXXwx3fI2Li2P8+PH06dMnPIJsYWEh+fn5pKWlAac6bWZkZACnRtGtUaMGTZo0ITU1la5d\nu7J48WKaNm1abNlq1qzJ9u3bAQgGgxQUFFCzZk12795NKBTiu+++IyEh4azlgsEgs2fPDo/YGwwG\nS3z/V155JVOmTKFevXp8+OGH4emnR9PNy8vjgw8+oH79+iQnJ3P99deHO4aeuY3q1q3LsGHDSElJ\nYfny5Vx99dXFrrNp06bs2LGDLVu20Lp16/C0OXPmkJKSUmRk4x92Agb49ttvyc/PZ8+ePdSoUSPi\nspWkZ8+e3H777cyfP7/EeU7v0127dlG9enWqVq3KN998Q5MmTXjvvfe48sorgcg6zP7weNuzZ0+4\nozGc6tR8Ws2aNUlLSyMzMzPcub04Z66zuOOtOLGxseTm5gKnRo8+nzPX4/F4inTw/eFnYcWKFcVm\nHD16lC1btrBw4UJ69+5dJDMvL6/IvF6v97z7LxQK4Xa7ueOOO8657ffu3UtycjLz588vklmtWjW+\n++67c65DRERERERERERERERERERERETkl8LhcupHPxH9lLbSL8EZOnTowAcffMCAAQNwuVzhjsQ3\n3HADqamp3H///eH5hg8fzuTJkylfvjwAf//73+nduzdPPvlkeETd3r1706tXL958802cTidut5s7\n77yT7t2788orr3DvvfcSExNDVlYWt9xyC8FgsMTOxpUqVeLWW2+le/fu9O3blxMnTnDfffexaNEi\nevTowZ133nlWZ1w4NeLrrbfeis/nY/HixTgcjhLf/9NPP02vXr1Yt24drVq1AuDBBx9k8ODB+Hw+\ntm7dyrXXXst7773H/fffz7Fjx8LLNm7cmN27d+P3+8nNzaVbt26sWrWKPn36MGTIkHBn1uLUqlWL\nuLi4cPkHDx7MgAED6NOnD7NmzSpxufj4eEaOHMmCBQu49957Iy7budx3332sX7+eb7/9ttjX+/Xr\nR+/evZk8eTL9+/cPT2/ZsiXR0dHh/Xeu7Xxax44d2bhxI71796Zhw4bhzsZnLtunTx/Gjx/PxIkT\nzzm68JnLFXe8FSchIQGPx8PkyZPDnZOLy33nnXfw+Xzs3LkTv98f3ka/+tWvmDhxIjNnzgSK/yyc\nqWLFipQrV45+/fqxZcuWIq9dd9119OzZk08++QSAxMREvF4vPp+vxP3yw/fucDjCvz/11FP4fD78\nfj8HDhwIj9INpzoY79q1Kzzv6WNeRERERERERERERERERERERERERMoGRyiS4V9/YoFAALfbjc/n\nY+7cuURFRf3orA8++ICtW7cyYsQIw5KKyE/prStbmmVVbVbFJKfxgmUmOQAh18XXdT90MLfQJAdg\nUqXiv3xxMablbDfJOZ5f8ujwF6p89NlfEClt+YV2p2Xn+b9zERGPUQ5AKIIvgkQit8DuOPB67L57\n5SwsMMnJCtodm9Eum23uNjwOCgxbn1GFJ82yjufZbPdycR6THCe2zfQTWQGTnMS8vSY5BZUbmuQA\nLP73+f8yRCRyCuzOoXdfZdPWALjMa1QnhOzqTodRfXc8ZNP+AbvzHkA5o0rvpN0mJ9phFOYoc985\nBuzaCDmGbQSrc6gncO4v3F6IfLfXLMtltM0tz1eH82z2X2WPzTnvtOO5Np+bCrEmMYSc7vPPdAEs\n2ghx5W3aPwAOw1uVRw2vH614jE5YVucqgIBhszPLqB62qqMATuTbtPFqlLP77Fkem4VGURWj7doI\nLsuGmZHvc+zODYVBmw9NQozdtb/V/bJyhvdIymI9ZVVH/SeolH/YJOegu5JJDkCi0bXxsZN21/5x\nhp8Zq4/M3hE9bIKACnWrm+QkjnrWJMfaCaOblKvr2j276pnxqUnOyYDhtbG77N0/z3fYtcuszlaW\n98+t7pGA3bEQZTiKnjNkUw+fCNhtJ8s2kNV9EsvrNE8w//wzRcjqHonX8PrK8vNn9RwlnvP/1e9I\nFMbZPWewrFus2lNW90gA3EZZll3o4uOMbgbKf4T3r7+xtIsgPxO3bPmoVNdv+3TCQCgUokePHng8\nHm655ZYf1dEYYMWKFbz22mu43W6eeeYZo1LKj3Ho0CEefvhhHA4HoVCIyy67jKlTp17y9f7+97/n\n0KFDhEIhHA4Hzz33HJUqXdyNrnXr1jFr1qzwiLzt2rVj0KBBES07adIktm8/1enS4XAwbtw4GjVq\ndFHliNSqVatYuXJluLxdu3alS5cuF53n8/nC+8/hcJCcnGxVVBEREREREREREREREREREREREREp\nQ8pcZ2OHw8Hy5cvN8rp370737t3N8uTHq1y5MikpKT/5ep991u6b0+3ataNdu3YXtey4cePMyhGp\ne+65h3vuuccsrzT2n4iIiIiIiIiIiIiIiIiIiIiIiIj89Mrm308VERERERERERERERERERERERER\nERGRUqfOxiIiIiIiIiIiIiIiIiIiIiIiIiIiIlIsdTYWERERERERERERERERERERERERERGRYqmz\nsYiIiIiIiIiIiIiIiIiIiIiIiIiIiBTLEQqFQqVdCBGRSGTl5JplOR0Okxx3bqZJDkAourxJTqHT\nY5ID4MTuFPFQbGOTnBlHt5jkADhOZpnkBCpUM8kBcPzCT8uOYKC0i3CWkMPuu1chp8skx/I4cB9O\nM8kpTKhtkgMQdNnVU+4TB82yjpJgkhMV6zbJ8ThtzlWnZWcVmOTElbfZf45goUkOQE6hzbZyGW7z\nKJddVmHQpk4IGOUAGEaZ8Xrs6nOzejgUtMkBgg6bc4wloyY1AM5CmzrKUshpU5+HLDeUIWfgpElO\nvjPKJAfs6hZvINsm6H8dy482ySkfZ3NMBSl7bYRQlF0dHGtYn+cGyt4JKzdgc26oGmXXlsrFrn1e\nYHTqO5htd+0YZ3R8Wh6bMW67z7FV3WnV5gTM7iYVlMVGJ3bXal633TF1INumLWV5TVQW66msfLv2\n+S+dVZ1n+Sl2Gx2fltfGhpf+eEP5JjkFLpu2K9jVCc6CPJMcgJDb7v1ZXrNbmVq5uUnO6P0fmeSA\n7f3zYFSsSU6ZfI5ieDw5yuCxWRafo1jeS3JmHzbLKoyrYpJjtZ0AXLlHzbKOBcqZ5Fg9RwHbZylW\nz1HKxRk9RzFsa1he81m1EXKtbiIAMUbXV66AXbsluny8WZb88r1//Y2lXQT5mbhli11b/2LYncFF\nRERERERERERERERERERERERERCQiTstvMopcQnZfQRMREREREREREREREREREREREREREZFfFHU2\nFhERERERERERERERERERERERERERkWKps7GIiIiIiIiIiIiIiIiIiIiIiIiIiIgUS52NpUSbNm1i\n2rRplyS7oKAAn89Hp06dzjlfeno6o0ePLva1iRMnXvB6k5KS+Oijjy54ubJo9erVvPrqq0WmLV++\nnL/97W8A9OzZ86JyX3jhBdq3b19kO/35z3+mbdu2fPvttyUut2nTJlq1akUwGOTNN9/k1ltvBeC6\n667D7/fj9/tJTU0F4NixYzRt2jScl5SUxMiRIwGYNm0amzdvvqiyi4iIiIiIiIiIiIiIiIiIiIiI\niIgtd2kXQMo2h8NxSXI9Hg8pKSn06tXrosvw2GOPWRfrZ2XNmjXMmDGjxNcvdt8NHz6cUChUZNrj\njz9OXl7eeZetVasWW7du5d///jfVqlUDoFGjRiQnJxeZb+PGjXTs2JENGzZw+eWXA7Bjxw5ycnIu\nqswiIiIiIiIiIiIiIiIiIiIiIiIicmmos7Gc07///W+GDBlCdHQ0U6ZMYcyYMRw9epSWLVvy0EMP\n0bt3b/Lz86lTpw5ff/01ycnJfPHFFzz11FMAjBkzhhYtWrB27Vrmz59P3bp1cbvdTJ48udj1TZ06\nlY8//pj4+PjwqMp79uxh4MCBOBwOkpKSiI6OxufzcfDgQd566y0AVq1axfvvv8/x48dp2LAhjz76\n6Dnf17vvvsvmzZsZM2YMPp+Pa6+9ln/+85/8+c9/pmXLlqSkpLBmzRq8Xi9Tp05l0qRJTJgwgbi4\nOOBUh9wxY8YwduxY4uPjOXLkCCkpKTidZw8WfvjwYR588EHKly/P3r17eeONN0hKSiJ0w+yrAAAg\nAElEQVQ9PZ29e/fSqVMn+vbtW2w5S9puX375JXXr1iU6OhqAKVOmsH37dqKiovjv//5vgLM6DBdn\nx44dTJgwAbfbzW233VZiOSLVunVrNm7cSCAQCG+L4sqxceNGhg8fzqxZs7jvvvsAuOWWW3jnnXcu\nWQd3EREREREREREREREREREREREREblwZ/eMFPmBuLg4XnrpJXJycli6dCnt27cnOTmZ9PR0Dhw4\nQOXKlZk8eTJVqlShS5cu7Ny5k5kzZzJz5kxeeOEFZs6cCcDChQtZvHgxnTp1KnFdBw4cYPfu3Sxe\nvJhWrVrx9ttvAxAIBJgzZw5t2rQJT0tJSaFy5cpFlq9duzbz589n69at53xPW7Zs4d1332XMmDHA\nqRGAu3btypNPPsnatWsJBAKsWbOGJUuW0KNHD5YvX06zZs3Yvn07y5cvD3ekdTqdBAIBkpKSuOKK\nK9ixY0ex61u+fDn9+vVj+vTpHD9+PDz92muvZdGiRbz55psllrWk7bZ06VK6d+8OwHfffce+fftY\nsGABdevWPed7P1Pt2rV55ZVXWLhwIatXr76gZYvj9XrZvXs3DRs2DE/76quv8Pv9+P1+PvnkEwAy\nMjJo0KABx44dC8/Xtm1bPvzwwx9dBhERERERERERERERERERERERERGxo5GN5Zzq1KkDQEJCAuvX\nr+fYsWO8+uqrZGVlcejQIbxeL16vl9jYWGJjY8nLyyMvL4/ExEQAcnNzAXA6nXg8HurVq1ck/4ej\n3u7fv58GDRoAUL9+fb766iuaN28eXqZevXp89dVX5y3r6dF+S7Jp06azOirXrVuXffv2kZ2dzZEj\nR6hRowYADRo0YP369dx99918/vnnvPXWW8TFxVGrVi3gVGddgPj4eLKzs4tdX0ZGBh07diQqKoqa\nNWsWKa/T6cTlcpVYVpfLddZ2y8nJ4eDBg+Fp3333XZFtdFokIwSnp6czZcoU8vPz2bdvH6FQ6EeP\nLNy1a1caNWrEypUrAbjqqqtITk4Ov37o0CG2b9/OwIED2bt3L2lpaQB4PB68Xm+RDtkiIiIiIiIi\nIiIiIiIiIiIiIiIiUro0srFErE2bNgwbNoyUlBRWrFhBkyZNzponFArh9XrJzMzk8OHDxMbGAhAM\nBsnPz2fPnj1F5i8oKCAYDAJQvXr1cMfTtLS0cIff09P27t0bnnZ6XcUpafppw4YNo3bt2rz11lvF\nzp+QkEBGRgYAu3fvpkaNGjRp0oTU1FS6du3K4sWLadq06TnX8UM1atQgLS2N/Px80tPTL6i8hYWF\nZ223119/nbvuuiv8e/Xq1dm7dy9AkfnOtx3g1AjJQ4YM4eWXX6ZChQrhZWJiYjhy5EiReb1e71nT\nzuRwOGjTpg2VKlUqsRwbNmxgxIgRzJkzhz/+8Y9s3Lgx/FrHjh3Do1eLiIiIiIiIiIiIiIiIiIiI\niIiISOlTZ2OJiMPhoG3btqxatYo+ffowePDg8KjFZ843dOhQhg4dyvDhw7n//vsB6N27N7169eKN\nN97A6fy/w65z5850796d1NRUqlatSv369enVqxebN2+mQ4cOAERFRTFgwAA+/PBDOnTowKefforP\n52Pnzp34/X4++eSTs8pwPqc7TR8/fvys+d1uN3feeSfdu3fnlVde4d577yUmJoasrCxuueUWgsHg\nWZ2Nz7XO3/72t8ybN4+RI0dSsWLFYrdZSYrbbu+88w633XZbeJ6qVatSs2ZN/H5/kc7Gu3bton//\n/vTv359FixYVm3/zzTfzxBNP8MgjjxAXFxee3r59e2bPns2f/vSn8LQ77riD8ePHM3369BLLW5yv\nvvoKv9+P3+/n1VdfZdOmTVx99dUANG3atEhn4xtuuCHc+VxERERERERERERERERERERERERESp8j\nFMnwpyI/UiAQwO1288EHH7B161ZGjBhR2kUqFT179mTx4sURz3/mduvXrx+bNm2iffv2l7CUZVdW\nztkd3C+WM4JO6ZFw52aa5ACEosub5BQ6PSY5AE7sThEPxTY2yZlxdItJDoDjZJZJTqBCNZMcAMcv\n/LTsCAZKuwhnCTnsvnsVcrpMciyPA/fhNJOcwoTaJjkAQZddPeU+cdAs6ygJJjlRsW6THI/T5lx1\nWnZWgUlOXHmb/ecIFprkAOQU2mwrl+E2j3LZZRUGbeqEgFEOgGGUGa/Hrj43q4dDdl+kCzpszjGW\njJrUADgLbeooSyGnTX0estxQhpyBkyY5+c4okxywq1u8gWyboP91LD/aJKd8nM0xFaTstRFCUXZ1\ncKxhfZ4bKHsnrNyAzbmhapRdWyoXu/Z5gdGp72C23bVjnNHxaXlsxrjtPsdWdadVmxMwu5tUUBYb\nndhdq3nddsfUgWybtpTlNVFZrKey8jXQRaSs6jzLT7Hb6Pi0vDY2vPTHG8o3ySlw2bRdwa5OcBbk\nmeQAhNx278/ymt3K1MrNTXJG7//IJAds758Ho2JNcsrkcxTD48lRBo/NsvgcxfJekjP7sFlWYVwV\nkxyr7QTgyj1qlnUsUM4kx+o5Ctg+S7F6jlIuzug5imFbw/Kaz6qNkGt1EwGIMbq+cgXs2i3R5ePN\nsuSXb92NbUq7CPIz0e6jD0t1/XZncJFzWLFiBa+99hput5tnnnnmkq9vx44dPPnkk+FRgxs3bszY\nsWMv+Xp9Ph8Oh4NQKITD4SA5ObnI6yWNYrxu3TpmzZoVfr1du3YMGjTorO0WFxd30R2Nz1e2C7Fq\n1SpWrlwZLm/Xrl3p0qXLReeJiIiIiIiIiIiIiIiIiIiIiIiISNmkkY1F5GdDIxtHRiMbR04jG//0\nNLJxZDSyceQ0snHkNLLx+Wlk48iVxUHmNLLxT08jG0eYo5GNI6aRjSOjkY0jp5GNI6ORjSOjkY0j\np5GNI6ORjSOnkY1/ehrZODIa2TgyGtk4chrZODJl8jmKRjaOPEsjG0dEIxtHTiMbR0YjG0dGIxtL\nadHIxhKp0h7Z2K5VKCIiIiIiIiIiIiIiIiIiIiIiIiIiIr8o6mwsIiIiIiIiIiIiIiIiIiIiIiIi\nIiIixVJnYxERERERERERERERERERERERERERESmWu7QLICISqcO5hWZZhaGQSY7XXdEkByDBafP9\njyN5dtvJY/iVlBlHt5jkjIy/3iQH4P9lbzfJiT6ZZZIDEHLYbfRgVKxJjsPo8wJQ6PSY5HiO7zfJ\nsRZy2by/w+4EkxyAuMT6Jjkeh0nMqawj35plZVeoZZZFTsAkJiaUb5JTSLRJjjVX7lGTnGCM3TnU\na3SAuvKOm+QAhAoNL7WM6vOYo9+Y5ADkxdc2yfEEck1yAPKXzTDLcncbY5LjDAZNcgBwuExiXAU5\nJjlg19YAuzZC9KGdJjkAgfjLTXKC7hiTHAB39iGzrFBMeZMct9OukeDMtzk+8z3lTHL+L9CmjeAo\nsKnzHIafPSvxoWyzrEJnBbOsuCjDRqyR8kbtlqDDrq0RZXfJR7RRsSoatakBnDlHTHLyY23OCwDu\n3EyzLEfAZlsFvfEmOQA4bdotlkOlOHKP2YW5jA70Qrs3WCPG5vox5IoyyYGyWU9VjCl754WyyrKN\nZ8XqFqXVfRuAQpfdvZugw+a64fusApMcgIDRJW18jF3dYnMVc8qhPJuDymX4eRn9zT9McqbXvMkk\nB2D495+ZZbkK8myCQnb3W+yeo5jEAHb3SACiMvfYBDntzutBj9ck50R0okkOgLd8NbMsJzYHg/uY\n3XOwE7FVzbII2DyHjsHmXgtAIXafGSvufJtnx8Eou3tcnqBdG8jqOMCo/QPgCtq0gQ5PH2uSA1Dj\nsZlmWSIiZYVGNhYREREREREREREREREREREREREREZFiqbOxiIiIiIiIiIiIiIiIiIiIiIiIiIiI\nFEudjUVERERERERERERERERERERERERERKRY6mwsIiIiIiIiIiIiIiIiIiIiIiIiIiIixVJnY4nY\ne++9R5cuXZg+ffoFL7tq1aqI5nv11VcvODs9PZ3Ro0df8HI/RyNGjKB169YEg8GzXlu9enV4+/Xs\n2fOi8pctW0bnzp1ZsWJFeNoLL7xA+/bt+eijj0pcLj09nSZNmnD48GH+53/+h8aNGxMMBunUqRN+\nvx+/38+iRYsACIVC3HDDDeG8VatW8dvf/haA5cuX87e//e2iyi4iIiIiIiIiIiIiIiIiIiIiIvJz\n4nQ59aOfiH5Km7u0CyA/H+3bt6d8+fKsX7/+gpdduXIld999Ny6X65zzvfrqq+GOpxfC4XBc8DI/\nR88//zx+v7/Y19asWcOMGTOAi98e3bp1IyoqikAgEJ42fPhwQqHQeZe96qqr+PDDD/nuu++46qqr\nCIVCVK5cmeTk5CLzffHFF9x0001s3LiRG2+8EYBDhw7x7bffXlSZRURERERERERERERERERERERE\nROTSUWdjuSA/7HS6Y8cOJkyYgNvt5rbbbqNv374Eg0EeffRR9u3bR9WqVXnmmWcYNmwYX375JX37\n9qVt27YMGTKEmTNnsm7dOlwuFxMmTCA6OpqxY8eyc+dO/H4/AwYM4Oabb2bhwoWsXbuW2NhYnnnm\nGeLj40ss25EjRxg7diyTJk3in//8J++//z7Hjx+nYcOGPProo+zZs4dHH32UwsJCBg4cSGxsLLt3\n7w533l29ejUej4fFixdz7bXX8q9//YsJEybQsmXLYtc3ZcoUtm/fjsfj4c4776RVq1b88Y9/JD4+\nniNHjpCSkoLTefY3Ch544AGOHTtGpUqV2LdvHzNmzOCRRx4hPz+fOnXq8PXXX5OcnMwXX3zBU089\nBcCYMWNo0aLFWfvgtC+//JK6desSHR0d8b48ePAgDz74IG63m6ZNm/LHP/6xxPxINGzYkF27dlFQ\nUECFChVKzNqwYQO9evVi7ty54WmdOnXi73//O1WqVLmodYuIiIiIiIiIiIiIiIiIiIiIiIjIpVH6\nYyvLz1bt2rV55ZVXWLhwIatXrwbg3XffpWbNmqSkpPDEE08A8Ne//pVGjRqRnJzMkCFDAOjduzeL\nFy/mD3/4AykpKdSqVYuUlBSuvPJKkpOTufnmm8nMzOQf//gHixcvpl+/fixbtqzEsuTk5DBu3DjG\njx9PYmJiuHzz58/n008/BWDevHk89thjpKSkMHfuXJo1a8aOHTvYsWMHn376Kdu3b6dZs2Y4HA66\ndu3KxIkTWbt2bbHrO3DgAPv27WPBggXUq1cvPD0QCJCUlMQVV1zBjh07il3W7XYze/ZsQqEQI0aM\n4LPPPqNy5cpMnjyZKlWq0KVLF3bu3MnMmTOZOXMmL7zwAjNnzgwvX9yoxUuXLqV79+4lbp/ixMfH\ns2DBAlJSUti5cyeZmZkXtHxxAoEAcXFx4d8zMzPx+/34/X5SU1MB2LZtG9dccw0xMTHk5uYCcMUV\nV7Bz584fvX4RERERERERERERERERERERERERsaWRjeWipaenM2XKFPLz89m3bx+hUIi9e/fSrFkz\nALxeb3jeUChEKBQKd5RdvXo1b7zxBoFAgDp16hSZ77R9+/aRlpaG3++nsLCQ6667rsSybN68mSuv\nvBKXyxWedjo3KioKgIyMDBo2bEhUVBQej4cKFSqQnZ3N+++/TyAQYP/+/dSqVYtQKETdunXZt28f\n2dnZxa5v//794U7GP+xsXLt2beBUR96SlvV6vcTExBAbG0tsbCxHjhzB6/Xi9XrD0/Ly8sjLywt3\nnM7JySl2G51+7eDBg0XKEYmjR4/y+OOPk52dTVpaGtnZ2eH1XazOnTtTrlw5Nm7cCEClSpVITk4O\nv15YWMjnn3/OsGHD2L9/Px9//HH4tSuuuIKvvvqKJk2a/KgyiIiIiIiIiIiIiIiIiIiIiIiIiIgd\njWwsFyQmJoajR48Cp0bTHTJkCC+//DIVKlQgFApRp04dtm3bBkBeXl54uaioKAoKCsK/L126lIUL\nF/LQQw+d1Xn2tFq1atGyZUuSk5NZtGgRI0aMKLFcN998M48//jgTJ04867XT+TVr1mTXrl3k5+cT\nCAQAiI2N5eTJkzidziIdlc+nWrVq7N27FyD878Uq7v2HQiG8Xi+ZmZkcPnyYcuXKhV873UH5tNdf\nf5277rrrvJlnWrNmDR07diQ5OblIR+WYmJgi+SVNK06zZs2oX79+ieX47LPP6NKlC7Nnz+bpp59m\nw4YNwKnRmu+44w7efPPN865DRERERERERERERERERERERERERH466mwsF6Rx48bs2rULv99Pu3bt\neOKJJ3jkkUeIi4sD4LbbbiM9PR2fz8djjz0WXq59+/Y8+OCDLFmyBIDmzZvj8/lITU0tkl+7dm1G\njRrF5s2bSUxMpEWLFvh8Pvx+P+vWrTtn2Ro2bEiDBg1Yu3ZteARlIPz/fv36MXHiRHw+HwMGDADg\nqquuoly5clx22WXUqlWryPznUq1aNapVq4bf7yctLe2s1yPJOBeHw8HQoUMZOnQow4cP5/777w+/\n9pvf/IZBgwaxaNEiAN59911uu+22IssfPXqU/v37079/f6ZPn17sOm644Qbmz5/P8OHDz5qemppa\nZJ3t27dn9uzZ/OlPfzpnmc/8PTMzE7/fj9/v56WXXmLTpk3hkYuvvPJKPv300/ByderU4bLLLjvf\nphERERERERERERERERERERERERGRn5AjFMkQqCJSouXLl+PxeOjSpctPvu6srCw2bdpE+/btf/J1\nl4avD2eZZRUaVX1et913NhKibbIO5wVNcgA8hl9JiSfXJGdk/PUmOQD/L3u7SU50QbZJDkDIYbfR\ng1GxJjkOw6ZCkB/3ZYzTPMf3m+RYC7k8JjmH3QkmOQBxUTbHlMdm1wHgPrrPLCu7Qi2zrPycgElO\nBa9NPVzoijbJOS07q+D8M0WgotumzgvGVDTJAQj9yC96nebKO26SAxByus2yrOpzT+bXJjkAefG1\nTXI8AZv2AUD+32aYZbm7jTHJcRbafO4ACp025xhXQY5JDtgdmwBWzY3oQzttgoBA/OUmOYXuGJMc\nAHf2IbOsUEx5k5yg2+585cy3OT4L3F6TnNNys43aCNE2dYLlZw8g68SPL1dFj119XhhTwSyrLLK6\nvrJq/4BdHQxgVSzXSbt7QM6c8/+1rkjkG50XANy5mWZZjkC+SU7QG2+SA4Az8r8g91Nx5B6zC3MZ\ntfUN7wGFjM7HIVeUSQ6UzXrK6p7wfwK30/BGkBGr3ecqPGkThO29G6uPzHdG938AAkaPGuJj7M4L\n5Q1vUh7KLTTJcRl+XioFbNot0+vaPTcc/v1nZlmuQN75Z4pEyO45mNlzlKDN8QQQdNh9ZqIy99gE\nWd7r9Nhcs5+ITjTJAdvnvU5sTliu49+Z5ACciK1qllWYZ3OsVzC8tWF13xQMn6NE2bQ3glHlzj9T\nhByFNteOABjVedkOu/um5Zw2ZTr83CMmOQA1HptpliW/fB+2bVfaRZCfiTYfnHuw1kvNrlUo8hP4\n/e9/z6FDhwiFQjgcDp577jkqVap0Sdc5a9as8KjKDoeDwYMH07Zt24iW9fl8OByOcHmTk5NNyxYX\nFxdRR2PL7bZu3TpmzZoVHpG4Xbt2DBo06KKyRERERERERERERERERERERERERKRsU2dj+Vl59tln\nf/J1Dh48mMGDB5f4+n333VfiaykpKZeiSBfMcru1a9eOdu30jRoRERERERERERERERERERERERGR\n/wR2fw9CREREREREREREREREREREREREREREflE0srGIiIiIiIiIiIiIiIiIiIiIiIiIyE/M4XKU\ndhFEIqKRjUVERERERERERERERERERERERERERKRY6mwsIiIiIiIiIiIiIiIiIiIiIiIiIiIixXKE\nQqFQaRdCRCQSuXl5pV2Es2Q+9aBZVqVHppnkOArzTXIAgu5osyz38e9McvLiqprkAIwu19gkZ1rO\ndpMcAEdBrllWvttrlmXF7bT58x/OwEmTHLA9zh1WzapQ0CYH2Duyl0lO3edfMckBcOYdM8ty5Nt9\nZo46K5vkeLwuk5xot+33ArNOFJjklIvzmOQ4+WVfhjhzj5hlBb0JJjk5Abtt7vXYHJ+FQbsyOR12\nf2IqJuMzk5z8Gs1McgBChu/PijM/xywr5LFptzgs2wieGJMcs/YB4AgGzLKcJw6a5BRWrGGSA3bX\nMpbHAcCxApvj0+ocal0dWLQRrN4b/PLbCEGMrokMt5NhEwG30fFptZ0Agkb1sGVbw3L/WbUR8gsN\njymjNp7lXxA1bHYSa3WgG7I6DiyfFpXFeqoM7rpfvLJ4HWPZPi+L59CyKPj3582ynHeOMMuyur4K\nuuzawlbPUXLK2T1H+Wbgb82yrpj3qkmO5XOwfGeUSU6eYYVQsfC4WVYoqpxJjuVxblUPW14z5M79\nk1lWuQF/McmxfI5i+czpWGF5kxyr5ygAMYYXDieybM4NZfE5imW7zFlg1G/DsEwFRvW51fUsQHxc\nrFmW/PKtv/lXpV0E+Zm46Z//KtX1a2RjERERERERERERERERERERERERERERKZY6G4uIiIiIiIiI\niIiIiIiIiIiIiIiIiEix1NlYREREREREREREREREREREREREREREiqXOxiIiIiIiIiIiIiIiIiIi\nIiIiIiIiIlIsdTb+iWzatIlp06YVmbZs2TI6d+7MihUrLjr3m2++YezYsT+2eP8xxo4dy7ffflva\nxTC1atWq8DG0fPly/va3v/2ovD//+c+0bdu2yHYaMWIErVu3JhgMnrMcd955JwDz58+nZ8+epKen\n06ZNG/x+P36/n08++QSAL774gmuvvZaTJ08Cp/bL008/DcDo0aPJyMj4Ue9BRERERERERERERERE\nRERERERERGy4S7sA/0kcDkeR37t160ZUVBSBQKCUSiRytscff5y8vLwi055//nn8fv95l42KiuLA\ngQN8//334eO9TZs24Y7Ep23cuJFf//rXfPLJJ9x4440A4Y7IIiIiIiIiIiIiIiIiIiIiIiIiIlJ2\nqLPxT2jLli0MGDCA+Ph4pk6dCkAoFCoyz549e3j00UcpLCxk0KBB3HbbbXzyySc89dRTAIwZM4YW\nLVqwdu1aXn75ZerUqYPbXfJu7Ny5M/Xq1eP48ePMmDGDxMREkpKSOHLkCF999RXXX389I0eOZNy4\ncWRkZHD55ZczceJEcnNzGTJkCMFgkF/96lcMHjyYAwcOMGLECKKjo7nnnnvo2rUrY8eOZdiwYdSo\nUYO+ffuSkpJCeno6f/nLXwiFQhw9epSlS5eSmprKyy+/jNvtZtKkSVx++eVnlTUpKYlt27YBkJOT\nQ58+fejQocNZZduxYwcTJkzA7XZz22230bdvX5KSkkhPT2fv3r106tSJvn37nnNfLFq0iIKCAvr2\n7cvvfvc7mjRpwpYtW0hKSqJOnTpMnTqVjz/+mPj4eJ577jkefPBBXnzxxfDyQ4cOpV+/fsyZMweH\nw0FUVBTPP/98sevavXs3Y8aMoXbt2nz99desWLGCsWPHEhsby9atWxk0aBCdO3c+a7lNmzYxY8YM\nTp48SfXq1alRowZXXXUVr7/+OoFAAI/HQ7t27ahYseJZx9HJkyd54IEHCAaDnDhxgmnTplGjRo2z\n1rFu3TpeeOEFnE4nvXv35o477ihxm525juLcdNNNpKam4vV6z7nctm3bGDx4MG+99Va4s/E111zD\nxx9/fFanfBEREREREREREREREREREREREREpPc7SLsB/kgoVKjB37lwSExPZunVrsfPMmzePxx57\njJSUFObMmQPAzJkzmTlzJi+88AIzZ84EIDk5mUWLFtGpU6dzrvN0J+O+ffuyYsWK8PSEhARSUlIY\nMWIE7777LjVr1mTBggVUqlSJbdu2sWvXLmrVqsXChQsZOHAgAFu3buXmm28mJSWFLl26nLWuH3YS\n3bt3LzNnzmTp0qWEQiHmzp3LwoULeeKJJ5g9e3aJ5R0zZgwOh4O5c+eyYcOGYstWu3ZtXnnlFRYu\nXMjq1avDy1577bUsWrSIN99885zbZM2aNRw8eDDcIfn48eOMGjWKoUOH8o9//IMDBw6we/duFi9e\nTKtWrXj77bepXbs2GRkZvPLKK2RlZREfHw9AXFwcL730Erm5uRw7dqzY9b388ss88cQTPProo5w4\ncSI8/ZZbbmH27Nm89tprJZb1jjvuoHXr1jz44IMcPXoUh8NBnz59SExM5IUXXmDHjh0AzJ07F5/P\nx7x58wB4++23adu2LXPnzqWgoKDE/BYtWrBkyRIWLFjAggULzrndIukEXKdOHdasWUOrVq3C09av\nX4/f78fv9/Ptt99SWFhIYWEhTZo04csvvwzPd/vtt59334mIiIiIiIiIiIiIiIiIiIiIiPxSOFwO\n/egnop/SppGNf0L169cHoF69euzfv58WLVqcNU9GRgYNGzYkKioKj8cDQG5uLomJieH/A7jdbjwe\nD/Xq1TvnOmvVqoXb7aZevXp88MEH4enNmzcHwOl0smfPHt5++202bdpETk4O11xzDe3bt6dGjRqM\nHDmSjh07cuedd3LzzTezbds2Ro4cSY8ePcIj0hanadOmuFwuADIzM9m3bx/9+vUDoFq1aiUuFxMT\nQ6VKlYiJiSE3N5c9e/aQmppapGyxsbFMmTKF/Px89u3bFx45t06dOjidzvB6S7Jx40auuuqq8O+J\niYnExcWRkJBAWloa+/fvp0GDBsCpffbll1/SrFkzPv74YxYuXEh8fDxXX311eJ1wqvN2dnY2FStW\nPGt9GRkZ1K9fn6ioqCKv161bl/j4eHJyckosq9frxev1EhMTE+7se+Y0h8PBwIEDuffee1mxYgWh\nUIiMjAwaN25cpIzF2b59O0lJSQSDQY4ePXrO7RbJyMYAffr0oWXLlsCpDspt2rTh6aefDr++bds2\ndu7cycCBA9m1a1f4/VepUoUjR45EvB4RERERERERERERERERERGR/8/encdXURYdIfIAACAASURB\nVN79/3/POUlIQoCwCArIpoKEoOJWLOLKYqwLUCsSyAGLEBABkbuyuGDF3YJSsEDAShISEBWqVW6F\n/sptaZUgSKXeCEWCLZtsCUtCQnJy5vcHX85tJMsBP5Bj+no+Hjw0k5nPXHOdmeu6ZuY6nwAAgLOP\nycbnUG5urqQTWX9vv/12SScm1+7cuTO4TosWLfT111/r4osvlt/vlyTFxsYqLy9PrusqNjZWkhQI\nBFRaWhqMWZkdO3aopKRE27dv1wUXXBBc/t0JuW3atNG9996rgQMHSpLKyspUWlqqhx56SKWlpRow\nYIDuuOMOeb1eTZgwQXv37tWUKVN03XXXKTY2VoWFhdq/f3+5SaIez/8lzW7YsKE6duyo119/XZKq\nzLT7fW3btlX//v2DZfP7/XrhhReUmpqqq666Srfddtspk1Orm6z69NNPa9asWdq4caMuu+yyU9a/\n4IILgvWam5urFi1aKCEhQZMnT9bw4cOVkZGhCRMmqKSkJKRjaN68uXJzc9W0adMKsx9bTq51XVeO\n46h58+batm2bunfvrm+++abS9V9//XU999xzio+P1z333BNcHhMTo/z8fF144YXBZbGxscrPz1fj\nxo0rjec4jpKSkoJl+e5/T1qzZo2eeuopde3aVQsWLNC6deuCv/vJT36imTNnntYxAwAAAAAAAAAA\nAAAAAACAs8dT/SqwcuTIEd1///06ePBgMLNw165dtWLFCo0YMUKSdP/99+uZZ55RSkqKhg4dKkka\nMWKERo4cqVGjRgXXGzRokAYOHKiPPvqoyn02aNBAY8aM0RtvvKGf//znFa7To0cPbdq0SYMHD9aQ\nIUP07bffKjc3V8nJyerfv7/69Okj6URG4IEDB2rkyJHq16+fJCkpKUnTpk3TO++8E8y8K6nc/3s8\nHvXv31+DBg3S4MGDtWzZspDr7Ptl27t3r2688UZNnTpVjz76qOLi4k7Z5rv7rsyECRP08ssvy+/3\nn7J+s2bN1K5dOw0cOFCfffaZevbsGcxGfeedd2rfvn1KSEgIeZ+DBw/WE088oalTp6p+/fqnVd5Q\njqUiPXr00F//+lcNHTpUXq+33OTv7+rZs6dGjRql559/XvXq1Qsuv/322/Xkk09qxowZwWV33323\nhg0bpqysrJDKcLLsn3zyiXw+n3w+nz7++GOtXbs2mBk6MTFRa9asCW7Tq1cv5efnn/bxAgAAAAAA\nAAAAAAAAAACAs8NxLdOqIuwkJycrOzu7pouB/+dcfh5+v18RERFKSUnR66+/rqioqHOy37OpqLi4\npotwirwXx5rFavzoqyZxnLLQsm6HIhBRxyxWxJFvTeIUxzUziSNJv6rb0STOq8e+MokjSU5pkVms\nkogYs1hWIjxn9iWK7/P4j5vEkWzPc8dqWOUGbOJI+mbMQJM4bWYuMokjSZ7iUzP9nymnxO6aOeRp\nYhInMsZb/UohqBNh+73AgqOh/3WJqtSNizSJ41Htvg3xFNl9gSoQ09AkzjG/XZ3HRNqcn2UBuzJ5\nzvCLehWJ3r3RJE5J884mcSTJNTw+K56SY2ax3EibcYtjOUaIjDaJYzY+kOQE/GaxPEf3mcQpa9Dc\nJI5kdy9jeR5I0uFSm/PTqg+1bg4sxghWxybV/jFCQEb3RIb1ZDhEUITR+WlVT5IUMGqHLccalp+f\n1RihpMzwnDIa43kN2zvDYadirU50Q1bngeXbonBsp8Lwo6v1wvE+xnJ8Ho59aDgKvG/3Fy09d4w2\ni2V1fxXw2o2Frd6jHKtr9x7l3w9UnMzqTFzy+3dM4li+Byvx2Lw/LTZsEBqUHTGL5UbVNYljeZ5b\ntcOW9wxFrz9hFqvu0KdN4li+R7F853S4rF71K4XA6j2KJEUb3jgcLbDpG8LxPYrluMxTajRvw7BM\npUbtudX9rCTFx8WaxULt9+ktN9Z0EfAjcd2fP67R/UfU6N5x1p1pZtwfu9WrVystLS14/N27d9ew\nYcPO6j4PHDigcePGyXEcua6rpk2batq0aeXWqezzWLZsmZYuXRr8fb9+/YIZpc+E67oaMGCAIiMj\nddNNN+nIkSPVlu10pKWlafXq1ZJOHNPw4cN1/fXXn3E8AAAAAAAAAAAAAAAAAAAQnphsXMtlZWXV\ndBFqRPfu3dW9e/dzus8mTZooMzOzynUq+zz69u2rvn37mpXFcRy99dZb5ZZVV7bTMXz4cA0fPtws\nHgAAAAAAAAAAAAAAAAAACE+2f5sZAAAAAAAAAAAAAAAAAAAAQK3BZGMAAAAAAAAAAAAAAAAAAAAA\nFWKyMQAAAAAAAAAAAAAAAAAAAIAKOa7rujVdCAAIxbGiYrNYZUZNX4THMYkjSY5RmfyGrbrX8Pis\neI8XmMUKRNU1ifNwbEeTOJL03JFNZrGiI2y+U+RR+A0VCg1P9JIyu1j1omzqPEIBkziSJCf8vlvm\nKSk0ixWIjDGLdbTQpt6j60aYxPE6tm1wYUGpSZz6sSZh5Hps6kmSjhtdMpbdXmQYXseu4Tl13G90\nvXgM+5gwbO+cnKVmsQJdf24Sx2rMGbZcu2uvOGBzzUR77a49y+vYU2bTL1i2547/uEkc1xtpEuck\nqzFC3TibclmPz48W+H9wjHp1Ddtgw/bc8poJN5bteTjWk2V3FYaHZ3p8VizblnA8p8JxDBSO9WSp\ntrdTtZ3Vx+ctsxnfSXbjTtfjNYljzeqasbxe/AGbMlk+4wrH/ioc+xjP8aNmsQJ16pnF+vy23iZx\nOi3/yCSOJEUaPRAMx/coknSkxOZ+1jG8jmMibGKF4ztMya5NcMpKTOJIkuuNMotl8QxBkmKM3qNI\nksfw/LR6jxKuz4Bqs3Ds16Nj7N5hovb79JYba7oI+JG47s8f1+j+7XpwAAAAAAAAAAAAAAAAAAAA\nhMTjDb+EOkBFOFMBAAAAAAAAAAAAAAAAAAAAVIjJxgAAAAAAAAAAAAAAAAAAAAAqxGRjAAAAAAAA\nAAAAAAAAAAAAABVisjF+FJ555pnT3mbSpEnasWPHWShNzXv++eflum7w582bN2vTpk0msUePHq1r\nr71WgUBAklRaWqqUlBT17t27yu1mzZql1NRUSSc+r0cffVRr167VLbfcIp/PJ5/PF/w8Vq5cqZtv\nvjm4bUpKirKysiRJycnJJscBAAAAAAAAAAAAAAAAAAB+OCYb40fh8ccfr+kihJVJkybJcZzgz199\n9ZX+93//1yT2zJkzdemllwZ/joyMVGZmppo0aVLttkePHlVJSYn2798vSXIcR3fffbcyMjKUkZGh\nCy+8UJKUk5OjLl266N///ndw23Xr1gW3AQAAAAAAAAAAAAAAAAAA4SGipguAc+/3v/+9Lr74Yt1w\nww2aN2+evF6vVqxYoYiICPXo0UNDhgzR3r17NXr0aNWpU0d9+/ZVv3799Pnnn+vFF1+UJE2cOFFd\nunRRSkqK2rRpo82bN2vChAm6+uqrtXbtWr355ps6ePCgoqOjNWfOHC1cuFDLly9XbGysfvOb3yg+\nPl5TpkzRli1bdP755+vVV1+V67oaPXq08vLylJCQoMcff1wHDhzQuHHjFAgEgplvZ82apV27dumb\nb75R7969NWTIkCqPNysrS6WlpRoyZIj69++vhIQErVu3TrNmzVLr1q01bdo0rV+/XvHx8XrllVc0\nduxYzZkzJ7j9yJEjdf/992v+/PlyHEdRUVGaOXNmhfvatm2bJk6cqFatWulf//qX3n77bU2aNEmx\nsbHasGGDhg0bpqSkpAq3TU5OVnZ2tj799FOtX79eDz30kO666y516NBB27Zt04IFC1S/fn098sgj\nWr16tXJycuTxeLRo0SJlZGRIkv74xz8qPT1dxcXFSk1NVSAQ0A033KDhw4dXuM933nlHb731ljwe\nj8aNG6drrrlGksplTT4dV155pZYtW6ZWrVpp7969cl23wli7d+/Wvffeq5ycHLVq1UqS1KxZM337\n7bdntF8AAAAAAAAAAAAAAAAAAHB2kNn4P1CPHj20atUqSSeyyd53331atGiRFi5cqPfee0+StGHD\nBt14443KzMxUnz59JEmzZ8/W7Nmz9dprr2n27NnBeAMHDlRaWprS0tKCy/bv368FCxbod7/7nfLy\n8rRq1SplZ2fr/vvv15IlS4L7WLx4saZPny5Jys/PV0FBgbKzszV58mRJUpMmTZSZmXnKMVx++eXK\nysrShx9+WOWxfvDBB9q3b19wQvKRI0c0fvx4jRw5UqtWrdLevXu1bds2ZWdn65prrtHKlSvVqlUr\n7d69W4sWLVJBQYHi4+MlSXFxcZo7d66Kiop0+PDhCve3YMECTZ06VY899piOHj0aXH7TTTdp3rx5\nevfddysta0UZfQ8fPqwXX3xRSUlJysnJkSRNnz5dHTt2DK4zYMAApaamaujQocrIyJDjOPr666/V\nsmVLLVy4UA888ECl++zVq5cWL16s3/72t+U+vzPNLnz11Vdr3rx56tatW3DZe++9J5/PJ5/Pp6Ki\nIh08eFCNGzcOTkw/KSkpScuXLz+j/QIAAAAAAAAAAAAAAAAAgLODzMb/gVq1aqVdu3bp4MGDio+P\n165du/TCCy+opKREO3fulOu6uvHGG/XFF19ozJgxGjBggK677joVFRWpUaNGkqSioqJgvHbt2ikq\nKqrcsiuuuEKS5PF4tHPnTuXm5srn86msrExXXXWVJCk1NVXjxo1Ty5YtNX78eDVq1Ei33nqrxo4d\nqyuvvFKDBw+u9Bhat24tj8cjr9db5bHm5OSoQ4cOwZ8bNWqkuLg4NWzYULm5udqzZ48uuuii4HFs\n2bJFnTt31vr167Vw4ULFx8erU6dOwX1KUsOGDVVYWKgGDRqcsr/du3cH6+O7v2/Tpo3i4+N17Nix\nKsv7fS1btpTH41F8fLwKCwsrXe/72YM7deqk5s2ba8yYMerVq5fuuOOOCrf75JNPtHDhwlNiVJSN\nOJRsx3Xq1NFDDz2kCy+8UK7rynEc3X333Ro7dmxwnVWrVukf//iHHn74Ye3atUvSicnNnTt3Vnp6\nerX7AAAAAAAAAAAAAAAAAAAA5w6Zjf9DJSQkaPbs2br55pv15ptvKjU1VQsWLFD9+vXluq68Xq8m\nTJigxx57LDgBNDY2Vnl5eTp48KBiY2ODsXJzc5WXl6eYmJjgsu9OAm7ZsqWuvPJKZWRkKCsrS6NH\nj5Yk9ezZU6+88oq+/PJL5efny+/3a+DAgZoxY4aWLl1arryVTXStbgLs008/rfz8fG3cuLHC9S+4\n4ALl5uYGj6NFixZKTExUdna2hg8froyMDCUmJla5j+9q3rx5sD4qyn5cVXk9nhOX4759+6pd33Xd\ncr+LiIhQaWlp8Ge/36+HHnpI06ZN04IFCyrd5/z58zV//nw999xzCgQCweWxsbHKz88vt25paWm5\ndSpzMhN2ZcewZs0azZo1S/Pnz1e3bt20bdu24O9atWqlHTt2VLsPAAAAAAAAAAAAAAAAAABwbjDZ\n+D9Ujx499M4776h79+668cYbNXXqVD366KOKi4uTdCIj8MCBAzVy5Ej169dPkjRixAiNHDlSo0aN\n0siRI4OxFi5cqOHDh2vYsGEV7qtRo0bq0qWLUlJS5PP5tHr1armuq6FDh+q+++5TkyZN1LBhQx06\ndEg+n0/33nuvunfvLkn605/+pJSUFG3dulU+n++UiaiO41R7rBMmTNDLL78sv99/yvrNmjVTu3bt\nNHDgQH322Wfq2bOn2rZtqz179ujOO+/Uvn37lJCQEPI+Bw8erCeeeEJTp05V/fr1T/l9VdvefPPN\nmjhxotauXVvp+jt37lRKSoq2bNmiIUOGaMWKFZKkLl266IMPPtCjjz4q6cTE6eTkZPXv3/+Uyb/f\n32dKSoqys7PL7evuu+/WsGHDlJWVFVyWlJSk++67L7jP6pyM995778nn88nn8+l///d/9dVXX6ll\ny5aSpM6dO2vNmjXBbX72s59p//79IcUHAAAAAAAAAAAAAAAAAABnn+NWlxoWqEJKSorS09ODWXnx\nf5KTk5WdnV3TxahVjhUVm8UqM2r6IjzVT3gPlWNUJr9hq+41PD4r3uMFZrECUXVN4jwc29EkjiQ9\nd2STWazoCJu22aPwGyoUGp7oJWV2sepF2dR5hKrPJB8yJ/z6aE9JoVmsQGRM9SuF6GihTb1H140w\nieMN4UtVp6OwoLT6lUJQP7b6dULhemzqSZKOG10ylt1eZBhex67hOXXcb3S9eAz7mDBs75ycpdWv\nFKJA15+bxLEac4Yt1+7aKw7YXDPRXrtrz/I69pTZ9AuW7bnjP24Sx/VGmsQ5yWqMUDfOplzW4/Oj\nBf4fHKNeXcM22LA9t7xmwo1lex6O9WTZXYXh4ZkenxXLtiUcz6lwHAOFYz1Zqu3tVG1n9fF5y2zG\nd5LduNP1eKtfqQZYXTOW14s/YFMmy2dc4dhfhWMf4zl+1CxWoE49s1if39bbJE6n5R+ZxJGkSKMH\nguH4HkWSjpTY3M+GkgAsVDERNrHC8R2mZNcmOGUlJnEkyfVGmcWyeIYgSTFG71EkyWN4flq9RwnX\nZ0C1WTj269Exdu8wUfutve2Wmi4CfiSu/fDPNbp/ux4c/5EsbyzO1OrVq5WWlhYsS/fu3SvNsmzl\nwIEDGjdunBzHkeu6atq0qaZNm1ZuncrqZtmyZVq6dGnw9/369asy+7CFzZs369lnnw3us2PHjpo0\nadIZx3vuuef01VdfSTpxnJMnT9all15qUlYAAAAAAAAAAAAAAAAAABA+yGwM4EeDzMahIbNx6Mhs\nHJpw/NYsmY1PQxhm+iSzcWjIbBw6MhuHhszG5x6ZjWsAmY1DRmbj0JHZuHpkNj73anvGUDIbn3vh\nmCnSUjiOgcKxnizV9naqtiOz8blHZuPQhGN/FY59DJmNQ0dm49CQ2Th0ZDYODZmNQxOubUs4Csd+\nnczGOB1kNkaoajqzcfi9jQUAAAAAAAAAAAAAAAAAAAAQFphsDAAAAAAAAAAAAAAAAAAAAKBCTDYG\nAAAAAAAAAAAAAAAAAAAAUCEmGwMAAAAAAAAAAAAAAAAAAACoUERNFwAAQlVSFqjpIpzCMYwVYRTM\nKo4kHS9zzWLVMfp6i+vYfU/GKS0yifPckU0mcSRpcv0Es1i/KfzKJI7X9ZvEkSS5NtdxnFtmEkeS\nHMewbSm1CROIqmsTSJLf6DK2bFtcb6RdLI/XLJYUXv1MmWvXBlsqcWxuIezOArs+xvEftwkkyY2o\nYxYrHNWJsKl0p7TYJI4kOQG7/qok0qYd3pd4l0kcSYp8ZpRJnLoTZprEkaSYSLtxmafMphP1HMs3\niSNJsRFRJnE8Rw6bxJGkw/UuNIsVG2nTEjuG/ZVV2+k6lndqktUYwapvNx2fG3GMrmHJtg/1GPbt\nVgpcm2uvruEA3R+wu46jAiUmccq8dudBUanNNXzMKI4kNT+02SyWlX2NO5rFKjF6nnT0uF2dX9TA\n7t7Re+RbkzjF9ZubxLFUavgsMDYM2ynD5q7Wi3Zt2nPXazOmliSrJiHmWJ5NIEnHoxuaxYo0umQs\n+yuvUZkMH+nLYzjUt7oPLQzY9TFW99mWY2qnzKY9kKSrPvijSZyFF3YxiSNJ/XduMInjMXy2bHl/\n1cDo/Yfjt3uG53rr2cRx7aa6BAzf+JpFsnzeYv6c5IfzGJYpEKbvUsLNkRK7diq+zOZ557GoeJM4\nkhRlNHAJv6sFAMILmY0BAAAAAAAAAAAAAAAAAAAAVIjJxgAAAAAAAAAAAAAAAAAAAAAqxGRjAAAA\nAAAAAAAAAAAAAAAAABWKqOkCAAAAAAAAAAAAAAAAAAAA/KfxeJyaLgIQEjIb46x45plnTnubSZMm\naceOHWehNDXv+eefl+u6wZ83b96sTZs2hbRtUVGRRowYUeU6q1ev1scff/yDyihJf/7zn9WnTx/N\nmDEjuGzJkiVKSkrS22+/XeW2HTt21MaNG5WXl6dOnTppx44dSklJUUpKinw+X7mY/fr1C8Zbu3at\nrr/+ermuq08//VSzZs36wccBAAAAAAAAAAAAAAAAAABskNkYZ8Xjjz9e00UIK5MmTSr381dffSW/\n36+EhIRqt33//fd11113VblO9+7df1D5TrrllltUr149ffLJJ8Fl9957r6KiouT3+6vc9uKLL9aa\nNWt0/vnnq0OHDnJdV47jKD09XY7zf9/Ayc/PV6tWrbRu3Trdc889kiSPx6M1a9aYHAMAAAAAAAAA\nAAAAAAAAALDDZOMfgd///ve6+OKLdcMNN2jevHnyer1asWKFIiIi1KNHDw0ZMkR79+7V6NGjVadO\nHfXt21f9+vXT559/rhdffFGSNHHiRHXp0kUpKSlq06aNNm/erAkTJujqq6/W2rVr9eabb+rgwYOK\njo7WnDlztHDhQi1fvlyxsbH6zW9+o/j4eE2ZMkVbtmzR+eefr1dffVWu62r06NHKy8tTQkKCHn/8\ncR04cEDjxo1TIBBQVlaWJGnWrFnatWuXvvnmG/Xu3VtDhgyp8nizsrJUWlqqIUOGqH///kpISNC6\ndes0a9YstW7dWtOmTdP69esVHx+vV155RWPHjtWcOXOC248cOVL333+/5s+fL8dxFBUVpZkzZ1a4\nr23btmnixIlq1aqV/vWvf+ntt9/WpEmTFBsbqw0bNmjYsGFKSkqqcNvk5GRlZ2fr008/1fr16/XQ\nQw/prrvuUocOHbRt2zYtWLBA9evX1yOPPKLVq1crJydHHo9HixYtUkZGhiTpj3/8o9LT01VcXKzU\n1FQFAgHdcMMNGj58eHA/K1as0OzZsyVJt99+u6KiotSxY0ft3r1b6enpWrZsmdLS0jR06NDg5N2K\n6u37/H6/hgwZIq/Xq2bNmumll16SpHIZmE+qaNn31atXT0ePHtWhQ4fUoUOH4PJAICCv1xv8OScn\nR7feequWL18eXHbrrbdq5cqV6tmzZ7X7AQAAAAAAAAAAAAAAAAAA546npguA6vXo0UOrVq2SJK1b\nt0733XefFi1apIULF+q9996TJG3YsEE33nijMjMz1adPH0nS7NmzNXv2bL322mvByaqSNHDgQKWl\npSktLS24bP/+/VqwYIF+97vfKS8vT6tWrVJ2drbuv/9+LVmyJLiPxYsXa/r06ZJOZKgtKChQdna2\nJk+eLElq0qSJMjMzTzmGyy+/XFlZWfrwww+rPNYPPvhA+/btC05IPnLkiMaPH6+RI0dq1apV2rt3\nr7Zt26bs7Gxdc801WrlypVq1aqXdu3dr0aJFKigoUHx8vCQpLi5Oc+fOVVFRkQ4fPlzh/hYsWKCp\nU6fqscce09GjR4PLb7rpJs2bN0/vvvtupWX9brbekw4fPqwXX3xRSUlJysnJkSRNnz5dHTt2DK4z\nYMAApaamaujQocrIyJDjOPr666/VsmVLLVy4UA888EBw3Y0bNyohIUERESe+F9C+fXuNGzdOiYmJ\nSkxMVH5+vvr27avU1NRy5fh+vVXE6/Vqzpw5Sk9PV0xMjDZu3FjpsYYqLi5OZWVlwZ9d19WQIUPk\n8/mCk89zcnJ07bXXqk2bNvrmm28kSQ0aNFBhYaFKS0t/cBkAAAAAAAAAAAAAAAAAAIAdMhv/CLRq\n1Uq7du3SwYMHFR8fr127dumFF15QSUmJdu7cKdd1deONN+qLL77QmDFjNGDAAF133XUqKipSo0aN\nJElFRUXBeO3atVNUVFS5ZVdccYUkyePxaOfOncrNzZXP51NZWZmuuuoqSVJqaqrGjRunli1bavz4\n8WrUqJFuvfVWjR07VldeeaUGDx5c6TG0bt1aHo+nXIbbiuTk5JTLituoUSPFxcWpYcOGys3N1Z49\ne3TRRRcFj2PLli3q3Lmz1q9fr4ULFyo+Pl6dOnUK7lOSGjZsqMLCQjVo0OCU/e3evTtYH9/9fZs2\nbRQfH69jx45VWd7va9mypTwej+Lj41VYWFjpet/PFNypUyc1b95cY8aMUa9evXTHHXdIkpYsWaIH\nH3wwuF5MTIxiY2MVGxurmJgYFRcXVxjv+/VWkaKiIj355JM6cOCAdu3aVWkG59Nx22236dChQ1q8\neLGkExOy09PTy03M/uKLL/T4448rLy9Pbdq0Udu2bSVJ3bp101//+lfVr1//B5cDAAAAAAAAAAAA\nAAAAAADYILPxj0RCQoJmz56tm2++WW+++aZSU1O1YMEC1a9fX67ryuv1asKECXrssceUnp4uSYqN\njVVeXp4OHjyo2NjYYKzc3Fzl5eUpJiYmuOy7k4BbtmypK6+8UhkZGcrKytLo0aMlST179tQrr7yi\nL7/8Uvn5+fL7/Ro4cKBmzJihpUuXlivv9ye/Vrf8pKefflr5+fnBLLvfX/+CCy4ITp7Nzc1VixYt\nlJiYqOzsbA0fPlwZGRlKTEysch/f1bx582B9VJT9uKryejwnLp99+/ZVu77ruuV+FxERUS6Lr9/v\n10MPPaRp06ZpwYIFkk5kJy4oKFDz5s0rLcN3Y1b2/5X561//qnbt2ikjI0NXX311cJvo6Gjl5+eX\nW7eiZRVp3bq1Lr/88nLlCAQCwZ/37dun9u3ba968eXr99de1Zs0aOY4jx3F06623VpqFGQAAAAAA\nAAAAAAAAAAAA1AwyG/9I9OjRQykpKRo3bpzq1q2rqVOnqn379oqLi5N0IiPwnDlzVFRUpBEjRkiS\nRowYoZEjR8pxHE2cODEYa+HChdq8ebMmTJhQ4b4aNWqkLl26KCUlRY7jaMiQIbr55ps1dOhQlZaW\n6sILL1TDhg114MABPfzwwyopKVH37t0lSX/605+Unp6urVu3yufz6dlnny0X+7sZbiszYcIEjR07\nVm+88cYp6zdr1kzt2rXTwIED1aBBA7366quKiorSnj17dOedd+q3v/2tEhIS9Pe//z2kfQ4ePFiT\nJk1Sy5YtK8yoW9W2N998syZOnCiv16sLLrigwvV37typSZMmacuWLRoyx33SRwAAIABJREFUZIhS\nUlLUq1cvdenSRRMnTtSGDRv00ksvKTc3V08//bSKi4vVr18/SdKyZcvUt2/fauvrySef1Lp16+S6\nrjZu3KipU6eGVM+XX3655syZoy+//LLc8o4dO2rbtm3y+XyaO3euYmJi1LVrVw0fPlzr16/XnDlz\nKoz3/X2enEQ8ZMgQOY6j9u3b64orrlDHjh0lSfHx8dqzZ09wknPdunWVkJBQbbkBAAAAAAAAAAAA\nAAAAAMC547ihpEBFrZGSkqL09PRgVl78n+TkZGVnZ9d0MYLef/993XHHHTVdjLByqOBYTRfhFBGe\n6id2hxzLLpSZ44Hq1wlVHaNmxyktsglkqNCJNos1ub7dpPvfFH5lEifS9ZvEkSS5RidVoMwmjiTH\nqkyGAlF1zWL5jUZ6lm2UU1ZiFisQUccsVsHR0upXCkF03fD8Pl9xoc21bHV8kWHY7zn+42axXMNz\n04obwhfSzjVPabFZLCdg11+VRNq0w/uO2ZUp8tWHTeLUnTDTJI4kxUTa3Vd6ymzaYM+x6v8iS6jc\niCiTOJ6iU/+Kzpk6XO9Cs1ixRp+fE4aPlazbu3AbI0RZjs8lHTG41a4fbTc+t+xDLcedVgrcSJM4\ndQ0H6KWGl3FUwKbOy7x250Gx3+ae71ip3b1j80ObzWJZ2de4o1mskjKbk+qo4YOpixp4q18pRN4j\n35rEKa5f+V+0qymlRp+dJMWGYTsVCL9hS9iKdm3ac9drM6aW7J5Vxxy3u2c4Ht3QLJbVc5JCq4eB\nkrxGZQrX9yhWzxEKA3Z9jNV9tsfwGVc4WtjqJ2ax+u/cYBInQnbjFsfoGYkks3cyjt/uGZ5bp55N\nHI/dc/iA7BoXj2zaYctn1YFIu/eYVs9I6sbZ3BtLUsDw2VSR0XsUq+OzOp8k6UiJXTsVX2bzvPNY\nVLxJHEmK8hr1oYZ1Hv2dvzYPVGfd7bfWdBHwI3H18v+vRvcfnjMhcNaEkvH2bFu9erXS0tKCZene\nvbuGDRt2Vvd54MABjRs3To7jyHVdNW3aVNOmTSu3TmV1s2zZMi1dujT4+379+qlPnz5ntbySTCca\nP/fcc/rqqxOTDh3H0eTJk3XppZeeUazNmzfr2WefDdZHx44dNWnSJLOyAgAAAAAAAAAAAAAAAACA\n8MFk4/8wGRkZNV0Ede/eXd27dz+n+2zSpIkyMzOrXCcrK6vC5X379lXfvn3PRrHOmcmTJ5vFuvTS\nS6utSwAAAAAAAAAAAAAAAAAAUDsw2RgAAAAAAAAAAAAAAAAAAOAcc7yemi4CEBLOVAAAAAAAAAAA\nAAAAAAAAAAAVYrIxAAAAAAAAAAAAAAAAAAAAgAox2RgAAAAAAAAAAAAAAAAAAABAhRzXdd2aLgQA\nhCLv6DGzWB7HJk6U1+47Gx7ZNMfH/HbNeqTXqKIkRRqFch27MvkDNnXlNSxTwLBb/q+6HU3izCj4\nh0kcSSp1IkziRChgEkeSSg2/exVh1Lh4SuzaO3m8JmFcb5RJHGsB2V1/hQWlJnEaRB03iVMSWdck\nzklFhX6TOPXibK5jS07A5tic0iKTOJJUFl3fLJZj1DdYXi/eMpvz3LJtsRwjePw2xxeIqGMSR7Ib\nt0QX7DWJI0mBuo3NYpV5Ik3ieEvt+tCyyFiTOIanpimrtsWUazPGc43GPycVHLUZI9SPMTo+43HZ\n0YIf3o9aHZtkfHxG55Qlx6iPcSNjTOKcCGZXT45RLMtxmfwlJmHcOnEmcSSZ3aeZCpTZxTLq/DwF\nB0zinAhmV+dulM0YwfI6do4fNYnjRkSbxJHCs53yWLYttVzA6PPzGJ2bkt35afUMQbKrJ0mSY/OM\n8nj4DX8UafVCRnbvUSTpaKlNrLgou+fLVrdplu8ZLO8crc4Ej+GN9sQ4m/coLx390iSOJAUcu3GL\n1blg9VxKkupE2Fwz3uMFJnEkKRBl+yzeguWzTsdwrH+00KajqV/H5lmLZPcMT7J7T1Q3zuZZp2W/\nZ/U8QpLZ+NxyXOYpOmwSp7ThhSZxJCkm2u7+CrXf+jt71nQR8CNx1R9X1uj+yWwMAAAAAAAAAAAA\nAAAAAAAAoEJMNgYAAAAAAAAAAAAAAAAAAABQISYbAwAAAAAAAAAAAAAAAAAAAKgQk40BAAAAAAAA\nAAAAAAAAAAAAVIjJxjgrDhw4oLlz51a5TkpKigKBwCnL33nnnSq327Vrl371q1+dVnmSk5NPa/1J\nkyZpx44dp7VNTaqsLs/EkiVLlJSUpLfffju47LXXXtMtt9yiTz/9tNLtdu3apYSEBB08eFD/+Mc/\n1LFjRwUCAfXu3Vs+n08+n09ZWVmSJNd11bVr12C8ZcuW6ec//7kk6a233tIf/vAHk2MBAAAAAAAA\nAAAAAAAAAAA/TERNFwC1U5MmTZSamlrlOo7jVLj8nXfeCU48Pd1trdb/sbE8vnvvvVdRUVHy+/3B\nZaNGjZLrutVu26FDB/3tb3/Tt99+qw4dOsh1XTVp0kQZGRnl1tu0aZN++tOfKicnR9ddd52kExPU\nf0wTvAEAAAAAAAAAAAAAAAAA+E9AZmOE7LuTh8vKyjRmzBgdO3ZMY8aMkc/n06uvvipJ2rx5s/r3\n769HH300uP66devUr18/PfHEE/L5fJJOZLedPn267rrrLn3++efauXOnUlJStHXrVvl8Pn388ceV\nlmX79u164IEHNGzYMB0/flzHjx/XyJEjNXDgQE2fPl3SicmrgwYN0siRI5Wfny9Jevjhh5WXlydJ\nGj9+vA4ePFjlMWdlZWnBggWSpP79++vXv/617rzzTv3rX/+SJE2bNk3Jycl68MEHdfz4cY0YMaLc\n9iNHjtTatWs1fPhwpaamavTo0ZXua9u2bfrFL36h8ePH65577pF0IsPy1KlT1a9fP/33f/93lWV1\nXVe/+c1v9NFHH0mSXnzxRaWkpOiBBx6oNFPwvn37NGDAAKWkpOjFF18sF+tMXHzxxfr666+Vn5+v\n+vXrVxprzZo1GjhwoP75z38Gl/Xu3Vvvv/9+rZ8YDgAAAAAAAAAAAAAAAACS5PE6/ONfSP9qGpON\nEbLY2Fj5/X4tWrRI27Zt0yWXXKIlS5bolltuUUZGhnbt2qV9+/bp0ksvDU74PSktLU2///3vlZyc\nXG55v3799Mwzz2j58uVq2bKlMjMz1b59e2VkZOjGG2+stCx+v1/z58/X9ddfrxUrVmjFihW69tpr\nlZWVpa+//lp79+7VW2+9pSFDhmjGjBk6fPiwpBMTWleuXKmSkhIVFhaqcePGle7jgw8+0L59+zRk\nyBBJ0pEjRzR+/HiNHDlSq1at0t69e7Vt2zZlZ2frmmuu0cqVK9WqVSvt3r1bixYtUkFBgeLj4yVJ\ncXFxmjt3roqKioJl+b4FCxZo6tSpeuyxx3T06NHg8ptuuknz5s3Tu+++W2lZXdfV66+/rhYtWqh3\n797au3evduzYoczMTLVt27bS7eLj45Wenq7MzExt3bo1OBH7h/D7/YqLiwv+nJeXJ5/PJ5/PpxUr\nVkiSvvjiC1122WWKjo5WUVGRJOmSSy7R1q1bf/D+AQAAAAAAAAAAAAAAAACAnYiaLgB+PDp06KAV\nK1ZoyZIlqlOnjhITE/Xxxx9r06ZNeuedd1RQUKD9+/eradOmp2x77NgxxcfHKzo6utzyNm3aaOfO\nnSosLAwuCyWr7skJtG3atNGWLVskSR07dgz+7ttvv9WePXvUu3dvRUVFqUWLFpJOTNwdP368zjvv\nPN1www1V7iMnJ0cdOnQI/tyoUSPFxcWpYcOGys3N1Z49e3TRRRdJktq1a6ctW7aoc+fOWr9+vRYu\nXKj4+Hh16tRJktS6dWtJUsOGDVVYWKgGDRqcsr/du3erXbt2ioqKKvf7Nm3aKD4+XseOHauyvJ9+\n+qluvvlmSdKePXuCdVTVZONDhw5pypQpKiwsVG5urgoLC9WoUaMq91OdpKQk1a1bVzk5OZKkxo0b\nKyMjI/j7srIyffnll3rwwQe1Z88erV+/Pvi7Sy65RP/85z+VkJDwg8oAAAAAAAAAAAAAAAAAAABs\nkNkYIUtMTFRmZqYGDx6st956S4mJiWrTpo0efPBBZWZm6q233gpOrnVdt9yk4djYWOXl5Sk3N7fa\n/ThO9Sm/T8b55ptv1KJFCzVv3lzbtm2TJG3fvl3nn3++WrRoodzcXJWUlGjnzp2SpJiYGMXExGjp\n0qXq3bt3lft4+umnlZ+fr40bNwaP6bsuuOCCYDlyc3PVokULJSYmKjs7W8OHD1dGRoYSExOrPZaT\nmjdvrtzcXOXl5VWY/biqSdiO42j+/Pn6y1/+oj179uiCCy7Q9u3bg/VRmQ8++EC9evVSRkZGuUnJ\n0dHRys/PL7duRcsq0rlzZ7Vr167Scm/cuFF9+vTRvHnz9NJLL2nNmjXBY7j99tv14YcfVrsPAAAA\nAAAAAAAAAAAAAABwbjDZGCFLTEzUkSNHlJSUpH379um8887Tvffeq2XLlmnw4MFKTU1VUVGRFi1a\npPHjx+vTTz+Vz+dTUVGRhg0bpgceeEALFy6Ux3PitKtsUvGFF16o8ePH67PPPqu0LFFRURo6dKj+\n9re/qWfPnurZs6dycnI0aNAgXXzxxWrWrJnuuecevfHGGxozZowaNmwY3LZnz546cuSIGjduXO0x\nT5gwQS+//LL8fv8p5W3WrJnatWungQMH6rPPPlPPnj3Vtm1b7dmzR3feeaf27dt3SobeqiZSDx48\nWE888YSmTp2q+vXrn/L76iZhO46jiRMnaurUqWrWrJlatmwpn8+nbdu2Vbpt165d9cYbb2jUqFGn\nLF+xYoVGjBgRXHbLLbdo3rx5euKJJ6osw/d/zsvLk8/nk8/n09y5c7V27dpgvbRv315///vfg9u1\nbt26wszYAAAAAAAAAAAAAAAAAACgZjhuVelSASN+v18RERHavn275s6dqxdeeKHGyrJixQodOHBA\nycnJNVaG6iQnJys7O/sHxThZ59OnT1e3bt30k5/8xKh0NSfv6DGzWJ7qE2iHJMpr950Nj2ya42N+\nu2Y90mtUUZIijUK5IWQ/D5U/YFNXXsMyBQy75f+q29EkzoyCf5jEkaRSJ8IkToQCJnEkqdTwu1cR\nRo2Lp8SuvZPHaxLG9UaZxLEWkN31V1hQahKnQdRxkzglkXVN4pxUVOg3iVMvzuY6tuQEbI7NKS0y\niSNJZdGnfnnsTDlGfYPl9eItsznPLdsWyzGCx29zfIGIOiZxJLtxS3TBXpM4khSoW/0XOENV5ok0\nieMttetDyyJjTeIYnpqmrNoWU67NGM81Gv+cVHDUZoxQP8bo+IzHZUcLfng/anVskvHxGZ1Tlhyj\nPsaNjDGJcyKYXT05RrEsx2Xyl5iEcevEmcSRZHafZipQZhfLqPPzFBwwiXMimF2du1E2YwTL69g5\nftQkjhsRbRJHCs92ymPZttRyAaPPz2N0bkp256fVMwTJrp4kSY7NM8rj4Tf8UaTVCxnZvUeRpKOl\nNrHiouyeL1vdplm+Z7C8c7Q6EzyGN9oT42zeo7x09EuTOJIUcOzGLVbngtVzKUmqE2FzzXiPF5jE\nkaRAlO2zeAuWzzodw7H+0UKbjqZ+HZtnLZLdMzzJ7j1R3TibZ52W/Z7V8whJZuNzy3GZp+jUvx5+\nJkobXmgSR5Jiou3ur1D7bejTq6aLgB+JLn9YUaP7D7+ZAqiV/vKXvygtLU2S9NRTT9VYOf74xz9q\n6dKlmjlzpiRp9erVSktLC2bW7d69u4YNG3ZWy3DgwAGNGzdOjuPIdV01bdpU06ZNK7dOZZmIly1b\npqVLlwZ/369fP/Xp06fCdX/9619r+/btaty4scaNG6dHHnlEBw4ckOu6chxHr7zySkjZnStSE/UG\nAAAAAAAAAAAAAAAAAADOPTIbA/jRILNxaMhsHDoyG4eGzMahI7PxuUdm49CR2TiEOGQ2DhmZjUND\nZuPQkdn43COzcejIbFw9MhuHjszGIcYhs/G5R2bjkJHZOMRYYdhOkdk4dGQ2Dg2ZjUNDZuPQkdk4\nNGQ2Po1YZDYOCZmNQ0dm49CQ2Tg0ZDYG/g+ZjRGqms5sbHf3AwAAAAAAAAAAAAAAAAAAAKBWYbIx\nAAAAAAAAAAAAAAAAAAAAgAqF399ABgAAAAAAAAAAAAAAAAAAqOUcr1PTRQBCwmRjAD8asRHh17kG\nLIO5NtFiI2p30nrHdWu6CKfwyK5MXtdvFmtGwT9M4oyN62wSR5JmHP7cJI4bGWMSR5IizSJJMjo/\nyyJjTeJItuenFae0yCyW12v6CZpwI+qYxIksO24S56QieU3iOAGbdqrUsbsVMTsPDM8nJ1BmFqvU\n6A/SOIbtgccbZRPIaPwjSY7hH+5xjY7PctwSZTRGKK13vkkcSXJWppnF8t40yCSO5RjBrA817Ipd\nx/CeyOj6Czg2/YskeRyb69hTVmoSx5rjt+nbA0ZjDUtW7aYkBWR3njseu/PTSmmETTvlNayngGEf\n6vXa1LnfcKxY6Ni0d3W9dvUUadmcG/UNe+xu01QasOn8YqKamcSRpLhIu88vxiiW5VixMDLeJE6k\n4ctNy3aqzKidKvPaPW+p7aKN2hZ/tM25KUkBo2vGGxltEkeSyozaO0nyGF0zUeE3/DHlKT5qFism\nqp5JHNN3FkbXnuUEAL/h4Vm95nMCdvd8Lx/+u0mcP7S5xiSOJPXZnmMWy+OxORsiLCdAGV0zJZF1\nTeJIktfweYuntNgkjun9rOlzEptn6JbP8LyGbYIVb+kxkziFjt24pf7hXWaxShpfZBLHanwnSWWR\nNv16HcN3OwBQG9XuGWkAAAAAAAAAAAAAAAAAAAAAzhiTjQEAAAAAAAAAAAAAAAAAAABUiMnGAAAA\nAAAAAAAAAAAAAAAAACrEZGMAAAAAAAAAAAAAAAAAAAAAFWKyMc660tJSpaSkqHfv3ibxlixZoqSk\nJL399tvllh84cEBz58412UdycrJJnJqya9cu/epXvzqjbX/961/r+uuv144dO4LLRo8erWuvvVaB\nQKDS7ZYtW6Y77rhDkvTGG28oOTlZu3btUrdu3eTz+eTz+fT5559LkjZt2qTLL79cx48flyRNmjRJ\nL730kiTpV7/6lXbv3n1GZQcAAAAAAAAAAAAAAAAAALYiaroAqP0iIyOVmZmpgQMHmsS79957FRUV\nJb/fX255kyZNlJqaarIPx3FM4tSkMz2GKVOmqLi4uNyymTNnyufzVbttVFSU9u7dq/379wf3361b\nt+BE4pNycnJ066236vPPP9d1110nScGJyAAAAAAAAAAAAAAAAAAAIHww2Rhau3at5s+fL8dxFBUV\npZkzZyovL0+PPPKIiouLdccdd2jQoEGSTmT8bd++vf75z39qwoQJmjRpkqKiotSxY0ft3r1b6enp\nmj17tlavXi2v16unnnpKF110UchlmTJlirZs2aLzzz9fr776qvbt26exY8cqIiJCiYmJmjBhgiTJ\ndd1y223evFlTpkxR69atgxNbJ02apNjYWG3YsEHDhg1TUlKS1q9fr2nTpkmSJk6cqMsuu6zSsriu\nq8mTJ+sXv/iFmjVrpgkTJig+Pl75+fnKzMxUaWmpHn74YR05ckRXXXWVRo0apUcffVQzZsyQJO3d\nu1dz5sxR48aNtWvXLn3zzTfq3bu3hgwZUuH+li9frgULFqh169aKiIjQ888/r/79+yshIUHr1q3T\nrFmz1Lp161O2mzVrlr744gtJ0rFjxzR48GB16tQppPpevXq1XnvtNXk8Hg0aNEi33357lfVRnZ/+\n9KdasWKFYmJiqtzuiy++0PDhw/XRRx8FJxtfdtllWr9+fa2Y6A0AAAAAAAAAAAAAAAAAQG3hqekC\nIDzExcVp7ty5Ki4u1uHDh7VkyRIlJydr8eLFev/991VWViZJ2r9/v4YOHars7GwlJiaqffv2Gjdu\nnBITE5WYmKj8/HwNGjRI2dnZ+q//+i9lZmaeVjk2bNigxYsXa/r06ZKk+Ph4paenKzMzU1u3blVe\nXl6F21166aXBbb7rpptu0rx58/Tuu+9Kkl555RWlpaUpLS1Nc+fOrbQcruvq2Wef1W233aYrr7xS\nkuT3+zVr1ixdcskl2rx5s1asWKFrr71WWVlZ+vrrr3Xo0CGVlZXp2LFjeu+997Rp0yZ17txZknT5\n5ZcrKytLH374YaX7zMzMVFZWlnr37h1cduTIEY0fP14jR47UqlWrKt124sSJchxHr7/+utasWVPp\net/XpUsXLV68WOnp6UpPT69y3VAmAbdu3VoffPCBrrnmmuCyTz75RD6fTz6fTzt27FBZWZnKysqU\nkJCgLVu2BNe77bbbqqwfAAAAAAAAAAAAAAAAAABw7pHZGJIUzJjbsGFDFRYWavfu3erVq5ck6fzz\nz9ehQ4fUuHFjNW7cWBdeeKEkyev1KiYmRrGxsYqNjVVMTIyKi4u1atUqLV++XH6/v1wm3lAy46am\npmrcuHFq2bKlxo8fr0OHDmnKlCkqLCxUbm6uCgsL1ahRo5CPq02bNoqPj9exY8ckSbm5uXrwwQfl\nuq4iIyMr3W7//v3aunWrfvrTnwaXtWrVStKJCdCFhYXas2ePOnbsKElq27atvv32WzVq1Ej/8z//\no+XLl+uyyy5Tjx49tHv3brVu3Voej0der7fSfUZERCgyMlJt27YNLmvUqJHi4uLUsGFD5ebmVrpt\ndHS0GjdurOjoaBUVFYVWOZK++uorzZo1S4FAQIcOHapy3VA+P0kaPHhwcIK24zjq1q1bMNu0dCKr\n8datW/XAAw/o66+/Dn425513nvLz80PeDwAAAAAAAAAAAAAAAAAAOPuYbIxyTk70bNGihbZt26a2\nbdtq7969io+PlyR5PFUnww4EAlq8eLHee+89rVmzRkuXLg3+rrS0VIFAoMoYPXv21M9+9jPdf//9\nys/P1wcffKBevXqpb9++SklJCa4XHR2tnTt3nlL26iaqJiYmatasWYqKilJpaWml6zVt2lTz5s3T\nL3/5S1177bUVrtO8eXNt27ZN3bt31/bt23X++eerU6dOeuedd9SjRw+tXLlSI0eO1IoVK8qVsTJ+\nv1+lpaXavn17SOtXJ5RtX3/9dT333HOKj4/XPffcE1weExOj/Pz84MRySYqNjVV+fr4aN25caTzH\ncZSUlFRu/98vx5o1a/TUU0+pa9euWrBggdatWxf83U9+8hPNnDkztAMEAAAAAAAAAAAAAAAAgB8x\nx1v1fDwgXHCmohzHcSRJv/jFL5SVlaUBAwbojjvuCGbkPfn7qra/4oorlJKSUm6SrSQlJSXpvvvu\nO2X5Sa7raujQobrvvvt03nnnqWHDhurataveeOMNjRo1qty6Xbt21YoVKzRixAhJ0qJFizR+/Hh9\n+umn8vl8wWy53zd8+HANHTpUgwcPVlpaWpXHEhUVpQcffFAvv/zyKcconZgYnZOTo0GDBuniiy9W\ns2bN1LlzZ3m9XnXr1k3FxcWn1FdV9Tdo0CAlJyfrww8/DGn96qxZs0a//OUv9ctf/lIfffRRhev0\n7NlTo0aN0vPPP6969eoFl99+++168sknNWPGjOCyu+++W8OGDVNWVlZI+z9Z9k8++UQ+n08+n08f\nf/yx1q5dq06dOkk6Mfl7zZo1wW169eql/Pz80z5WAAAAAAAAAAAAAAAAAABwdjjuD0mdCsDcv//9\nb82ePVvPP/98TRcl7BQXFdV0EU4R0JlPCP8+j1tmE8jheyShKjXqASPtTgM5Ab9dMCNj4zqbxZpx\n+HOTOG5kjEmccGXatij8hnpOqWF77o00C3Wk4u8qnbb6sTZxFDDqF/6fI8VekzhWx1fq2P2RFa/H\nsCE24hh+fqVG3xG1rKUIq2BuwCiQav0YyGqMUOaxazedlVV/gfN0eG4aZBKnto8R3B/whdTvs2qn\nAo5N/yLZjVusx9RWY4QGkTZjoLLo+iZxTio4WvlffgpVvTi7ft1yLGx4yZjxB2zOc6/hwQUMHw9b\njcus6kmSCkttxht1I+3GGpbPEaz6hj0FP7wtOKnU6POLibCr8zjDzy/GKJZjeO0d89vEivTanZyW\n7VSZUV2VGbYttV200blg2a9b9VeWzxAszymP0TUTjuMfS97iI2axSqLqVb9SCMyekciuX7fsY4y6\nGEl2dWV6z2f0bOoP7a4ziSNJfbbnmMVyPbX3D11bnpuWfYOntNgokN3zFpXZjfWPHLd5tmj5HMGy\nTTB7T1THps4LnWiTOJJU//D26lcKUUnji0ziWD6PKDMKVcexe2cRHVvXLBZqvy/uTarpIuBH4vIl\n/12j+6+9o0sgBGlpaVq9erWkE5l4hw8fruuvv/6s7nP16tVKS0sLZv7t3r27hg0bFtK2zz33nL76\n6itJJ8o7efJkXXrppdVud+DAAY0bN06O48h1XTVt2lTTpk0742OoiXoDAAAAAAAAAAAAAAAAAADn\nHpmNAfxokNk4RLU8q58lMhuHhszG5x6ZjU8DmY1DRmbjc4vMxiEis3HIyGwcmto+RiCzcWjIbHx6\nyGx8bpHZODRkNg4dmY1DQ2bj0JDZGCeR2Tg0ZDY+98hsHBoyG58GMhv/aJHZ+DSQ2ThkZDYODZmN\nQ0NmY5wOMhsjVDWd2bh2v40FAAAAAAAAAAAAAAAAAAAAcMaYbAwAAAAAAAAAAAAAAAAAAACgQkw2\nBgAAAAAAAAAAAAAAAAAAAFAhJhsDAAAAAAAAAAAAAAAAAAAAqFBETRcAAELlOk5NF+EUtiWy+f6H\n3zUJI0nyeuyO0FNWahKnzBNpEkeSIqy+cuMaVrobMAtV6okyiTPj8OcmcSRpbIMrTeLMKPiHSRxJ\ncj3hNxyKKCkwi+V6ba4Z12tzPkmSG1HHLJYtm+uvMOA1iRMdYdfenWDTDpc6NtdMhGUnatkOGyk1\n/F5npFFdWY4RwpFTVmIWy6oPtTzPrfor0yF1r+FmoVZf1d0kTvc6nbeVAAAgAElEQVS1fzaJI4Xn\nGOG4326sWCfCpr/yGLbBTsBvFisc+evUN4njNbq3smR5v255TrnGd+0WrErkkV092bUsdiw/uSjD\nZxu1WeMYu37PqsqLDQewls+4wlG00UOugGEbHI7tVEQtPw8QGicMnyFIdtdMWI5/DOs8UKeeWSyP\nUV254VflpuPzCLfMLFY45kEr89o8q+7z9V9N4kjSl/f1M4vV6c0/2ARywu+ziwzYPQtUmeF9qNX7\nD8P3hYqMsYt13ObZzXHDw4syeg92gs0zF9eozmNNopxQ0vgis1jegE09BYzeN0l296Gux+aZKQDU\nVuE3KgQAAAAAAAAAAAAAAAAAAAAQFsIvTQ8AAAAAAAAAAAAAAAAAAEAt5/GG4Z/LACpAZmMAAAAA\nAAAAAAD8/+zdeXwUdZ7/8Xd1dzoHERICA6iQ4MWNKyILCo8RZoRFcURmRIgkgA7oODgIuHI4u8oo\nYZjZqAgzSggCORDxAB1hZ+KsyvJYOeRQcQnKIcoNmRxASEj6+P3Bj14DHWjxozT6ev6jFFXv77e+\nVV31repvfwEAAAAAAADCYrAxAAAAAAAAAAAAAAAAAAAAgLAYbIyI1NbWKiMjQ/369TPJW7Jkifr3\n769XX321zvKSkhLNmTPHpIz09HSTnAtl7969+td//dd6//7ee++VJM2ePVurV682KXP//v3KyMjQ\nPffcE1r28ccf6+6779ajjz561m0zMjL04osvSpJ+9rOf6dVXX9Xs2bN1xx13KCMjQw888EBo3ays\nLE2cODH057Zt22r79u3y+/3KyMgw2RcAAAAAAAAAAAAAAAAAAPDNMdgYEYmJiVF+fr6aNGlikjd4\n8GDdf//9Zyxv0qRJ2OXnw3Eck5wLqb59eP/999W9e3fz8lq0aKH8/Pw6yzp37qynn346ou0PHz6s\ngwcPyuPxhJZNmjRJ+fn5euGFF0LL9u3bp6NHj4b+3LRpU61YsULS9+O4AQAAAAAAAAAAAAAAAADw\nfeE59yq4GKxbt065ublyHEder1ezZs1SaWmpxo8fr+rqag0YMEDDhg2TdHLG32uuuUafffaZJk6c\nqMmTJ8vr9apdu3bat2+fFi5cqOeff16rVq2S2+3WE088oSuvvDLiujz++OP69NNP1bx5cz377LM6\ndOiQxo4dK4/Ho44dO4ZmtA0Gg3W227p1qx5//HGlpqbqD3/4gyRp8uTJSkhI0KZNmzRq1Cj1799f\nGzZsUHZ2tqSTA1k7d+5cb12CwaCmTJmiu+66S82aNdPEiROVlJSksrIy5efnq7a2Vg8//LCOHDmi\n66+/Xr/+9a/16KOPaubMmZKkgwcP6oUXXlBKSor27t2rXbt2qV+/fhoxYkTY8lasWKEFCxYoNTVV\nHo9H06dP191336327dtr/fr1mj17tlJTU8/Ybvbs2froo48kScePH9fw4cPVoUOHevfrtdde02OP\nPRb685tvvqnnnntOffv21ciRIyVJd911ly677DIdOHBAM2fOVLNmzc7I+d3vfqdt27bJ6/Xq97//\nvZo2bVpvmZFISEhQUVGRbrrppjOO7ymlpaVq3LixGjRooC+++EKpqalq2bKlvvjiC0lnnhcAAAAA\nAAAAAAAAAAAAAODCYWbj75HExETNmTNH1dXVqqio0JIlS5Senq7Fixfrrbfekt/vl3Ry9tn77rtP\nixYtUseOHXXNNddo3Lhx6tixozp27KiysjINGzZMixYt0iOPPHLGTLfnsmnTJi1evDg0G25SUpIW\nLlyo/Px8bdu2TaWlpWG3a9u2bdgZdG+++WbNnTtXb7zxhiTpmWeeUU5OjnJycjRnzpx66xEMBjVt\n2jT9y7/8i7p06SJJ8vl8mj17tq6++mpt3bpVRUVF6tatmwoLC7V9+3aVl5fL7/fr+PHjevPNN7Vl\nyxZ16tRJknTttdeqsLBQf/3rX+stMz8/X4WFherXr19o2ZEjRzRhwgT96le/0rvvvlvvtpMmTZLj\nOJo3b57WrFlT73qHDh2Sx+NR48aNQ8tO1e1vf/tbaNkXX3yhp556SosXL9aPfvSjsFnjxo1Tfn6+\nfv7zn4fa95vo2rWr3njjjTqD03//+98rMzNT//Zv/yZJWrt2rbp27apu3bpp7dq1ofU6dOigTz75\nhJmNAQAAAAAAAAAAAAAAAACIIsxs/D1yasbc5ORkVVZWat++ferbt68kqXnz5iovL1dKSopSUlLU\nsmVLSZLb7VZ8fLwSEhKUkJCg+Ph4VVdX691339WKFSvk8/nqzMQbyayz999/v8aNG6fLL79cEyZM\nUHl5uR5//HFVVlZq586dqqysrDNQ9lzS0tKUlJSk48ePS5J27typBx98UMFgUDExMfVud/jwYW3b\ntk033nhjaFmrVq0knRwAXVlZqf3796tdu3aSpNatW+vAgQNq3Lix3nvvPa1YsUKdO3fWT3/6U+3b\nt0+pqalyuVxyu931lunxeBQTE6PWrVuHljVu3FiJiYlKTk7Wzp076902Li5OKSkpiouLU1VVVb3r\nLVmyRHfddVedZeHqdsUVVygxMVGS6h3A++KLL+qDDz5QZWWlevfuHVp+PrMLO46j66+/Xvfee69q\nampCyydNmqQePXqE/rx27Vrt3LlTbrdbKSkpGjx4sCTp1ltv1YIFC752uQAAAAAAAAAAAAAAAAAA\n4NvDzMbfQ6cGil522WXasWOHgsGgDh48qKSkJEmSy3X2wx4IBLR48WIVFBTo4YcfrjPwtLa2VoFA\n4Kzb33LLLXrmmWf0ySefqKysTMuXL1ffvn2Vl5dXZxBuXFycysrKzqj7uQa6duzYUbm5ucrPzz/r\nzMY/+tGPNHfuXL344os6duxY2HUuvfRS7dixQ5L0+eefq3nz5urQoYNee+01/fjHP9b69et19dVX\nn1HH+vh8PtXW1urzzz+PaP1zOX3bQCCgjz76SF27dj3n+uc6zuXl5Vq/fr0KCgo0bNiwOttWV1fX\nWTc+Pv6MYxWubI/Ho1tvvfWs+7xr1y7l5eVp/vz5dTKbN2+uAwcOnLUMAAAAAAAAAAAAAAAAAADw\n3WKw8ffQqVls77rrLhUWFmro0KEaMGBAaNbb+ma5/er2//RP/6SMjAwVFRXV+bv+/ftryJAhZyw/\nJRgM6r777tOQIUPUtGlTJScnq3v37po/f75+/etf11m3e/fuKioq0gMPPCBJeumllzRhwgStXr1a\nmZmZoZmMTzd69Gjdd999Gj58uHJycs66L16vVw8++KD++Mc/nrGP0smB0WvXrtWwYcN01VVXqVmz\nZurUqZPcbrduuukmVVdXn9FeZ2u/YcOGKT09XX/9618jWv9c1qxZo3vvvVf33nuv/va3v+mdd97R\nzTffXO/6Xy3rXOU2atRIDRo00MiRI7V+/fo6f3f99dcrPT1dGzdulHRydub4+HhlZGRo9+7dEZV9\n6s8zZsxQRkaGMjMzdfDgwdBsy9LJAcbbt28PrXvDDTectc4AAAAAAAAAAAAAAAAAAOC75QS/ybSr\nAML68ssv9fzzz2v69Ommue+88466detWZ8DuD0nVaTMuf984Rpdjn+FV3e06/8Hyp3P5a01y/K4Y\nkxxJ+ga/BaibY3grdfw1Zlm1Lq9JToyvyiRHksY26mKSM/PYZpMcSQq6PGZZVlw1lWZZQbfNZybo\ntjmfToad/V9JuFCOVtrUyx3nNsmJ89j+LrDymM11OL6BzWfGY3eLiUq1hvfjGKO2suwjmB0/w+uB\nE/CZZVndQ6PxPA9adYCM/c/1vUxyeq17xyRHis4+QrXf7oMca3SfMe0LG36OLR0J/1vor61Bok2/\nzB2wuaefYrF/iZcYPqcZnlPReM3zB2z2z/IeE43vEazaSZJqjK6dMW67Rrfq30l257lVO0mS1euk\nasOT02t4/KyyLK93AdnUKWBYp2i9TiEyVsfP6tyU7M7PaD03reoVjf0fy+udJavzMwqb3JQT8BuG\nGT2HGj47Wn3n5K41enCU9Mk9d5tldXh5mU2Q0bGzZPl9miyfQz2xRkGG36MYHr+jx2w+f94Eu/du\nln39Y0dt3rlckhh97xUt+2VW76ZqHbt2svoUewzHR8THxZll4ftv89BbL3QVcJHo9NKKC1p+9N3h\ngK8pJydHq1atknRyRt3Ro0erZ8+e32qZq1atUk5OTmhG3l69emnUqFERbZuVlaXi4mJJJ+s7ZcoU\ntW3bNqJt+/Tpc171Xbp0qV5//fVQfQcNGqSBAweeV5YkZWRkyHEcBYNBOY6jvLy8884CAAAAAAAA\nAAAAAAAAgB8ix3CgO/BtYmZjABcNZjaOTDTOSCQxs3HEWcxsHBFmNo4cMxtHjpmNI8PMxpFhZuMI\nMbPxdy4aZ7mSmNk4UsxsfGEws/G5MbNx5JjZODLMbBw5ZjaODDMbR5jDzMb4/5jZODLR+Jwdjf0f\nZja+uDGzcWSY2fi7x8zGXwMzG0eMmY0jw8zGkWFmY3wdn9xz24WuAi4SHQuXX9Dyo69XCAAAAAAA\nAAAAAAAAAAAAACAqMNgYAAAAAAAAAAAAAAAAAAAAQFgMNgYAAAAAAAAAAAAAAAAAAAAQludCVwAA\nIlVe7TfLqg0ETXIaeu1+sxHndkxyqnw2+yZJbscuq4FRU8Uc2W8TJCnQoLFJzrFgjEmOJCUG7c5z\njytgkhOMiTfJkaSZxzab5IxN7GSSI0ndG9vtX/q2/zLJCcYkmORIUsATa5LjBO2uB67qCrMsX7zN\n5/gkm8+MlYBhm1vy1laa5AS8DUxyJMnxnbDJCfhMciTJa/TZk6SgY/PYFlt52CRHkgIJySY5QZfd\nI6lTW2WW5Yozunb6bc5NSap2vCY5sS67a0vQsem/StJNG1aZ5FTMnmiSI0lNBmWY5Jy4tKNJjiTF\nGfXvJEkBo36nY/g7dqM6+T1xJjn/p9Ykxere7jK8dp70ze9/rprjBvU4yfL5w2XUR7AUdFv1EQz7\n54bXc6s2dwzPc3eM2ySnqtbuGhzrP2aWJaM+rCvOpn8nSTV+m/PTZ/T+TpIaOjVmWa5jZSY5gcQm\nJjmS5LK6Hzs2n5eTou86Fa3P2VEpaHPNcxveix2v0fsyq36wJFcUfmYOH7d7t2F1HU6Jt7uvxxo+\nfuw+anNvaBxnt3+XeGza3FO+xyRHkvyNLjXLqjWaB81r+Q7I6Hu+gNU1SlLHxa+bZc1t0cUkp2ms\n3fXuzq1/N8kJGj77Wz6HWnGdOGqW5YtLMsuyYtnXN/qK3ZTjt7nHBN0274QlyW/5Pd/KApuc3iNN\nciTJHbB5f+fZv80kR5LU2uYaDADRhJmNAQAAAAAAAAAAAAAAAAAAAITFYGMAAAAAAAAAAAAAAAAA\nAAAAYTHYGAAAAAAAAAAAAAAAAAAAAEBYDDYGAAAAAAAAAAAAAAAAAAAAEBaDjfGNLVu2TFu2bPnG\nOUuXLtWrr74a0bpbt27Va6+99o3LlKT09HSTnO+D2tpaZWRkqF+/fqFl+/fvV0ZGhu65556zbjt5\n8mQ9+eSTkqRf/epXmjlzppYuXap/+Zd/UUZGhjIzM1VVVSVJWrBggYYNGxbatk+fPlq5cqUkjgcA\nAAAAAAAAAAAAAAAAANHEc6ErgIvfwIEDv/My27Ztq7Zt25pkOY5jkvN9EBMTo/z8/DoDi1u0aHHG\nsvocPnxYNTU1OnLkiKSTbfvLX/5Sv/jFL+qs9/HHH6tx48aqrq5WXFycGjVqpP/6r//Sj3/8Y44H\nAAAAAAAAAAAAAAAAgB8El5v5YnFxYLDx99y6deuUm5srx3EUGxurJ554QuPHj1d1dbUGDBgQml02\nPT1d11xzjT777DNNmjRJDRo00NSpU1VbW6tRo0apT58+ysjIUFpamrZu3aqJEyeqa9euysnJ0eLF\nizVt2jT16NFDkvSzn/1Mbdq00Y4dO7RgwQI1bNhQ2dnZ+vDDD5WcnKzs7Gxt2rRJs2bNktfrVVJS\nkrKzsyVJq1at0vLly3XVVVfpscceC1u3iooKZWdnq3fv3ho7dqwkKSMjQ9dee61WrlypqVOnqkuX\nLioqKtL8+fPl8XiUlZWlli1b1ttOJ06c0COPPKIJEybo0KFDoTbzer2aNWuWSktL67Rbz5499dJL\nL2ny5MmSpA0bNmjTpk3asWOHEhIStGnTJo0aNUr9+/cPW96CBQtUVFSklJQUtWnTRmPGjAnbbqeb\nPHmyysrK5HK5VFJSot/+9rfq3LmzsrOztXHjRsXFxWnevHnauXOnHn30UaWmpurLL7/UK6+8ErYe\nzz//vFatWiW3260nnnhCV155ZSSnVb1atWqlpUuXqkuXLqFlwWCwzjqBQEA+n0///M//rI0bN+rG\nG29UfHy8fD6fTpw4ccb6AAAAAAAAAAAAAAAAAADgwmFY/A9AYmKi5syZo+PHj2vJkiVKT0/X4sWL\n9dZbb8nv90s6OSPtfffdp0WLFqlDhw56+umnlZWVpcLCQhUUFISy7rnnHuXk5CgnJ0eSNHr0aA0a\nNKhOeRUVFZoxY4b69++vtWvXqri4WCUlJcrPz1fPnj1VVFQkSWrYsKHmzZunlJQUffjhh5JODlad\nP3++Nm3aFMr7at06duyoXr16hQYin+I4jgYNGqRp06ZpxYoVCgQCys3NVUFBgZ588knNnTu33vbx\n+/2aMmWKHnjgAaWlpdVps+rqalVUVJzRbi1bttTevXu1f/9+rVy5UsXFxerUqZMk6eabb9bcuXP1\nxhtvhC3P5/OpqKhIixYt0vXXX19vu9Xn2Weflc/n0/Tp0/XBBx9oy5YtKikpUWFhof70pz9JOjmY\n+amnntJjjz0WmmU4nGHDhmnRokV65JFHlJ+fX+96kbrpppuUk5OjG264QcFgUMFgUPPmzVNmZqYe\neOABSdInn3yidu3a6YYbbtCaNWtC2/74xz/We++9x8zGAAAAAAAAAAAAAAAAAABEEWY2/gFITU2V\nJCUnJ2v9+vXq27evJKl58+YqLy9XSkqKUlJSQjP/ut1u7d69W1OmTFEwGFR5eXko64orrpDX69Xx\n48frLe/yyy+Xy+VSUlKSKisr9fnnn2vjxo3KzMxUTU2Nbr/9djVt2lRXXHGFJCktLU379u2rU9fY\n2NhQ3lfr5nKdHB8fbvbbtLQ07dmzR5WVlSorK9OePXs0cuTI0L7Wp7i4WDExMXUGuX61zSorK7Vv\n375Qu7Vo0UJlZWXyeDxauXKltm3bppqaGg0cOFDLli1TWlqakpKS6m2jsrKyUH1at26tzZs3h223\n+sTFxSklJUXx8fGqqqrSF198ERroHBcXJ0nau3dv6Fg1atSo3qw333xT//mf/ymfzxfaZyl8+0Yy\n4/Dll1+uhx56KFQPx3H0y1/+Ur/4xS9C66xZs0YrV67U+vXrVVNTE1qvd+/eevzxx89ZBgAAAAAA\nAAAAAAAAAAAA+O4ws/EPzA033KAdO3YoGAzq4MGDSkpKkvR/g3hPufLKK/Xcc88pPz9fr7/+emj5\nzp07VVpaqoSEhHrLOH1QauvWrdWnTx/l5eVp8eLFGjx4cChLknbt2qUWLVrUm3F63cKtc3qZycnJ\nateunfLy8pSXl6dp06bVW9+OHTtq5syZmjFjhgKBQNgyLrvsslC7HThwQMnJyWrVqpU2b96sZs2a\n6ciRI0pMTDxrO5ySlJSk/fv3h/b9XOufS2pqqj766CNJ0okTJ0L13b59u0pLS1VRUVHvti+//LIK\nCgr08MMP1ym/trb2jLaorq6OqD4DBw4M/f+p2Y2/asOGDSooKNC8efNCg7mDwaC8Xq88Ho+qqqoi\nKgcAAAAAAAAAAAAAAAAAAHz7GGz8A+I4jm688UYVFhZq6NChGjBggNxud+jvvmrMmDEaN26cMjMz\nlZWVFVpeUFCg0aNHa/To0ZKkBx98UEuXLtWMGTM0c+bMsFnt2rVTTEyMMjMzNXz4cBUXF0uSKioq\nNHLkSJWUlOi66647o67h/l+SZs2apenTp+vNN9/UAw88EHYdl8ulu+++W8OGDdPw4cO1dOnSs7ZN\n48aNNWDAAOXm5oYt+6677jqj3Tp16iSv1xv67+lOr9MpMTExuuWWWzR06FCtX7/+nOufS/v27ZWS\nkqL09PRQewwfPlz//u//rieffDI0oDycf/qnf1JGRoaKiorqLO/fv7+GDBlSZ/n111+v9PR0bdy4\nMaJ6OY4jx3H04osvKjMzU5mZmdq3b5+OHDkij+fkpOpt27bV+vXrQ/v+k5/85KyDowEAAAAAAAAA\nAAAAAAAAwHfLCZ7vdKr4wcnIyNDChQvrnWn461i3bp1Wr16tsWPHGtTs4rV69Wpt2LBBY8aMMc31\n+XzyeDyqrKzUQw89pBdffNE0/0LZX15pllUbsLn0NfTa/WYjzn1+A85Pd7TW7rJuVCVJUgOX3yTH\ndazEJEeSAg0am+QcC8aY5EhSYjCyWcQjEfTE2gQ5due5E/CZ5IxN7GSSI0ndG8ebZaVv+y+TnGBM\n/f+CwNcViIkzyXEMu4yuqjKzLF+8zedYkiqP1ZrkuOPcJjley4uwpKpKm89fI+8Jk5yAt4FJjiQ5\nPps6WV2jJMNrsKSgy2OS4z522CRHkgIJySY5VvsmSa5qux+t+eLq/8He1+H225ybklTtnPkDx/MR\na/iT4+B5/mDy23R09kSzrCaDMkxyTlza0SRHkpyATZ/alGVf0eh67vfY9H9OseojxDewueZ5jD96\nR4998/tfw1ibNpKkYIxd/9zx15hlWfG7bfoILtn1zwOyO6ms7n2WfYSgy6Z/XlUbOPdKEUr0HzPL\nklEf9kScTf9Okmr8NuenVY4kNXbbXadcx22eaQOJTUxyJClodD8OODafFyk6r1MBvg6LmEc21zyr\n/p0kBbw278ss+9TR+Jk5VGW3fz6j71FS4u3u65bPtF8ctbk3NI6z279LPDZt7infY5IjSf5Gl5pl\n1To2beWtOWqSI9m9o7Tqc0qSy2/Xb5l7aVeTnKaxdvt359a/m+QEDZ/9LZ9DrUTju07J7h2Jy+h7\nFEmKNfwuxep7lIbxNn2poNvmnbAkGQ4hUMx7C0xyAr1HmuRIkjtgc256Dm0zyZEkd+suZln4/tuS\nefuFrgIuEu3z/nJBy7d7+sH33vnOvBstsrKyQrMqO46jKVOmqG3btt9qmUuXLtXrr78eartBgwZp\n4MCBEW07fvx4lZSUKBgMynEcPfPMM0pJSYlo208//VRTp06V4zgaO3asVq1apZycnFA9evXqpVGj\nRp3fTn3DugEAAAAAAAAAAAAAAAAAgIsHg40Rsby8PLOsbt26qVu3bmZ5kZgyZcp3Wp4k3Xnnnbrz\nzjvr/fsePXqoR48eYf/u6aefPu9yO3TooCVLltRZ1qtXr/POO903qRsAAAAAAAAAAAAAAAAAALh4\nGP5jMwAAAAAAAAAAAAAAAAAAAAC+TxhsDAAAAAAAAAAAAAAAAAAAACAsz4WuAAAAAAAAAAAAAAAA\nAAAAwA+N43YudBWAiDCzMQAAAAAAAAAAAAAAAAAAAICwmNkYwEUj1vCXPFZRgaBNTrSKj7H7TUow\nChsr4Ik1yamp9pvkSJLjBMyyaox+UxRjknJS0GXT9ejeON4kR5LWlFaZZaW7vSY5Qbdlq0cho/Mg\nWnmNbjIefsAasVq3zfXc5YkzyZEkV9Du3mAl6Njd12sdm8+x27E70YNG12BJcsmm3+I3OjclyRuF\n/VdXMPr6d4ktm5tl1Wz9wCTHadHBJEeSnKBdX9GK5bVFhteEaOSR1fGLwrkDXO4LXYOwqkyfZmy4\nja6drij9uFi1uUd2O+gxanPTdyQuu2da+WtNYiz7ZQkxNlkJhh9hf9DuOhVsaNPfcNVUmuRIUrWn\ngUmOVT9Yis7rlD/6uq9Ry2V0b3cZvX+1VGvYl4rGHlCc4fcotUb3hqDps6Pd/rmMsuIsX+JZ3Y8N\nn9MChu+qXVanQsBnFGR3TYgxPM8t27yx1+ZKtbfKrs2DMQk2QVH6HGrG8HNs2cez4jHsLEbldylR\n+N7U6DFNkuRp1sok55jf7l1nnMvoM+OJvndJABBNovDbCQAAAAAAAAAAAAAAAAAAAADRgMHGAAAA\nAAAAAAAAAAAAAAAAAMJisDEAAAAAAAAAAAAAAAAAAACAsBhsDAAAAAAAAAAAAAAAAAAAACAsBhtf\nxJYtW6YtW7Z845ylS5fq1VdfjWjdrVu36rXXXvvGZUpSenq6Sc7FYt++fZo8ebIkafLkydq9e3fE\n2z7//PNas2bNWdd56qmnvlH9TnnooYfUrVs3BQIBSVJtba0yMjLUr1+/s243e/Zs3X///aG6PPro\no1q3bp369OmjzMxMZWZmhvb57bffVu/evUPbZmRkqLCwUNIP77wAAAAAAAAAAAAAAAAAACCaMdj4\nIjZw4EC1b9/+Oy2zbdu2+vnPf26S5TiOSc7F4uWXX9aQIUO+9naBQEDr169X9+7dz7reb3/72/Ot\nWh2zZs1S27ZtQ3+OiYlRfn6+mjRpcs5tjx49qpqaGh0+fFjSyWN8xx13KC8vT3l5eWrZsqUkae3a\ntbruuuv05ZdfhrZdv359aBsAAAAAAAAAAAAAAAAAABAdPBe6At9X69atU25urhzHUWxsrJ544gmN\nHz9e1dXVGjBggIYNGybp5Cyu11xzjT777DNNmjRJDRo00NSpU1VbW6tRo0apT58+ysjIUFpamrZu\n3aqJEyeqa9euysnJ0eLFizVt2jT16NFDkvSzn/1Mbdq00Y4dO7RgwQI1bNhQ2dnZ+vDDD5WcnKzs\n7Gxt2rRJs2bNktfrVVJSkrKzsyVJq1at0vLly3XVVVfpscceC1u3iooKZWdnq3fv3ho7dqykkzPS\nXnvttVq5cqWmTp2qLl26qKioSPPnz5fH41FWVlZogGk4J06c0COPPKIJEybo0KFDoTbzer2aNWuW\nSktL67Rbz5499dJLL4VmCN6wYYM2bdqkHTt2KCEhQZs2bQFrT6sAACAASURBVNKoUaPUv3//sOUt\nWLBARUVFSklJUZs2bTRmzJiw7Xa6yZMnq6ysTC6XSyUlJfrtb3+rzp07Kzs7Wxs3blRcXJzmzZun\nnTt36tFHH1Vqaqq+/PJLvfLKK5Ikn8+nLVu2aNy4cXVyCwsLVVtbqxEjRmjBggX629/+piZNmoTq\nJknvvfeefvzjH0s6OXvwRx99JEk6fvy4hg8frr59+yojI0OHDh3S3/72N0knZ6t+7733dOTIkTrH\n9HSvvfaaXnnlFblcLo0bN0433HCDJCkYDNZ7zM6mS5cuWrp0qVq1aqWDBw8qGAyGzdq3b58GDx6s\ntWvXqlWrVpKkZs2a6cCBA+dVLgAAAAAAAAAAAAAAAAAA+HYws/G3KDExUXPmzNHx48e1ZMkSpaen\na/HixXrrrbfk9/slSYcPH9Z9992nRYsWqUOHDnr66aeVlZWlwsJCFRQUhLLuuece5eTkKCcnR5I0\nevRoDRo0qE55FRUVmjFjhvr376+1a9equLhYJSUlys/PV8+ePVVUVCRJatiwoebNm6eUlBR9+OGH\nkqRWrVpp/vz52rRpUyjvq3Xr2LGjevXqdcagVcdxNGjQIE2bNk0rVqxQIBBQbm6uCgoK9OSTT2ru\n3Ln1to/f79eUKVP0wAMPKC0trU6bVVdXq6Ki4ox2a9mypfbu3av9+/dr5cqVKi4uVqdOnSRJN998\ns+bOnas33ngjbHk+n09FRUVatGiRrr/++nrbrT7PPvusfD6fpk+frg8++EBbtmxRSUmJCgsL9ac/\n/UnSycHMTz31lB577DEdOXIktO3bb7+tW265pU7e8uXLdejQIY0YMSJUt5deeqlO3SRp2bJluvPO\nO0N/njRpkhzH0bx587RmzRpJCjvzcLhjerq+fftq8eLFeu6550LnlnT+swt37dpVc+fO1U033RRa\n9uabbyozM1OZmZmqqqrSP/7xD6WkpKhr165at25daL3+/ftrxYoV51UuAAAAAAAAAAAAAAAAAAD4\ndjCz8bcoNTVVkpScnKz169erb9++kqTmzZurvLxcKSkpSklJCc3863a7tXv3bk2ZMkXBYFDl5eWh\nrCuuuEJer1fHjx+vt7zLL79cLpdLSUlJqqys1Oeff66NGzcqMzNTNTU1uv3229W0aVNdccUVkqS0\ntDTt27evTl1jY2NDeV+tm8t1clx6uFlq09LStGfPHlVWVqqsrEx79uzRyJEjQ/tan+LiYsXExNQZ\n2PrVNqusrNS+fftC7daiRQuVlZXJ4/Fo5cqV2rZtm2pqajRw4EAtW7ZMaWlpSkpKqreNysrKQvVp\n3bq1Nm/eHLbd6hMXF6eUlBTFx8erqqpKX3zxRWigc1xcnCRp7969oWP11RmS//KXv4RmkT5l7dq1\natOmzVnrtmfPHjVq1EiXXHLJGfWIi4tTVVVVvfUNd0xP9/7774cGtX/12IY7zpHMdhwbG6sxY8ao\nZcuWCgaDchxHd9xxR2gmbEl69913tXnzZj388MPau3evpJODmzt16qSFCxeeswwAAAAAAAAAAAAA\nAAAA+D5w3MwXi4sDZ+p35IYbbtCOHTsUDAZ18OBBJSUlSfq/QbynXHnllXruueeUn5+v119/PbR8\n586dKi0tVUJCQr1lnD4YtHXr1urTp4/y8vK0ePFiDR48OJQlSbt27VKLFi3qzTi9buHWOb3M5ORk\ntWvXTnl5ecrLy9O0adPqrW/Hjh01c+ZMzZgxQ4FAIGwZl112WajdDhw4oOTkZLVq1UqbN29Ws2bN\ndOTIESUmJp61HU5JSkrS/v37Q/t+rvXPJTU1VR999JEk6cSJE6H6bt++XaWlpaGZjXfu3KlLL71U\n8fHxdbb/3e9+p7KyMn388cdKTk4O1e3zzz8PrbNkyRLdfffdEdWnvv042/7l5uYqNzdXWVlZdY5B\nQkKCysrK6qxbW1t7xnEKZ+DAgWctf82aNZo9e7Zyc3N10003aceOHaG/a9WqlXbv3n3OMgAAAAAA\nAAAAAAAAAAAAwHeDwcbfAcdxdOONN6qwsFBDhw7VgAED5Ha7Q3/3VWPGjNG4ceOUmZmprKys0PKC\nggKNHj1ao0ePliQ9+OCDWrp0qWbMmKGZM2eGzWrXrp1iYmKUmZmp4cOHq7i4WJJUUVGhkSNHqqSk\nRNddd90ZdQ33/5I0a9YsTZ8+XW+++aYeeOCBsOu4XC7dfffdGjZsmIYPH66lS5eetW0aN26sAQMG\nKDc3N2zZd9111xnt1qlTJ3m93tB/T3d6nU6JiYnRLbfcoqFDh2r9+vXnXP9c2rdvr5SUFKWnp4fa\nY/jw4fr3f/93Pfnkk6EB5S+//LKGDBkSNmPixIn64x//KMdx1K9fPw0dOlTr1q2Ty+VSbW2tPv30\nU3Xs2PGs9fjoo4+UkZGhbdu2KTMzUxs3bqzz92fbv969eysjI0OLFi2qs94dd9yhUaNGqbCwMLSs\nf//+GjJkiIqKis7eMKeV++abbyozM1OZmZn63//9XxUXF+vyyy+XJHXq1Elr1qwJbXPbbbfp8OHD\nEeUDAAAAAAAAAAAAAAAAAIBvnxM832ld8Z3JyMjQwoUL651p+OtYt26dVq9erbFjxxrU7OK1evVq\nbdiwQWPGjDHN9fl88ng8qqys1EMPPaQXX3xRb7zxhu64446It3355ZcVExOjHj16aO/everatatp\nHS9mpUePm2X5AjaXPo/r/Aarh5Pgsck6Wmt3WU/02v0mxQn4TXLcRw+Z5EiSr1GLc68UgfJqm32T\npBSnyizrREwDk5wYu9PczOLLu5hlrSm1a/Pnytefe6UIBGLiz71ShIIut0mOY9hldJ04apbli21o\nllV5rNYkJ76BxyTH6LYQcvSYzySnkfeESU7Aa3ONkiSf0enpOs8foYXNCtrdG+TY3I9dlf8wyZGk\nmoQUkxy3YV/KVWPXVwwaXYcDsts/q9PT8g2AS9H3OiHw5rNmWa5LkmyCeo+wyZHkBGyu5ZaCLpv7\nniQ5/hqTHL871iTnFKs+wiUNjJ6vjO4Lp1j0ERrGn/tfQopU0H3mD8vPV7U/+q5TVvc+y+c0y/tV\njd/mXLB832LVrw5a9hX9NtcVSZJRlj+m/n9R7+sybCoz0dgHctVUmuRIUpXH5vnK8KMXldepWqN3\nwj8EMUYng+WzsdU7LqvvBiTJbXlvMLq2HKmx65fVGkU1MLwgxLntsnYftXm+ap5o90xk1VSe8j02\nQZJqk1uaZVndjz1VpTZBkk7EJZvkWN73LPudS1vafJdyoNrufcSv962zCTK6L0i27zasWH6PEoi9\nxCzL6nsGb4Jdm8caviax2r+GcTZ9oKDH9h2XFc+Wd0xyjrXpbZIjSXEum5tMzD92muRIkrtlJ7Ms\nfP9t/eXAc68ESGqbu+yClh99vSac4Xxn3o0WWVlZoVmVHcfRlClT1LZt22+1zKVLl+r1118Ptd2g\nQYM0cGBkF+bx48erpKREwWBQjuPomWeeUUpKZIMpPv30U02dOlWO44QGdEcy0FiS/vznP2vt2rWK\nj4/XzJkz1aBBA7VoYTMQcuvWrZo2bVqoPdq1a6fJkyefd96FOKYAAAAAAAAAAAAAAAAAAOC7x8zG\nAC4azGwcGWY2jhwzG0eGmY0jx8zGkWFm48gws3HkmNk4MsxsHDlmNo4MMxtHiJmNI8bMxhFiZuOI\nMbNxZJjZODLMbBy5aJw7Ixr7QMxsHDlmNv7uMbNxZJjZODLMbBw5ZjaODDMbR46ZjSPDzMaRY2bj\nyDCzcWSY2Rj4P8xsjEhd6JmNbb+dAAAAAAAAAAAAAAAAAAAAAPC9wWBjAAAAAAAAAAAAAAAAAAAA\nAGEx2BgAAAAAAAAAAAAAAAAAAABAWAw2BgAAAAAAAAAAAAAAAAAAABCW50JXAAAileBxzLICRr+1\n8AeDJjmWjtcGzLIauv1mWQF3jElO0ChHkhyj43eJ1/C3O7V2UR6X0WcmCs/z9G3/ZZfl9ppl/Sap\nq0nO08e3muRIkt2V007QsM2jkUdW12F+Fxgpsy5C0O6+Jyf6jp/jO2GWZdfmdvcYV/URsyx/TLxJ\nTm3Abv8uOfi/JjknLu1okiNJir4ugry9Bpll+Rs2N8nZNfYekxxJSp1ZaJblBHxmWVa+732E7zO/\nO9Ysy2V4cTF7JvqecwybiTaPTNBl91reCdo8f1ieB1as3ttIUtDy6diozZd9UWOSI0m3XtXALCsa\nWZ2f7ig8z6OVVZsHHbdNkOyuCVF7rzK65DW0e32ugNHxi8bvUSS7enmDds9Wfuf7+z3KySybe2hV\nbLJJjiR5o/B7FMs2//nO901yLN8h/LHZDSY540s3m+RIkhOIvvfCAa9d/y4YhZ39WMfu++xo/C7F\n74kzybF8R2LJf81NJjlu036ZTVsFvIkmOZJk1xMGgOjBYGMAAAAAAAAAAAAAAAAAAIDvmOOKvh9O\nAOFwpgIAAAAAAAAAAAAAAAAAAAAIi8HGAAAAAAAAAAAAAAAAAAAAAMJisDEAAAAAAAAAAAAAAAAA\nAACAsBhs/AO1bNkybdmy5RvnLF26VK+++mpE627dulWvvfbaNy5TktLT001yLhb79u3T5MmTz7qO\n1TFdsmSJ+vfvX+e4/ulPf1KfPn20evXqerfbu3ev2rdvr3/84x/avHmz2rVrp0AgoH79+ikzM1OZ\nmZkqLCyUJAWDQXXv3j2Ut3TpUv385z+XJL3yyitatmzZN94PAAAAAAAAAAAAAAAAAADwzXkudAVw\nYQwcOPA7L7Nt27Zq27atSZbjOCY5F4uXX35ZQ4YMOes6Vsd08ODB8nq98vl8oWW//vWvFQwGz7lt\nmzZt9D//8z86cOCA2rRpo2AwqCZNmigvL6/Oelu2bNGNN96otWvXqkePHpKkkpIS7d6922QfAAAA\nAAAAAAAAAAAAAACADQYbR6F169YpNzdXjuMoNjZWTzzxhMaPH6/q6moNGDBAw4YNk3Rydt9rrrlG\nn332mSZNmqQGDRpo6tSpqq2t1ahRo9SnTx9lZGQoLS1NW7du1cSJE9W1a1fl5ORo8eLFmjZtWmig\n589+9jO1adNGO3bs0IIFC9SwYUNlZ2frww8/VHJysrKzs7Vp0ybNmjVLXq9XSUlJys7OliStWrVK\ny5cv11VXXaXHHnssbN0qKiqUnZ2t3r17a+zYsZKkjIwMXXvttVq5cqWmTp2qLl26qKioSPPnz5fH\n41FWVpZatmxZbzudOHFCjzzyiCZMmKBDhw6F2szr9WrWrFkqLS2t0249e/bUSy+9FJoheMOGDdq0\naZN27NihhIQEbdq0SaNGjVL//v3DlrdgwQIVFRUpJSVFbdq00ZgxY8K22+kmT56ssrIyuVwulZSU\n6Le//a06d+6s7Oxsbdy4UXFxcZo3b5527typRx99VKmpqfryyy/1yiuvSJJ8Pp+2bNmicePGae/e\nvfrNb34jv9+va665Rn6/X9nZ2REf09MdOnRIY8eOlcfjUceOHTVx4kRJimhgcThXXXWVtm/frtra\n2lB54bLWrFmje+65R/PmzQst69evn9566y01bdr0vMoGAAAAAAAAAAAAAAAAAAD2XBe6AggvMTFR\nc+bM0fHjx7VkyRKlp6dr8eLFeuutt+T3+yVJhw8f1n333adFixapQ4cOevrpp5WVlaXCwkIVFBSE\nsu655x7l5OQoJydHkjR69GgNGjSoTnkVFRWaMWOG+vfvr7Vr16q4uFglJSXKz89Xz549VVRUJElq\n2LCh5s2bp5SUFH344YeSpFatWmn+/PnatGlTKO+rdevYsaN69eoVGoh8iuM4GjRokKZNm6YVK1Yo\nEAgoNzdXBQUFevLJJzV37tx628fv92vKlCl64IEHlJaWVqfNqqurVVFRcUa7tWzZUnv37tX+/fu1\ncuVKFRcXq1OnTpKkm2++WXPnztUbb7wRtjyfz6eioiItWrRI119/fb3tVp9nn31WPp9P06dP1wcf\nfKAtW7aopKREhYWF+tOf/iTp5GDmp556So899piOHDkS2vbtt9/WLbfcEvpz9+7dNXjwYN12223y\ner2SIjum4SQlJWnhwoXKz8/Xtm3bVFpaWu8+RMrn8ykxMTH059LSUmVmZiozMzN0Hn300Ufq3Lmz\n4uLiVFVVJUm6+uqrtW3btm9cPgAAAAAAAAAAAAAAAAAAsMPMxlEqNTVVkpScnKz169erb9++kqTm\nzZurvLxcKSkpSklJCc3863a7tXv3bk2ZMkXBYFDl5eWhrCuuuEJer1fHjx+vt7zLL79cLpdLSUlJ\nqqys1Oeff66NGzcqMzNTNTU1uv3229W0aVNdccUVkqS0tDTt27evTl1jY2NDeV+tm8t1ckx7uBlu\n09LStGfPHlVWVqqsrEx79uzRyJEjQ/tan+LiYsXExMhxnLBtVllZqX379oXarUWLFiorK5PH49HK\nlSu1bds21dTUaODAgVq2bJnS0tKUlJRUbxuVlZWF6tO6dWtt3rw5bLvVJy4uTikpKYqPj1dVVZW+\n+OKL0EDnuLg4SdLevXtDx+qrsxD/5S9/Cc0iLUnx8fFKSEhQfHx8veVFWrfy8nI9/vjjqqys1M6d\nO1VZWanGjRufNfdc+vfvrwYNGoQGOKekpCgvLy/0936/X5988okefPBB7d+/Xxs2bAj93dVXX63P\nPvtM7du3/0Z1AAAAAAAAAAAAAAAAAAAANpjZ+CJwww03aMeOHQoGgzp48KCSkpIk/d8g3lOuvPJK\nPffcc8rPz9frr78eWr5z506VlpYqISGh3jJOHwjcunVr9enTR3l5eVq8eLEGDx4cypKkXbt2qUWL\nFvVmnF63cOucXmZycrLatWunvLw85eXladq0afXWt2PHjpo5c6ZmzJihQCAQtozLLrss1G4HDhxQ\ncnKyWrVqpc2bN6tZs2Y6cuRInRl4w9XplKSkJO3fvz+07+da/1xSU1P10UcfSZJOnDgRqu/27dtV\nWloamtl4586duvTSS885sDicSOq2fPly9e3bV3l5eWrdunVoeVxcnMrKyuqsG25ZOJ06dQoNSg9X\nj48//lgDBw7U3Llz9Yc//EFr1qyRdHKm61tvvVV//etfz1kGAAAAAAAAAAAAAAAAAAD4bjCzcZRz\nHEc33nijsrOzNW/ePN1+++1yu92hv/uqMWPGaNy4cfL7/bryyiv1+OOPS5IKCgq0detWTZo0SZL0\n4IMP6tNPP9Xf//539e7dW2PHjj0jq127dvrP//xPZWZmynEcTZgwQZJUUVGhkSNHKjk5Wdddd12d\ngbdfzTg9b9asWXrnnXdUUVGhrVu36oUXXjhjHZfLpbvvvlvDhg2T2+3WbbfdFhrkHE7jxo01YMAA\n5ebm6rrrrjuj7Lvuukvjx4+v026dOnXS+++/r06dOmnbtm1h2zucmJgY3XLLLRo6dKiaNGmiNm3a\nnHX9c2nfvr1SUlKUnp6u2NhYzZ8/X8OHD9fEiRPVsmXL0IDyl19+WUOGDDlnXiTHNJzu3btr4sSJ\n+vvf/37G8tGjR2vDhg164YUXJEl9+vTRhAkTtHr1aj355JNh804v03EclZaWKjMzU5J00003hfZf\nkq655hplZWXpqquuknRyEPaPfvSjc9YbAAAAAAAAAAAAAAAAAAB8N5zg+U7NiotCRkaGFi5cWO9M\nw1/HunXrtHr1ao0dO9agZhev1atXa8OGDRozZoxprs/nk8fjUWVlpR566CG9+OKLeuONN3THHXeY\nlnMxq66qMssK6PwGip/Ob3gJjbGpkg4e99sESWoeZ7d/AXeMSY77WIlJjiQFGqSY5PgM76Te2kqz\nLH9s4rlXioAThV0FV9W5Z1qPmNtrFvWbpK4mOU8f32qSI0nn+buYM3MMzwPHd8Isy++JM8uqPFZr\nknNJA6N/PMSx/UdIjh7zmeQ08tocv4C3gUmOqWDg3OtEyvj4WXBX7DPL8je61CzLivvoQbMs/yXN\nTHJOGJ5Slxz8X5OcE5d2NMmRorOP4Cn70izL37C5Sc6u8SNNciQpdWahWZYTsLkvBF3R9zt2q+e9\nU+gjnFuDRJvnPUlyye7aYvmsFm08hqd50OqhQZI/EH2NbtVWlu1k+nzlrzHJCXhiTXIsWbaT5b3B\nFbR59/bm9gqTHEm69apksywr0XidisZrVLRyu2z7UxasrgmW13NLZtc8w3cbAcdtkhON36NI0q4j\nNv381omGfSmXTb865ugBkxzJ7h2JJLPz80TQ7pnI67Y5ftH4jkSyexdv9Q5Bkv7YoodJzvjSzSY5\nkuQE7L5bNXtmN7yeB10213NJOnY0yt6RSKbvSay+R7F6T2L5jsSS1bWlxm33HBojm8+M++ghkxxJ\nimnW+twrAf/ftl/94kJXAReJq59/9YKWH33fCMHU+c68Gy2ysrJUXFws6eS+TJkyRW3btv1Wy1y6\ndKlef/31UNsNGjRIAwcOjGjb8ePHq6SkRMFgUI7j6JlnnlFKSmSDGT/99FNNnTpVjuOEBnRbDjT+\nJnU73apVq5STkxNqo169emnUqFFmdQUAAAAAAAAAAAAAAAAAANGBwcbfc3l5eWZZ3bp1U7du3czy\nIjFlypTvtDxJuvPOO3XnnXfW+/c9evRQjx7hf3H59NNPn3e5HTp00JIlS857+3P5JnU7Xa9evdSr\nVy+zPAAAAAAAAAAAAAAAAAAAEJ2i79/2BQAAAAAAAAAAAAAAAAAAABAVGGwMAAAAAAAAAAAAAAAA\nAAAAICwGGwMAAAAAAAAAAAAAAAAAAAAIywkGg8ELXQkAiMTR41VmWTGOTY772GGbIEn+xKY2QcGA\nTY6kSr9RQ0lq4LHJKjtht3/JXrMoO47d74CcWpvPjD8mwSRHkjw1x0xygi6PSY4kBd0xZlkBx22S\nMz6hrUmOJD17vNgsy0rMoc/MsnxNrjDLOnLcJscVZ3MexLrtrsGSVFXpM8lJCv7DJMd/STOTHEly\nVVeY5ATddjcGy2unSzaPbMd9do9+DVx+k5xq2V3PLVk9JscZfo6dgM1nOGB433MMXye4Thw1yQnE\nXmKSYyno2J0Ht76wzixr6S+7muSYnudG/VfH8JlIkipqYk1yGiTafP6s7gunHD32za8vDWNrDWpy\nUjAm3izLVVVmlmXGqL8R8DYwyZHs7jGS5Bhdz4OG+2f2/Gj5vG7Y5tHIqr9h2ddw/DVmWbKql2Ef\nwVVl9EzktXuOicbrlNU16ocgEJ9skuOqtHmHIEmBBikmOa6aSpMcSQp6bPqJkt39yvL5w+o6HJXf\noxiq9tvdrzwum+N3tMbwe5RYuz5QQDb7Z3iay1Vj81K41mP3HOOtjb7rVNCwL+wzmg9vz2+GmuRI\nUuuZ+WZZVtdzT9mXJjmS5G/Y3CzrSJXN8XMbfY8iSXEeu/Oz8pjN+41Gjk3/3Kr/I9ldgyXJc+KI\nSY5TW22SI0mB2ESTnLKgXf+ueSO7ZyJ8/2371S8udBVwkbj6+VcvaPnMbAwAAAAAAAAAAAAAAAAA\nAAAgLAYbAwAAAAAAAAAAAAAAAAAAAAiLwcYAAAAAAAAAAAAAAAAAAAAAwvJc6AoAAAAAAAAAAAAA\nAAAAAAD80Dhu5ovFxYEz9SKxdetWbdmy5UJXQ3v37tWaNWu+tfyMjAwFAoGI13/llVe0bNmyiNdf\nt26dnn322fOp2gWXnp7+tdbPyMhQRkaGMjMz9ec//zni7d555x0NHDhQM2fODC1bsmSJ+vfvr1df\nffWs27Zr104ff/yxSktL1aFDB+3evbtOPb6aOWjQoFDeunXr1LNnTwWDQa1evVqzZ8/+WvsKAAAA\nAAAAAAAAAAAAAAC+HcxsfJEoLi6Wz+dT+/btL2g9Tg027t69+7eS7zjOt5L7XZfxbfi69XYcRwsX\nLvza2/Xp00eXXHKJ3n///dCywYMHy+v1yufznXXbq666SmvWrFHz5s3Vpk0bBYPBsPUoKytTq1at\ntH79ev3iF7+QJLlcrm91IDsAAAAAAAAAAAAAAAAAAPj6GGx8EXjppZeUl5cnSfrLX/6ihQsXqqqq\nSpMmTVJ5ebm6dOmihx9+WMOGDVNNTY1SU1P1xRdfaOHChfrd734nn8+nL7/8UiNGjFD//v21YcMG\nZWdnS5ImTZqkzp07a926dXr55Zf1j3/8Q3FxcXrhhRf00EMPqby8XA0bNtQf//hHvf/++5o9e7aO\nHDmijRs36j/+4z+0a9cuvf/++3r44Yf1r//6rxo3bpwuvfRSZWRkqGvXrvrggw80YsQIXXvttZo8\nebKqq6s1YMAADRkyJOy+BoNBPfHEE9qyZYsmTZqkrl27Kj8/X8uXL1d8fLyys7PVuHFj/f73v1dx\ncbG8Xq9uu+02vfvuu9q5c6fuu+8+/fd//7e2b9+ue++9t9423b17t2bMmKH/+I//UG5urvbu3atd\nu3apX79+GjFihDZu3KgZM2ZIkiZOnKjt27crJSVFP/nJTyRJzz//vG666SZNmzZN7du31/r16zV7\n9mylpqaGLW/ChAkqKytTbW2tfvOb3ygYDCo3N1eO48jr9WrWrFlht9uxY4cmTZqkVq1aqaamJrRs\n6tSpqq2t1ahRo9SnTx+tWLFC8+fPV1pamjwej6ZPn65gMKhAICC3211vO/h8Po0YMUJut1vNmjXT\nH/7wh9BxCHdszuWSSy7R0aNHVV5erjZt2oSWn16PtWvX6ic/+YlWrFgRWvaTn/xEb7/9tm655ZZz\nlgMAAAAAAAAAAAAAAAAAAL4brgtdAZzb0KFDdf/99+u+++5TXl6eHMfRkiVL1KdPH+Xl5Wnv3r06\nePCgmjRpounTp6tp06YaOHCgtm/fLknq16+fCgsLQwOWn3nmGeXk5CgnJ0dz5swJlXP48GEtWLBA\nf/7znyVJWVlZys/P17XXXquVK1fqpz/9qaZMmaI77rhDeXl5+tGPfiSp/hl3e/TooYKCAvXu3Vs5\nOTm6//77VVBQoLfffluBQKDe/U1PT9fcuXM1Z84c8SyoAgAAIABJREFU+Xw+LV++XIsXL9aQIUP0\nyiuv6MCBA9qzZ48WLlyotLQ0SVLPnj1Ds+K+/fbb6tevX735hw8f1lNPPaXp06crLi5OknTttdeq\nsLBQf/3rXyWdHEz8/PPP689//rNeeOEFde7cWcXFxVq7dq0+//xzbd++XW3bttWRI0c0YcIE/epX\nv9K7774btryNGzcqJSVFL774oho2bBhanpiYqDlz5qiqqkoVFRVht50/f76efPJJPfbYYzpy5Igk\n6emnn1ZWVpYKCwtVUFAgSSooKNCiRYvO2O8RI0YoMzOz3rq53W698MILWrhwoeLj4/Xxxx/X226R\nSkxMlN/vD/05GAyG6lFYWCjp5GDjbt26KS0tTbt27ZIkNWrUSJWVlaqtrf3GdQAAAAAAAAAAAAAA\nAAAAADaY2fgicfqssrt27dKWLVv02muv6dixYyopKVF8fLzi4+OVkJCg/8fencdHVd79/3+fyWQ1\nLAmIEtYgSEKjoCC1RQqiVdNWtKghkMxAhLAvUisYpNgqRO1N/IKiIJuQEHEB6c3jJwVc2j6kQhBB\nbC1UIUFCggZIWBISssz8/uDOKYHJIlyaYF/Pf2DOnPM+n7PM2ebKNSEhISorK5MkdenSRU6nU07n\nuc2dnZ2tCRMmyOv1yt/f387s1auXJMnhcMjj8WjevHnKzs7W8ePHNWrUqG9Vr2VZdp6fn58OHjyo\nF154QZJ08uRJFRUVqVWrVj6n7dKliwICAlRWVqYTJ04oIiJCktS1a1dt27ZNX3/9tSIjIyXJ/tff\n319XX3218vPzVVBQoHbt2tVa2/bt29W2bdsaPe126tRJDofDHlZaWqrw8HD7/926ddPSpUt19uxZ\nhYeHq7KyUgEBAQoPD1doaKjCwsKUnZ3tc35HjhxRly5dJMluHF09T0kKCwtTSUmJWrRoUeu0AQEB\n9vu5ubmaOXOmvF6vTpw4IencNvP397fXR7Xqxum1KS0t1ezZs3Xs2DHl5eUpNja21nEb6p577tGJ\nEyf0+uuvSzq3L6xatapGHXv27NGsWbNUWFiozp0723X369dPW7durdEoGwAAAAAAAAAAAAAAAAAA\nNB4aG18hnE6n3XhYOtdodeDAgRo4cKCqqqrkcFzcSXV1A+Xs7Gy1b99elZWVkqSYmBgtXLhQAQEB\nNXqRPb/x7d69e1VeXq6MjAy98MILdpbT6awxTUhIiEpLSyWd6zH4/HlXN26urjcuLk7dunVTeXm5\nAgICal3W7OxstWnTRiEhIWrZsqXy8/MlSQcOHFBERITatm1r94abk5OjH/3oR5LO9eCcmpqqvn37\n1rUqde+996pPnz5KS0vT7373O5/jhISEqLCwUF6vVyEhIfLz85NlWQoKClJBQYHCwsLs5azPtdde\na/cYXF13Q7Vr185eH9W9H1933XV68skn1bJlS3tbeDwelZeXX9Tg2ev11tnYeOvWrerSpYuef/55\nzZgxw16eoKAgFRUV1Rg3KChIhw8frrfmTp06qVOnTnZjY6/XK4/HY+9fBQUFuv766/Xss8/qxIkT\n+sMf/qAuXbrIsizdcccdevHFF3Xfffc1cA0BAAAAAAAAAAAAAAAAAIDv0sUtVNEk3XTTTXrnnXc0\nffp0SVJcXJzWr1+vESNGaMyYMXaDX182bdokl8sll8slSRozZoxGjRqlESNGaMmSJT6niYyM1KFD\nh5ScnFyjAWv37t21Z88eTZ8+XYWFhYqKitL+/fv1P//zPyopKbHHu7CBa3JysubNmye3261HH320\n1loty9Lq1as1duxYjRkzRk6nU/fee6/i4+O1Zs0aPfjgg7rmmmvUrl07ud1u5eTk2NP+9Kc/1ccf\nf6x77rmnjjV5Tr9+/VRcXKzdu3f7fH/cuHEaP368Jk6cqPHjx0s61wNxZGSkgoKC7AbOdTXkrda7\nd28VFBQoKSlJp06d8rnMtRkxYoRmz56tOXPm2L39Tpo0SdOmTZPb7VZqaqokKTExUQkJCdq0aZPd\n8LwhtfXs2VMffPCBxo0bZzdmlqTo6GgdOHBAbrfb3rduvfVWbdmyRePGjas178J5WpYly7I0cuRI\nud1uzZkzRzt27FB0dLQkqWXLljpy5IjdyPmqq65Sjx496q0bAAAAAAAAAAAAAAAAAAB8PyxvQ7pm\nxRUrJSVFEyZMUIcOHRq7lO9ceXm5Jk6cqKVLlzZ2KbWaP3+++vXrp1tuucVobmVlpZxOp7Zu3ard\nu3dr8uTJRvObitNnam9U/235198Wu0H8io/WP1IDVYVebSbI6zGTI6mkytCKknSV00xW0VlzyxdW\neyfrjccy93dAVoWZz0yVf4iRHElylhcbyfE6zP04g9fP31iWx/Krf6QG+E1IlJEcSZp/Zq+xLFP8\nC74wllXZuouxrFNnzOQ4gszsB4F+5o7BklRaUmkkp6X3uJGcqmbXGMmRJEfZyfpHagCvn7kTg8lj\np0NmbtnOVJq79bvKUWUkp6yJ/tiOqdvkIIOfY8tj5jPsMXjesww+TnCcPW0kxxPYzEiOSd4G/CFo\nQ/1i8Q5jWetH9zGSY3Q/N3T9ahm8J5Kkk+WBRnKuCjXz+TN1Xqh2uvjyjy/NAyvqH6mBvP7BxrIc\npUX1j/R9M3S94Qm4ykiOZO4cI0mWoeO51+DyGbt/NHm/bnCdN0WmrjdMXmtYVeXGsmSqLoPXCI5S\nQ/dEAebuY5riccrUMeq/gSc4zEiOo8TMMwRJ8lzVykiOo7yk/pEayOs0c50omTtfmbz/MHUcbpLf\noxhUVmXufOV0mNl+p8sNfo8SaO4ayCMzy2dwN5ej3MxD4QqnufuYgIqmd5zyGrwWrjTUH97hKcOM\n5EhS5IIMY1mmjufOokNGciSpqvm1xrJOlZrZfn6GvkeRpCCnuf2zpNjM840Wlpnrc1PXP5K5Y7Ak\nOc9e3MnepbAqyuofqYE8gaFGcoq85q7vrm1h7p4IP3z7J8U1dgm4QnRd+Gajzr9pfrMLfEsFBQV6\n9NFH9fDDD9vDXC6XLMuS1+uVZVlKT0//zutITU3V3r3nGnVZlqWZM2cqKuo/DcZq62342LFjmjZt\nml1vmzZtlJaW1uD5rl27Vv/7v/8rp9OpefPmXVJt38a+ffs0d+5ce3mio6OVkpJySVkAAAAAAAAA\nAAAAAAAAAKDporHxD9wzzzzT2CV8L9q0aaOMjJp/cXjh6+/DzJkz63x/6tSpPoe3bt36suqNj49X\nfHz8ZdX2bURFRTXK+gUAAAAAAAAAAAAAAAAAAN8vGhsDAAAAAAAAAAAAAAAAAAB8zyw/R2OXADQI\neyoAAAAAAAAAAAAAAAAAAAAAn2hsDAAAAAAAAAAAAAAAAAAAAMAnGhsDAAAAAAAAAAAAAAAAAAAA\n8MnZ2AUAQENVebzGsjyWZSQnf/okIzmSFPnSGiM5VuVZIzmSFOgMNpblPJ5tJCc0vIuRHEk6OGWY\nkZzOL5rZdpJUaW43l7/Dz0iOQ+aK8vr5G8nxOAON5Jhm5sgizT+z11CS9EhItJGc/1e6z0iOZPY4\n5f+1uXWl5mbWldNhZk9wymMkx7SqZtcYyakweLyzAluYCzPk9NkqY1ktAs0cz6u85lZ6maFbSa/B\nmoL8TB2FJUfZKSM5HkczIzmSVG6ZWecBVRVGciRJXnPHKa+/metOk9dSTnO7lDEbx/U1luVXfMxI\nTlVoayM5kiRD+4HficNGcmzOa43EGLoNlcHLc2NKHUHGspwGl68yoKW5MENMPdoIMnb3IXkMnWMk\nc+u8yuS1oqHLsmB/c+u8xGPm+k4yt08FGLyW8jdUk8n9oLDc3Dr3M3RADwsyV9OpQDPnY4O7QZM8\nTjXF80JTFWBo+5UFhRvJkaRAQ5+9044QIzmSuZokyWFqnVc0vedJzv9vmbGswIceNZYlQ88kApzm\nroUDjh8wkuM1+D2K992lxrIcP082kuPxGjxhGfoexSiDz1sqDJ1DHQaPd6auNzotfN1MkKS/9/2Z\nsayfbv+LkRyrqtxIjiT5ncw3lqWA9kZi/Ax9jyJJfh6DzzsN8YSEGck5a/C0Hugwd4NV6m/muXdg\noLnn56aeC/ubvBEFgB8gejYGAAAAAAAAAAAAAAAAAAAA4BONjQEAAAAAAAAAAAAAAAAAAAD4RGNj\nAAAAAAAAAAAAAAAAAAAAAD7R2BgAAAAAAAAAAAAAAAAAAACATzQ2/j87duzQ/Pnzawx78803FRsb\nq7Vr115y7qFDh5SSknK55TU58+fP18cff2y/njNnziXlrF+/vs73Kyoq5HK5dPfdd1/03tKlS1VQ\nUPCt5udrO/8QDB8+XJJUVVUll8t1WVkffPCB7r//fi1YsMAe1tDPQnR0tD777DMVFhbqRz/6kXJz\nc+VyueRyueR2u2tkDhkyxM7bsWOHbrvtNnm9Xm3btk0LFy68rGUAAAAAAAAAAAAAAAAAAABmOBu7\ngKbEsqwar+Pi4hQQEKDKyspGqujKMWvWrEua7u2339bgwYPl5+fn831/f39lZGQoISHhoveSk5Mv\naZ4XbucfgvOX6XKXb9CgQWrWrJk++ugje1hDPwtdu3bV9u3bde2116p79+7yer2yLEurVq2qUVdR\nUZE6duyonTt36sEHH5QkORwObd++/bJqBwAAAAAAAAAAAAAAAAAAZtHY+Dw7d+7UqFGj1LJlS6Wl\npUmSvF5vjXFycnL0xBNPqKqqSsnJybrzzju1a9cuPffcc5Kkxx9/XDfddJM2btyolStXqlOnTnI6\na1/NsbGxioyM1KlTp/TCCy8oPDxcCxcuVFFRkb744gv16dNHU6ZM0cyZM5Wfn68OHTpozpw5Ki0t\n1dixY+XxePSzn/1MY8aM0TfffKPJkycrMDBQv/71rzVkyBClpKRowoQJioiI0MiRI5WRkaG8vDw9\n9dRT8nq9OnHihN544w1t2bJFK1eulNPpVGpqqjp06OCz3kcffVRFRUWqqKhQv379JEkul0sFBQXa\nvHmzJGnfvn36/e9/L6fTqTvvvFMjR470WduECRP073//WyNHjtRtt92msWPHasuWLVq2bJn8/f01\nd+5cde7c2Wcdqamp2rhxo9asWWPXunnzZr366qvy9/fXk08+qa5du9a63nNzc/Xcc89p3rx5WrZs\nmfLy8nTw4EHdfffdGjlyZI1tOmPGDO3fv1+tWrXSHXfcIUlatGiR+vXrp7lz56pHjx7auXOnFi5c\nqE6dOtW73qZMmSKv16tly5bJsiwFBAToxRdf9DldYmKiysvL1alTJ3311VdatWqVhgwZosDAQEVH\nRys/P1+rVq2y99Pz99eVK1dq8+bNat26tbp3765JkyZdlF9ZWamRI0fKz89P11xzjf74xz9elFPN\n17ALNWvWTKdPn9aJEyfUvXt3e7jH46nRoDwrK0t33HGHNm7caA+744479O677+rnP/95vfMBAAAA\nAAAAAAAAAAAAgCud5XA0dglAg7Cnnqd58+Zavny5wsPDtXv3bp/jrFixQrNmzVJGRoaWLVsm6VzD\n00WLFumll17SokWLJEnp6enKzMzU3XffXec8qxsZjxw5UmvXrrWHh4WFKSMjQ5MnT9b777+vdu3a\nadWqVWrVqpX27Nmj/fv3q3379lq9erVGjx4tSdq9e7cGDBigjIwM3X///RfN6/yeZQ8ePKhFixbp\njTfekNfr1fLly7V69Wo9/fTTWrp0qc9aP/nkE7Vq1UorVqxQs2bN7OEZGRlq3bq1/bpjx45as2aN\nVq9erQ0bNtRa28svv6yoqCilp6dr7Nix9vrNzMxUSkqKVqxYUet6mzlzpvr372+/9ng8WrZsmTIz\nM5WRkaH27dvXOu3Ro0c1Z84cPfPMMwoKCpIk9ezZU5mZmdq0aZOk/2zTl19+WYsXL9aNN96ovXv3\nKisrSzk5Odq/f7+ioqJ06tQpPfrooxo/frz+8pe/+Jzfrl277PXWvHlze3hoaKheeeUVlZaW6uTJ\nkz6nbd26tZ555hldffXVuv/++7V//351795d06ZNU0xMjGJiYlRYWKgvvvhCbrdbSUlJks41It68\nebPWrFmj3r1717ou/Pz8tHjxYq1atUrBwcH67LPPah23oUJDQ1VVVWW/9nq9GjlypNxutzIzMyWd\na2zct29fde7cWQcPHpQktWjRQiUlJaqoqLjsGgAAAAAAAAAAAAAAAAAAgBk0Nj5Ply5dJEmRkZE6\ncuSIz3Hy8/PVtWtXBQQEyN/fX5JUWlqq8PBwtW7dWqWlpZIkp9Mpf39/RUZG1jnP9u3by+l0KjIy\nUvn5+fbwXr16SZIcDodycnL07rvvyu126+9//7uOHTummJgYRUREaMqUKXbvsAMGDFBxcbGmTJmi\nrKysOucbExMjPz8/WZaloqIiHT58WElJSZo9e7bKysp8TvP111/XWEe1ycvL0+jRo+VyuXT48GF5\nvd5aa/N6vTV6zK1eb127dq2xDerrVbeoqEjt2rWze8+tbkTsy/bt23XmzJkaPe126tRJDofDHla9\nTVu1aqXS0lJ169ZNOTk52rp1q/7617+qsrJSAQEBCg8PV2hoqMLCwlRcXOxzfkeOHLHX2/k9NVf3\nghwWFqaSkhKf0wYHBys4OFghISEKCQlRWVlZjdfBwcEqKytT9+7dlZ6erpUrV0qSTpw4obZt20qq\ne1uVlpZq9uzZcrvd2rp1q86cOVPruA11zz336Be/+IX92rIspaenKz09XQkJCZKkPXv2aNasWdqx\nY0eN/aFfv37aunXrZdcAAAAAAAAAAAAAAAAAAADMoLHxebKzsyWd6/U3IiJC0rlGq0VFRfY47dq1\n0/79+1VeXq7KykpJUkhIiAoLC3X8+HGFhIRIOtfTbkVFhZ1Zm9zcXJWXlysnJ8duHCqpRkPYzp07\nKy4uTunp6Vq7dq0GDhyoiooKTZo0SWlpaXYDUz8/P82YMUNPPPGEVq1aZddWUlKio0eP1miw6ziv\n+/WwsDBFR0fbDULnzp3rs9a2bdsqJydHkux/q52f/cYbb2js2LFauXKlmjdvLq/X67M2SQoICKjR\nk21VVZXKy8u1f//+GuujoqJCHo/nopqq5xsWFqa8vDw76+zZsz6XQZLuvfdejRs3TmlpabWOc+E2\nrW6YHRQUpIKCAoWFhV203LW59tpr7fVV3YvvpfI1vwsbbEtSy5Yt7cbaF26r823dulVdunRRenq6\n+vTpY+dcuN/XNsyXTp06qWfPnjXqO3/bFRQU6Prrr9fSpUu1fPlybd++XZZlybIs3XHHHbX2EA0A\nAAAAAAAAAAAAAAAAAL5/zsYuoCk5deqUkpKSFB4ebvcsfOutt2rMmDH65JNPtHjxYiUlJemJJ55Q\nVVWVkpOTJUnjxo3T+PHjZVmWZsyYIUlKTExUQkKCOnbsaPeA7EuLFi00ZcoUnT59WgsWLPA5zp13\n3qlZs2ZpxIgRsixLc+fO1enTp/XUU0+prKxMQ4YMkSRlZWVp8eLFKi0t1bhx4yRJsbGxSktLU69e\nvWRZlp15/v8dDoeGDh2qxMRE+fn56Ze//KXi4uIuquPmm29WZmamRo4cqaqqKknSp59+qrS0NH35\n5Zdyu9165JFHNGDAAD399NO6/vrrFRoaelFtY8eOtTMHDRqkqVOnauDAgYqPj1dSUpISExPl7+9f\no9FzbGys4uPjNXr0aA0YMECjR49WTk6OsrOzNXjwYCUkJOjhhx9WYmKiAgICNHv2bHXr1q3W9d6v\nXz9t2LBBu3fv9vn++dv08ccfl3SuQXNkZKS+/PJLu6fi89djbXr37q3Vq1crKSnJbqB+voZk1OfC\nDKfTqbvvvlvDhg1TWFiYYmJifE7Xs2dPLV68WP/85z9rDI+OjtaBAwfkdrv1yiuvKDg4+KLPQkPq\nqG5EPHLkSFmWpeuvv169evVSdHS0pP80iq5u5HzVVVepR48el7QOAAAAAAAAAAAAAAAAAACAeZa3\nIV2z4jszfPhwvfbaa41dBr4n8+fPV79+/XTLLbd85/OqrKyU0+nUG2+8IX9/f7tR+pXsRPEZY1km\nGnlLUv6koUZyJCnypTVGcqzK2nv2/rYqnMHGsoIK6+7pvaFKw7sYyZGkvCnDjOR0ftHMtpOkSoNn\nZX9PuZEcr1+AkRxJsqrM1ORxBhrJaaosg5dnj4REG8n5f6X7jORIUmDeZ8ayTDre3My6Cggx8/d8\ngdbFv+pwOU6XmMlrFmpm+SoMHu/MnNXNOl1ubvu1CPSrf6QGKKkwV1OAn5m1bvJ2NMhQTZLkKDtp\nJMcT2MxIjiRVGPphogDvxX8Aecm8Bo9Tlpnlq7DM/U2109Au5TV072GaX/ExIzlVoa2N5EjmroGc\nJw4byalW5LzWSE5os9r/GP3bMHmtKEmniy//uOAfbOZcJUlOh7nPTKWn6T32NFVSkNPcD9Z5DO5T\nptZ5VRO8Vgz2N7fOzxi8LjO1T5m6vpMkf0OfY5P7ZmFZlbEsP0Pn9rAgc8dOU9f6BneDJnmcaorn\nhaYqwM/M9iuvMne8CzS0T5k8BgeavA81dGwpqzT7PMkE59pnjWUFPvSosSwZOrZUOYOM5EhSwPED\nRnJMfo/ifG+psSzr58lGcjwGnwb6VZn5Tq3CYe57lIDy08ayygPMPJsydYySpKb4mGRb358Zy/rp\ndjO/4ut/3Mz3qpLkdZh7XlYU0N5IjqnvUSQpSOaed54y1Byh2VVmrlvOes1dUwca/N37s4YuN0zW\nZOo79rMGH0i0ahZiLAs/fNnThjd2CbhCdPl/jdvOlJ6NG5mpBo+4mMvlkmVZ8nq9sixL6enp3/k8\nU1NTtXfvXknntu3MmTMVFRVlv1/b9j527JimTZtm19umTRulpaVdVi0vv/yysrKyFBwcrAULFtRb\n27exb98+zZ07116e6OhopaSkXFa9AAAAAAAAAAAAAAAAAACg6aGxcSPLzMxs7BJ+sDIyMr73ec6c\nObPO96dOnepzeOvWrY3XO2XKlBqv66vt24iKimqU9QsAAAAAAAAAAAAAAAAAAL5fBjulBwAAAAAA\nAAAAAAAAAAAAAPBDQmNjAAAAAAAAAAAAAAAAAAAAAD7R2BgAAAAAAAAAAAAAAAAAAACAT5bX6/U2\ndhEA0BBlpaWNXcJ36o/hNxjJmV74DyM5plmeSiM5XofTSA7w38JrWUZypgVHGcmRpOfP7DOW5ZC5\nS9nTxWaOU81Cm+Zxqqkt37afDjSSI0k/+eivxrKaoluf/ouRnO2/u91IjkkemTlGSWaPBwAa7qGM\nT41lvZV4o5kgy+zf1je1c6hpJpbP5LKNeMPcPe2qoWbus5ui+17dZSzrf5NuNpZliqn7GJOsJvoY\n3dS6Mrl8P+SapKa5LzTFdW7yOLVupJnjlNPgoaWy6e0GRvk5mt4+ZUpTPR6Yugb6IV//SJL/gY+M\nZVVc91NjWcZ4PWZyDN8TAT90Js8Njq1rjOSU/STeSI4kBRo8JPCMpGFMLZ+z8KCRHEmqDO9sLAsN\nExQc3Ngl4AqS81tXY5eAK0TkvIxGnT93GgAAAAAAAAAAAAAAAAAAAAB8orExAAAAAAAAAAAAAAAA\nAAAAAJ9obAwAAAAAAAAAAAAAAAAAAADAJxobAwAAAAAAAAAAAAAAAAAAAPDpim1svGPHDs2fP7/G\nsDfffFOxsbFau3btJeceOnRIKSkpl1tekzN//nx9/PHH9us5c+ZcUs769evrfL+iokIul0t33333\nRe8tXbpUBQUFlzTf+ixcuFDbtm37TrKbgkWLFmn79u11jnOp2/RCkydPVt++feXxeCTVvU3Pt3Dh\nQo0dO9auZfr06dqxY4cGDRokt9stt9ut3NxcSdK7776r22+/3Z7W5XIpMzNTkjR8+HAjywEAAAAA\nAAAAAAAAAAAAAC7fFdvYWJIsy6rxOi4uzm7siLrNmjXrkqZ7++23VVVVVev7/v7+ysjIUOvWrS96\nLzk5WW3atLmk+f4383g82rlzp2699dY6x7vUbXqhF198UVFRUfbrurbphU6fPq3y8nIdPXpU0rnP\n6H333af09HSlp6erQ4cOkqSsrCzddNNNOnTokD3tzp077WkAAAAAAAAAAAAAAAAAAEDTcEU3Nt65\nc6dGjRqlRx991B7m9XprjJOTk6Phw4dr6NCheu+99yRJu3bt0tChQzV06FDt3r1bkrRx40bFxcXp\nxRdfrHOesbGxmjBhghITE1VYWCjpXI+uTz/9tFwulxYsWCCv16uUlBSNGDHCbgBaWloqt9utxMRE\nLVmyRJL0zTffKC4uTi6XS2+//bYkKSUlRbm5uaqqqpLL5ZIk5eXlaezYsRozZozi4uLk9Xq1efNm\nDRs2TC6Xy+4t1pdHH31UDz/8sD755BN72IW91O7bt0/x8fFKTEzUypUra61twoQJ+ve//62RI0fq\nlVdekSRt2bJFcXFxSkhI0MGDB2utIzU1VbfddluNWjdv3qz4+Hi5XC7t37/f53Tr16+3e6qu7vF2\n4cKFSklJ0bBhw+x6q73//vt69tln7eWcN2+e7r33Xu3atUuSlJGRofj4eCUlJamwsFC//e1vVVxc\nbE8/ceJE5ebmKjExUZMmTVJCQoLdw++Fjh8/rsTERI0fP16xsbH11na+goICjR49Wm63WytWrJAk\nHThwQC6XS263Wxs2bLDH/etf/6oBAwbY+cnJyUpOTlZCQoK2bNliL+v523T9+vWaOnWqkpKSNHfu\n3FrrWLduneLj4zV8+PAaPV9f+DlqqJtvvlnr169Xx44d7RxfWfn5+Ro8eLCysrLsYddcc42+/vrr\nS5ovAAAAAAAAAAAAAAAAAAD4blzRjY2bN2+u5cuXKzw83G40fKEVK1Zo1qxZysjI0LJlyyRJixYt\n0qJFi/TSSy9p0aJFkqT09HRlZmbWaLDpy6lTp/TCCy9o5MiRdiNYSQoLC1NGRoYmT56s999/X+3a\ntdOqVavUqlUr7dmzR/v371f79u21evVqjR6oaaGzAAAgAElEQVQ9WpK0e/duDRgwQBkZGbr//vsv\nmtf5PbwePHhQixYt0htvvCGv16vly5dr9erVevrpp7V06VKftX7yySdq1aqVVqxYoWbNmtnDL+yl\ntmPHjlqzZo1Wr15tN3L1VdvLL7+sqKgopaen2z1Ir1ixQpmZmUpJSbEbzfoyc+ZM9e/f337t8Xi0\nbNkyZWZmKiMjQ+3bt699pftYHz179lRmZqY2bdpkD9u5c6fef/99Pf744/b4Q4YM0dy5c7Vx40ZV\nVlbqnXfe0euvv65hw4bprbfe0g033KC9e/fqrbfeUmVlpRwOhxwOhyorK7Vw4UJ169ZN+/bt81nP\nW2+9paSkJC1YsECnTp2qs7YLLVmyRGPGjFF6erqGDRsmSXr++eeVmpqq9PR0/fznP7fH/dOf/qRf\n//rX9uvHH39clmVp+fLl2r59u6SLt6l0bru++uqrtX42JOmuu+7S66+/rhdeeMFuBH/huv42+vTp\no6VLl6pfv372sA0bNsjtdsvtdqu0tFTHjx9Xq1at1KdPH+3YscMeLzY2Vhs3bryk+QIAAAAAAAAA\nAAAAAAAAgO/GFd3YuEuXLpKkyMhIHTlyxOc4+fn56tq1qwICAuTv7y/pXC/D4eHhat26tUpLSyVJ\nTqdT/v7+ioyMrHOe7du3l9PpVGRkpPLz8+3hvXr1kiQ5HA7l5OTo3Xffldvt1t///ncdO3ZMMTEx\nioiI0JQpU+wGlQMGDFBxcbGmTJlSo4dXX2JiYuTn5yfLslRUVKTDhw8rKSlJs2fPVllZmc9pvv76\n6xrrqDZ5eXkaPXq0XC6XDh8+LK/XW2ttF/ZUW73eunbtWmMb1NczblFRkdq1ayc/Pz9JUlBQUJ3j\nX6hTp05yOBz29JK0Y8cOe3tW69y5s1q2bKmSkhIVFRUpIiJCknTdddfpyJEjdmPjP/3pT3r33Xft\nRs/VPfNWT+tLfn6+IiMjFRAQoHbt2tVZ24W++uor3XjjjZKk4OBgSdLJkyfVoUOHGsMOHz6sFi1a\n1GgsHhQUpFatWikoKOii5b1wHUlSYGBgreN89NFHcrlcmjZtWo0sX9uvIb0dBwYGatKkSerQoYO8\nXq8sy9J9992n9PR0paenKzg4WFlZWfrHP/6hRx55RP/85z8lnWvcfMMNN9ivAQAAAAAAAAAAAAAA\nAABA03BFNzbOzs6WdK7X3+pGpEFBQSoqKrLHadeunfbv36/y8nJVVlZKkkJCQlRYWKjjx48rJCRE\n0rmedisqKuzM2uTm5qq8vFw5OTlq27atPfz8hqWdO3dWXFyc0tPTtXbtWg0cOFAVFRWaNGmS0tLS\ntHLlSnuaGTNm6IknntCqVavs2kpKSnT06NEajTsdjv9sqrCwMEVHR9sNOOfOneuz1rZt2yonJ0eS\n7H+rnZ/9xhtvaOzYsVq5cqWaN28ur9frszZJCggIUEVFhf26qqpK5eXl2r9/f431UVFRIY/Hc1FN\n1fMNCwtTXl6enXX27FmfyxASEmI3gi0oKKg1T5ImTJigjh07avPmzRe9Vz3P6gbiBw4cUEREhHr0\n6KEtW7ZoyJAheu211xQTE+OzDl8iIiKUnZ2t8vJy5eXl1VnbhTp16qRPP/1UkuzG4i1atNChQ4dq\nDHvzzTc1dOjQBtVT2/zqqmPZsmVatmyZUlNTa2yvkJCQGp8jqfZteqELe+m+cP7bt2/XwoULtWzZ\nMvXr108HDhyw3+vYsaNyc3PrnQcAAAAAAAAAAAAAAAAAAPh+OBu7gMtx6tQpJSUlKTw83O5Z+NZb\nb9WYMWP0ySefaPHixUpKStITTzyhqqoqJScnS5LGjRun8ePHy7IszZgxQ5KUmJiohIQEdezY0e4B\n2ZcWLVpoypQpOn36tBYsWOBznDvvvFOzZs3SiBEjZFmW5s6dq9OnT+upp55SWVmZhgwZIknKysrS\n4sWLVVpaqnHjxkmSYmNjlZaWpl69esmyLDvz/P87HA4NHTpUiYmJ8vPz0y9/+UvFxcVdVMfNN9+s\nzMxMjRw5UlVVVZKkTz/9VGlpafryyy/ldrv1yCOPaMCAAXr66ad1/fXXKzQ09KLaxo4da2cOGjRI\nU6dO1cCBAxUfH6+kpCQlJibK39+/RqPn2NhYxcfHa/To0RowYIBGjx6tnJwcZWdna/DgwUpISNDD\nDz+sxMREBQQEaPbs2erWrdtFy9C3b1898sgjKigo8NlT8PnrRTrX4HjUqFH6yU9+ctF7TqdTv/rV\nrxQfH6/g4GClpaUpKChIxcXFGjhwoN5+++2LGhtfmHG+Bx54QFOnTtXatWvVokWLems7X3JyslJS\nUvTSSy9p4MCBGjVqlB555BHNnDlTlmXpoYceUmxsrP7973/rN7/5Ta05krRnzx7NmzevxjZtaB23\n3367XC6XevfuXWO8++67T8nJyXrggQeUkJAgqeY2veuuu+qs6fz5btiwQbt27ZIkzZgxQ3v37rV7\nkL7hhhu0fft2e5pf/vKXeuWVV+rNBgAAAAAAAAAAAAAAAIArneV3RfcXi/8ilreubk9xkeHDh+u1\n115r7DLQxHwX+0V+fr7y8/PVp08fo7lXsrL/6+X6h+qP4TcYyZle+A8jOaZZnkojOV7HFf13MsD3\nzlvHH518G9OCo4zkSNLzZ/YZy3LI3KXs6WIzx6lmoU3zONXUlm/bTwcayZGkn3z0V2NZTdGtT//F\nSM72391uJMckj8wcoySzxwMADfdQxqfGst5KvNFMkGX2wWxTO4eaZmL5TC7biDfM3dOuGmrmPrsp\nuu/VXcay/jfpZmNZppi6jzHJaqKP0U2tK5PL90OuSWqa+0JTXOcmj1PrRpo5TjkNHloqm95uYJSf\no+ntU6Y01eOBqWugH/L1jyT5H/jIWFbFdT81lmWMt/5fGG0Qw/dEwA+dyXODY+saIzllP4k3kiNJ\ngQYPCTwjaRhTy+csPGgkR5Iqwzsby0LDBAUHN3YJuIIcnDGisUvAFaLzc6sadf5N8wzehNXVSywu\nj8vlkmVZ8nq9sixL6enpjV2Srb7aatsvPvzwQy1ZssR+v3///nYP2/WJiIhQRETE5RX+f/bt26e5\nc+fadURHRyslJeWS81JTU7V3715J55Z95syZiooy1wgNAAAAAAAAAAAAAAAAAAA0DTQ2/pYyMzMb\nu4QfrIyMjMYuoVb11VbbftG/f3/179//uyjpW4mKijK6fmfOnGksCwAAAAAAAAAAAAAAAAAANF38\nhgoAAAAAAAAAAAAAAAAAAAAAn2hsDAAAAAAAAAAAAAAAAAAAAMAnGhsDAAAAAAAAAAAAAAAAAAAA\n8InGxgAAAAAAAAAAAAAAAAAAAAB8srxer7exiwCAhjhZUmosq8pj5tBn8gAa6GcZyTleWmUkR5LC\ng/2MZTkdZpbPvyjXSI4keYKamQlyOM3kSPL6+RvMCjCSY1WY++x5nYFGchxlJ43knAszuf3MrHNn\n4VdGciTJqjxrJKcs4kYjOZL0m5AoY1kLTn1qLOtUmZljXtBVZvYpP8vMcbNaSXGFkZzmn28wkuO5\n9QEjOZJkecyd+0zxWObOoX5VZj7HjlJzx86K0DZGckwtm2T2fOUJamEkx/JUGsmRJK+h85XJmozy\neozEGN0PAs1cK1pVZo6/xhla53IYvGc4esBITlV4RyM51U6Wm7mGbR5k5nxl8p5Bkk6XXP6+EHb2\nkIFKzqkKM7f9ymTuWt8Uf1P3xifzjORIUlXza41lnfWa6dsiyFtuJEcyd09UFdTcSI4kWQYfyVtV\nZtaVqftZSXKUlxjJMfUMQZK8lsF+VwxlNcVrRY/M3YeaPE55mpm5/6hymD2Hon7O8mJjWR7/YCM5\nlqnrYJk9tjhPHDaSU9y8g5EcSaowdctg8BFXiL+5dX6izMz1ucmaAgx9T+Rv8PlyVYsIY1mmrsua\n5PcohpZNMnsN5CgtMpZlijfgKiM5jpJCIzmS5DB4vjrbupuRnI2dexvJkaRfHdxpLOt0sZlrWH+D\n30EHGTp2SuaWr9XJz43klEfcYCRHMnycMnRd5jX4PZijosxIjl/xUSM5kuRsa+Z4gP8OB2eMaOwS\ncIXo/NyqRp0/PRsDAAAAAAAAAAAAAAAAAAAA8InGxgAAAAAAAAAAAAAAAAAAAAB8anq/JQgAAAAA\nAAAAAAAAAAAAAPAD53DQXyyuDOypAAAAAAAAAAAAAAAAAAAAAHyisfEVaseOHZo/f77RzHXr1hnL\n2rdvn/71r3996+kWLlyobdu2Gavju+ZyueTxeC5p2ry8PG3fvr3B4z/88MN1vr9v3z4j2/Czzz7T\n0KFDNX36dHvYBx98oPvvv18LFiyoc9o777xTf/7zn+XxePTjH/9Y27ZtU0pKiuLi4uR2u/W73/3O\nHnfy5Ml2Xl5enmJiYnT69GkdOnRIKSkpl70cAAAAAAAAAAAAAAAAAADg8jkbuwBcOsuyjOatW7dO\nDzzwgJGsvXv3qrKyUj169DCS11Rdzjaobmx866231jvuRx99VO94UVFRioqKuuR6qt144416/vnn\nazQsHjRokJo1a6aPPvqozmmvvvpq7du3T23atFG7du3s4WlpaerQoYP92uPxyLIsffHFF/aw8PBw\nbd68WX379r3sZQAAAAAAAAAAAAAAAAAAAGbQs/EV7PPPP9fYsWM1efJkSdKZM2c0ZcoUud1uu9fj\nDz/8UPHx8Ro+fLg2btxoT/vQQw/pkUceUXx8vL755hu5XC59+eWXcrvddfaOu379ej3xxBNyu92a\nNWuWKisrlZiYqBEjRtg94a5Zs0ZLlizRihUr5Ha75fV6fdZWl/fff1/PPvuspHO9B8+bN0/33nuv\ndu3aJUnKyMhQfHy8kpKSVFhYqN/+9rcqLi62p584caJyc3OVmJioSZMmKSEhodYeiI8fP67ExESN\nHz9esbGxks71sJySkqJhw4Zp5cqVtdbp9Xr1+9//Xg8++KB27twpSdqyZYuGDRsml8ul3NxcSed6\n8XW5XJo4caLOnDmj9957T6mpqdqwYYPcbrcKCgrk9Xo1adIkDR8+XHPmzKkxn3Xr1unBBx+UJCUm\nJiouLk6PPfaY4uLiVFZWpg8//PCinoer19vgwYPt9ebLhbXVtaz1sSxLHo9H27Zt049//ONap/38\n88/Vo0cPBQUFqaysTJJ0yy23KCsrq955AAAAAAAAAAAAAAAAAACA7w89G1/BQkND9fzzzys5OVkn\nT57U+vXrNWjQIN1///167LHHVFBQoJtuukmvv/66KioqlJiYqF/84heSpK+++kqvvvqqQkND5fV6\nlZGRoYSEBKWnp9c7X4/Ho/T0dLt32sWLFys0NFRPPvmkPvvsMw0bNkzBwcGqrKy0G8i++eabF9XW\npk0bn/k7d+7UkSNHlJqaKulcA9YhQ4borrvu0oYNG3TjjTfqnXfe0euvv64tW7borbfe0g033KC9\ne/fq4MGD+vWvfy2HwyGHw6HKykotXLhQv//977Vv3z6fPS2/9dZbSkpKUv/+/XX77bfbw3v27Km5\nc+dq+PDhGjlyZK3rY/jw4brmmms0ffp03XzzzVq2bJnWrFmj3NxcLV26VE899ZRSU1PVrFkzLVmy\nRH/7298UGxur5s2ba9u2bZo6daokqbCwUMXFxXrttddqNIwuKCiQ0+lUeHi4JKl169aaPHmy1q1b\np5tuukn79+9X//79FRgYqG3bttnTXbjebr75Zp/1+6rtclx33XX6y1/+om7dutnDfvvb3yooKEi9\ne/fW1KlTlZWVpVtuuUWhoaH65JNP1LlzZzkcDoWFhenYsWOXNX8AAAAAAAAAAAAAAAAAAGAOjY2v\nYJ06dZIkhYWFqaSkRAcPHtS//vUvrVu3TsXFxTp69KjOnDmjhQsXyuPx6MSJE/a0Xbp0UWhoqKRz\njVKlhvVcK0m9evWSJDkcDp05c0azZ8/WsWPHlJeXZzdUvTDLV221NTbesWOHWrduXWNY586ddfjw\nYZWUlKioqEgRERGSzjVs/eijjzR48GD985//1ObNmxUaGqr27dtLkjp27ChJatmypUpKSnzOLz8/\nX3fddZcCAgLUrl07e3inTp3kcDjk5+dX5/ro0qWLAgICVFZWpqKiIh0+fFhJSUmSpLZt28rj8Wje\nvHnKzs7W8ePHNWrUKJ854eHhuuOOOzR16lTdfPPNGjFihKRzDbUfeughe7zg4GAFBwcrJCREISEh\nds/Avpy/3nxpaG0NZVmWBgwYoFatWmnPnj328LS0NHXo0MF+vXPnTm3btk1lZWXq3bu3OnfuLEm6\n++67tWnTpsuqAQAAAAAAAAAAAAAAAAAAmONo7AJw+aob9nbu3FkTJkxQRkaG1q5dqx49emj58uVK\nTU3V4sWL5XD8Z3Of//9q1Y2O63N+49utW7eqS5cuSk9PV58+fexanE6nKioq7PHOr+2tt97Sj370\no1rzJ0yYoI4dO2rz5s01lq9aWFiY8vPzJUkHDhxQRESEevTooS1btmjIkCF67bXXFBMT06BlkaSI\niAhlZ2ervLxceXl5F71fXyPs7OxsFRYWKiQkRGFhYYqOjlZ6errS09M1Z84c7d27V+Xl5crIyNA9\n99xT6zqqrKxUQkKCFixYoLffflvSucbAe/bsUZ8+fWqd//n11fb/2tRWW3BwsIqKimqMGxQUdNEw\nX7WEhYWpf//+tdZYWVkpj8ej5cuXKzMzU59//rmkc/tf79699emnn9ZbNwAAAAAAAAAAAAAAAAAA\n+H7Q2PgHoLqRcFxcnNavX68RI0ZozJgxKisr089//nNNnDhRzzzzjJo1a3bRNOfr3bu3pkyZoi1b\ntjR43j179tQHH3ygcePG6eTJk/bwm266Se+8846mT59+UW1jx45VaWlpnbnVDZNPnTp1Ua1Op1O/\n+tWvFB8frzVr1ujBBx9UUFCQiouLNXDgQHk8nosaG9fVkPqBBx7QihUrNGXKFLVo0eKi9+ua1rIs\nrV69WmPHjlVycrIcDoeGDh2qxMREjRgxQuvXr1dkZKS++uorJScnKzs72562e/fu2rNnj6ZPn67C\nwkKdOHFCbrdbcXFxdmPdDz74QAMHDqxzXUnSiy++qNTUVG3YsEHjxo2rt+5qkZGROnTo0EW1hYeH\nKzg4WC6XS7m5uZKk6OhoHThwQG63u9btV9s8H3vsMbndbj3yyCP67LPP7J6Mq53f83Lv3r3rrRsA\nAAAAAAAAAAAAAAAAAHw/LG9Duj8F/ksMHz5cr732WmOXYfvggw/Ut29fhYaGNnYpTcLJkrobqX8b\nVR4zhz6TB9BAv4b1Ll6f46VVRnIkKTzYr/6RGsjpMLN8/kW5RnIkyRPUrP6RGsLhNJMjyevnbzAr\nwEiOVWHus+d1BhrJcZSdrH+kBoeZ3H5m1rmz8CsjOZJkVZ41klMWcaORHEn6TUiUsawFp8z1iH+q\nzMwxL+gqM/uUXwN/daKhSoor6h+pAZp/vsFIjufWB4zkSJLlMXfuM8VjmTuH+lWZ+Rw7Ss0dOytC\n2xjJMbVsktnzlSfo4j9CvBSWp9JIjiR5DZ2vTNZklNdjJMbofhBo5lrRqjJz/DXO0DqXw+A9w9ED\nRnKqwjsayal2stzMNWzzIDPnK5P3DJJ0uuTy94Wws4cMVHJOVZi57Vcmc9f6pvibujc+efGvc12q\nqubXGss66zXTt0WQt9xIjmTunqgqqLmRHEmyDD6St6rMrCtT97OS5CgvqX+kBjD1DEGSvJbBflcM\nZTXFa0WPzN2HmjxOeZqZuf+ocpg9h6J+zvJiY1ke/2AjOZap62CZPbY4Txw2klPcvIORHEmqMHXL\nYPARV4i/uXV+oszM9bnJmgIMfU/kb/D5clWLCGNZpq7LmuT3KIaWTTJ7DeQorftXaxuDN+AqIzmO\nkkIjOZLkMHi+Otu6m5GcjZ3NddD1q4M7jWWdLjZzDetv8DvoIEPHTsnc8rU6+bmRnPKIG4zkSIaP\nU4auy7wGvwdzVJQZyfErPmokR5Kcbc0cD/Df4VBKUmOXgCtEx2debdT5N70n7vivsG/fPs2dO9fu\nCTc6OlopKSnf+XxdLpcsy5LX65VlWUpPT6/xfm0983744YdasmSJ/X7//v2VnJz8ndc7aNAgY1lL\nlizRhx9+KOncco4ZM0a33XbbJWUdO3ZM06ZNs9dlmzZtlJaWZqxWAAAAAAAAAAAAAAAAAADQNNDY\nGI0iKipKGRkZ3/t865tnZmamz+H9+/dX//79v4uSvjdjxozRmDFjjGS1bt26UbYfAAAAAAAAAAAA\nAAAAAPxQWH4Gf5EJ+A6xpwIAAAAAAAAAAAAAAAAAAADwicbGAAAAAAAAAAAAAAAAAAAAAHyisTEA\nAAAAAAAAAAAAAAAAAAAAn2hsDAAAAAAAAAAAAAAAAAAAAMAny+v1ehu7CABoiNNnShu7hIsEFx00\nllUZ3tlMkNdjJkeSVVVhLMtRdspIzpmQq43kSFJI8ddGcqqatTGSI0leh5+5LENneD+Puf3Aa5n5\nOyePZW49NUUm17n/13uN5JRH3GAkR5KsyrPGsqY272Us6+mCfxjJaXaVob/nM/R5qXa6uNJITvBV\nTiM5TstIjCTpVLmZc5/TYa6oIKe57eeQmQN60Vlz1wgBfmbWlaEYSZJlmQsztSv4G1w+r6Hlq/SY\newRg8jNjNcFHEx6ZWT6Du6bKq8ytpyBvuZEcr1+AkRxJOmHoeF7+7CQjOdWCf/OCkZxmoWbOoSbv\n+STpdMnl5501eEBvHWzuWv90RdM7tpj6HLcKMnetYfASwdjylVaaK8pUTeFB5vZNP4PnUFOP902e\nY0xtPZOXBwYvgeRv6OPXLNDcPnX0jJn7PT+DFy5N8ThVbOha479B80Az26+s0tyHz9Rnz+Dhzti9\nsWTu/tHk5Y+ppQssOWooSaoKNff9gLFnlCafR5wpMpJTFnqNkRxJCiw/bSzLE3CVkZym+D2Kw1tl\nJkhmv5vz+AcZyWmCj22Mfo/id+KwsSxT3/daVWae20jSe9H9jWX13fV3IznNQ4zESJK8DkPPW/TD\n/h6lzOBFkKnnwibvjc8aeo5g8t4xvJnBHR0/eLmzRjV2CbhCdJizvFHnT8/GAAAAAAAAAAAAAAAA\nAAAAAHyisTEAAAAAAAAAAAAAAAAAAAAAn2hsDAAAAAAAAAAAAAAAAAAAAMAnGhsDAAAAAAAAAAAA\nAAAAAAAA8InGxrhs7733nk6dOnVJ065bt85oLXPmzDGS43K55PF4jGQ1luHDh1/SdC+99JIGDRqk\nbdu22cP+8Ic/6LbbblNubm6t0+3YsUO33HKLPB6PNm3apNtvv12S1Lt3b7ndbrndbm3ZskWSdPLk\nScXExNh5Cxcu1JQpUyRJ8+fP18cff3xJtQMAAAAAAAAAAAAAAAAAALOcjV0Arnzvv/++rr/+ejVv\n3vxbT7tu3To98MADxmqZNWuWkRzLsozkNKZLXYaJEyfK6/XWGPbkk0+qrKys3mnbt2+v3bt36/PP\nP9e1114rSYqKilJ6enqN8bKysnTXXXdp+/bt6tChgyRp3759OnPmzCXVDAAAAAAAAAAAAAAAAABX\nGsuP/mJxZWBPhU9nz57V+PHjlZCQoOeff16StH79eq1du1bSf3rNnT17tj788EM99thjdq/CKSkp\neuyxxzR06FD9+c9/lvSfnoIPHTqklJQU5eXlyeVy6csvv5Tb7dbf/vY3n3Xk5eXpsccek1Szx9uU\nlBT98Y9/lMvl0muvvaZjx47J5XIpISHBnnbhwoVKSUnRsGHDtHLlSknSgQMH5Ha7NWzYMH3wwQd1\nrgOv16t58+Zp8+bNkqTBgwfrscce05AhQ+yenGfMmKHExEQ9/vjjkqSxY8fa01dVVWnKlClav369\npk6dqqSkJM2dO7fW+e3cuVMPPPCAfve738ntdtvrbd68eRo8eLB27drlc7r169fr4Ycfltvt1qhR\no7Rq1Sq7/vrs27dP8fHxSkxMtNfR5ejbt6+ysrJUWVkph8NRax1ZWVmaOHGidu7caQ8bOHCg3nvv\nvR9EQ28AAAAAAAAAAAAAAAAAAH4oaGwMn7Zs2aK+ffsqMzNT+/fv1zfffFPj/eoGoU899ZT69++v\nefPm1ehV+J577lFmZqbdo+2FDUjbtWunjIwMXX/99UpPT9eAAQNqraW2xqfdunVTRkaG4uPj1bp1\na2VkZFw0Ts+ePZWZmalNmzZJkp5//nmlpqYqMzNTq1evrnWeXq9Xy5cvV7t27XT33XdLkk6ePKnn\nnntOsbGxysrK0q5du9SsWTOtXr1aoaGh2r17t0JCQlRZWak1a9bowIED6tatmySpY8eOevXVV7V7\n9+5a57lkyRItX77cbshdbciQIZozZ442btxY67QjRoxQeHi4XnrpJe3bt6/W8S7UsWNHrVmzRqtX\nr9aGDRsaPF1tgoODdeDAAXXt2tUe9sUXX8jtdsvtdtsNpvPz83Xdddfp5MmT9ni33Xab/v73v192\nDQAAAAAAAAAAAAAAAAAAwBxnYxeApunIkSOKjo6WJEVGRl7U2Li+XnMjIyPldDrldDrrHL8hve/W\nplevXpJk96DrS6dOneRwOOTn5ydJys3N1cyZM+X1enXixIk687dt26bbb7/dft2+fXs5HA61bNlS\nJSUlKi8vtxvVdunSRUeOHFH37t21ZcsWvfnmmwoMDFRMTIxOnDihTp06SZICAwNrnd+ZM2fUsmVL\nBQUF1RjeuXNnHT58WCUlJbVOGxwcrODg4BrTNqSH4Ly8PD377LMqLy/X4cOH5fV6L7tn4SFDhigq\nKkpvv/22JKl79+52o3NJOnbsmPbu3avRo0fr4MGDys7OliT5+/srODjY7jUaAAAAAAAAAAAAAAAA\nAAA0Pno2hk9t27bVgQMHJEk5OTm65pprFBISotLSUknS0aNH7XH9/f1VXl5eY/rs7GyVl5ersrJS\nknTVVVfpzJkzKigoqDFefQ1ba5unJF1Vg40AACAASURBVLsh8/nqa9R83XXX6YUXXlBGRobdGNYX\ny7K0bNky/e1vf9ORI0d8Zrdt21b79++XdG55IyIiFBMTo4yMDI0YMUJvvfWWYmJiGlSfdK7BcFFR\nkXJycmod59toSEPuN954Q2PHjtXKlSvVvHlze5qgoCAVFRX5rK8ulmWpX79+atWqVa11bN++XZMn\nT9ayZcs0Y8YMZWVl2e/dddddevfdd+utGwAAAAAAAAAAAAAAAAAAfD9obAyf7rrrLmVlZSkxMVFd\nu3bVNddco759++q9995TWlqa3VOwJP3sZz/TnDlztGjRInvYpk2b5HK55HK5JEn33nuvZs6cqfff\nf7/GfDp06KBHH31UH3/8sc86wsLC5O/vr2eeeUb5+fm11vvee+/J5XLpyy+/lNvtVm5ubo33qxs1\nT5o0SdOmTZPb7VZqamqd68CyLKWkpOjpp5+ukVHt5ptv1unTp5WYmKji4mL16tVLMTExOnXqlGJj\nY1VQUKCrr77aZx2+JCf//+zdeXgUVdr38V93OiEJYcmCggYCKk5AcSHIqyITjQviuECc0QjpNhE1\nAoOKESS44BBWDQhjRkQQedIJoAIRrhERUccHHQir2wwoi9EkrJGwhUCWrvcPXvol0FmAown6/VwX\nl3Z1nfvcdbq6qrr67pNH9PDDD2vOnDn1Wr+udTZv3qyHHnpIDz30kHJycnyuExsbq/T0dA0fPlwh\nISHe5XFxcZoxY4aef/5577I77rhDL7zwgqZOnVpnTif6/vvv5XK55HK5tGDBAq1evVqXXXaZJOny\nyy+vVmx87bXXyuPxnFZ8AAAAAAAAAAAAAAAAAADwy7FZ9Zn+FDgNaWlpGjRokNq2bdvQqZyTqqqq\nlJSUJLfb3dCpNDoHD5c1dAqnCCrJNxarMqy9mUCWuYJtW1WFsVj2IweMxDkc3Kruleop+NBOI3Gq\nmp1nJI4kWXa/uleqbyxDZ3g/j7n9wLKZ+Z2Tx2ZunBojk2Puv3OjkTjlF3QxEkeSbJVHjcV6ovlV\nxmKl7/7GSJxmTQ39ns/Q++W4g4cqjcQJanrqX5c4E466f1NVbwfKzZz7HHZzSQU6zL1+dpk5oJcc\nNXeNEOBnZqwMhZFUvx/q1ZepXcHf4PZZhrav0mPuFoDJ94ytEd6a8MjM9hncNVVeZW6cAq3yuleq\nB8svwEgcSdpn6HhePuGvRuIcF/TU343EaRZi5hxq8jOfJB0sPft4Rw0e0COCzF3rH6xofMcWU+/j\n8EBz1xoGLxGMbV9ZpbmkTOUUFmhu3/QzeA41dXvf5DnG1Ktn8vLA4CWQ/A29/Zo1MbdP7Tls5vOe\nn8ELl8Z4nDpk6Frj96B5EzOv35FKc28+U+89g4c7Y5+NJXOfH01e/pjauiale+peqZ6qQsx9P2Ds\nHqXJ+xGHa/8Lo/V1JOR8I3EkqUn5QWOxPAFNjcRpjN+j2K0qM4Fk9rs5j3+gkTiN8LaN0e9R/PYV\nGotl6vteW5WZ+zaStLxTT2Oxuq//wkic5sFGwkiSLLuh+y36bX+PcsTgRZCp+8ImPxsfNXQfweRn\nx7BmBnd0/OYVjnqkoVPAOSLybzMatH9zZ13gHJSbm6uFCxd6CxPi4+PVp0+fX7TPTZs2aezYsd4+\nO3XqpLS0tGrr1FQo8cYbb2jFihXedR599FHdcMMN9erX6XTKZrPJsizZbDZlZWWd8TY0xLgBAAAA\nAAAAAAAAAAAAAIBfH8XGMG78+PENnUK99e3bV3379v1V+4yOjq511mI/P78aC4EfffRRPfroo2fU\nr8mZkhti3AAAAAAAAAAAAAAAAAAAwK/P7N9mBgAAAAAAAAAAAAAAAAAAAPCbQbExAAAAAAAAAAAA\nAAAAAAAAAJ8cDZ0AAAAAAAAAAAAAAAAAAADA743NznyxODfYLMuyGjoJAKiPPXsONnQKAAAAAAAA\nAAAAAAAAQI1atWrW0CngHFL0t5SGTgHniAtHTW/Q/imLBwAAAAAAAAAAAAAAAAAAAOATxcYAAAAA\nAAAAAAAAAAAAAAAAfKLYGAAAAAAAAAAAAAAAAAAAAIBPFBsDAAAAAAAAAAAAAAAAAAAA8Ili43PE\n8uXLdeDAgTNqu2DBAqO5jBkzxmi8uvTr1+9X7e9c8N577+m///2v9/HBgwf10UcfGYn9j3/8Q3Fx\ncVq5cqV32d/+9jfdcMMNKigoqLHd6tWrdc0118jj8Wjp0qW66aabJEkxMTFyuVxyuVxatmyZJGn/\n/v26/PLLvfEyMzP1+OOPS5KmTJmiNWvWGNkWAAAAAAAAAAAAAAAAAABwdhwNnQDq5+OPP9all16q\n5s2bn3bbBQsW6N577zWWy3PPPWcsVn3YbLZftb9zQZ8+fao93r9/v5YtW6Zbb731rGMPHjxYlmVV\nWzZq1CgdOXKkzraRkZHasGGD/vOf/6h169aSpOjoaGVlZVVbLy8vT7fddptWrVqltm3bSpI2bdqk\nw4cPn3X+AAAAAAAAAAAAAAAAAADAHGY2bkBHjx7VwIED1b9/f02ePFmSlJubq/nz50v6/zP6vvDC\nC1qxYoWGDRvmnVU4LS1Nw4YN0/33368PPvhAkuR0OuXxePTTTz8pLS1NRUVFcjqd2rx5s1wulz77\n7DOfeRQVFWnYsGGSqs8qm5aWppdeeklOp1Nz5sxRcXGxnE6n+vfv722bmZmptLQ0PfDAA5o9e7Yk\naevWrXK5XHrggQf0ySef1Lj9x7dv5cqVyszMlCTdfffdGjZsmOLj46vN5Hz06FENGTJE+fn5Wr16\ntR599FGlpKRoyJAhkqS9e/cqKSlJCQkJys7OVn5+vsaPH+9tv27dOs2cOVNpaWlKT09XfHy8d9x8\nmT17tvr166chQ4bUmduJ6pNbTdLS0lRQUKCqqio5nU5Jx17TjIwM3XXXXVq/fr0k6Y033qg28/CX\nX36p1NRUrVy5Ui6Xyzvj8ahRo5SQkKAnn3yyxj43bdqkhIQEJSYmel+/s9G9e3fl5eWpsrJSdvux\nw8vJhcvSsWLjwYMHa+3atd5lN954o5YvX05xOQAAAAAAAAAAAAAAAAAAjQjFxg1o2bJl6t69u3Jy\ncrRlyxbt2rWr2vPHiy5Hjx6tnj17KiMjo9qswrfffrtycnK8s8aeXKR54YUXyu1269JLL1VWVpZi\nY2NrzKWmAs+OHTvK7XYrISFBERERcrvdp6xz5ZVXKicnR0uXLpUkTZ48WePGjVNOTk6txbW++ty/\nf78mTpyo22+/XXl5eZKkqqoqjRw5Uo899pjat28vSQoJCdH06dN15MgR7d+/X++884769eunefPm\n6Z///Kfatm2roqIi7dixQ5999pk2btyoLl26SDpW1DpjxgwtWrTIZ16VlZVatmyZ5syZo5iYmFNy\n6927tzc3X+rKraqqqsa2vsYmPj5eY8eO1ZIlSyRJjz76qOLj473PX3XVVZo8ebKuv/56ZWVlqXPn\nzpKkDRs2aN68ed5Cdl/atWunuXPnKjs7W4sXL64zr7oEBQVp69atuuSSS7zLvv/+e7lcLrlcLm/B\n9Pbt23XxxRdr//793vVuuOEGffHFF2edAwAAAAAAAAAAAAAAAAAAMMfR0An8nu3YsUOdOnWSJHXo\n0OGUYmNfM8KeqEOHDnI4HHI4HLWuX1ec2lx11VWS5J2l1peoqCjZ7Xb5+flJkgoKCjRy5EhZlqV9\n+/adVn+RkZGy2+0KDQ1VaWmpJGnjxo3y9/evVoAbFRUlSd71tm/frttuu02S1KZNG5WUlMjhcOiz\nzz7T5s2bVV5erj59+ui9995T+/bt1bJlSx0+fNhnDiUlJWrdurWkY2P8zTffVMutZcuW3txqGo+a\ncmvdurX27dun8PDweo9J+/btVVhYWGufvqSkpGjo0KGKjIxUamqqz3WKioo0YcIElZeXq7CwUJZl\nnfXMwvHx8YqOjtbChQslSX/4wx+8BfGSVFxcrI0bN+rhhx9Wfn6+tm3bJkny9/dXUFBQjbNGAwAA\nAAAAAAAAAAAAAACAXx/Fxg2oTZs22rp1q3r27KkffvhB559/vnbs2KHdu3dLkvbs2eNd19/fX+Xl\n5dXab9u2TZGRkaqsrJQkNW3aVIcPH/a2P66u4tHg4GCVlZWd0qckbyHzieoqar744os1atQotWzZ\nUhUVFTX2e7yA+cR8fcW+/PLLNXXqVA0dOlRvvfWWzz4vvPBCbd26VR06dNDOnTsVGhqqdu3a6Ztv\nvlFUVJT+85//KCQkpF7b0bJlS+3YsUOSlJ+fX+f6NfGV265du9SyZUuf6zdt2lSlpaWnvAb14XA4\nThnrW2+9VX/605+UnJyskpIShYaGntLu7bffVkpKimJiYtSrVy9vsXFgYKBKSkqqrRsUFKSSkhK1\nbdu2xjxsNpt69OhRbdnJ47Zq1SoNGTJE9957rz766KNqs0TfdtttGjFihG6//fZ6bzsAAAAAAAAA\nAAAAAAAAnItsfjVPAgo0JuypDei2225TXl6eEhMTdckll+j8889X9+7dtXz5ck2aNMk7U7Ak/fGP\nf9SYMWM0bdo077KlS5fK6XTK6XRKku666y6NHDlSH3/8cbV+2rZtq9TUVK1Zs8ZnHqGhofL399f4\n8eO1ffv2GvNdvny5nE6nNm/eLJfLpYKCgmrPHy9q/utf/6qhQ4fK5XJp3LhxNca76aabNGLECK1e\nvfqUGCcLCwvTnXfeqZkzZ1Zb5/j//+Uvf1FOTo4eeOAB3XnnnfLz81OXLl0UEBDg/e/JaurL399f\nt956qx544AGtXbu2zvVrUltuvtx+++2aNGmSFixYUGufgwYNUm5uriZOnKipU6dKks477zyVlpZq\n2LBh2rp1qyzL0oABA5SQkKCIiAifhcaSFBsbq/T0dA0fPrxaMXZcXJxmzJih559/3rvsjjvu0Asv\nvODts76+//57uVwuuVwuLViwQKtXr9Zll10m6Vgh+YnFxtdee608Hs9pxQcAAAAAAAAAAAAAAAAA\nAL8cm3W607WiUUhLS9OgQYNqnWUWZ2/lypVat26d/vrXvzZ0KpC0Z8/Bhk4BAAAAAAAAAAAAAAAA\nqFGrVs0aOgWcQ7aPGdjQKeAcccFz0+pe6RfkaNDe8buQm5urhQsXemfpjY+PV58+fRo4q2POJren\nnnpKxcXFsixLNptNr7zyisLDw+tst2nTJo0dO9bbZ6dOnZSWlnbmG1FPTqdTNpvNm29WVtYZx2rM\nrykAAAAAAAAAAAAAAAAAADCHmY0BnDOY2RgAAAAAAAAAAAAAAACNGTMb43QwszHqq6FnNrY3aO8A\nAAAAAAAAAAAAAAAAAAAAGi2KjQEAAAAAAAAAAAAAAAAAAAD4RLExAAAAAAAAAAAAAAAAAAAAAJ8c\nDZ0AANSXPdDPWKzyKstIHJvNSBhJUssAQ7//sDxm4kjy2MyNeYXHzJgHWuVG4khSmfyNxPGzG9wR\nDGpSUWokjuVoYiSOJJV6zO1TpgT4mXv9HDLz/iutMpiTof2zicGfqFWYORxIkvwNjbkkHSw1E+v5\n87oYiTOl9D9G4hxnavv8DJ2Pgx3m9nNb5VEzcY4eMhJHksqDw43FMjhUxtgqyszEqTJ3XvcEtjAW\ny+apNBLH42fmWkOSLEPHTrtVZSaQYUc8ZnZ0U+c9STJ1ujJ5rrJVVRiLVe5n5hrP3+Ax6oihz2mm\nr8+PlJo5JoT+9L9G4pR1ijMS5zgT29esqcGLRZu5WLsON75jXliQmWspk+89y+DNjd2G3i/hhsZJ\nMnc8b3J0v6FI0mH/5sZi2Qy9fv4Gj51+FYeNxLGVm4kjSZVNI4zFOlJp5txu8n7EUUPnUJM5mTxO\nmVJy1Nx12W9dS0Of/VcWHjQSR5KuvyDYSJxCQ/dHJCkypPF9zXq40tyNN0OHFqOaGTy4mBoqf8vM\n9Y8kVdjM7FP+lWbu20hSqS3QWCxT5xmTu2aAqbEyeA/okMHvUUyNuZ/Bzwym7k2Z/A6zvMrcuSHQ\n0JgbPJwbvb988JCZY17updcYiSNJidu/NBar9JCZe29NQ8wcE+wmj3gGawj2mbtFaUzE4e1G4niC\nzH3PIDUzGAsAGgdmNgYAAAAAAAAAAAAAAAAAAADgU+P7yS0AAAAAAAAAAAAAAAAAAMBvnM2P+WJx\nbmBPBQAAAAAAAAAAAAAAAAAAAOATxcYAAAAAAAAAAAAAAAAAAAAAfKLYGAAAAAAAAAAAAAAAAAAA\nAIBPFBv/RnzyySfq06ePpk6dekbtc3Nz67XeggUL6h1zypQpWrNmzWnlUVxcrOnTp59WG9NWr16t\nKVOmNGgOZyszM1MrV6487XY7duyQ0+lU//79vcu+/vpr3X///Ro+fHitbZ1Op2bNmiVJuvvuuzV/\n/nxlZmbqnnvukdPp1GOPPeZdd9y4cXrmmWe8j6Ojo7VlyxZVVVXJ6XSedt4AAAAAAAAAAAAAAAAA\nAOCXQbHxb0RcXJyeffbZM26/cOFCVVVV1bne6RQbn4mIiAilpKT8on3Uh81ma+gUGkSbNm3kdrur\nLbviiis0efLkerXfs2ePdu3aJYfD4V02YsQIud1uvf76695l27dv18GDB72PW7VqpSVLlkj6/Y49\nAAAAAAAAAAAAAAAAAACNkaPuVXCusCyr2uNNmzbpxRdflMPh0C233KKkpCR5PB49++yzKiws1Pnn\nn6+MjAwNGjRI3333nZKSknTDDTcoJSVF06ZN04oVK+Tn56cXX3xRTZo0UVpamjZv3iyXy6UBAwYo\nNjZW2dnZWrJkiYKDg5WRkaGWLVsqNTVVJSUlqqioUI8ePWrM1+l0qlu3blqzZo2SkpIUGRmpUaNG\nKSoqSi+99JIkKS0tTcHBwdqwYYMeeeQR9e7dW0uWLNFbb72l9u3by+FwaPz48frwww81e/ZsORwO\njRs3Tm3btlVubq7Wrl2rgoICtWvXTmPGjNGoUaP03XffqXXr1nXOXlxQUKCJEycqIyNDM2fOVFFR\nkfLz89WrVy8lJSVp/fr1mjhxoiTpmWee0ZYtWxQeHq6bb75ZkjRt2jT16NFDY8eOVefOnbV27Vpl\nZmYqKirKZ38njtvjjz8uy7I0c+ZM2Ww2BQQE6NVXX/XZLjExUeXl5YqKitKPP/6orKysWrfrRKNH\nj9bmzZsVEBCgCRMmqFWrVvVu60twcLCWLVumHj16nLI/Hrd3716FhYWpadOm+vHHHxUVFaW2bdvq\nxx9/lHTqfgwAAAAAAAAAAAAAAAAAABoOMxv/hrVr105z585Vdna2Fi9eLEn6+OOPdeGFF8rtdis9\nPV2S9Nprryk6OlpZWVneWYUTExM1Z84cPf3003K73YqMjJTb7dall16qrKwsxcbGau/evfr00081\nZ84cJScn65133tG6desUHh6uWbNmqVmzZnXmeN111yk7O1txcXGKjo72OYPujTfeqBkzZni3ITs7\nW3PmzFGvXr0kSR6PR2+++aays7OVnp6uGTNmeNt6PB5lZWVp9OjRkqQNGzZo3rx5dc7Uu2fPHo0Z\nM0bjx49XYGCgJOnKK69UTk6Oli5dKulYMfG0adP02muv6fXXX9cVV1yhjRs3Ki8vTz/88IO2bNmi\n6OhoHThwQKmpqRo4cKA+/fRTn/2tX7/eO27Nmzf3Lg8JCdH06dNVVlam/fv3+2wbERGh8ePHq1Wr\nVurTp482b95c67adaOjQoXK73br33nu1aNGiererSbdu3bRo0SJdfPHF3mUTJkyQy+XS888/L0nK\ny8tTt27d1L17d+Xl5XnXu+yyy/Ttt98yszEAAAAAAAAAAAAAAAAAAI0IMxv/hhUVFWnChAkqLy9X\nYWGhLMtSfn6+unTpIkkKCgryrmtZlizL8hZ6Ll68WB988IEqKyurzcR74qyzhYWF2rZtm1wul6qq\nqhQTE6OdO3fqoosukiR16NCh1vxsNpuuuuoqSZLdXnPde/v27dWyZUuVlpZ61/X39/fGLykpUWFh\noZKTkyVJbdq08bY9OX5KSoqGDh2qyMhIpaam1tjnqlWr1KZNG/n5+XmXRUVFyW63e5eVlZUpLCzM\n+/8dO3bUjBkzdPToUYWFhamyslIBAQEKCwtTSEiIQkNDtW3bNp/97dixwztu7du3r9anJIWGhqq0\ntFQtWrQ4pW1QUJCCgoIUHBys4OBgHTlypMbtOtmsWbO0Zs0alZaW6qabbvIuP5PZhW02m2JiYvTQ\nQw+pvLzcu3zEiBG67rrrvI/z8vK0bds2+fn5KTw8XPfdd58k6Y477tDs2bNPu18AAAAAAAAAAAAA\nAAAAAPDLodj4NyQwMFAlJSXex2+//bZSUlIUExOjXr16ybIsRUVF6auvvlJsbKyOHDninbU3ICBA\nFRUVatKkibft4sWLtWrVKi1cuNBnf5GRkeratasmTZokSaqoqNA333yjr7/+WpL0ww8/6MYbb6wx\nX8uy5HA4TllWV6Grx+NReXm5t3A3NDRUnTp10ptvvunN47gTi4Ul6dZbb9Wf/vQnJScnq6SkRKGh\noT77uOuuu9StWzdNmjTJOyPvyYKDg7V3715ZlqXg4GD5+fnJZrMpMDBQu3fv9sauT+Fu69atveOW\nn59f5/q1qW+h8L59+7R27VplZ2drwYIFKiws9D53csFyUFBQtX2rpn4dDofuuOMO5ebm1rhefn6+\nsrKyJEkDBgzwLm/durV27txZr9wBAAAAAAAAAAAAAAAAAMCvo+bpZHHO6dSpk7Zu3SqXy6WysjLF\nxsYqPT1dw4cPV0hIiCTplltuUVFRkZxOp5577jlv27i4OD3xxBOaN2+epGMzAjudTi1btqxaH+3a\ntVNqaqrWrFmjsLAwXX311XI6nXK5XFqxYoW6du2q4uJiJSUl6eDBg7Xme3wW5ePmzp2r1NRUrVy5\nUi6XS4cPH/bZLjExUf3799fSpUtlt9tlt9t1//33KzExUQ8++GCNha6WZWnAgAFKSEhQREREjYXG\nx/Xo0UOHDh3Shg0bfD7/2GOPaeDAgRo8eLAGDhwo6Vjhc4cOHRQYGKjLLrvM53b6EhMTo927dys5\nOVkHDhw45fn6xDh53ZdfflnJycl66KGHvLNCn6hFixZq2rSpkpOTtXbt2lPy6devn9avXy9JCgsL\nU1BQkJxOpwoKCmrt9/j/H388ceJE7z6ya9cu774oHSsw3rJli3fda665pt7bCQAAAAAAAAAAAAAA\nAAAAfnk2q77ToAKNRGVlpRwOhz7//HNt2LBBQ4YMaeiUjJoyZYp69OhB4a0PPx/0XYB+JsqrzBz6\nTqMOvE4tAwz9/sPymIkjyWPzq3uleqrwmBnzQKvcSBxJKpO/kTh+doM7gkFNKk79ocGZsBxNjMSR\npFKPuX3KlAA/c6+fQ2bef6VVBnMytH82MfgTtQqDV5/+hsZckg6Wmon1/HldjMSZUvofI3GOM7V9\nfoFm3sfBDnP7ua3yqJk4Rw8ZiSNJ5cHhxmIZHCpjbBVlZuJUmTuvewJbGItl81QaiePxM3OtIUmm\nPrnbrSozgQw74jGzo5s670mSqdOVyXOVraqi7pXqqdzPzDWev8Fj1BFDn9NMX58fKTVzTAj96X+N\nxCnrFGckznEmtq9ZU4MXizZzsXYdbnzHvLAgM9dSJt97lsGbG7sNvV/CDY2TZO543uTofkORpMP+\nzY3FOp1JCmrjb/DY6Vdh5h6erdzcvcDKphHGYh2pNHNuN3k/4qihc6jJnEwep0wpOWruuuy3rqWh\nz/4rC2uflOZ0XH9BsJE4hYbuj0hSZEjj+wOyhyvN3XgzdGgxqpnBg4upofK3zFz/SFKFzcw+5V9p\n5r6NJJXaAo3FMnWeMblrBpgaK4P3gA4Z/B7F1Jj7GfzMYOrelMnvMMurzJ0bAg2NucHDudH7ywcP\nmTnm5V5qrhYicfuXxmKVHjJz761piJljgt3kEc9gDcE+c7cojYk4vN1IHE+Que8ZAlqeZywWfvt2\nvfTbqn3DL+f84a82aP+N71MwUIf58+dr0aJFcjgcysjIOKtYTqdTNptNlmXJZrMpKyvLUJY1Gzdu\nnDZu3Cjp2JcBI0eOVHR0tPf5mr4gKC4u1tChQ735nnfeeZo0aVK9+szNzdXChQu9sePj49WnT58z\n3oaGGDcAAAAAAAAAAAAAAAAAAPDro9gY55yEhAQlJCQYieV2u43EOR0jR46s9fknnnjC5/KIiIgz\nzrdv377q27fvGbX1pSHGDQAAAAAAAAAAAAAAAAAA/PoM/o1DAAAAAAAAAAAAAAAAAAAAAL8lFBsD\nAAAAAAAAAAAAAAAAAAAA8IliYwAAAAAAAAAAAAAAAAAAAAA+ORo6AQCoryCHud9HBBk6+tllmQlk\nkGX3MxbLbpnbPn+7zUicKjUxEkeSmphJSQaHSVUGg5X7NzUSx7/qqJE4khTo8DcSx2NwnByG9oNj\nzBynmph7G8shj6FI5o7BfjaTg27yt3NmxmpK6X+MxHmy6WVG4hyXvvsbI3GCzb5pjKjwM3RuCDZ3\njrEb3c/NHPMsgzkdsQcaiRPoH2QkjiRVGjwfO+xmLharPI3vWtFuM3fcNDnmTQwdWw5XmDrvSabe\nMf4GP8d4/M289yTJ3+RFrCFNDI5VY1TZOc5IHPt7k4zE8brlibOPYfDYYpJf47tsUfDPW4zEqYi4\nxEgcSXLs32Eslp9/KyNxTF5y2jyVZgJ9+y8zcSQ5Yu4xFsvP0P0Wm6fKSJxjwcwcE2yV5u5HGL08\nN8TUaydJtioz53VTxyjJ7HHK78BOI3GaNWttJM7vganPMledb+b+pCT55682Eqd1+/9jJI5kbt+U\npKrmZvbPIP/Gd13WGD8bS+bum1qG7iFI5u6begKCjcSRpECDL5/dMnO9UWnwnnCVv5mx8qs4bCSO\nJDVxmNunTN2jNPXaSTJ3rWjw+s7o/YhGeL+lMXLu+NJYrImhlxuLNfinDUbiNMYaAmOfjSUF+pn5\nvtfkZ6KK0LbGYgEAatb4PnEC8/x2HQAAIABJREFUAAAAAAAAAAAAAAAAAAAAaBQoNgYAAAAAAAAA\nAAAAAAAAAADgE8XGAAAAAAAAAAAAAAAAAAAAAHyi2BgAAAAAAAAAAAAAAAAAAACATxQbNzKffPKJ\n+vTpo6lTp55R+9zc3Hqtt2DBgnrHnDJlitasWXNaeRQXF2v69Omn1ca01atXa8qUKQ2aw9nKzMzU\nypUrfT63bt06/f3vf5ck9evXz1if77zzjnr37q358+d7l/3jH/9QXFxcjblIUlFRkTp37qyff/5Z\n33zzjTp16iSPx6NevXrJ5XLJ5XIpJydHkmRZlq699lpvvNzcXN17772SpHfffVfvvfeese0BAAAA\nAAAAAAAAAAAAgMbIZrfzj3/1+tfQHA2dAKqLi4tTs2bN9O9///uM2i9cuFB33323/Pz8al1vwYIF\n3uLOX0JERIRSUlJ+sfj1ZbPZGjqFX8w777yjp556SpLZ7bzvvvsUEBCgyspK77LBgwfLsqw62/7h\nD3/QF198oZ07d+oPf/iDLMtSRESEsrKyqq333//+V9dff73y8vJ03XXXSTpWoF5QUGBsOwAAAAAA\nAAAAAAAAAAAAwNmj2LgROrmoc9OmTXrxxRflcDh0yy23KCkpSR6PR88++6wKCwt1/vnnKyMjQ4MG\nDdJ3332npKQk3XDDDUpJSdG0adO0YsUK+fn56cUXX1STJk2UlpamzZs3y+VyacCAAYqNjVV2draW\nLFmi4OBgZWRkqGXLlkpNTVVJSYkqKirUo0ePGvN1Op3q1q2b1qxZo6SkJEVGRmrUqFGKiorSSy+9\nJElKS0tTcHCwNmzYoEceeUS9e/fWkiVL9NZbb6l9+/ZyOBwaP368PvzwQ82ePVsOh0Pjxo1T27Zt\nlZubq7Vr16qgoEDt2rXTmDFjNGrUKH333Xdq3bp1nbMXFxQUaOLEicrIyNDMmTNVVFSk/Px89erV\nS0lJSVq/fr0mTpwoSXrmmWe0ZcsWhYeH6+abb5YkTZs2TT169NDYsWPVuXNnrV27VpmZmYqKivLZ\n34nj9vjjj8uyLM2cOVM2m00BAQF69dVXfbZLTExUeXm5oqKi9OOPP55SoHui4/HPP/98SVJlZaX+\n9re/VcvN17idbPfu3XriiSfkcDh0+eWX65lnnpF06j5YX5dccom2bNmiiooKNW/evMZYq1atUv/+\n/fXmm296l/Xq1Uv//Oc/1apVqzPqGwAAAAAAAAAAAAAAAAAAmNfwcyujTu3atdPcuXOVnZ2txYsX\nS5I+/vhjXXjhhXK73UpPT5ckvfbaa4qOjlZWVpZ3VuHExETNmTNHTz/9tNxutyIjI+V2u3XppZcq\nKytLsbGx2rt3rz799FPNmTNHycnJeuedd7Ru3TqFh4dr1qxZatasWZ05XnfddcrOzlZcXJyio6M1\nefLkU9a58cYbNWPGDO82ZGdna86cOerVq5ckyePx6M0331R2drbS09M1Y8YMb1uPx6OsrCyNHj1a\nkrRhwwbNmzfPZz8n2rNnj8aMGaPx48crMDBQknTllVcqJydHS5culXSsmHjatGl67bXX9Prrr+uK\nK67Qxo0blZeXpx9++EFbtmxRdHS0Dhw4oNTUVA0cOFCffvqpz/7Wr1/vHbfjxbaSFBISounTp6us\nrEz79+/32TYiIkLjx49Xq1at1KdPH23evLnG7Tp5Zuqacjt53E7WsmVL/c///I/cbrc2b96svXv3\n1thnfVVWViokJMT7eO/evXK5XHK5XFq2bJkk6auvvtIVV1yhwMBAlZWVSZI6duxY6zYDAAAAAAAA\nAAAAAAAAAIBfHzMbnwOKioo0YcIElZeXq7CwUJZlKT8/X126dJEkBQUFede1LEuWZclms0mSFi9e\nrA8++ECVlZXVZuI9cbbZwsJCbdu2TS6XS1VVVYqJidHOnTt10UUXSZI6dOhQa342m01XXXWVJMlu\nr7l+vX379mrZsqVKS0u96/r7+3vjl5SUqLCwUMnJyZKkNm3aeNueHD8lJUVDhw5VZGSkUlNTa+xz\n1apVatOmjfz8/LzLoqKiZLfbvcvKysoUFhbm/f+OHTtqxowZOnr0qMLCwlRZWamAgACFhYUpJCRE\noaGh2rZtm8/+duzY4R239u3bV+tTkkJDQ1VaWqoWLVqc0jYoKEhBQUEKDg5WcHCwjhw5UuN2rVy5\nUg8//LD3cU251fW67Nu3T6NGjVJpaam2bdum0tJS71icqd69e6tp06bKy8uTJIWHh1ebpbmqqkrf\nfvutBg0apB07dmjdunXe5zp27Kjvv/9enTt3PqscAAAAAAAAAAAAAAAAAACAGRQbN0KBgYEqKSnx\nPn777beVkpKimJgY9erVS5ZlKSoqSl999ZViY2N15MgR76y9AQEBqqioUJMmTbxtFy9erFWrVmnh\nwoU++4uMjFTXrl01adIkSVJFRYW++eYbff3115KkH374QTfeeGON+VqWJYfDccqyEwuaffF4PCov\nL/cWx4aGhqpTp0568803vXkcd2KxsCTdeuut+tOf/qTk5GSVlJQoNDTUZx933XWXunXrpkmTJun5\n55/3uU5wcLD27t0ry7IUHBwsPz8/2Ww2BQYGavfu3d7YdW2PJLVu3do7bvn5+XWuX5ua+vv888/V\no0ePeq178rid7P3339dtt92mvn37yul0epcHBgaqsLCw2ron75c1OV4EX1NuX3/9tfr06aPHH39c\n//3vf7VkyRJdfPHFstlsuuOOO+R0Oik2BgAAAAAAAAAAAAAAAACgkah5Glo0mE6dOmnr1q1yuVwq\nKytTbGys0tPTNXz4cIWEhEiSbrnlFhUVFcnpdOq5557zto2Li9MTTzyhefPmSTo2s63T6dSyZcuq\n9dGuXTulpqZqzZo1CgsL09VXXy2n0ymXy6UVK1aoa9euKi4uVlJSkg4ePFhrvsdnUT5u7ty5Sk1N\n1cqVK+VyuXT48GGf7RITE9W/f38tXbpUdrtddrtd999/vxITE/Xggw8qNzfXZzvLsjRgwAAlJCQo\nIiKixkLj43r06KFDhw5pw4YNPp9/7LHHNHDgQA0ePFgDBw6UdKzwuUOHDgoMDNRll13mczt9iYmJ\n0e7du5WcnKwDBw6c8nx9Ypy87ssvv6zk5GQ99NBDOnTokBYuXKj4+Pgzjnuia6+9Vm+99ZYGDx58\nyvJly5bpscce8y6Li4vTjBkzaiza9pWHzWbT3r175XK55HK5NH36dK1evdpbTHzppZfqyy+/9LaL\niorSeeedd0bbAgAAAAAAAAAAAAAAAAAAzLNZ9ZmuFfgFVFZWyuFw6PPPP9eGDRs0ZMiQhk7JqClT\npqhHjx665pprjMW0LEvvv/++7rzzTmMxzyWHy440dAqnsKvxHUKtMyw+98Vm8BThkbm8TDE1VCbP\npFUGg5kacf+qo4YiSVWOQCNxPAbHydH4dk1VGtynHPKYCWQz9xs1k8cDk8fhg4cqjcRp1tTMWD3Z\n9DIjcY5L3/2NkTjNQhrfH0cx+Z4xxW7wfGxqPzd5jXC00syxJdDPXE5Gj52G0mqM+6bJ857J7fOz\nm0nscIWh857MXUsFGxz0xnqtb4rJ7TPp0MGKuleqB1Pn0Kr3JhmJc9zhW5446xiN8fpAkorLqho6\nhVO0Kf3BSJyKiEuMxJEkvwM7jcXa5d/KSJyIoNr/WtfpsHnMXOfb1r9vJI4klcfcYyyWqXOozWPu\n/WKrMnPctJf+bCSOJFW2vNBYrDJD1xtB/uY+Z5vKqcW+rUbiSI3zOHW0WWsjcVB/5VXmrjlbFKw2\nEqes/f8xEkeSmhw0dw6tam5m/2yM19RVnkZ6L9dqfPdNG+PrZ/Kjo90yc71RaXA+NVP38PwqfE++\ndSYqHEHGYpnaPlOvnSRj75nG+H6RzN1vaYz3OiVz36OENPM3EkeSJoZebizW4J98T2B3uhrjfRJb\nVbmxWGUy8/qZ+jwrSQ6DsUwJCjTzvTh+H3ZnnP09Wvw+nPf01Abtv/Gd4fC7MX/+fC1atEgOh0MZ\nGRlnFcvpdMpms8myLNlsNmVlZRnKsmbjxo3Txo0bJR2bwXfkyJGKjo72Pl/TbMPFxcUaOnSoN9/z\nzjtPkybV74tCm812xoXGTz31lIqLi71j9Morryg8PPyMYq1YsUJvvPGGdxt79uypRx555IxiAQAA\nAAAAAAAAAAAAAACAxotiYzSYhIQEJSQkGInldruNxDkdI0eOrPX5J57w/auTiIiIBsl38uTJxmL1\n7NlTPXv2NBYPAAAAAAAAAAAAAAAAAAA0Tub+xggAAAAAAAAAAAAAAAAAAACA3xRmNgYAAAAAAAAA\nAAAAAAAAAPiV2fyYLxbnBvZUAAAAAAAAAAAAAAAAAAAAAD5RbAwAAAAAAAAAAAAAAAAAAADAJ5tl\nWVZDJwEA9bFnz8GGTgEAAAAAAAAAAAAAAACoUatWzRo6BZxD9rwytKFTwDmi1dBXGrR/ZjYGAAAA\nAAAAAAAAAAAAAAAA4BPFxgAAAAAAAAAAAAAAAAAAAAB8otgYAAAAAAAAAAAAAAAAAAAAgE8UGwMA\nAAAAAAAAAAAAAAAAAADwiWLj0/DJJ5+oT58+mjp16hm1z83Nrdd6CxYsqHfMKVOmaM2aNaeVR3Fx\nsaZPn35abRpKZmamVq5c2dBpNDpjxoyp9nj58uU6cODAWcfdsWOHnE6n+vfv71329ddf6/7779fw\n4cNrbet0OjVr1ixJ0t1336358+crMzNT99xzj5xOpx577DHvuuPGjdMzzzzjfRwdHa0tW7aoqqpK\nTqfzrLcDAAAAAAAAAAAAAAAAAACYQbHxaYiLi9Ozzz57xu0XLlyoqqqqOtc7nWLjMxEREaGUlJRf\ntA/8sp577rlqjz/++GPt27fvrOO2adNGbre72rIrrrhCkydPrlf7PXv2aNeuXXI4HN5lI0aMkNvt\n1uuvv+5dtn37dh08eND7uFWrVlqyZIkkyWaznc0mAAAAAAAAAAAAAAAAAAAAgyg2Pk2WZVV7vGnT\nJiUkJCgxMVGzZ8+WJHk8HqWlpcnpdOrpp5+WJA0aNEjfffedkpKSvLMKT5s2Tf369ZPT6dTWrVtV\nWFgop9OpzZs3y+Vy6bPPPpMkZWdnq1+/fnr44Ye9BaWpqal66KGHtG7dulrzdTqdmjp1qhITE7V8\n+XJt2rTplFlq09LSlJ6ervj4eH3wwQeSpCVLlugvf/mLhg0bprS0NEnShx9+qAceeEBOp1MFBQWS\njs3W/Oyzz8rlcnkLYEeNGqWEhAQ9+eSTNeaVm5ur+fPnS5L69esn6dgsxmlpaXrggQe8Y3ncxx9/\nrAkTJni3KSMjQ3fddZfWr18vSXK73UpISFBycrL27t2rp59+WocOHfK2Hzx4sAoKCpSYmKi//vWv\n6t+/vzwej8/cfv75ZyUmJmrgwIHq3bt3nbmdPN515eZLUVGRhg0bJun/z1a9evVqPfroo0pJSdGQ\nIUMkHZuV+uSZh1944QWtWLFCw4YN8854vGnTJsXHx8vpdOp///d/a8x39OjRcjqdGjBggPbs2VPj\nevUVHBysZcuWqUePHqe8V47bu3evwsLCFBUVpR9//FGS1LZtW+//19QOAAAAAAAAAAAAAAAAAAD8\n+ig2Pkvt2rXT3LlzlZ2drcWLF0s6Vhh74YUXyu12Kz09XZL02muvKTo6WllZWd5ZhRMTEzVnzhw9\n/fTTcrvdioyMlNvt1qWXXqqsrCzFxsZq7969+vTTTzVnzhwlJyfrnXfe0bp16xQeHq5Zs2apWbNm\ndeZ43XXXKTs7W3FxcYqOjvY5S+2NN96oGTNmeLchOztbc+bMUa9evSQdK6B+8803lZ2drfT0dM2Y\nMcPb1uPxKCsrS6NHj5YkbdiwQfPmzav3bLgnzmR75ZVXKicnR0uXLvUuW7t2rT7++GONGDHCu358\nfLzGjh2rJUuWqLKyUu+//77mzZunBx54QO+++666dOmijRs36t1331VlZaXsdrvsdrsqKyuVmZmp\njh07atOmTT7zeffdd5WcnKypU6fqwIEDtebma1tqyi0hIUHvvvtuvcbhuJCQEE2fPl1lZWXav3+/\nIiIiTpl5ePTo0erZs6cyMjK8Bd9ffPGFXC6X3G63brjhhhr7HDp0qNxut+69914tWrSoxvXqq1u3\nblq0aJEuvvhi77IJEybI5XLp+eeflyTl5eWpW7du6t69u/Ly8rzrXXbZZfr222+Z2RgAAAAAAAAA\nAAAAAADA74LNz84//tXrX0NzNHQC57qioiJNmDBB5eXlKiwslGVZys/PV5cuXSRJQUFB3nUty5Jl\nWd5iysWLF+uDDz5QZWWloqKiqq13XGFhobZt2yaXy6WqqirFxMRo586duuiiiyRJHTp0qDU/m82m\nq666SpJkt9e8w7Vv314tW7ZUaWmpd11/f39v/JKSEhUWFio5OVmS1KZNG2/bk+OnpKRo6NChioyM\nVGpqaq35nSwqKkp2u11+fn7eZatXr1ZERMQp+RYWFqq0tFQlJSW64IILJEkXX3yx/v3vf+vuu+/W\nt99+qw8//FAhISGKjIyUdKw4XFK1bT3Z9u3bddtttykgIEAXXnhhrbn5UlNul1xyiVauXHna4yFJ\noaGhKi0tVYsWLerVrm/fvsrMzNQnn3yigQMHqlOnTj7XmzVrltasWaPS0lLddNNN3uVnMruwzWZT\nTEyMHnroIZWXl3uXjxgxQtddd533cV5enrZt2yY/Pz+Fh4frvvvukyTdcccdtc4aDQAAAAAAAAAA\nAAAAAAAAfn0NX+58jgkMDFRJSYn38dtvv62UlBTNnj1bzZs3l2VZioqK0ldffSVJOnLkiHfdgIAA\nVVRUVGubnZ2tJ598ssbizsjISHXt2lVZWVnKycnRkCFD1KZNG/3www+S5P1vTSzLksPhOGVZXcWk\nHo9H5eXl2rZtm6Rjxa6dOnVSVlaWsrKyNGbMGO+6Jxff3nrrrXrllVf07bffVhurEwUHB6usrEyS\ntHv3bp95Hzdo0CC1a9dOH3744SnPHc9t+/btkqStW7fqggsuUOfOnbVs2TLFx8drzpw5uvzyy2vd\n3hNdcMEF2rZtm8rLy1VUVFRrbnU95ys3X04cjz179tSZ48n9+Pv7VyvwDQkJ0QsvvKAHH3xQ8+fP\n9xlj3759Wrt2rbKzs5WYmFgt5on7rXSsaL6m1/LEnBwOh+64445axyg/P19ZWVl66623qsVs3bq1\ndu7cWWsfAAAAAAAAAAAAAAAAAADg10Wx8Wnq1KmTtm7dKpfLpbKyMsXGxio9PV3Dhw9XSEiIJOmW\nW25RUVGRnE6nnnvuOW/buLg4PfHEE5o3b56kYzMCO51OLVu2rFof7dq1U2pqqtasWaOwsDBdffXV\ncjqdcrlcWrFihbp27ari4mIlJSXp4MGDteZ7fBbl4+bOnavU1FStXLlSLpdLhw8f9tkuMTFR/fv3\n19KlS2W322W323X//fcrMTFRDz74oHJzc322syxLAwYMUEJCgiIiIhQaGupzve7du2v58uWaNGmS\nz5mCT8570KBBcrvdOnDgwCnPORwO3XnnnUpISNDcuXP15z//WYGBgTp06JBuvPFGeTyeU4qNT45x\nonvvvVezZs3S448/7nMm4dra1ic3X0JDQ+Xv76/x48d7i5N9xV2+fLmcTqc2b94sl8ulgoICSdIf\n//hHjRkzRtOmTZMk/fOf/1RiYqLGjh2r3r17++yzRYsWatq0qZKTk7V27dpqz8XExKhfv35av369\nJCksLExBQUFyOp3ePmvbdpvN5n08ceJE7/67a9cu7/tEOlZgvGXLFu+611xzjc/YAAAAAAAAAAAA\nAAAAAACgYdisuqa4xe9SZWWlHA6HPv/8c23YsEFDhgxp6JQaRL9+/TRnzpyGTgP/z549tRfXAwAA\nAAAAAAAAAAAAAA2pVatmDZ0CziHFf09t6BRwjoh4fFKD9u9o0N7RaM2fP1+LFi2Sw+FQRkbGWcVy\nOp2y2WyyLEs2m01ZWVmGsjx7deVW0yzGK1as0BtvvOF9vmfPnnrkkUfq1ee4ceO0ceNGb/yRI0cq\nOjr6LLaibrm5uVq4cKE33/j4ePXp0+eM4zXm1xQAAAAAAAAAAAAAAAAAAJjDzMYAzhnMbAwAAAAA\nAAAAAAAAAIDGjJmNcTqY2Rj11dAzG9sbtHcAAAAAAAAAAAAAAAAAAAAAjRbFxgAAAAAAAAAAAAAA\nAAAAAAB8otgYAAAAAAAAAAAAAAAAAAAAgE+Ohk4AAOortLzQWCzLL8BInMqWFxqJI0k2yzISZ+u+\nCiNxJCm68kdjscpbdTQSx69sn5E4klQZ2NJIHD+PuTEvt5k7NfvbzMSxeSrNBJJUYWj7AipKjcRp\nrGxHDxmLVdXsfGOxTLHlLTQWq6J7vLFYZaVm9nW/QD8jcYIdht7E/8/BQ2a27/nzuhiJM+XwRiNx\nJOlAucdInPIqM+diSWrVxFwsy27m2OnYm28kjiSVh3UwEudQeZWROJLUwm7ufCy7mfexSR4/fyNx\nTF1zSmavESybmd9C2yvKjMSRJMvQmMtjbj+3WWaOd5IkQ6+fJ7CFkTiS5Hdwl5E4pq9/TJ1Dm4WY\nOZ57ZPYaofTQ2R8/W3z/gYFMjvF0vctYLJvBY4IptqpyI3FMvvdM5STJ2DHP5PHOVn7YSBxPkxAj\ncSSz51AZGitT98okw/uUKVUGx9xhZqws/yAjcSSDxzuD773GeJxqjOeFxsoKaNrQKZyiym7m+tyv\n6qiROKaZOg7by0qMxDkWzMz1a3lAMyNxJMnk7bIdhu4FRlYVG4kjSUebtTYSJ+CIuf3AExRqLJap\n43m53dx1S2P8HsXUPSBJshu6FjZ5fW7qXqdJlqNJQ6dwCsemz4zFKo++0VgsE/cQJMk/yNz910A/\ncycHU/eANt19u5E413yy3EgcSbKXN8LvVk3eXzZ1LXXkgJE4x5i7BgKAxqLxXckBAAAAAAAAAAAA\nAAAAAAD8xtnsZiZkAX5p7KkAAAAAAAAAAAAAAAAAAAAAfKLYGAAAAAAAAAAAAAAAAAAAAIBPFBsD\nAAAAAAAAAAAAAAAAAAAA8IliYwAAAAAAAAAAAAAAAAAAAAA+UWx8jlixYoU+++yz025XVFSkVatW\n/QIZnZ6DBw/qo48+Ou12q1ev1pQpU36BjH45xcXFmj59utGY06ZNq/N1HDNmjJG+hgwZou7du8vj\n8UiSKioq5HQ61atXr1rbZWZmKiUlxZvL8OHDtXr1asXFxcnlcsnlcqmgoECS9NFHH+mmm27ytnU6\nncrJyZEk9evXz8h2AAAAAAAAAAAAAAAAAACAs0ex8TmiZ8+eio2NPe12jaXYeP/+/Vq2bNkZtbXZ\nbIaz+WVFRER4i25N8Hg8Wrt2ra699tpa13vuueeM9Pfqq68qOjra+9jf319ut1sRERF1tj148KDK\ny8u1Z88eScdeu3vuuUdZWVnKyspS27ZtJUl5eXm6+uqr9dNPP3nbrl271tsGAAAAAAAAAAAAAAAA\nAAA0Do6GTuC3Ki0tTaGhofrmm2/Uu3dv9enTRyNGjNC+ffvUtWtXPfnkk9q1a5eGDBmiJk2aqG/f\nvoqPj1daWpoqKyv1008/KSkpSb1791Zubq7eeOMNDRgwQH/+858lHZvx9+2339bPP/+swMBAvf76\n6xoyZIj27dun5s2b6+WXX9a///1vZWZm6sCBA1q/fr0yMjLUokULPfnkkzpw4IBiYmL01FNPSTo2\ns2y3bt20Zs0aPfjgg3r//ff1wgsvKCwsTKmpqRo5cqTCw8NP2c6ioiKNHj1almVp3759evvtt5We\nnq7NmzcrICBAEyZMUFFRkcaPH6+ioiK5XC6NGDFCnTt31qRJk/Tll18qNDRUkyZNkr+/f43jWVBQ\noIkTJyojI0MzZ85UUVGR8vPz1atXLyUlJWn9+vWaOHGiJOmZZ57Rli1bFB4erptvvlnSsZmBe/To\nobFjx6pz585au3atMjMzFRUV5bO/1NRUlZSUqKKiQo8//rgsy9LMmTNls9kUEBCgV1991We7TZs2\nadSoUYqKitJLL73k3ReCg4O1YcMGPfLII+rdu7e++OILvfzyy2rWrJmeffZZRUdH689//rOioqJU\nUFCgCRMm6KKLLpIk/etf//IWmmdmZuqrr76SJB0+fFgPPvigbrvtNjmdTu3evVsffvihJCk3N1f/\n+te/dODAAV1yySV69tlnfea7YMECvfvuu7Lb7Ro6dKiuueYaSZJlWTW+FrXp2rWrcnNz1a5dO+3a\ntUuWZfmMtX37dt13333Ky8tTu3btJEnnn3++du7ceUb9AgAAAAAAAAAAAAAAAACAXwYzG/+COnbs\nKLfbrfvvv1/vvPOO4uLilJWVpaKiIu3evVsbNmxQbGys3G63+vTp4213++23KycnR1lZWZKkvn37\n+pwpd8+ePZo9e7Zee+01SdK4cePkdrt15ZVX6rPPPtMtt9yikSNHemeWPe+887Rs2TJ1795dOTk5\n2rx5s3bt2uWNd9111yk7O1s333yzevXqpY8++kjl5eUqLS31WWh8XH5+vqZNm6a3335bNptNQ4cO\nldvt1r333qtFixbpqquu0uTJk3X99dcrKytLnTt31saNG1VcXCy3260bbrih1lmP9+zZozFjxmj8\n+PEKDAyUJF155ZXKycnR0qVLJR0rJp42bZpee+01vf7667riiiu0ceNG5eXl6YcfftCWLVsUHR2t\nAwcOKDU1VQMHDtSnn37qs7/169crPDxcs2bNUvPmzb3LQ0JCNH36dP1f9u48PKrq8P/4e5asJEAI\ngmENiwoIX5DFxxYoYCsYhYpUEZJMAP2GHQGxAkGpthLUgoBEpYRFMhAiQVAUKtBqfUAFRHAPXyVA\nhYCsgZCNyWTm9wc/pgQmEPBAgv28nsenzcy9n3PumTv33OXMoaioiFOnTvldt0WLFrz88ssXvd69\ne3dSU1N55513APjnP//HI0WXAAAgAElEQVTJ008/jdPp5NZbbwXOzgr8zDPP8Oc//5k33njDt+7b\nb7/Ngw8+6Pt70qRJWCwWFi5c6Ju12t/Mw40aNWLx4sXs3Lmz3Lbt2bMnGRkZvPLKK8yfP9/3+tXO\nLtyxY0dSU1Pp3Lmz77U1a9aQkJBAQkICRUVFHD9+nMjISDp27Mi2bdt8y8XExLBu3bqrKldERERE\nRERERERERERERERERERErg3NbHwNtWvXDgCbzca+ffv47rvveOutt8jPz+fo0aN069aNL7/8kscf\nf5yBAwfyq1/9CoAmTZpgt9ux2Wy+LH+zw57Lt1qteDweZsyYwZ49ezh+/DiPPfaY3zodOnSIli1b\nAtC0aVMOHz5M3bp1L8rr3r07EyZM4KabbuI3v/nNJbezdevWZeq6aNEiPvvsMwoKCujRo4ffdfbu\n3cuOHTtISEjA5XLRp0+fcvO3bNlCVFRUmTIaN26M1Wr1vVZUVEStWrV8//+WW24hNTWVM2fOUKtW\nLdxuN4GBgdSqVYuwsDAiIiLYs2dPuW10blbh6OjoMmUCREREUFBQQI0aNS7ZLueLjo6mZs2aFBYW\nAjB48GDmz5/P0qVLmThxIlFRUdSoUYOaNWsSHBzMoUOHADhw4AA1atQgPDzclxUcHExkZCTBwcEU\nFRWVW+a5+gYFBZW7zCeffMLSpUuBsvuYv/2tIrMdBwUFMXr0aBo2bIjX68VisfDAAw8wduxY3zIf\nfvghX3/9NePGjSMnJwc4O7i5TZs2LFmy5LJliIiIiIiIiIiIiIiIiIiIiIiIiMj1o5mNryG7/T9j\nuaOjoxk5ciROp5PMzExuv/12bDYbEydOZMqUKWUGWe7ZsweXy0VpaWmZvAsHe54/+DYrKwuXy4XT\n6eTee+/1LWu32ykpKfEtFxUVRXZ2NnB2wO+5gcYX1jckJISQkBBWrVpFr169LrmdVut/dqOTJ0+y\nfft2li5dSnx8fLn1iI6O9s30nJGRQf/+/cvN79OnD8OHD2fmzJnlLhMaGsqJEyc4fvw4oaGh2Gw2\nLBYLwcHBHDlyhIiICKBiA2Zvvvlm9u7dC5ydtflKeb3ecss59/rNN9/M888/z913383f//53AE6d\nOkVubi579+4lKioKgBUrVvDII49UuNwreR1gwYIFLFiwgOTkZDwej+/10NBQcnNzyyxbUlJSZpny\nnD9Lt7/yt2zZQkpKCgsWLKBz586+/RHOzsa8f//+y5YhIiIiIiIiIiIiIiIiIiIiIiIiIteHBhtf\nJ/3792f16tUMGjSIYcOGUVRUxNatW4mLi2PEiBH069fPt+z777+Pw+HA4XAAMHXqVFJTU1m0aBHP\nPPOM3/wmTZrw448/kpiYWGbG3ttuu40vv/ySp556ihMnTtCzZ0+2bt1KfHw8zZs39w02tlgsF2Xe\nc8895OXlERkZecltO3/dGjVqUK1aNYYMGcL27dt9r9epU4eCggL++Mc/kp2dTatWrQgICCAhIYFB\ngwaRlZV1yTI6d+5Mfn4+O3fu9Pv+8OHDGTFiBKNGjWLEiBHA2RmImzRpQnBwMLfffnu523mhDh06\ncOTIEYYMGUJeXt4lt/dCy5cvZ8KECXz66ackJCT4ZjK+cN3FixcTHx+P0+n0zf4cHh7OX/7yF/70\npz8xaNAgSkpK+L//+z9at259yfp++eWXOBwOfvjhBxISEtixY0eF69ujRw8cDgfp6elllnvggQdI\nTExk2bJlvtdiYmIYMGAAGzZsuGR9Lix3zZo1JCQkkJCQwLfffktWVhYNGjQAoE2bNmzZssW3zv33\n38/Ro0crlC8iIiIiIiIiIiIiIiIiIiIiInIjs9ps+k//Vei/ymbxVmSqV7luJk+ezMiRI2nYsGFl\nV4UNGzZw7NgxYmNjK7sqlWb27Nl07tyZTp06XfOyYmNjSU9P9/198OBBDh48SMeOHa952TcKd86l\nB6VfCa8t0EiOu2Z9IzkAFkOH4+yTJZdfqIJauP9tLMt10y1GcmxFJ43kALiDaxrJsXnMtbnLYr/8\nQhUUcPnfV1SIxeM2EwSUGNq+wJICIzlVleVMvrGs0vC6l1/oOrNsXWUsq+TOfpdfqIKKCszs67Zg\nMyf5oXZDX+L/73S+me17pk4bIzmzC83163muy//rCxXhKjV3aXRTkLksr9XMsdN+Yp+RHABXrSZG\ncvJdpZdfqIJqWM31x1gr/2L9Qh5bgJEcU+ecYPYcwWsx81toa0mRkRwAr6E2x2NuP7d4zRzvADD0\n+XmCaxjJAbCdPmwkx/T5j6k+NDzMzPHcg9lzhIL8n3/8rPH93w3U5CxP+z7GsiwGjwmmWEpdRnJM\nfvdM1QkwdswzebyzuAovv1AFeILCjOSA2T4UQ21l6l4ZGN6nTCk12OZ2M23lDQgxkgMGj3cGv3tV\n8ThVFfuFqsobWK2yq3CRUquZ83Nb6RkjOaaZOg5bi3Ivv1CFw8ycv7oCw43kAJi8XXbI0L3ABqXH\njOQAnAm/2UhOYLG5/cATEmEsy9Tx3GU1d95SFZ+jmLoHBGA1dC5s8vzc1L1Ok7z2oMquwkXsuz4y\nluVq0d1Ylol7CAABIebuvwbbzHUOpu4B7fr9vUZyOn3wDyM5AFZXFXy2avL+sqlzqeKLJyS8WgF1\noo1lyS9f7uuTKrsKcoOIGPFCpZZf9c7kpEp49913WbVqFXPnzr1uZTocDiwWC16vF4vFQlpa2jUv\nMzk52TerssViISkpiRYtWvjeL29W4GPHjjF+/HhffevUqcPMmTN/Vl0uLKtevXrUq1fvZ2Wes2vX\nLqZNm+Yro2XLlkyePPmq8y7XbiIiIiIiIiIiIiIiIiIiIiIiIiLyy6DBxlXM9OnTK7sKAPTp04c+\nfczNJFMRTqfzupYHkJSUdMn3x44d6/f12rVrG6/vsmXLjOadr0WLFkbre7l2ExERERERERERERER\nEREREREREZFfBjP/TqmIiIiIiIiIiIiIiIiIiIiIiIiIiIj84miwsYiIiIiIiIiIiIiIiIiIiIiI\niIiIiPilwcYiIiIiIiIiIiIiIiIiIiIiIiIiIiLil8Xr9XoruxIiIhVRXFRU2VW4poreeM5ITsjg\nPxnJMc7rMZNj0e9krje3wTMFu8VcllRMiaHPb3vn7maCgLs+/chYlsXgqezpfLeRnPAwu5Ec06ra\n9o0LbWkkB2B2YZaxrKro+X/tM5LzdPdoIzkmeS3mOgaTxwMRqbj0b48ay4prGWEkx2s12xdXtT7U\nNBPbZ3LbLKUuY1kee5CRHJN9jKm+b/7nB43kAAztUM9Ylqm2MnmOUBXpvEX+G/xtxyFjWYntzRyn\nTB5afulfY1NtpeNdxb353TEjOY+0qm0kp6o6bepmJxAeUAXPN/Qc5Yal5yg3NqOf3+Z0IzklXWKN\n5ACYPNzpHknFmNq+rx6830gOQOvV64xlWdE5XkUEh4RUdhXkBpL7+qTKroLcICJGvFCp5etKQ0RE\nRERERERERERERERERERERERERPzSYGMRERERERERERERERERERERERERERHxS4ONRURERERERERE\nRERERERERERERERExC97ZVdAREREREREREREREREREREREREROS/jcWm+WLlxqA99QaxadMmPvro\noyteLycnhy1btlyDGl2Z06dPs3HjxmuWn5KSwqeffnrN8k279957GTRoEHFxcXz55Zc/O2/Xrl18\n9913vr9Xr17NypUrryprzJgx3HnnnXg8HgBKSkpwOBz06tXrkuulpKQwbNgwAJ5//nmeeuoptm3b\nxt13301CQgIJCQns378fgI0bN9KjRw/fug6Hg2XLlgEQGxt7VfUWERERERERERERERERERERERER\nEfM02PgG0bVrV7p163bF61WVwcanTp1iw4YNlV2NKiMyMpIlS5YwZ84cUlNTf3ZeVlYW3377rYGa\nwdy5c2nRooXv74CAAJxOJ7Vr177suqdPn8blcnH06FEALBYLDzzwAGlpaaSlpdGwYUMAtm7dyh13\n3MGPP/7oW3f79u2+dURERERERERERERERERERERERESkarBXdgV+qSZPnkxERARff/01MTEx9O3b\nl0mTJnHy5Enat2/PuHHjOHz4MGPGjCEoKIgHH3yQfv36MXnyZNxuNz/++CODBw8mJiaG1atXM3/+\nfB577DEeeughALZt28abb77J8ePHCQ4OZt68eYwZM4aTJ09SvXp1/vrXv/LJJ5+QkpJCXl4eO3bs\nYMaMGdSoUYNx48aRl5dHhw4deOKJJ4CzM8t27NiRzz77jEGDBrF27VqmTp1KrVq1mDBhAklJSURG\nRl60nTk5Ofz5z3/G6/Vy8uRJ3nzzTf7yl7/www8/EBgYyAsvvEBOTg7Tp08nJyeHhIQEJk2aRKtW\nrZg5cyZffPEFERERzJw5k4CAgIvyV69eTWlpKQ899BCxsbGkp6eTkpJCTk4O+/bto1evXgwePNi3\n/D//+U8+++wzJk2ahMPhoG3btnz00Uc899xztG/fHqfTydq1awkJCWHmzJkkJyfz7LPPEhYWBsCo\nUaOYNGkSkydPpmbNmuTm5uJ0OrFaLx6Xf/z4ccaOHUt4eDj79u3j73//+yXrdj6v1wtAbm4uQUFB\n5X6mS5cuZd26dYSGhjJjxgzCwsIYPHgwNpuNunXr8tJLL7F8+XLS0tIAePfdd1myZAlwdjbstWvX\n0rx5c6ZMmeK3Hm+99RaZmZlYrVbGjx9Pp06dytTvSrVv357Vq1fTqFEjDh8+jNfr9Zt18OBB+vfv\nz9atW2nUqBEAdevW5aeffrqqckVERERERERERERERERERERERETk2tDMxtfQLbfcgtPp5JFHHmHF\nihXcfffdpKWlkZOTw5EjR9i5cyfdunXD6XTSt29f33r33nsvy5Yt8w0gffDBBxk2bNhF+UePHuWN\nN97gtddeAyA5ORmn0+kbYPu73/2OpKQk38yyderUYcOGDdx5550sW7aMH374gcOHD/vyfvWrX7F0\n6VJ++9vf0qtXLzZu3IjL5aKgoMDvQONz9u3bx+uvv86bb76JxWJh/PjxOJ1O/vCHP/DOO+/Qrl07\nXn75ZX7961+TlpZGq1atyMrK4tixYzidTrp06VKhWY/Pn/G2bdu2LFu2jPfff9/32vbt2/nnP//J\npEmTfMv369ePadOmsW7dOtxuN2vXriUjI4OBAweSmZlJmzZtyMrKIjMzE7fbjdVqxWq14na7SUlJ\n4ZZbbmHXrl1+65OZmcmQIUOYM2cOeXl5l6zbhU6cOIHD4WDIkCEMHDjQ9/r5n+mJEyf48MMPSU9P\nZ8iQIaxYsQK73c68efNYsmQJISEhfPXVVwwcOJBhw4bx2GOPkZaW5munRo0asXjxYnbu3FluPXr2\n7ElGRgavvPIK8+fP99vWV6Jjx46kpqbSuXNn32tr1qwhISGBhIQEioqKOH78OJGRkXTs2JFt27b5\nlouJiWHdunVXVa6IiIiIiIiIiIiIiIiIiIiIiIiIXBua2fgaateuHQA2m419+/bx3Xff8dZbb5Gf\nn8/Ro0fp1q0bX375JY8//jgDBw7kV7/6FQBNmjTBbrdjs9l8Wf5mhz2Xb7Va8Xg8zJgxgz179nD8\n+HEee+wxv3U6dOgQLVu2BKBp06YcPnyYunXrXpTXvXt3JkyYwE033cRvfvObS25n69aty9R10aJF\nfPbZZxQUFNCjRw+/6+zdu5cdO3aQkJCAy+WiT58+lyzjQo0bN8ZqtZYpd9u2bdSuXbvMctHR0Rw4\ncICCggJyc3OpV68eAM2aNeOTTz7h97//Pd988w3r168nLCyMBg0aAPhm261ZsyYFBQV+63Dw4EF6\n9uxJYGAg9evXv2TdLhQZGYnT6eTEiRNMmjSJjh07AmU/gwMHDrBnzx4SEhIoLS2lQ4cOFBYWMnXq\nVI4dO0ZOTg4xMTGA//2jcePGAL6Zk/355JNPWLp06UUZ/vIqMttxUFAQo0ePpmHDhni9XiwWCw88\n8ABjx471LfPhhx/y9ddfM27cOHJycoCzg5vbtGnjm5VZRERERERERERERERERERERERERKoGzWx8\nDdnt/xnLHR0dzciRI3E6nWRmZnL77bdjs9mYOHEiU6ZMKTPIcs+ePbhcLkpLS8vkXTjY8/zBrFlZ\nWbhcLpxOJ/fee69vWbvdTklJiW+5qKgosrOzgbMDfs8NNL6wviEhIYSEhLBq1Sp69ep1ye20Wv+z\nG508eZLt27ezdOlS4uPjy61HdHS0b6bnjIwM+vfv7zc7NDSUoqIiAI4cOXLR++e3yciRI2nUqBHr\n16+/6D2AiIgIDh48CEB2djb16tWjVatWbNiwgX79+pGenk7r1q0vua3nq1evnu+zOjdotry6lfde\nWFgYp0+f9r1+/mfaoEED2rdvT1paGsuWLWP06NFs3ryZpk2bkpaWRseOHctt34rWY8GCBSxYsIDk\n5GQ8Ho/v9dDQUHJzc8ssW1JSUmaZ8pw/S7e/8rds2UJKSgoLFiygc+fOvv0Rzg7y3r9//2XLEBER\nEREREREREREREREREREREZHrQ4ONr5P+/fuzevVqBg0axLBhwygqKmLr1q3ExcUxYsQI+vXr51v2\n/fffx+Fw4HA4AJg6dSqpqaksWrSIZ555xm9+kyZN+PHHH0lMTGTPnj2+12+77Ta+/PJLnnrqKU6c\nOEHPnj3ZunUr8fHxNG/e3DfY2GKxXJR5zz33kJeXR2Rk5CW37fx1a9SoQbVq1RgyZAjbt2/3vV6n\nTh0KCgr44x//SHZ2Nq1atSIgIICEhAQGDRpEVlaW3+w777yTf/zjH8ycOdPvTMEX1vvcgO68vLyL\n3rPb7fTu3ZsBAwawfPlyHnroIYKDg8nPz6d79+54PJ6LBhv7a5dz/vCHP7Bo0SIef/xxatSocdm6\nnS83N5dBgwb5tt+fWrVqcccdd+BwOEhISGDz5s20bduWDz74gOHDh3Pq1CnfsnfccQdr167lqaee\nuqJ69OjRA4fDQXp6epnlHnjgARITE1m2bJnvtZiYGAYMGMCGDRvKzfNX7po1a0hISCAhIYFvv/2W\nrKws3wzSbdq0YcuWLb517r//fo4ePVqhfBERERERERERERERERERERERERG59izeS017Ktfd5MmT\nGTlyJA0bNqzsqrBhwwaOHTtGbGxsZVelyouNjSU9Pb2yq/GLV/z/Z7n+pSp64zkjOSGD/2Qkxzjv\n5WfGrhCLfidzvbkNninYy//9g1wjJYY+v+2du5sJAu769CNjWRaDp7Kn891GcsLD7JdfqBJUte0b\nF9rSSA7A7EL/P1z7pXj+X/uM5DzdPdpIjkneS/ww7kqZPB6ISMWlf2vuB6NxLSOM5HitZvviqtaH\nmmZi+0xum6XUZSzLYw8ykmOyjzHV983//KCRHIChHeoZyzLVVibPEaoinbfIf4O/7ThkLCuxvZnj\nlMlDyy/9a2yqrXS8q7g3vztmJOeRVrWN5FRVp03d7ATCA6rg+Yaeo9yw9Bzlxmb089tsZsxASRdz\nYzRMHu50j6RiTG3fVw/ebyQHoPXqdcayrOgcryKCQ0IquwpyAzk5P6myqyA3iJpDkyu1/KrZg0ul\ne/fdd1m1ahVz5869bmU6HA4sFgterxeLxUJaWtp1K/tyLle38mYP3rRpE/Pnz/e937VrVxITE695\nfS+0a9cupk2b5qtHy5YtmTx58lXnJScn+2ajtlgsJCUl0aJFCyN1FRERERERERERERERERERERER\nEZGqQ4ONq5jp06dXdhUA6NOnD3369LmuZTqdzuta3pW4XN2WLVvm9/WuXbvStWvXa1GlK9KiRQuj\n7ZuUpF/UiIiIiIiIiIiIiIiIiIiIiIiIiPw30GBjEREREREREREREREREREREREREZHrzGKzVnYV\nRCpEe6qIiIiIiIiIiIiIiIiIiIiIiIiIiIj4pcHGIiIiIiIiIiIiIiIiIiIiIiIiIiIi4pcGG4uI\niIiIiIiIiIiIiIiIiIiIiIiIiIhfFq/X663sSoiIVMRnP+Yay6oWaDOS06h6gJEcALvFTI7VVWAm\nCFj6Q6GxrL631TaSExJg7ncyFkNd4BmPkRgAggz+DMjicRvJ8djM7eem2tziPmMkB6DEFmQsy9j3\nuPiUmSDAFVTDSI6pbQPAa+5Lk1diLAqLy0y9qgeXGskxuW8CFBWYOSZ4A80cqKobygEYF9rSSE7s\nnfWM5ADctWGNsSxPYDUjOSbPEY7NfcZIzk3DJhvJAfAEVzeXFRBsJMdaau4gZao/NtUXA3gt5joH\nY+cIhs5/ALxWu5Ect8G7LgFec9tXYjGzfSbPEWx5PxnJKQy72UjOOa5CM+0eXs1Q32cxO3fA6fyf\nv30RZ340UJOz3JFNjWXZTx4wlmWKqWNLaXVz+7nJ6ytb/lEzQSaP53Yz/bq7RpSRHABb0UljWaaY\naqezWWavZUww1ceAufON0vA6RnIAAg7/n5Gc0rCbjORA1TxOWQuOG8n5b+ANMXM/yVJ82kgOgKda\nLSM5tlMHjeQAlFY31zeYOnYeMnT/ByDAauZkv2awmecxYPgepSEb9pq7l9uloZl7GwE2cw0VYLDN\ni0vNXCAH2sxdE9lKzfQxHoPnPybv3Xgw8wGWGqyTqX3K5HOUM4aeo4DB74yeo1SYyWcppp6jBIaa\nufY3+dzYJOsZM+d4Fpe5sQiekJpGckoNXhuHhpjLkl++UwufruwqyA2ixmPPV2r5VbRrEhERERER\nERERERERERERERERERERkcqmwcYiIiIiIiIiIiIiIiIiIiIiIiIiIiLilwYbi4iIiIiIiIiIiIiI\niIiIiIiIiIiIiF8abCwiIiIiIiIiIiIiIiIiIiIiIiIiIiJ+XbPBxitWrCAmJoaVK1deqyJueB98\n8AF9+/Zlzpw5lV0V43bt2sVbb71lJCs2NtZIzrU0e/ZsPvvss0qtQ2pqKkeOHPH9nZOTw5YtW4xk\nP/fcc3Tp0oX9+/f7XhszZgx33nknHo/nkutOmzaN+Ph4YmNjOXr0KC+//DIOh4OOHTuSkJDAjBkz\nSElJoW/fviQkJFR6O4qIiIiIiIiIiIiIiIiIiIiIiIjIf9ivVXD//v0JDAzE7XZfqyJueHfffTfh\n4eF88sknlV0V41q0aEGLFi2MZFksFiM5v3SJiYll/j432Piuu+762dl/+tOfKC4uLvPa3LlzSUhI\nuOR62dnZFBQUsHTpUlwuFwBPPPEEAHFxcaSlpQGQkpLCxIkTadeuHUOHDmXJkiVYrZp4XURERERE\nRERERERERERERERERKSyGRlsfObMGUaPHo3H4+H06dPMnj2bevXq4fV6yyy3adMmXn31VaxWK/Hx\n8dx3333s2rWLpKQkqlWrRmJiIr/5zW9Yt24dixcvJjo6GrvdzvTp03E6naxdu5aQkBBmzpxJcnIy\nzz77LGFhYQCMGjWKV1991W/9li5dynvvvUdQUBCzZs0Czg54LC4upk+fPsTFxREfH4/L5aJx48b8\n+9//Ji0tjbVr15KZmYnVamX8+PF06tTJb/7q1atJS0sjLCyMWbNmUbt2bbZv387MmTOx2+2MHDmS\nTp06MXjwYGw2G3Xr1uWll14CuKiNCgsLmTRpEidPnqR9+/aMGzfOb5nZ2dk899xzlJSUkJiYSPfu\n3Rk8eDBpaWl4vV4effRRFi9ezPr163njjTew2+0kJyfTsGFDv3kTJ04kJyeHBg0a8MILL7Bt2zbm\nzp1LYGAgNWvWZObMmX7rlpKSQk5ODvv27aNXr14MHjyYTZs2MXPmTHr06MHYsWMBcDgctG3blo8+\n+ojnnnuO9u3b88Ybb7B+/Xpq167NbbfdxujRo/3WDc7uY08++SQTJkzgyJEjLFiwAIvFQmBgIHPn\nzuXEiRO+z7R379506dKF5cuXM3nyZAA+//xzdu7cSXZ2NqGhoezcuZPExERiYmIuuc+c299q1arF\n6tWr2b59O/v376dRo0Y8//zzTJgwgdzcXEpKSujcuXO5+8e//vUv8vLyaN68OVOmTGHv3r1MmTKF\n0tJSEhMT+d3vfud3XYfDwZIlSzhw4ACvv/4606dP55FHHqFVq1Zs376dlJQUGjduTHJyMuvWrWP5\n8uU0bNiQf/zjH6SkpJCXl8eOHTuYMWMGN910E2PGjOHEiRO0atWKp59+2m+Z/r6n5blw/72QxWJh\n3759nDhxglq1al123ZCQEJo1a8b+/ftp3LjxJbNFRERERERERERERERERERERERuZBZNyCg3CCN7\n6saNG+nSpQsLFy6kpKSk3OXuuOMOMjIyWLJkCUuWLAHg448/JiEhAafTSZcuXYCzAz3T09Pp1asX\nAG63m7Vr15KRkcHAgQPJzMykTZs2ZGVlkZmZidvtLncW1OPHj/Phhx+SkZHBokWLCAsLY8WKFcTG\nxpKRkcG7776L2+2mdu3aTJ8+nZtuuom+ffuye/duevbsSUZGBq+88grz588vd7vWr1/Pa6+9htPp\nJDIyEoBZs2aRmpqK0+mkXbt22O125s2bx5IlSwgJCeGrr77ym7VixQruvvtu0tLSyMnJ4ciRI36X\ne/nll0lOTmbZsmUsXboUq9VK8+bN2bt3Lzt27KBDhw54PB4WLlzI0qVL+ctf/kJqaqrfrB07dhAe\nHs7SpUsJCwvjiy++AKB69eosXLiQyMhIdu7ceVHdDh8+DEDbtm1ZtmwZ77//PgBdu3ZlypQpZcqw\nWCz069ePadOmsW7dOtxuN+vXr2f58uV06NCh3LYFKC0tJSkpieHDhxMdHQ1AWFgYf/vb3yguLubU\nqVNlPtP33nuPhg0bkpOTw6FDh/joo4/IysqiTZs2AHTv3p3U1FTeeecdv+W53W7ee+89MjIyGDBg\nACtXrvS95/F4SEtL489//jOff/45kZGRLFq0iPDw8EtuQ6NGjVi8eLGvbRctWsTTTz+N0+lkwYIF\n5a7nb1bnvLw8JgVS0L8AACAASURBVEyYwIgRI/jwww8BSEpKomvXrr5lfve73zFlyhQeeOAB0tLS\nqFOnDrm5ueTn55Oenk5SUlK5Zfr7nl5J/c7XtGlTevfuTUJCAqNGjaKwsPCy64aFhXHy5MlL5oqI\niIiIiIiIiIiIiIiIiIiIiIjI9WFkZuODBw/SsmVLgEvORpqVlUVKSgoej8c3mPDBBx8kJSWFDz74\ngJEjR9KiRQtsNhsBAQE0adIEgNzcXOrVqwdAs2bN+OSTT/j973/PN998w/r16wkLC6NBgwZ+y8zJ\nyaFFixYA2Gw2bDYbBw8epGfPngBERUVx8uRJQkJCCAkJITQ0lNDQUIqLi/n0009xOp3ApWdwHT16\nNHPmzMHj8TB16lTfbMvn/jckJITCwkKmTp3KsWPHyMnJKXdG3X379vHdd9/x1ltvkZ+fz9GjR6lT\np85Fy+3fv5+kpCS8Xq+vLXv16sX69es5efIkDz/8MLm5uRw4cIAhQ4YAcPPNN/st89ChQzRv3hw4\nOzj04MGD1K5dm6ZNmwIQHR3NoUOHLqrbsWPHgLOfudVqxWaz+TL9tVd0dDQHDhygoKCA3NxcoqKi\nAGjSpAlff/11ue2blZVFQEBAmcGp5/aziIgICgoKLvpMc3NzsdvtfPTRR/zwww+4XC769u3L22+/\nTXR0NDVr1iwz8PV85+9vzZs359NPP/W9165dOwCsVis//fSTr43O7avlOVffwMBA4Ox3pnnz5gQG\nBhIQEFDuev7asVatWoSFhREREcGePXsqvG6tWrX47W9/y9ixY2nfvj2DBg3yu56/7+mV1O9CsbGx\nxMbG8uqrr7JmzRoGDBhwyeVPnz5NzZo1L5srIiIiIiIiIiIiIiIiIiIiIiIiIteekZmNo6KiyM7O\nBs4Olj0nODiY3Nxc398LFy4kOTmZefPm+WYiDgsLY+rUqQwaNIjMzEzg7Ey2LpfLN5AyIiKCgwcP\nApCdnU29evVo1aoVGzZsoF+/fqSnp9O6dWu/datfvz5ZWVnA2VlpS0pKqF+/PtnZ2Xi9Xn766Sci\nIiIuWs/j8ZCamsqCBQtITk7G4/GUu/233norL7zwAk2aNOHjjz/2vZ6XlwdAcXExmzdvpmnTpqSl\npdGxY0ffIM0L2yg6OpqRI0fidDrJzMzk9ttv91tms2bNeOWVV3A6naxatQqAO++8k88//5x9+/bR\nrFkzIiIiaNmyJWlpaaSlpTFt2jS/Wed/fnv27PENtD3X/vv27SMqKuqiurVq1apMzoUDT8//+8L3\nIiIiOHToEAB79+71W69zWrduzZw5c3jxxRcv+hzO5fr7TBs1asTXX39N3bp1ycvL8w3+Lq9O59ft\nwv3tnPMHVEdFRfnqfrlt8Fff3bt343K5cLvd5S5frVo1CgsLy8xwfakBvue/Z7fby8w07na7iYuL\nY86cOb59xh9/31M4O2j+/H0VIDQ09KLXzpefn8+pU6eAs+1VWlp6ye0oKChgz549NGzYsNxMERER\nEREREREREREREREREREREbl+jMxsfM899zB69Gg2bdqEzWbzDVC86667GDp0KJ9//jnz5s3jnnvu\nYdSoUbRu3Zrw8HAA3nvvPVatWkVhYSFJSUkAxMfHExcXR6NGjQgODsZut9O7d28GDBhASEgIM2fO\nJDg4mPz8fLp3786qVavKHWwcGRlJjx49GDBgAIGBgcyePZuHH36YJ554goULF9KnT58yA0jPsVgs\n9OjRA4fDQYcOHcrMqnuhl156iaysLLxeL4888ggAY8eOZejQoQQEBDBy5Ejatm3LvHnz+Oabb8qs\n27JlS7Kzs0lISOBvf/sb/fv3Z/LkySxevBi73U5KSgohISEXlTl69GjGjx9PaWkpzZo1409/+hMW\ni4WGDRtSq1Yt4Ozsu4888gjx8fHYbDbuv/9++vfvf1FW+/btefPNN4mPj6dBgwa0a9eObdu2cerU\nKYYMGUJERAR33HEHt91220V1u7DNAObOncsHH3zAqVOn2LVrF/Pmzbuo/ex2O7169WLgwIFERESU\n+/mdU6tWLXr37s2CBQu44447LirT32fapk0bPvnkE9q0acMPP/xwUWZ5n6ndbqdPnz5l9jd/2rdv\nz7Jlyxg8eHCZQbSXcq7MIUOGMGXKFEpLS0lMTCx3+T59+pCUlET9+vXLrfeZM2f43//9X/bu3cue\nPXv4/e9/T1xcHLfddhuzZs3iqaeeYtKkSXg8HsaNG4fL5aJr167llunvewpw3333MXXqVHr06MHY\nsWMBeOCBB0hMTOQPf/gDcXFxF2UVFBTw+OOPExgYSGBgILNmzSp3O1588UXCw8MZPXp0mUHOIiIi\nIiIiIiIiIiIiIiIiIiIiIlJ5LN5LTZN6BdxuN3a7HYfDwcKFCwkMDPzZWZs3b2bnzp2MGTPGRBX/\nKzz//PMMHDiQZs2a/aycbdu28emnn/oGlV4L5z7nN998k4CAAPr163fNypJfhs9+LH8W5StVLfDi\nHxlcjUbVA4zkANjL/03DFbG6CswEAUt/KDSW1fe22kZyQgLMDUa3mOkCOVP+5PdXLMjgWHuLp/yZ\n06+Ex2ZuPzfV5hb3GSM5ACW2IGNZxr7HxafMBAGuoBpGckxtGwBec1+avJLLL1NRFpeZelUPrtiP\nkC7H5L4JUFRg5pjgDTRzoKpuKAdgXGhLIzmxd9a7/EIVdNeGNcayPIHVjOSYPEc4NvcZIzk3DZts\nJAfAE1zdXFZAsJEca6m5g5Sp/thUXwzgvcSPcq+UsXMEQ+c/AF6rkd9n4zbX5AR4zW1ficXM9pk8\nR7Dl/WQkpzDsZiM557gKzbR7eDVDfZ/F7A90T+f//O2LOPOjgZqc5Y5saizLfvKAsSxTTB1bSqub\n289NXl/Z8o+aCTJ5PLeb6dfdNaKM5ADYik4ayzLFVDudzTJ7LWOCqT4GzJ1vlIbXMZIDEHD4/4zk\nlIbdZCQHquZxylpw3EjOfwNviJn7SZbi00ZyADzVahnJsZ06aCQHoLS6ub7B1LHzkKH7PwABVjMn\n+zWDzTyPAcP3KA3ZsNfcvdwuDc3c2wiwmWuoAINtXlxq5gI50GbumshWaqaP8Rg8/zF578aDmQ+w\n1GCdTO1TJp+jnDH0HAUMfmf0HKXCTD5LMfUcJTDUzLW/yefGJlnPmDnHs7jMjUXwhNQ0klNq8No4\nNMRclvzy5S2eWtlVkBtE9SF/rtTyjfRwXq+XgQMHEhAQQPfu3X/WQGOAlStX8s4772C325kxY4aJ\nKv5XeOmllyguLv7ZA42vl9dee42tW7cSEhLCnDlzSE5OJisrCzg7621SUhItWrS4pnVYvXo1q1at\n8s2y269fP/r27XvVeQ6HA4vFgtfrxWKxkJaWVqH1Nm3axPz583316Nq16yVnPDbh2LFjjB8/3lff\nOnXqlDuLc0XMnz+fTZs2AWc/v6FDh9KlSxdT1RURERERERERERERERERERERERGRSmBsZmMRkWtN\nMxtXjGY2rjjNbFwxmtm44jSzcQXpF/kVopmNK04zG1eMZja+gizNbFwhmtm4YjSzccVpZuMK0szG\nFaaZjStGMxtXjGY2vpIszWxcEZrZuOI0s/H1p5mNK0YzG1eMZjauOM1sXDGa2bjiNLNxxWhm44qr\nas9RQDMbVwbNbFwxmtlYroRmNpaKquyZjato1yQiIiIiIiIiIiIiIiIiIiIiIiIiIiKVTYONRURE\nRERERERERERERERERERERERExC8zc/eLiIiIiIiIiIiIiIiIiIiIiIiIiEiFWWyaL1ZuDBpsLCI3\njOzcQmNZZ9weIzn1wiKN5ADYbRYzQR63mRygsKTUWJbNamb7bMV5RnIAPEHhRnIMbRoAFvcZc1ml\nLjNBtgAzOQZZDO7nVnuwsSy8Zr4zXlugkZz/BnaDX0BTRzzLmXwzQaFBZnIMc5V6K7sKF4m9s56R\nnPRtB43kANzlNXOuYZLXbm6fimjX2kiOpaTISA6AJTDUWJYpHoN9qLW0xEyQwX3T5D5ljKl2AtyW\nKnjLxODnZzXWh5rrF7xV8LxTKsZr8pzaIE9oRGVX4WIGr2WMsdqMRZlqc2thrpEcACwGL9qrIlN9\ng8H9oCr6pfcxps7LvIEhRnKMM7R/eoPN3Av8b+AJMLMvWE32exZDD99N5UCVPHaeOmPunr7VUB9a\nI7jqtZNJJaXmrtMCDD0nCiw195zB5LW/qduKNo+5a39jz2Sq4j0SzLWV1WrwHomp81eDx/OqeMVg\nMXgPyGKpesdhS4m55/7Yqt73z+s1db+sKu6d4DV0TPAGVzeSAxg7L7O5i43knFU175eJiPwcGhYv\nIiIiIiIiIiIiIiIiIiIiIiIiIiIifmmwsYiIiIiIiIiIiIiIiIiIiIiIiIiIiPilwcYiIiIiIiIi\nIiIiIiIiIiIiIiIiIiLilwYbi4iIiIiIiIiIiIiIiIiIiIiIiIiIiF+/qMHGK1asICYmhpUrV1Z2\nVaqsDz74gL59+zJnzpxrWs5bb71lJGfbtm3Mnj3bSNa1FBsbW9lV4Pnnny/z97Zt2zhw4MDPzi0p\nKcHhcNCrVy/fa4cOHcLhcBAXF3fJdfPz8xk2bBgOh4MxY8YAkJiYyCOPPELnzp1JSEjgvffew+Fw\n4HA4GDFiBIcPH/7ZdRYRERERERERERERERERERERERERM35Rg4379+/PsGHDKrsaVdrdd9/NlClT\nrnk5pgYbA1gsFmNZ10pVqOPTTz9d5u9t27axf//+n50bEBCA0+mkdu3avteioqJwOp2XXXfNmjXE\nxMTgdDqZNm0aAKmpqbz88st07tyZtLQ0evfujcViIS0tjSeeeIK//vWvP7vOIiIiIiIiIiIiIiIi\nIiIiIiIiImKGvbIrcLXOnDnD6NGj8Xg8nD59mtmzZ1OvXj28Xm+Z5TZt2sSrr76K1WolPj6e++67\nj127dpGUlES1atVITEzkN7/5DevWrWPx4sVER0djt9uZPn06TqeTtWvXEhISwsyZM0lOTubZZ58l\nLCwMgFGjRvHqq6/6rd/SpUt57733CAoKYtasWQA88cQTFBcX06dPH+Li4oiPj8flctG4cWP+/e9/\nk5aWxtq1a8nMzMRqtTJ+/Hg6derkN3/16tWkpaURFhbGrFmzqF27Ntu3b2fmzJnY7XZGjhxJp06d\nGDx4MDabjbp16/LSSy8BXNRGhYWFTJo0iZMnT9K+fXvGjRvnt8z77ruPwMBAWrZsycGDB1myZAkb\nNmxgwYIFBAQEMG3aNOx2O5MnT+aHH34gISGBxx57jG7dujFz5kw+//xzatasyezZswkMDCQlJYXc\n3Fy+//57OnbsyNixY8v9vPfv38+LL77IjBkzWLBgATk5Oezbt49evXoxePBgduzYwYsvvgjAxIkT\n2b17N5GRkfz2t78F4PXXX6dz585MmzaNVq1asX37dlJSUmjcuLHf8iZOnEhOTg4NGjTghRdeAGDy\n5MlERETw9ddfExMTQ8+ePRk3bhzh4eHk5uaWW/fJkycTGhrKzp07SUxMJCYm5qJ2i46O9rtubGws\n6enpZGZmEhAQQKdOnZg4cSI1a9YkNzcXp9OJ1WrF4XBw5MgR1q9fD8DcuXNZvXo1//jHP4iOjmb2\n7NkcPnyYMWPGEBQUxIMPPki/fv38lvn666+zadMmbDYbzz77LM2aNSt32y7HarXy7bffEhMTQ/Xq\n1ctdzuv14vV6ueWWWzh27NhVlyciIiIiIiIiIiIiIiIiIiIiIiIiZt2wMxtv3LiRLl26sHDhQkpK\nSspd7o477iAjI4MlS5awZMkSAD7++GMSEhJwOp106dIFODs4OD09nV69egHgdrtZu3YtGRkZDBw4\nkMzMTNq0aUNWVhaZmZm43W6sVv/Nd/z4cT788EMyMjJYtGgRYWFhrFixgtjYWDIyMnj33Xdxu93U\nrl2b6dOnc9NNN9G3b192795Nz549ycjI4JVXXmH+/Pnlbtf69et57bXXcDqdREZGAjBr1ixSU1Nx\nOp20a9cOu93OvHnzWLJkCSEhIXz11Vd+s1asWMHdd99NWloaOTk5HDlyxO9yt956K+PHj6d169a0\nbt2aEydOsGjRIpYtW8bkyZNZtGgRDRo0wOl0cuutt5KWlka3bt04fPgw2dnZpKen07FjRzZu3OjL\njIiIwOl0MmbMmHK39ejRozz//PNMnz6d4OBgANq2bcuyZct4//33gbMDZF9//XVee+015s2bx//8\nz/+QlZXF1q1b2bt3L7t376ZFixbk5eUxYcIERowYwYcffui3vB07dhAeHs7SpUupVq0aX3zxhe+9\nW265BafTySOPPEJmZiZDhgxhzpw5nDp1qtz6A3Tv3p3U1FTWrFkDcFG7lcffjMlut5uUlBRuueUW\ndu3aBXDRzMNjxoyhX79+TJw4kdmzZwOwc+dOunXrhtPppG/fvuWWGR8fT3p6Ok8++WSFZi++lAcf\nfBCr1cr999/vG3R/OaWlpT+rTBEREREREREREREREREREREREREx54YdbHzw4EGaNm0KUO7stABZ\nWVkMGjSIRx99lJMnTwJnB0B+9dVXPP7443z//fcA2Gw2AgICaNKkCQC5ubnUq1cPgGbNmnHo0CHf\nYOO3336bjRs30qBBA79l5uTk0KJFC19uYGAgBw8epHnz5gBERUVx8uRJQkJCCAkJITQ0lNDQUIqL\ni/n0009xOByMHz+eoqKicrdr9OjRzJkzh6eeeoqCggLf6+dmXQ4JCaGwsJCpU6eSkJDA5s2bKSws\n9Ju1b98+0tPTcTgc7N69m6NHj/pd7vy6hoSEUFxcTEBAAAEBATRv3pxDhw75lj1/9uRDhw75Zsdt\n1qwZBw8e9L3Xrl07gHIHbgNs2bKFwsJCbDab77XGjRtjtVp9rxUVFVGrVi0iIyMpKirilltuYe/e\nvWzevJl//etfuN1uAgMDqVWrFmFhYURERJCfn++3vEOHDvk+q/Lqa7PZOHToEE2aNCEwMJD69euX\nW3+A6Ohoatas6fus7Ha733ariEaNGgGUyauIbt26kZ+fz+OPP87WrVvLXW7NmjXEx8czffr0Mvvg\nhTNil/fa+YKCgpg8eTIbN27k66+/Zs+ePX6XO39Q9fmfs4iIiIiIiIiIiIiIiIiIiIiIiIhUrht2\nsHFUVBTZ2dnA2cGy5wQHB5Obm+v7e+HChSQnJzNv3jzfgNawsDCmTp3KoEGDyMzMBM7OpupyuXyD\nISMiInyDTLOzs6lXrx6tWrViw4YN9OvXj/T0dFq3bu23bvXr1ycrKwsAj8dDSUkJ9evXJzs7G6/X\ny08//URERMRF63k8HlJTU1mwYAHJycl4PJ5yt//WW2/lhRdeoEmTJnz88ce+1/Py8gAoLi5m8+bN\nNG3alLS0NDp27OgbGHphG0VHRzNy5EicTieZmZncfvvt5ZZ7Pq/Xi9vtxuVysXv3bqKiovwuFxUV\n5WvXPXv2+AZxQ8UGlvbp04fhw4czc+bMcpcJDQ3lxIkTHD9+nNDQUGw2GxaLheDgYI4cOeJr78sN\njj1X33P71oX1tdvtvv9fv3599uzZg8vl4sCBA5fNPd+5/e1S7Qb/GYRb3gDw8124bXa7vcys3zab\njYkTJzJlyhTfLN/+vPnmmyxdupRx48aVySwpKblonywuLr5knQ4fPkxpaSkWi4U6deqUWf/8bK/X\ni9fr5fvvvy8zQ7OIiIiIiIiIiIiIiIiIiIiIiMgvlcVm1X/6r0L/VbbKr8FVuueee9i8eTOPPfYY\nNpvNN5D4rrvuYsOGDQwfPty33KhRo5g+fTrh4eEAvPfee8THxzNt2jRiYmIAiI+PJy4ujvfffx+r\n1Yrdbqd3794MGDCA5cuX89BDDxEcHEx+fj7du3fH4/GUO9g4MjKSHj16MGDAAAYPHszp06d5+OGH\nWbZsGQMHDqR3795+B9laLBZ69OiBw+EgPT29zGyvF3rppZeIi4tj06ZNdOrUCYCxY8cydOhQHA4H\nO3fupG3btnzwwQcMHz6cU6dO+dZt2bIl2dnZJCQkUFRURP/+/Vm9ejWDBg1i2LBhl5xR+cL6Pvro\no75ZcB999FHfe40aNWLChAl89tln1K1bl6ZNmxIXF8dnn33GPffcU6H883Xu3Jn8/Hx27tzp9/3h\nw4czYsQIRo0axYgRI4CzA8abNGlCcHCwbwD1pdr0nPbt25OXl0d8fDz5+fm+2Ywv9NBDD7F48WIe\nf/xxv4PHL2XIkCF+2+1CrVq14rnnnmPXrl0XvXduW7744gscDgc//PADCQkJ7NixA4Bf//rXpKam\nMm3aNAC2bt1KXFwcI0aMoF+/fuWW2a5dOxwOBxs2bCjzekxMDAMGDCjzeocOHYiNjfWVeaHvv/+e\nhx9+mPj4eIKCgnwzRp9f/3P/f8iQIbz88ss8+eST5dZNRERERERERERERERERERERERERK4vi7ci\nU71WUW63G7vdjsPhYOHChQQGBv7srM2bN7Nz507GjBljsKYiYkLGlznGss64y585/Eo8cFukkRyA\nYNvlB8NXhLX41OUXqqD5uyr244OKcPzPzUZyQkpOG8kB8ASFG8kpMdiTBpaeMZZlKXUZySkNrm4k\nB8Bi6LTD6iowkgPgDgwzlmX1lhrJsbjN7Qcl9hAjOXYzh6izvGaOwQCFpeYqVlps5vOrYTFzHHaF\nmutjAIoK3EZyzhjqr2qHXP5fuKiobd1/ayQnfdtBIzkAr+RuM5Zlqr+yeMzsAwCeD9OM5AS0/52R\nHABPNXPfmdIgc32DKdbSkssvVBEGj8Eee5CxLFPnCJYSc+evpvpQkwI8Zs7vAEptZj4/K+ZOhq0F\nx43kFIWY7UNdhWaOn+HVDP3m32J27oDT+T9/+2qWHjFQk7NKa9S7/EIVZPK6wRhD/bEnuIaRHDB7\njmDqWsZamHv5hSrIawswkuOubua+BoCt6KSxLFN9u9fQOSeA12q//ELXmak+BsBi6LzMU62WkRwA\n+/F9RnJKq9c1kgNV8zhl8lzxl84TWM1IjvWMuXu5XkN1sp0yd+1v8rzF1LFz1wlz9xWtFZjApyKa\n1Lz657cXCjB5j9KQtbvNnbf0bHZlkxuVx+RzBq/Ba/8Ct5nrxzCrmfu4YK5vqIrPUcBcH2r0/M7Q\n+avJ6z1XoLlzYVPPUkxep+WVmrsXzxlDz1Fs5s4RXMFmjp1g7jlKgKHnH6bGD5hWJc+rDV374zHX\nxwSF1zSWJb98+cv+XNlVkBtEWNzUSi2/6t31qyCv18vAgQMJCAige/fuP2ugMcDKlSt55513sNvt\nzJgxw1At5Uo4HA4sFgterxeLxUJampkBDJeSnJxMVlYWcHZ23aSkJFq0aHFVWbt27WLatGm+GXtb\ntmzJ5MmTK7Tu/Pnz2bRpk68eQ4cOpUuXLldVj4ratGkT8+fP99W3a9euJCYmXnXeE088wbFjx3yf\n36xZs4iMNPuAV0RERERERERERERERERERERERESurxt2sLHFYiEzM9NY3oABAxgwYICxPLlyTqfz\nupeZlJRkLKtFixZXvQ1Dhw5l6NChxupSEV27dqVr167G8l5++WVjWSIiIiIiIiIiIiIiIiIiIiIi\nIiJSNZj9dxdFRERERERERERERERERERERERERETkunn66acZOHAg6enpl1xuyJAhrFy58orzNdhY\nRERERERERERERERERERERERERETkBvTFF18QFhbG8uXL+fvf/47L5fK73FdffYXb7b6qMjTYWERE\nRERERERERERERERERERERERE5Ab0zTff0KFDBwBatmzJ3r17/S63cuVK+vTpc1VlaLCxiIiIiIiI\niIiIiIiIiIiIiIiIiIjIDSg/P5/AwEBmzJhBtWrVOH369EXL7N69m6ioKAIDA6+qDPvPraSIyPXS\nPbqmsSybxWIkJ4QSIzkAXq7uQH4hd7C5dvr9bWHGsgJtZtrcW2qu67IW5RrJCQiuYSQHwGsPMpbl\nCQg2kmPxlBrJASgx9DunQIPtZPWa2z4sZravNCDUSA7A6TNmti8iyNxv1DwWm7GsYINnswWYaStX\naKSRHKuhvsq0m4K8RnLMpJx114Y1ZnK8HiM5AI9H3Gksa3ZhlpEcS9EpIzkA1m5xRnIMHoHB4HfG\ntnOtkRxP23uN5AB4DfUxXluAkRwAq/uMsaxSm5m+3WY118cEeK/un5C6kKnP7myYuaNn9qP9jOTc\nsugtIzkA1v3fGMkJbn6XkZxzXJjZryyG+plSg+dSppjaNtMsrsLKrsJFjB4TqiBTbe4JCDGSY5K1\n1Nw9II/B+wgY+v5ZDG6fqWtji8dMXwzgDTJ3j8tYb2ywX/eEGNqnSs21eVVUFfuFqspSBY/DXquZ\nm0DGvi9V1E2h5q75bIZOWwI9/v/p3qvhtZl5jgLgNnQY7lS/upkgwNidDYP3SCwlRcayqhk6tngN\nDnHwBoUbyTH5HMXk/XNbFbxW8xq6d1MabO67V2joOQpA9UBDz4ms5o7nYQZvI+QbaqszwRFGcsDc\nc3+TguyGOlGD1wymrh0BvIaO56ae1YO567Sqeo9LRKQiwsLCcLlcPPnkkyQnJxMefvG57pIlSxg/\nfjwfffQR3qvoZzTYWERERERERERERERERERERERERERE5AbUqlUrNm7cyD333MOuXbto0qQJxcXF\n5ObmEhUVBcChQ4eYOHEiP/30EwBdunTxvVcRGmwsIiIiIiIiIiIiIiIiIiIiIiIiInKdWay/7H8N\nTa6P9u3bs3LlSgYOHEjv3r0JDAxk27ZtpKSkkJaWBsCCBQsAePvtt3G73Vc00Bg02FhERERERERE\nREREREREREREREREROSGlZycXObvO++80zfQ+Hx9+/a9qnwNixcREREREREREREREREREfl/7N15\nfFT1vf/x18xkmxAgC4gsyloKioqKPLQFt4qIxRajhJBkEiAQ1qBIkYL8oGUJ0rKLBoKAySSIgKJW\naVldcCnLaWenTQAAIABJREFUBUvvFbwCQdkEYgIhISHLzO8PHswlYUIG+UoCfT8fjz5qDt/zPt9z\nvmfOzDnzzSciIiIiIiLilSYbX4Ft27Yxd+7cCstWrlxJjx49WL169U/O/f777xk3btzVdu+GsHHj\nRvLz8y/bJjk5mc6dO+NyuSosf/fdd/n666+vaHtHjhxhzJgxV9zP2i4mJsbrf/8Uu3fvpk+fPrz4\n4oueZZs3b6ZXr17Mmzfvsuvu3buX2NhY4uLiSE1NJTs7G4fDQY8ePXjiiSeIj49n//79dOrUiYSE\nBCZNmkRpaelV9VdEREREREREREREREREREREREREzPGr6Q5cbywWS4Wfo6KiCAgIoKysrIZ6dGPZ\ntGkTbdu2pV69elW2eeWVV4iPj79k+U8t7115TG8EF+/T1e7fnXfeyezZsytMLH700UepW7cuX3zx\nxWXXXbhwITNnzqRx48bk5+dTr149nE4n7777LmVlZTz77LMA/PKXvyQ9PZ3ly5ezZs0aoqKirqrP\nIiIiIiIiIiIiIiIiIiIiIiIiImKGJhtfoR07dpCYmEhoaCizZs0CwO12V2iTnZ3NSy+9RHl5OYMG\nDeKxxx5j586dzJgxA4A//vGP3H333axdu5Y33niD5s2b4+dX9VD06NGDli1bkp+fz/z58wkPD2fB\nggXk5eXxv//7v3Tq1ImRI0cyfvx4jh49yi233MLUqVMpKipi8ODBuFwuHnzwQZKSkjh+/DjJyckE\nBgby9NNPExkZybhx4xg2bBhNmjShX79+OJ1Ojhw5wuTJk3G73Zw6dYq33nqL9evX88Ybb+Dn50dK\nSgq33HKL1/5OmjSJb775hptvvpm5c+eSmZlJw4YN6d69O2+++Sbh4eE8+OCDl/Rt4sSJbNmyhQMH\nDnDHHXcwYcIEr8fN2zFPS0tjxYoVTJs2jQceeMAzVrNmzcLPz49hw4Z5lnuTl5fHuHHjSElJ4ZNP\nPuHjjz8mPz+fNm3a8NJLL1UY04EDBxIcHMz+/fs9k57ff/99/P39Wb58OXfddReffvopf/rTn7jn\nnnu8bu/ll19mz549+Pv707NnT+677z7Gjh1LaGgoeXl5OJ1OrNZLC4+PGDGC06dPExERweHDh5k/\nfz4vvvgiJSUlNG/enO+++4709PRLjg/A2rVrWbZsGS1atMDPz4/p06d77VtycjKnTp2iXr16/PWv\nfyU4ONhrO2/bqMxms7Fz506efPLJChPIq1r38ccfZ/r06ZpsLCIiIiIiIiIiIiIiIiIiIiIiIlJL\nXDqbUS6rXr16LFmyhPDwcHbt2uW1zdKlS5kwYQJOp5PXX38dgNTUVFJTU3n11VdJTU0FICMjg6ys\nLLp3737ZbV6YZNyvXz9Wr17tWR4WFobT6SQ5OZlNmzbRtGlT0tPTiYiI4F//+hf79u2jWbNmZGZm\nMnDgQAB27drFQw89hNPp9FoJ+OIquAcPHiQ1NZW33noLt9vNkiVLyMzMZMqUKSxevLjK/u7atYsV\nK1Ywe/ZsALp3786GDRsA2LJlCw8//LDXvk2ePJmuXbsyc+ZMJkyYUOVxq9xPgKSkJCIjIyssmzNn\nDosXL8bpdNKxY8cq+3v27FnGjx/PxIkTCQ8PB+DWW29l2bJlfPXVV0DFMV2yZAl33HEHe/fuZe/e\nvXz11Vfs2bOHO+64A4vFQmRkJFOnTmXt2rVet3f8+HEOHz5Meno6LVu29CwvKytjwYIF/OIXv2Dv\n3r1e1/Xz82Px4sW43W6Sk5PZvXs3DRo0YPr06TRs2JBevXqxb98+cnNziY+Px+FwkJubC0BmZibL\nly+v9nxLSUnB6XRy11138cknn1y2bXVGjx7N+vXr6d69O+vWrau2fd26dTl9+vRVbVNERERERERE\nREREREREREREREREzNFk4yvUqlUrAFq2bMmxY8e8tjl69Cht2rQhICAAf39/AIqKiggPD6dBgwYU\nFRUB5yeO+vv7V5hw6k2zZs3w8/OjZcuWHD161LP8wgRaq9VKdnY2GzZsID4+ns8//5ycnBw6dOhA\nkyZNGDlypGfi60MPPURBQQEjR45k69atl91uhw4dsNlsWCwW8vLyOHz4MP3792fixIkUFxdXud7g\nwYMZNWoUc+bMAaBhw4YUFBRw4sQJ7HY7gYGB3H777Zf0zZuLj9vZs2c9y32pqmuxWAgJCQHAbrdX\n2W779u0UFBRgs9k8y5o3bw5AQEAAcOmY1qtXj8LCQj7++GM+++wzjh07RrNmzXC73bRo0YLQ0FAK\nCwu9bu/YsWOeMb947G+99VaAy65rt9sJCgoiODiY4OBgiouLsdvt2O32CssiIiLIyMjA6XR6JlBb\nrdZqzzeXy8XMmTNxOBy8++67FY75T9GkSRPmzZvH22+/zbx586ptf+bMGUJDQ69qmyIiIiIiIiIi\nIiIiIiIiIiIiIiJijl9Nd+B6c+DAAeB81d8nn3wSgKCgIA4fPuxp07RpU/bt20ebNm0oKysDIDg4\nmNzcXNxuN8HBwcD5iZ2lpaWezKocOnSIkpISsrOzady4sWf5xZNjW7RoQVRUFLGxsQCUl5dTWlrK\niBEjKC0tpW/fvvTs2RObzcbYsWM5fvw4kyZN4oEHHiA4OJjCwkJOnjxZYRKv1fp/c9HDwsJo3749\nS5YsAaC0tLTK/nbr1o3f/va39O/fn7y8PMLCwujatSuTJ0+mZ8+ewPkqvpX7BuDv709JSYkn6+Lj\nVqdOnQrL8/LyiIiIqLIfbreb/Px86tWrR3FxMUFBQV7bPfTQQyQlJTF16lReeeWVSzKg6jE9d+4c\n/v7+FcaiOjfffDMHDx4Ezp9Ht912m8/rVuZt0rXb7fa63OVyec6jquzZs4eSkhKcTifz58/35Njt\ndvLy8iq0DQoKumRZZYcPH6ZZs2YEBwdXGL+q9mPdunV07tz5spkiIiIiIiIiIiIiIiIiIiIiIiIi\ncu1osvEVys/Pp3///oSHh3sqC99///0kJSXxX//1XyxcuJD+/fvz0ksvUV5ezqBBgwAYMmQIQ4cO\nxWKxMHbsWADi4uKIjY3l1ltv9VRA9qZ+/fqMHDmSM2fOVFkd9rHHHmPChAkkJCRgsViYNm0aZ86c\nYfLkyRQXFxMZGQnA1q1bWbhwIUVFRQwZMgSAHj16MGvWLDp27IjFYvFkXvzfVquVPn36EBcXh81m\n47e//S1RUVGX9MPtdpOYmEhpaSm33HILYWFhADzxxBPMnj2bWbNmAecnbVfuG8CDDz7I1KlT6dy5\nM0OHDvV63AB+//vfM2jQIJ555hliY2MZNmwY33zzDRs3buSRRx7hueee47nnniMpKQl/f3+GDRvG\nAw88UOUxbtOmDa1bt2bt2rVej4G3Mf3lL39JWVkZoaGhnDt37pJjVpWbb76Zm2++mfj4eAICAi6Z\nbOxLRnW8ZVx8vlU18bply5Z8//33DBo0iDp16tCkSRMAwsPDsdvtOBwOUlJSuOWWW2jfvj379+8n\nPj6eRYsWea0e/cEHH7Bp0yasVivR0dFV9vfbb78lISGBW2+9lYkTJ/7EvRYRERERERERERERERER\nERERERER0yxubyVQpVaJiYlh+fLlNd2Nq5KTk8P06dM9k43lvFWrVuHv70+vXr1+9m2VlZXh5+fH\nZ599xq5du0hOTv7Zt2naD6cLjWXZDEzqBqhnrbrK95Vy2wKM5Lgws28AOUVlxrIaBpv5/RZryVkj\nOQCWsmIjOa6g+kZyALBYq2/jI7eh89ziKjeSA1CKmf0LcJs7N90Gj7mp8TP5Oj59zsz4hQWaO04m\n98+kwgIz13R7HUPXO0Ov4QtM7V+9YCMxuK3mfu/RWmLoM4LbZSYHGBlm7q81zD27x0iOtfBHIzkA\n7sAQY1nGGHzNWP690UiO664njOSY5Lb6/ldZqmMtO2csq9wWaCTHVm6uT6be101+1rCUm7v/+N+k\nGCM5v1j6tpEcAL+9nxjJKW9zv5GcC/KLzbxuTL2Hllur/oX1n8LEZ4Swsh8M9OS8stBmxrJsBSeN\nZZli6prgqlP1X/u6UhaXufsr69nL/xUsXxm9TzPEbTd372/ys7Cpz7Am32PcNjPXKZPnJjf41yDW\nolNGckyem7XxOmXynuhGZ2r8LKbu1zH3DNZafNpIDoA7oOq/6HjFWYZefz8Wm3u2YTP0dhxmM/gs\n19D3KABlht4acovNPT8PDzJz7+HvKqm+ka8Mfj/g9r+0cNENw+BzRZfF3LMbU89JTL72TH13ZdIZ\nQ9+jANQLqH3fE5k85AVnzNw3BBn6HgXMfe8P5r5HCalr6J7I5H2MweuUqeem1iIzzxAA3H7eC+5d\nKYvB4xRQv4GxLLnxFb45taa7INeJOn0n1Oj2Vdn4OmCi0m1N2rt3L1OmTGH8+PE12o8XXniBnJwc\n3G43FouFOXPmEBFh7oGnN2lpaWzZsgU4P45JSUl06dLFp3UdDgcWi8XT34yMjKvqy+rVq3nvvffw\n8/Nj5syZV9W3ynJychg1apSnvzfddJMmlouIiIiIiIiIiIiIiIiIiIiIiFyGxWChGJGfkyobi8h1\nQ5WNfaPKxr5TZWPfqLLxFVBlY5+osrFvVNnYd6ps7BtVNr6CKFU29okqG/tGlY19p8rGvlFlY9+p\nsrFvVNnYN6ps7DtVNr72VNnYN6ps7DtVNvaNKhv7RpWNfafKxtcxVTb2PasWFlpTZWPfqbKxb1TZ\n2DeqbCzyf86+Nb2muyDXieA+42p0+7Xvqa2IiIiIiIiIiIiIiIiIiIiIiIiIiIjUCppsLCIiIiIi\nIiIiIiIiIiIiIiIiIiIiIl5psrGIiIiIiIiIiIiIiIiIiIiIiIiIiIh4pcnGIiIiIiIiIiIiIiIi\nIiIiIiIiIiIi4pXF7Xa7a7oTIiK+KC4qquku/Kw6/nG9kZyvXn7cSI5pZYbebWxWi5kgwKK3QJ+U\nGjxM/uaGT3zkwsxB/9WUzUZyALaO/7WxLLctwFjWmYIyIzl1Q/yM5JhW2/Zv6scHjeQATHi4hbGs\n2uj54PZGcuae3WMkR0TkYh+06GQs67ff/ZeRHNOf82vbe6hpJvbP5L7tG/issaw2r682llXbFCye\nYCwrZNBUY1kiJrktegZ0PTN5naqb+CcjOW6rwfdit8tcVi3kttqM5Oi157tzy6cZyQmMeclITm3V\nc4mZewaADxLvNZZlir5HuX6ZGjsAP32Pcs2Z+h4F4N7xhr7v/XMXIzkAbn+7sSw9I/GNqf3zyz1o\nJAegJLylsSwrN+57g8n7UHtQkLEsufGdfWt6TXdBrhPBfcbV6PZV2VhERERERERERERERERERERE\nRERERES80mRjERERERERERERERERERERERERERER8UqTjUVERERERERERERERERERERERERERMQr\nTTYWERERERERERERERERERERERERERERr274ycbbtm1j7ty5FZatXLmSHj16sHr16p+c+/333zNu\n3Lir7d4NYePGjeTn51+2TXJyMp07d8blclVY/u677/L111//LP1as2bNVY1xbff+++/z9ttvX7bN\n9OnTcbvdV72tP//5z3Tp0oVDhw55llU1ppVNmzaNuLg4YmJiOHnyJLNnz8bhcNCpUyfi4+OZOXMm\nCxYsoFevXsTHx7N9+/ar7q+IiIiIiIiIiIiIiIiIiIiIiEitZ7Xpf/qfb/+rYX413YFrwWKxVPg5\nKiqKgIAAysrKaqhHN5ZNmzbRtm1b6tWrV2WbV155hfj4+EuW9+rV6+fs2g3tww8/ZP78+ZdtY2pC\n/KRJkyguLq6wrKoxvdj+/fspLCwkMzOTkpISAF544QUAYmNjycjIAGDBggWMHTuWjh07kpSURHp6\nOlbrDf+7ECIiIiIiIiIiIiIiIiIiIiIiIiK13n/EbL4dO3aQmJjI6NGjPcsqV3vNzs4mJiaGPn36\nsHHjRgB27txJnz596NOnD7t27QJg7dq1REVF8corr1x2mz169GDYsGHExcWRm5sLnJ9QOWXKFBwO\nB/PmzcPtdjNu3DgSEhKYMGECAEVFRcTHxxMXF0daWhoAx48fJyoqCofDwTvvvAOcn0R66NAhysvL\ncTgcABw5coTBgweTlJREVFQUbrebdevW0bdvXxwOR4WqtJVNmjSJ6Ohonn/+eQAyMzNZt24dAG++\n+Sbr1q3z2reJEyeyZcsWxowZw9SpU6s8bt6OeVpaGo8++ihffvllhbG60N+Ll19s27ZtzJs3D4Ax\nY8Zw9OhR1qxZw3PPPUf//v1JSUmp0H737t28+OKLnuM9ZcoUIiMj+fvf/w7A+vXriYqKIjY2luzs\nbObMmcM333zjWX/ChAnk5ubyu9/9jjFjxhAZGVllJefi4mIGDRpEYmIivXv3vqRv06ZNq3IMCgsL\nSU5OJj4+nhkzZgBw4sQJBg4cSHx8PEuXLvW0/eabb2jRogWBgYGsWbOGAQMGEB8fT2JiIunp6cD5\nSb333Xefp/Lwtm3bSEpKYvDgwSQnJ1fZjy1bthAdHU1MTAxr166tsh1cOqaVWSwWDh48SG5uLgEB\nAQQEBFx2XbvdTuvWrS97roqIiIiIiIiIiIiIiIiIiIiIiIjItfMfMdm4Xr16LFmyhPDw8AqTXy+2\ndOlSJkyYgNPp5PXXXwcgNTWV1NRUXn31VVJTUwHIyMggKyuL7t27X3ab+fn5zJ8/n379+rF69WrP\n8rCwMJxOJ8nJyWzatImmTZuSnp5OREQE//rXv9i3bx/NmjUjMzOTgQMHArBr1y4eeughnE6n10rA\nF1duPnjwIKmpqbz11lu43W6WLFlCZmYmU6ZMYfHixVX2d9euXaxYsYLZs2cD0L17dzZs2ACcn3z6\n8MMPe+3b5MmT6dq1KzNnzvRMmPZ23Cr3EyApKYnIyMgKy+bMmcPixYtxOp107Njxsse4cuatt97K\nsmXL2Llzp2fZ/v37ef3110lJSfG0ffjhh1m8eDHvv/8+cH7ss7KyGD9+PMuWLeOOO+5gz549rF+/\nntzcXE6fPk14eDinT59mxowZ9OjRg61bt3rtz4YNG+jSpQtLliypUDn7Qt+qOv8AVq1axaOPPkpG\nRgYjR44Ezk/ITkpKIiMjg759+3ravvXWW0RHR3t+TkhIIDw8nFdffZU9e/YAMHv2bNq3b19hGyEh\nISxatIiioiJOnz7ttR933303K1asID093TNxuSqVx7SyVq1a0bNnT+Lj4xk+fDhnz56tdt2QkBBO\nnTp12VwRERERERERERERERERERERERERuTb+IyYbt2rVCoCWLVty7Ngxr22OHj1KmzZtCAgIwN/f\nHzhfZTg8PJwGDRpQVFQEgJ+fH/7+/rRs2fKy22zWrBl+fn60bNmSo0ePepZfmEBrtVrJzs5mw4YN\nxMfH8/nnn5OTk0OHDh1o0qQJI0eO9FSVfeihhygoKGDkyJFVTnK9oEOHDthsNiwWC3l5eRw+fJj+\n/fszceJEiouLq1xv8ODBjBo1ijlz5gDQsGFDCgoKOHHiBHa7ncDAQG6//fZL+ubNxcft4sml1VXB\nhfMTUENCQoDzVW6rc3Fm8+bNAQgMDPQs27p1K4WFhdhsNs+yFi1aEBoaSmFhIfB/Y9q6dWuOHTvG\nHXfcwd69e9m4cSNbtmzx5DVr1gyr1Vph3cqOHTvmOd8u9KeqvlV28OBB7rzzzgr7/t13312y7OzZ\ns5w4caLCOWi327Hb7QQFBV12AvCFfoSFhVW5D3v27CEhIYEBAwZUO+nXlzGNiYnhgw8+4LbbbvNM\n8L6cM2fOEBoaWm07EREREREREREREREREREREREREfn5+dV0B66FAwcOAOcncz755JMABAUFcfjw\nYU+bpk2bsm/fPtq0aeOpSBscHExubi5ut5vg4GAAXC4XpaWlnsyqHDp0iJKSErKzs2ncuLFneeVJ\nr1FRUcTGxgJQXl5OaWkpI0aMoLS0lL59+9KzZ09sNhtjx47l+PHjTJo0iQceeIDg4GAKCws5efJk\nhQmfVuv/zR8PCwujffv2LFmyBIDS0tIq+9utWzd++9vf0r9/f/Ly8ggLC6Nr165MnjyZnj17AlBW\nVnZJ3wD8/f0pKSnxZF183OrUqVNheV5eHhEREVX2w+12k5+fT7169SguLiYoKOiSNsHBwZ7J3ydP\nnvSacUFMTAxut5tly5YxYMAAr9ssLy+npKSEffv20bhxYxo1asT3339P586d2bx5M7fffvsluVW5\n+eabyc7OpmvXrnz33XeX7VtlLVq04KuvvqJ169aefW/evDlfffUV999/v2fZ3/72N5566qlq+3Jh\ne770+2JLliwhJSWF0NBQnn32Wc9yu91OXl4et9xyi2dZdWNaUFBAeXk59evXp3Hjxp5xu9C3ygoL\nCzlw4ECFbYiIiIiIiIiIiIiIiIiIiIiIiIhIzfmPqGycn59P//79+fHHHz2Vhe+//37Wr1/PkCFD\nAOjfvz9Tp07F4XCQmJgIwJAhQxg6dCjDhw/3tIuLiyM2NpZ169Zddpv169dn5MiRLFu2jGeeecZr\nm8cee4yvv/6ahIQE+vXrxw8//MCBAweIiYmhT58+9OrVCzhfnTc2NpahQ4cSGRkJQI8ePZg1axZv\nv/12hUq2F/+31WqlT58+xMXFkZCQwJo1a7z2w+12k5iYSHR0NA0aNCAsLAyAJ554gi+//JJHHnkE\nwGvfAB588EGmTp1KampqlccN4Pe//z2DBg0iKysLgGHDhrFmzRpmzJjBvHnzAHjuuedISkrC4XCw\na9cur/1t164d+/bt469//avX6ryVK/v27t2bL774gkOHDnnN69+/P3FxcUyfPr3ChOR77rmHwMBA\nOnTo4DXXm27duvHJJ58wYMAAT4Xsy/Wtcj83b96Mw+HwHI9BgwaRlpaGw+HwHLdNmzbx2GOPXTbz\nyJEjOBwOvvnmG/r168f69et97ke3bt0YPnw406dPp27dup7lTz75JBMnTvT0DS4d08oKCws94/nh\nhx9WmCRduQ8zZsxgyJAhjBgxosKkeRERERERERERERERERERERERERGpORb3lZY9FZ/ExMSwfPny\nmu7GVcnJyWH69OnMmjWrprtyXRozZgyjRo2iSZMmxjILCgrYtm0bjz76qLHM60nxRZWRb0Qd/7i+\n+kY++Orlx43kmFZm6N3GZq1+4r+vLHoL9EmpwcPkb274xEcuzBz0X03ZbCQHYOv4XxvLctsCjGWd\nKSgzklM3pHb+8ZDatn9TPz5oJAdgwsMtjGXVRs8HtzeSM/fsHiM5IiIX+6BFJ2NZv/3uv4zkmP6c\nX9veQ00zsX8m923fwGerb+SjNq+vNpZV2xQsnmAsK2TQVGNZIia5fSj+4Cs9A7r2TF6n6ib+yUiO\n22rwvdjtMpdVC7mttuob+UCvPd+dWz7NSE5gzEtGcmqrnkvM3DMAfJB4r7EsU/Q9yvXL1NgB+Ol7\nlGvO1PcoAPeON/R975+7GMkBcPvbjWXpGYlvTO2fX+5BIzkAJeEtjWVZuXHfG0zeh9q9/CV3kaqc\nXfWXmu6CXCeCe79Yo9uvne/gNwBfquDWZnv37mXKlCmMHz++RvvxwgsvkJOTg9vtxmKxMGfOHCIi\nImq0TxdU17eqzoG9e/cybdo0z7+3b9+ecePG+bTNkJAQYxONc3JyGDVqFBaLBbfbzU033XRVE8vT\n0tLYsmULcH7fk5KS6NLF3E2QiIiIiIiIiIiIiIiIiIiIiIiIiFx7mmz8M8nKyqrpLlyVdu3a1Yp9\nmD17dk13oUrV9e0vf/H+Wyft2rXD6XT+HF26Ig0aNDDaj6SkJJKSkozliYiIiIiIiIiIiIiIiIiI\niIiIiEjNs9Z0B0RERERERERERERERERERERERERERKR2UmVjEREREREREREREREREREREREREZFr\nzap6sXJ90JkqIiIiIiIiIiIiIiIiIiIiIiIiIiIiXlncbre7pjshIuKLcwWnjWW5rWYKu+cUm7uE\nNrDbjOT0dn5lJAdgVdydxrKKXRYjOSH5h4zkAOTXvcVIjt2/dv7ujql3eFct/KgQWHjSWJbbYm78\nLGXnjOScqdPYSA5AuaHhq+tv5jUMYCswN345/hHGsvxKXUZy6oaYeY9xW8wdc4CCM6VGcsJKDhvJ\nKQtvYSQHwFpSaCTH7RdoJAfAUmTuc4urjpnz/Png9kZyAOaf2mEkx+VvN5IDYDtzwliWO7COkRxX\nYF0jOQAuzFwTTF5arOVmrisALpu/kRy//B+M5AC4guoZyTF5bbGeO2MsyxRXUH1jWf45+4zknAlr\nbSTngtKiciM5dULMnOeGPyIY+YwQceYbAz05r6Tx7cayLOUlxrJMsRi6droCzLxXQS09TqVFBrOK\njeS4gsOM5ADmbtgBi6vMSI7b0HuxUS4z11+onee5yc+Kpu6JMPiMpFZepwyeUzc8q5ln1Savd6Y+\nV5u6bgLgNvMsCcBtCzCTY/DDYrnLzPgVGHrmBhAaYO46lflvM88RYu5oZCQHoNTQMa+Td8BIDkBR\neCtjWf6YORfcpq5RmLtMmbxPM/XaAwg4+6ORHJPXTlPfoxTWv9VIjmmBhi5TtjPHzQQBPwY2NJZl\nK6ld36OYdqbAzLle32bmGZ7Lbu4+tDa+jo1+J2PouanttLnny7aW9xjLkhvf2bdn1nQX5DoR/Mwf\nanT7tXN2lIiIiIiIiIiIiIiIiIiIiIiIiIiIiNQ4TTYWERERERERERERERERERERERERERERrzTZ\nWERERERERERERERERERERERERERERLzSZGMRERERERERERERERERERERERERERHx6j92svG2bds4\nfPiwsby33377kmWLFy/mxIkTxrZRneTkZDp37ozL5bpm2wTIyclh0aJFP2ldb8ftp9i2bRtz5841\nknUj27t3L19//fUVr/fnP/+ZLl26cOjQIc8yX8+3adOmERcXR0xMDCdPnmT27Nk4HA46depEfHw8\nM2f5V7FdAAAgAElEQVTOZMGCBfTq1Yv4+Hi2b99+xf0TERERERERERERERERERERERERkZ/Hf/Rk\n44snTl4tb5NmBw0axE033WRsG9V55ZVXaNeu3TXb3gUNGjRg8ODBP2ldU5ONASwWi7GsG9WePXv4\nn//5nyteb9KkSXTt2rXCMl/Ot/3791NYWEhmZiZvvPEG9evX54UXXsDpdPLLX/6SjIwM/vCHPwAw\nduxYFi1axPz586/5hHkRERERERERERERERERERERERER8c7IZONz584xdOhQYmNjmT17NgBr167l\njTfeoKSkhMTERIqKinj++efJzc0FYPTo0fz444/s2LGDyMhI/t//+384HA4AduzYQUxMDDExMeze\nvRuAPn368Oc//5mnnnqK7777rsq+TJo0iejoaJ5//nkATpw4Qd++fXE4HMyYMQM4P0nynXfeYcaM\nGZ52CxYs4MsvvwQgJibGk9e7d2+ef/55oqOjOX78OKmpqcTExOBwONi/fz+HDx/G4XDw7bffEh8f\nzyeffAJASkrKJZVgx44dS1xcHH/84x+B8xOek5KSGDx4MMnJyVXu04IFC0hOTiY2NpY33ngDgHHj\nxnHo0CHKy8s9xw3A7XZXWHfNmjU8/fTTOBwOcnJyAMjMzCQmJoaBAwdy6tQpr9v0dUz37t1Lnz59\nePHFFz3rPvnkk/Tq1Ytx48aRkJAAXDqmVR23NWvW8NJLLxEfH8+ECRP46KOPWLJkCQCffvopS5cu\nrfI4ARw6dIgRI0ZQXFzMggULGDduHH379vUct507d9KnTx/69OnDzp07WblyJZs2bfKsn5qayu7d\nu30+30aPHs2AAQNwOBxs3779qsZ0//79xMfH07dvXzZv3gzAkSNHGDx4MElJSURFReF2u9m/fz8O\nh4P4+Hjef/994NIxPXLkCHFxcYwYMYLY2FhcLhdvvvkmaWlpLF26lPj4+EvOlQu2bNlCdHQ0MTEx\nrF279rLHu6qMCywWCwcPHiQ3N5eAgAACAgIuu67dbqd169ZGfxFARERERERERERERERERERERERE\nRH46I5ON169fT+fOncnKyuLbb7/l+PHjPPnkk/z73//mT3/6E0lJSdjtdrp3786GDRsoKSmhsLCQ\niIgIz+THmJgYT2XauXPnkpaWRlpaGosWLQIgPz+f0aNHM3ToUD766KMq+7Jr1y5WrFjhmSAbGhpK\neno6TqeTb7/9ltzcXJKTk4mMjGTs2LHMnTv3koyLK+R+9913TJ06lRUrVnDTTTcRFxfH8uXL+cMf\n/oDT6aRZs2Y4nU7atm1LRkYGDz30EADjx4+vUAl2586d1K1bl8zMTEJCQvjqq68ACAkJYdGiRRQV\nFXH69Okq96tTp05kZWWxfv16ysvLq+xv5eq+69at47XXXsPpdBIREUFubi4fffQRy5cvp3///qxc\nudLr9qob00GDBmG322nXrp3nWF/Qtm1bRo0aRYcOHejQoQO5ubmXjGlVxw3A5XKRkZHB5MmT6dKl\nC//85z8B2LBhA927d6/yGJ08eZKpU6cyffp0goKCALjrrrvIysriH//4B3B+MnFqaiqvvfYaCxcu\n5M4772TPnj1s3bqV7Oxs9u3bR7t27Xw633bu3ElERARLly6lXr16nuU/ZUzLysqYPXs2KSkpZGVl\nkZmZ6Wl38OBBUlNTeeutt7BYLJ52GRkZdOvWrcoxLSsrY8GCBbRp04a9e/fSt29fBg8eTGJiIhkZ\nGVVWgr777rtZsWIF6enppKenV9l/qL6adKtWrejZsyfx8fEMHz6cs2fPVrtuSEhIlZPgRURERERE\nREREREREREREREREROTa8jMRcuzYMdq3bw+cn1x4/PhxGjVqRK9evZgxYwYpKSkAPPzww4wePZqG\nDRvy4IMPAnD27FlCQ0M9k0MBDhw4wLBhw3C73fj7+wMQHh5OSEgIYWFhHDhwoMq+DB48mFGjRtGs\nWTNGjx7NqVOnmDRpEoWFhRw4cIDCwkLCw8Mvuz8XV1xt1aoVISEhwPnJke+//z5///vfKSsro3nz\n5l7XqeoYtWnTxpN59OhRGjRo4MkICwujsLCQ+vXre12/VatWADRq1OiyEzEr92PEiBHMmzcPl8vF\nxIkTOXz4MAcOHCA+Pp7y8nLuvffeKvvry5h6Y7fbCQ4OJjg4GLvdTnFxsdcx9dZfgI4dOwJgtVqx\nWq00bNiQo0ePcuLECZo2bVrldv/5z3/SuHFjbDabZ1nz5s2xWq2eZUVFRZ7xLyoq4he/+AWLFy/m\n3LlzhIeHU1ZWRkBAgE/n27Fjxzzj0qJFiwrbhCsf00OHDjF+/HjcbneFMe7QoUOFfTp9+jS33HIL\ncP5Yf/vtt17H9NZbb63QD6j+PAXYs2cPCxYswOVyVTvp15e8CxWtX331Vd5//32io6Mv2/7MmTOE\nhoZWmysiIiIiIiIiIiIiIiIiIiIiInI9s1w0L0ykNjNS2bhx48bs378fgOzsbBo1akRZWRkZGRlE\nRkZ6Kq3a7XbsdjvvvPOOp0JtcHAwubm5FSZ0dujQgddffx2n0+mpbOzLpEaAbt26MWfOHP77v/+b\nvLw8PvzwQx5//HEyMjJo2bKlp52fnx+lpaWen4ODgykqKqKkpKRCNVqrteIheuutt8jMzOT555+v\n0KeqqrReaHPxMTpw4ABNmjTxaX8uOHDgAG63m+PHjxMaGkpwcDCFhYWcPHmyQj+Cg4PJy8vz/Ny2\nbVtefvllWrZsyeeff06zZs245557yMjIICsri+TkZK/b83VML+zj5cbH7XZ7HVPwftxslS6g3bt3\nJyUlhc6dO1/2GD311FMMGTKEWbNmVdnmwvn2448/EhwcjM1mw2KxEBQUxIkTJwgLC/P0uTo333wz\n2dnZwPnqw1fq4jENCwujdevWzJ8/H6fTyTvvvONpV/kcrF+/Pt9//z0AxcXFPo8pXHree7NkyRJS\nUlJYuHBhhW3b7fYK5xZcer5VVlBQ4Hk9NW7cuEJVbm/H+MIvBVyYTC0iIiIiIiIiIiIiIiIiIiIi\nIiIiNcvIZOPHH3+crVu3EhcXxy9+8QsaNWrEwoUL6dOnDwMGDODjjz/m+PHjwPnJwPn5+URERAAw\naNAgBg4cSGZmpmdiY1JSEomJiSQkJJCWlgZUPZn3Ym63m8TERKKjo2nYsCFhYWHcf//9LFu2jOHD\nh1do+6tf/YrFixczbdo0AB555BEyMjJITU3Fbrd72lXebseOHXE4HKxfv77C8ltuuYXRo0ezfft2\nzp07h8PhYMuWLYwZM4asrCzuuece8vPziYuLo6CgwFO9t6rtVLZ9+3ZiY2Pp1q0bNpuNHj16MGvW\nLN55550K6/7+979n0KBBZGVlAfCXv/yF2NhYtmzZwn333Ud4eDh33303DoeD+Ph4tmzZ4nV7vo7p\nm2++yejRo/nyyy+Jj4/n7Nmzl2RZLBavY1r5uFXlV7/6Fdu3b+eJJ5647DEC+PWvf01BQQG7du3y\n+u9Dhgxh6NChDB8+nKFDhwLnK/+2bNmSoKAgbr/9dk+fq3Pvvfdy4sQJ+vfvT35+/iX/fqVjOmLE\nCEaNGkV8fHyFytGVc55//nnGjx/vOQ+rG9OL17/77rv58MMPefHFF6vsV7du3Rg+fDjTp0+nbt26\nnuVPPvkkEydOZN68eZ5llc+3ygoLC0lKSsLhcPDhhx/y1FNPVblfM2bMYMiQIYwYMeKSCdYiIiIi\nIiIiIiIiIiIiIiIiIiIiUjMsbl9LBhuyfv16cnJyiImJAaCsrAw/Pz+ys7NZtGgRL7/88rXsznVh\nwYIF3HvvvTzwwAM13ZUaUVJSwvDhw1m8eHFNd6VKc+fO5de//jX33XefT+3/08f0pzpXcLr6Rj5y\nW/2M5OQUm7uENrCb+bMIvZ1fGckBWBV3p7GsYlf1k/h9EZJ/yEgOQH5dM1W07f61c4K8qXd417X9\nqOCTwMKTxrLcFnPjZyk7ZyTnTJ3GRnIAyg0NX11/M69hAFuBufHL8Y8wluVX6jKSUzfEzHuM24df\nfroSBWcu/9cNfBVWcthITll4CyM5ANaSQiM5br9AIzkAliJzn1tcdcyc588HtzeSAzD/1A4jOS5/\ne/WNfGQ7c8JYljuwjpEcV2Dd6hv5moWZa4LJS4u13Mx1BcBl8zeS45f/g5EcAFdQPSM5Jq8t1nNn\njGWZ4gqqbyzLP2efkZwzYa2N5FxQWlRefSMf1Akxc54b/ohg5DNCxJlvDPTkvJLGtxvLspSXGMsy\nxWLo2ukKMPNeBbX0OJUWGcwqNpLjCg4zkgOYu2EHLK4yIzluQ+/FRrnMXH+hdp7nJj8rmronwuAz\nklp5nTJ4Tt3wrIb+hK/B652pz9WmrpsAuM08SwJw2wLM5Bj8sFjuMjN+BYaeuQGEBpi7TmX+28xz\nhJg7GhnJASg1dMzr5B2ovpGPisJbGcvyx8y54DZ1jcLcZcrkfZqp1x5AwNkfjeSYvHaa+h6lsP6t\nRnJMCzR0mbKdOW4mCPgxsKGxLFtJ7foexbQzBWbO9fo2M8/wXHZz96G18XVs9DsZQ89NbafNPV+2\ntbzHWJbc+IrenVPTXZDrhL3XqBrd/jV9B//b3/7GO++8wyuvvOJZ9umnn3oq3f7pT3+6lt2R68CJ\nEycYPXo0AwYM8CxzOBxYLBbcbjcWi4WMjIyfvR8pKSns2bMHOF+Rd/z48bRr187z71VVMc7JyWHU\nqFGe/t50003MmjXrZ++vL0z3LS0tzVNV+UI16y5dupjqroiIiIiIiIiIiIiIiIiIiIiIiIjUgGte\n2VhE5KdSZWPfqLKx71TZ2DeqbOw7VTb2jSob+0aVjX2nysa+UWVj36mysW9U2dg3qmzsO1U29o0q\nG/uuNlYyVWVj36iyse9U2dg3tfE8V2Vj36mycQ1QZWPfqLKxT1TZ2HeqbOwbVTb2nSobX3uqbOwb\nVTb2jSob+06VjeV6p8rG4quarmxcO2dHiYiIiIiIiIiIiIiIiIiIiIiIiIiISI3TZGMRERERERER\nERERERERERERERERERHxSpONRURERERERERERERERERERERERERExCtNNhYRERERERERERERERER\nERERERERERGv/Gq6AyIivrIW5tZ0Fy4RXq+xwTS3kZRVcXcayQGwlJcay3IRYCSnOPRWIzkAdqvF\nSM65MpeRHIBAP3O/B2QrP2ckx2ozM3YmuYLDjGWVWsx9HPIzc0pRx1VmJggoroUf90pDbjKWFWDw\n9ecydMmzlBYZySm2BhnJMa0kvKWRHKuh9z2AnFf+n5GcsI4djOQAWB+KNZZlyvxTO4xljQztZCTH\nZJ/K65q7tritNmNZxhh6yVhc5WaCALfV3HuMxW1mB8tDGhrJAXPnQbnL3PXOP6COsSyXzd9Ijqmx\nA3AF1jWS42foc/4Fpu6KTH0+L7cFGskxyuDnV5Nsp4/WdBcuZeja6TJ4PcDg69iWf8xIjqWsxEgO\nQHmdCCM5Lj9zrz1rabGxLGPvxyav5/61717GVnDWWJbFbeg+1ODl3C/3eyM5Lnt9IzlQO69TtjPH\njeT8J3Abeh7oDjLz+Q7AYujzhrXwRyM5AOV1GxnLMsVWnG8uy1BOnQBz54FJvW838xzBr/iUkRyA\nIr96ZnLCWxnJAbP3Vy63obPK3McWY/dppq6bADaDx7w8pIGZHIPPNvww81kq0FAOQLHL5HMEM1km\n32OCys2Nn6lnJJZyc/d8RZh5xmVSmT3cSI7J71FMPsvFZub1Zz1zwkgOgMvQ9e7czbcZyQEINpYk\nIlJ71L7ZJyIiIiIiIiIiIiIiIiIiIiIiIiIiN7raWARHxAtz5RNFRERERERERERERERERERERERE\nRETkhqLJxiIiIiIiIiIiIiIiIiIiIiIiIiIiIuKVJhuLiIiIiIiIiIiIiIiIiIiIiIiIiIiIV9ft\nZOOVK1fSo0cPVq9eXdNdqbU2b95Mr169mDdv3jXdbkxMTLVtfO3bmjVrrosx9mWff25Tp06t8PPG\njRvJz8+/6txjx47hcDiIjY31LNu9ezd9+vThxRdfvOy6P/zwA/369cPhcDB58mQKCgpwOBz06tWL\nRx99lPj4eP75z3/yxBNPkJCQwOjRoykoKLjqPouIiIiIiIiIiIiIiIiIiIiIiIiIGX413YGfKioq\nioCAAMrKymq6K7XWo48+St26dfniiy+u6XYtFku1bWqqbz8XX/b55zZhwoQKP2/atIm2bdtSr169\nq8pt3LgxTqezwmTjO++8k9mzZ1c7WdzpdDJixAg6depEfn4+ISEhOJ1Otm/fzhdffMFzzz0HQERE\nBOnp6XzyyScsXryYUaNGXVWfRURERERERERERERERERERERERMSM66Ky8blz5xg0aBCJiYlERUVx\n9OhRANxud4V2W7ZsITo6mpiYGNauXQvA3r17iYyMxOFw8OmnnwKwdu1aevfuzZgxYxg3bhxwflJk\ndHQ0/fv3Jzc3lz/84Q8VKqwOHz68yv5lZmYSHR1NQkICubm55Obm0q9fP6Kjo8nKygIgLi6OqKgo\nxowZQ1RUFMXFxbz99tue/m7fvr3K/DVr1vD000/jcDjIyckBYMeOHfTt2xeHw8GXX35JWVkZcXFx\nJCQkVKg2W/kYnT17lpEjRxIfH8/cuXOr3Gb//v09/52YmOjZZkxMDDExMezevRuAbdu2MXr0aPr1\n68eQIUMAyM3NZdiwYcTFxZGbm+tz3y5n9+7dvPjii7jdbsaNG8eUKVOIjIzk73//OwDr168nKiqK\n2NhYsrOzmTNnDt98841n/QkTJpCbm8vvfvc7xowZQ2RkZJVVf8+dO8fQoUOJjY1l9uzZnuUOh4N5\n8+YRFxfHxo0b2b9/P71792b06NGUlJRU2XeHw8HMmTN56qmn2LlzJ3Dp+ebNkSNHGDNmDABz585l\n+/btbNu2jaSkJAYPHkxycjIAOTk5l1QenjhxIlu2bGHMmDGeisfeXgveTJ48GYfDQWJiIidPnqyy\nnS+sViu7du2irKyswqTnymN/4eeHHnqIf/3rX1e1TREREREREREREREREREREREREREx57qYbLxh\nwwa6dOnCkiVLKC0trbLd3XffzYoVK0hPTyc9PR2Azz//nPj4eJxOJ126dAHOTw5evnw53bt3B6Cs\nrIwPP/yQFStW0LdvX1atWsUdd9zBnj17WLVqFWVlZVit3g/Vjz/+yEcffcSKFStYunQpISEhrFy5\nkpiYGFasWMHf/vY3ysrKaNCgAdOnT6dhw4b06tWLffv28fjjj7NixQrmz59PWlpalfu1bt06Xnvt\nNZxOJxEREQDMmTOHxYsX43Q66dixI35+fixcuJD09HTsdrtnMnBlK1eu5NFHHyUjI4MjR45w4sQJ\nr+06duzI7t27+e6772jZsiVwfsJrWloaaWlpLFq0yNP25MmTvPHGG7z22msA5OfnM3/+fPr168fK\nlSt97ltV9u/fz+uvv05KSoqngvDDDz/M4sWLef/99wFYunQpWVlZjB8/nmXLlnnGb/369eTm5nL6\n9GnCw8M5ffo0M2bMoEePHmzdutXr9tavX0/nzp3Jysri22+/5fjx455/e+CBB8jMzOSRRx5h2bJl\nTJkyhZdeeqnKictwvupxZGQk06ZNY+3atRXOt+joaFatWnXZdSsLCQlh0aJFFBUVcfr0aRo0aIDT\n6azQZvLkyXTt2pWZM2d6Kh57ey14M2rUKJxOJ8888wzvvfdele18MXDgQLKzs3niiSc8E++rU15e\nflXbFBERERERERERERERERERERERERFz/Gq6A744evQo7du3B6B58+ZVttuzZw8LFizA5XJx6tQp\nAJ5++mkWLFjA5s2bGTZsGO3atcNms+Hv7++ZRJuXl0eTJk0AaN26NV988QW/+93v+O///m/WrVtH\nSEgIzZo187rNI0eO0K5dOwBsNhs2m42jR4/y+OOPA9C4cWNOnTqF3W7HbrcTHBxMcHAwxcXFfPnl\nl55Joper8jtixAjmzZuHy+Vi4sSJhISEAHj+3263c/bsWSZOnEhOTg5HjhyhR48eXrMOHjzI119/\nzdtvv01BQQEnT57kpptuuqTdb37zGzZu3Ei9evX4zW9+A8CBAwcYNmwYbrcbf39/T9uOHTsCeCZk\nN2vWDD8/P1q2bMlnn33mc9+qsnXrVsLCwrDZbJ5lLVq0IDQ0lMLCQgD8/Pzw9/endevWHDt2jDvu\nuINly5aRm5tLUVERgYGBnr5ZrdYK61Z27Ngxz/nWqlUrjh8/TqNGjSrsq81m49ixY7Rq1YqAgADq\n169/2X1o0aIFhw8fprCwsML51qZNG7788ssrOh4XXgNhYWEUFhZWu+0LLn4tDB061LOPlS1dupTt\n27dTWFjII4884ll+JZWoL6hfvz4pKSmUlJTw7LPP8vTTTxMcHHxJu4snVfv5XReXJRERERERERER\nEREREREREREREZH/CNdFZePGjRuzf/9+4Pxk2QuCgoLIy8vz/LxkyRJSUlJYuHChZ+JrSEgIEydO\nJCEhwVNBtry8nJKSEg4cOACcn7R59OhR4HwV3SZNmnDbbbexfv16IiMjWb58OR06dPDat6ZNm7Jn\nzx4AXC4XpaWlNG3alP379+N2u/nhhx8ICwu7ZD2Xy8XixYs9FXtdLleV+9+2bVtefvllWrZsyeef\nf+5ZfqGabnFxMZ999hmtWrUiIyODTp06eSaGVj5GLVq0YNiwYTidTlatWsXtt9/udZsdOnRg7969\n7Nixg86dO3uWvf766zidzgqVjS+eBAxw6NAhSkpKyM7OpkmTJj73rSoxMTE88cQTLFu2rMo2F8Z0\n3759NG7cmEaNGvH9999z2223sXnzZtq2bQv4NmH24vMtOzvbM9EYKk6Ebdq0KQcOHCA3N9czud2b\nytv0dr55ExwcTFFREXC+enR1Km/H39+fkpISz88XvxZWr17tNePUqVPs2LGDzMxM4uLiKmQWFxdX\naGu326sdvyNHjgAQEBBAaGholcf/wvKPP/6YO++887KZIiIiIiIiIiIiIiIiIiIiIiIiInLtXBeT\njbt168Znn31GYmIiNpvNM5H4/vvvZ/369QwZMsTTbvjw4UyfPp26desC8MEHHxAXF8e0adM8FXXj\n4uKIjY3lH//4B1arFT8/P3r27El0dDRvvvkmzz77LEFBQRQUFPDwww/jcrmqnGwcERHBI488QnR0\nNP369ePMmTP07t2brKws+vbtS8+ePS+ZjAvnK7k+8sgjOBwOli9fXqGya2V/+ctfiI2NZcuWLdx3\n330APPfccyQlJeFwONi1axd33XUXmzdvZsiQIZw+fdqzbvv27dm/fz/x8fEUFRURFRXFmjVrSEhI\nYPDgwZ7JrN40a9aMkJAQT/+TkpJITEwkISGBtLS0KtcLDQ1l5MiRpKen8+yzz/rct8vp3bs3X3zx\nBYcOHfL67/379ycuLo7p06czYMAAz/J77rmHwMBAz/hd7jhf8Pjjj7N161bi4uJo06aNZ7Jx5XUT\nEhKYOHEiU6dOvWx14crreTvfvAkLC8Pf35/p06d7Jid7y924cSMOh4Nvv/2W+Ph4zzF68MEHmTp1\nKqmpqYD310Jl9evXp06dOvTv358dO3ZU+Ld7772XmJgYdu7cCUB4eDh2ux2Hw1HluGzdupVnnnmG\nvn37cv/991OnTh2v7fLy8khISOC9995j4MCBXtuIiIiIiIiIiIiIiIiIiIiIiIiIyLVncftS6rUW\nKCsrw8/PD4fDwZIlSwgICLjqrM8++4xdu3aRnJxssKci8nMpPZ5d0124RGm9xsayrBi6HLurrpR+\npSzlpcayCvnp1+2LBdiq/6UBX9msZrLOlZk75oF+5n4PyFp2zkiO22Zm7EyyuMqMZZVa/Kpv5CM/\nQ6enyf0rxsz+BRr8FTUX5l7HRQZff67iciM59QLNXDuLrEFGci4oLTKzf3VC/I3kGHvfA3JnvWAk\nJ6yj918w/CmsD8Uay3L7BRrJsZYUGskBGBnayUjO/FM7qm/kI5e/3ViW23rpL4zWNFN37la3mWsB\nAJZa+PvLBj8LmzoPyl3mrnf+bnOfEVw2M9dzi8HHSrYzx43knAtpVH2jK1BUaOa417ObOT/LbWbe\nFy4oLLj6zy4Rp//HQE/OK2l6l7Esv9yDxrKMsZr5fF4W2sxIDoDF0L0jgC3/mJEcS1lJ9Y18VF4n\nwkxOSAMjOQDW0uLqG13HXP5m72VMsBXkGMuyGPq8YercBAj4YY+RHJe96qIaV6o2XqdMXaP+E5h6\nHugOqmskBzB2/2Et/NFIDkB5XXOfO43d+587YyTHpHMB5s4Df3OPFTln6PbRXnK6+kY+OuNXz0iO\nye9R/Ax9jwLmnm2YZCuvfd+juH0onnWtmXy24Ye5ZzemFLvMHfMgg68/U4rLzY2fqe8ZTD0jASjC\nzDMuuLG/RzHJUm7mnt1q8D7NZeie3eRzt2B77bs3ltqr6INXa7oLcp2w9xxeo9s3N7vmZ+R2u+nb\nty/+/v48/PDDVzXRGGD16tW89957+Pn5MXPmTEO9lKuRk5PDqFGjsFgsuN1ubrrpJmbNmvWzb/eF\nF14gJycHt9uNxWJhzpw5RET8tIe8W7ZsIS0tzVNxuGvXrgwaNMindVNSUtiz5/wDYYvFwvjx42nX\nrt1P6oev1qxZwzvvvOPpb2RkJL169frJeQ6HwzN+FouFjIwMU10VERERERERERERERERERERERER\nkRpyXUw2tlgsrFq1ylhedHQ00dHRxvLk6jVo0ACn03nNtzt79mxjWV27dqVr164/ad3x48cb64ev\nnn76aZ5++mljeTUxfiIiIiIiIiIiIiIiIiIiIiIiIiLy86qFf/NURERERERERERERERERERERERE\nREREagNNNhYRERERERERERERERERERERERERERGvNNlYREREREREREREREREREREREREREREvITU\npqwAACAASURBVPKr6Q6IiPjqlL2Rsaz/z969x0dR3/sff8/uZpMsCYRIRS5y06ogHMWqp60gyolS\naKuIPcrFjUFuIgKip5IIVStee0QQg6FcFJIQRFFaLNRiLW3TakEo1nMq8SiIxyQUBIIkIbfdnd8f\n/thjJIEFPpqFvp6Ph482szPv+c535/Kdme9+cV3XJMcbipjkSFKyz+b3H95QnUmOJB1UklmW17HJ\nSQjV2ARJavAlm+QkeWz2J0lyGmrNslxfolGQ3X5uxfXYNWG8jtHOKUlG55Zawyaa1fkuYvgbNW/Y\n7jzldRLMsqz2dCdcb5KTlGBzjjqswSinqj5skpOa6DXJkaRvTMgxyXEa7K4xNrVkK2K4T807sNkk\nZ0rapSY5kvTMnj+aZTWknGmWZcUjm/O5E7Y6G0iu1+4cbMUxbLe4sjlP+QybGk6D3TU07Ni0Nyy3\nL5LU2iTHrnVuzLFpT1mdDyyF2vWwCzM8jsNtOpplmYnYtBKs2pySFEmwu/eXUZ17qvaa5EiSx6iN\nFzH67iRJcXgfaslj9GzDcj+Xz28WFTF6JmHZbgm1Psskx/UHTHKk+DxPOSnfMMn5Z2B1/+ip/cwk\nR5Jcn81+EGl1hkmOZHsN9Rg916/zp5rkSFI4YvRcMWx3rUowvAFJdGzOwzX+NiY5kvRplc09e/eA\n3TWmXkbvGSQlGD2BdSIhkxzJ9l2DFScO23eW9/6uY/O8xbKaHCf+6txyP2+I2D2Lt2L5jDLJb9fW\ntypVfdjmfJdk9YJdtu8/rN5BW7bLrJ63+Cs/McmRJCV/0y4LAOIEIxsDAAAAAAAAAAAAAAAAAAAA\naBKdjQEAAAAAAAAAAAAAAAAAAAA0ic7GAAAAAAAAAAAAAAAAAAAAAJpEZ2MAAAAAAAAAAAAAAAAA\nAAAATaKzMY7Lpk2bNHfu3K8ku6GhQcFgUIMGDTrqfGVlZfrxj3/c5GcPP/zwca83NzdXb7311nEv\nF4/WrFmjl19+udG0l156Sb/4xS8kSSNHjjyh3Pnz52vgwIGN6umnP/2p+vXrp08++eSoyy5evFgj\nRozQiBEjVFJSovz8fAWDQV122WUKBoPKzs7W6tWr9b3vfU/BYFCvvfbaCZURAAAAAAAAAAAAAAAA\nAE4ljsfDf/wX038tzdfSBcCpx3GcryQ3ISFBBQUFGjVq1AmXYebMmdbFOqWsXbtW8+bNa/bzE/3u\nJk2aJNd1G0174IEHVFtbe9Tlqqur9ec//1krVqxQJBJRTU2NLrjgAmVmZiozM1PLli2T4zhavXq1\nxo4dqxtuuEHjx4/XFVdcodTU1BMqKwAAAAAAAAAAAAAAAAAAsENnYxy3v//975owYYISExP1+OOP\nKzs7WwcOHNAll1yiu+66S7fccovq6+vVtWtXffzxx8rPz9d7772nJ554QpKUnZ2tvn37at26dXr+\n+efVrVs3+Xw+PfbYY02ub/bs2dqyZYvS0tKioyp/9NFHGjt2rBzHUW5urhITExUMBrVnzx795je/\nkSStXr1av//973Xw4EGde+65mjFjxlG364033tDbb7+t7OxsBYNBXXTRRfrDH/6gn/70p7rkkktU\nUFCgtWvXKjk5WbNnz9ajjz6qBx98UCkpKZI+75CbnZ2tnJwcpaWlqaKiQgUFBfI08auCffv2aerU\nqUpNTdXOnTv161//Wrm5uSorK9POnTs1aNAgZWVlNVnO5urt/fffV7du3ZSYmChJevzxx7Vt2zb5\n/X59//vfl6QjOgw3paSkRA8++KB8Pp8yMjKaLUesPv30U5WVlalTp05q1apVdLrrunJdt1EHaK/X\nq3/913/Vf/3Xf+m73/3uSa0XAAAAAAAAAAAAAAAAAACcvJYfWxmnnJSUFP385z/XoUOHtHLlSg0c\nOFD5+fkqKyvT7t271a5dOz322GP6xje+oaFDh+qDDz5QXl6e8vLyNH/+fOXl5UmSCgsLVVRUpEGD\nBjW7rt27d2v79u0qKirSZZddptdff12SFAqFtHjxYl1xxRXRaQUFBWrXrl2j5bt06aLnn39eW7du\nPeo2bd68WW+88Yays7MlfT4C8LBhw/TII49o3bp1CoVCWrt2rV544QWNGDFCL730kvr06aNt27bp\npZdeUigUksfjkcfjUSgUUm5urr75zW+qpKSkyfW99NJLGj16tJ5++mkdPHgwOv2iiy7S8uXL9dpr\nrzVb1ubqbeXKlRo+fLgk6R//+IdKS0u1bNkydevW7ajb/mVdunTRihUrVFhYqDVr1hzXsl/WqlUr\nTZ48WVOmTFEwGNSnn356zGVSU1N14MCBk1ovAAAAAAAAAAAAAAAAAACwQWdjHLeuXbtKktq2bas3\n33xTRUVFCgaD+vDDD7V3714lJycrOTlZgUBAgUBAtbW1qq2tVXp6utq1a6eamhpJksfjUUJCgrp3\n794o/4uj7+7atUvnnHOOJKlHjx4qLy+XpOgy3bt3165du45Z1sOj/TZn06ZN0XId1q1bN6Wlpam6\nuloVFRXq2LGjJOmcc87Rrl27op2Nf/GLX+j1119X586dJX3eWVdSdNmmlJeXq3v37vL7/erUqVOj\n8no8Hnm93mbL6vV6j6i3Q4cOac+ePdFp//jHPxrV0WFfHEW4OWVlZRo7dqyCwaBKS0tjGg35aAYN\nGqSXX35ZN954o5YtW3bMslRWViotLe2k1gkAAAAAAAAAAAAAAAAAAGzQ2Rgn5YorrtAdd9yhgoIC\nrVq1Sr169TpiHtd1lZycrP3792vfvn0KBAKSpEgkovr6en300UeN5m9oaFAkEpEkdejQQTt27JAk\n7dixI9rh9/C0nTt3RqcdXldTjtVh9o477lCXLl30m9/8psn527ZtG+3ovH37dnXs2FG9evXS+vXr\nNWzYMBUVFal3795HXccXdezYUTt27FB9fb3KysqOq7zhcPiIenv11Vf1wx/+MPp3hw4dtHPnTklq\nNF8sHYdXrlypCRMmaOnSpWrdunV0maSkJFVUVDSaNzk5+YhpXy7rP/7xj2iZDn+vTZXFdV2FQiH9\n5S9/UZ8+fY5ZTgAAAAAAAAAAAAAAAAAA8NWjszFOmOM46tevn1avXq1bb71V48ePP2J04MPzTZw4\nURMnTtSkSZN0++23S5JuueUWjRo1Sr/+9a/l8fzfrjh48GANHz5c69evV/v27dWjRw+NGjVKb7/9\ntq655hpJkt/v15gxY/TnP/9Z11xzjd555x0Fg0F98MEHyszM1F//+tcjynAshztNHzx48Ij5fT6f\nfvCDH2j48OFasWKFfvSjHykpKUlVVVW66qqrFIlEjuhsfLR13njjjXruuec0ZcoUtWnTpsk6a05T\n9fbb3/5WGRkZ0Xnat2+vTp06KTMzs1Fn4w8//FC33XabbrvtNi1fvrzJ/AEDBmjWrFm69957lZKS\nEp0+cOBALVq0SD/5yU+i04YMGaL7779fTz/9dJNZ4XBY99xzj2655Rbl5uZq5MiRzW7jc889p6ys\nLP3oRz9Sampqs9sPAAAAAAAAAAAAAAAAAAC+Po4by1CnwFcgFArJ5/PpT3/6k7Zu3arJkye3dJFa\nxMiRI1VUVBTz/F+ut9GjR2vTpk0aOHDgV1jK+PDpwUNmWVanPq/n2B3ZY5Xss/n9h7fBrp4OKsks\ny2tUVa3cWpsgSQ2+ZJMcnyLHnilGTrjBLMv1JRoF2W2fGcfu91JuDD9IiZVjdG6pM6xyq/Od32tX\n595wnVlWjRLMshpqwiY5bXzVJjmRpCN/kHQyKqtCJjmu32ZfSE30muRIkq9yj0mO03DkD+dOVDi1\nvVlWPJ7PPUZ1NSXtUpMcSXpmzx/NshpSzjTLsuKRzfncCdmdg12v3TnYimO4n0eMts+qfSBJnnqb\na4wk1Se0Msnx2TWlzM7D9Ubt/MNqq22uoa0DJjFyPT6boP/Poo3QJsHuGhrx2+ybkuREbL47UxGb\nNqc8dm2piFVbQ5LH6DrjqdprkiPZXRtCbToee6YYme6bp/HjfSdc39JFaJLZediwLeXUfGaS4/qN\nLlZSXJ6nvHVVJjn/DCIJNu0pT63NvilJrs/mWbXlPUM4MeXYM8XI6hpa7/Gb5EhSOGJzjTGKkSQF\nLG9AjPaFOtfuuemuKpv3A90Ddvt5vdeurZhg9C7Fsi1ldl03fGdxurN6J2PZDG4wPFElGu0Klvv5\nwbBdu0x1Ru9R/HbPKC2fI1i9R0lItqnzJKsX7LJ9/2H1zsLyvbjVdd1bvc8kR5J8Hb5ploXTX+26\nvJYuAk4RSUMmtuj6bd9OAMdh1apV+uUvfymfz6cnn3zyK19fSUmJHnnkkeiIuj179lROTs5Xvt5g\nMCjHceS6rhzHUX5+fqPPmxvFuLi4WAsXLox+3r9/f40bN+6IektJSTnhjsbHKtvxWL16tV555ZVo\neYcNG6ahQ4eecB4AAAAAAAAAAAAAAAAAAGh5jGwM4JTByMaxYWTj2DGycaxBjGwcK0Y2jg0jG8eG\nkY1jx8jGsQYxsnGsGNk4NoxsHBtGNo4dIxvHhpGNY8fIxrFhZOPYMLLx14+RjWPHyMaxYWTj2DGy\ncWwY2Tg2jGwcO0Y2jg0jG5/aGNk4NoxsHDtGNo4NIxvHhpGN0VIY2RixYmRjAAAAAAAAAAAAAAAA\nAACAfzaGP9gFvkr8xA4AAAAAAAAAAAAAAAAAAABAk+hsDAAAAAAAAAAAAAAAAAAAAKBJdDYGAAAA\nAAAAAAAAAAAAAAAA0CRfSxcAAGLluq5ZVtgoKuB1bIIkeWRTqINKMsmRJI/d5ik5web3LfUvzjPJ\nkSTvv2cbJdn9dseJhMyyIo7NvuBYbl+43ianocYkR5Jcr98sy1N70CaoVXubHElJZucpu3Ow5ffn\n+O2+PyuRpDYmOSG7KjfVxtNgkuO6dueWSFJrkxzHHzDJ+TzM8CJqxFu5xywrnHqmSc4ze/5okiNJ\nk8+80ixr7qFtJjnVhgdyss/mmPHVVZnkSFJD4AyzrISIURuhttIkR5I8iSkmOQ3eRJMcSbK86vkU\nMUoybCvWHzLJ8Vmezy1FwjYxngSTnLjlGI6NYFTnlhzX5tiLeJNNcswZ1bkTqjXJkSSP1bWhTUeb\nHNm2y2T0HCGSbHMfI0muz+Z5hOuxe31hdr8uSUblcg2vV07Y5j5NRucoKT7PU673NL+GGrJ6Rmn1\njESSWRvBU/WpSY4kyeieQbJ7RllVZ3cchyM297RpSV6THGvVYZtnNxHDd1fdWtucp9wNS01yJMl7\n9WizLNex2RfMrnuSIkZl8obrTHIk2zaQE7Ipl2X73GmwKdPBgN17FKvnbp+zOSdYfXeS5PXYtTut\n7rIjCXZtxYji71l8ksfq2mC3bVbPIyS793xhw7aUx+i5ovu/fzfJkSR1+KZdFgDECUY2BgAAAAAA\nAAAAAAAAAAAAANAkOhsDAAAAAAAAAAAAAAAAAAAAaBKdjQEAAAAAAAAAAAAAAAAAAAA0ic7GAAAA\nAAAAAAAAAAAAAAAAAJpEZ2OclN/97ncaOnSonn766eNedvXq1THN9/LLLx93dllZmX784x8f93Kn\nosmTJ+vyyy9XJBI54rM1a9ZE62/kyJEnlP/iiy9q8ODBWrVqVXTa/PnzNXDgQL311ltHXXbNmjUa\nPny4RowYoeLiYq1bt07BYFD9+vXTTTfdpDFjxmjTpk0aOHCggsGgCgoKTqiMAAAAAAAAAAAAAAAA\nAADgq+Fr6QLg1DZw4EClpqbqzTffPO5lX3nlFV133XXyer1Hne/ll1/WjTfeeNz5juMc9zKnomee\neUaZmZlNfrZ27VrNmzdP0onXx0033SS/369QKBSdNmnSJLmue8xli4qK9MILL0iSKisrlZqaqiFD\nhignJ0d33HGHzj77bG3atEnXX3+9pk6dqrvvvlv9+/dXt27dTqisAAAAAAAAAAAAAAAAAADAFp2N\ncdK+2Om0pKREDz74oHw+nzIyMpSVlaVIJKIZM2aotLRU7du315NPPqk77rhD77//vrKystSvXz9N\nmDBBeXl5Ki4ultfr1YMPPqjExETl5OTogw8+UGZmpsaMGaMBAwaosLBQ69atUyAQ0JNPPqm0tLRm\ny1ZRUaGcnBw9+uij+sMf/qDf//73OnjwoM4991zNmDFDH330kWbMmKFwOKyxY8cqEAho+/bt0c67\na9asUUJCgoqKinTRRRfpj3/8ox588EFdcsklTa7v8ccf17Zt25SQkKAf/OAHuuyyyzR9+nSlpaWp\noqJCBQUF8niOHFD8zjvv1GeffaYzzjhDpaWlmjdvnu69917V19era9eu+vjjj5Wfn6/33ntPTzzx\nhCQpOztbffv2PeI7OOz9999Xt27dlJiYGPN3uWfPHk2dOlU+n0+9e/fW9OnTm82PRWVlpT744AN9\n85vfVGpq6jHnz8jI0Ntvv01nYwAAAAAAAAAAAAAAAACnP8/RB+oE4sWRvR6Bk9ClSxetWLFChYWF\nWrNmjSTpjTfeUKdOnVRQUKBZs2ZJkp599lldcMEFys/P14QJEyRJt9xyi4qKivQf//EfKigoUOfO\nnVVQUKDzzjtP+fn5GjBggPbv368NGzaoqKhIo0eP1osvvthsWQ4dOqT77rtP999/v9LT06Ple/75\n5/XOO+9Ikp577jnNnDlTBQUFWrJkifr06aOSkhKVlJTonXfe0bZt29SnTx85jqNhw4bp4Ycf1rp1\n65pc3+7du1VaWqply5ape/fu0emhUEi5ubn65je/qZKSkiaX9fl8WrRokVzX1eTJk/Xuu++qXbt2\neuyxx/SNb3xDQ4cO1QcffKC8vDzl5eVp/vz5ysvLiy7f1KjFK1eu1PDhw5utn6akpaVp2bJlKigo\n0AcffKD9+/cf1/Jf9sADD+ihhx7SsGHDtH379mPOn5KSooqKipNaJwAAAAAAAAAAAAAAAAAAsMPI\nxjBVVlamxx9/XPX19SotLZXrutq5c6f69OkjSUpOTo7O67quXNeNdpRds2aNfv3rXysUCqlr166N\n5justLRUO3bsUGZmpsLhsL71rW81W5a3335b5513nrze//v1x+Fcv98vSSovL9e5554rv9+vhIQE\ntW7dWtXV1fr973+vUCikXbt2qXPnznJdV926dVNpaamqq6ubXN+uXbuinYy/2Nm4S5cukj7vyNvc\nssnJyUpKSlIgEFAgEFBFRYWSk5OVnJwcnVZbW6va2tpox+lDhw41WUeHP9uzZ0+jcsTiwIEDeuCB\nB1RdXa0dO3aouro6ur4Tcfnll6ugoECbN29Wbm6u5syZc9T5q6qq1LZt2xNeHwAAAAAAAAAAAAAA\nAAAAsMXIxjhpSUlJOnDggKTPR9OdMGGCli5dqtatW8t1XXXt2lV/+9vfJEm1tbXR5fx+vxoaGqJ/\nr1y5UoWFhbrrrruO6Dx7WOfOnXXJJZcoPz9fy5cv1+TJk5st14ABA/TAAw/o4YcfPuKzw/mdOnXS\nhx9+qPr6eoVCIUlSIBBQXV2dPB5Po47Kx3LWWWdp586dkhT93xPV1Pa7rqvk5GTt379f+/btU6tW\nraKfHe6gfNirr76qH/7wh8fM/LK1a9fq2muvVX5+fqOOyklJSUeMONzUtC8rLS2VJLVv316RSKTZ\n+Q6X7be//a0uvfTSY5YTAAAAAAAAAAAAAAAAAAB8PehsjJPWs2dPffjhh8rMzFT//v01a9Ys3Xvv\nvUpJSZEkZWRkqKysTMFgUDNnzowuN3DgQE2dOlUvvPCCJOniiy9WMBjU+vXrG+V36dJF99xzj95+\n+22lp6erb9++CgaDyszMVHFx8VHLdu655+qcc87RunXroiMoS4r+/9GjR+vhhx9WMBjUmDFjJEnn\nn3++WrVqpTPPPFOdO3duNP/RnHXWWTrrrLOUmZmpHTt2HPF5LBlH4ziOJk6cqIkTJ2rSpEm6/fbb\no59df/31GjdunJYvXy5JeuONN5SRkdFo+QMHDui2227TbbfdpqeffrrJdXz729/W888/r0mTJh0x\nff369Y3WOXDgQC1atEg/+clPmi3zY489phEjRujee+/V2LFjm51vzZo1CgaDuuiii457NGYAAAAA\nAAAAAAAAAAAAAPDVcdxYhjsFcFxeeuklJSQkaOjQoV/7uquqqrRp0yYNHDjwa1/3V23PZ9VmWWGj\nM1+q3+43G76T648eVdlgd1r3GJVJkgIJNnUVevFxkxxJ8v57tkmOR4Z1Xm+4nyemmOQ4hk0FJ1xv\nk9NQY5IjSa7Xb5blqT1oknOoVXuTHElKjMOflnlqPzPLqvG3McuqPxQyyUlN8ZnkhIxb6TXVNtvX\nOilskuP6Ek1yJMkJ1dnkRGzqSJJcb4Jhls15ynvwHyY5khROPdMkx1u9zyRHkiafeaVZ1txD20xy\nqg0P5GSfzQndV73XJEeS6gNnmGUlRIzaCLWVJjmS5Bq1pRq8duc7f4NdWzGSkGwT5Ng1NjxG54Rw\nSjuTnMOqKhuOPVMMrK6hYV+SSc5h1VUnv31tEuza55HEVLMsy/sGK47b/L/8dDwi/lbHnilG7kn+\nQP6LPPWHTHK8B3eZ5EiSx+jaUN+xj0mOJPk+KzfLklEbNpJsd2/lGp+nLFjdr0uS67G553P9AZMc\nSfLU2Nxnu0l25+B4PE95jO4dETur40WSWbvTW/WpSY4khYzujSW7Z7AVdTZtDUkKR2zKlJYU+78i\neixW71Eku3t2o2qSJKUmGG3ghqU2OZIiV482y7Jqdnoaao89U4ys7q+8YbtrjOW50+y5aciuzp0G\nmzIdDNi9R7F67ibZvTO0fF9Y5bFrd4ZrbZ5tpLayq/OIY3edsXhGIhlun+VzN8N9yorVu2zJ7nmE\nZ9sfTXIkKeFfv/7+Qjh11a5f0tJFwCki6doxLbp+w7t8oGXcfffd2rt3r1zXleM4mjNnjs44w+6l\nd1MWLlwYHVXZcRyNHz9e/fr1i2nZYDAox3Gi5c3PzzctW0pKSkwdjS3rrbi4WAsXLoyO3ty/f3+N\nGzfuhLIAAAAAAAAAAAAAAAAAAED8oLMxTnlPPfXU177O8ePHa/z48c1+/u///u/NflZQUPBVFOm4\nWdZb//791b9/f7M8AAAAAAAAAAAAAAAAAAAQH+LwH9YGAAAAAAAAAAAAAAAAAAAAEA/obAwAAAAA\nAAAAAAAAAAAAAACgSXQ2BgAAAAAAAAAAAAAAAAAAANAkX0sXAAAAAAAAAAAAAAAAAAAA4J+N42G8\nWJwaHNd13ZYuBADEorampqWLcASnwa5MbkKySU6D4Vk9wbHLsuI6doVKLHvXJKe+Yx+THEkKWX5/\nkXqTHNfrN8mR7LbPY7gfeBR/TaHasF2ZAg0HTXIiSW1McqxZnvNqq0MmOa0DJjFyPba/C6ysOn23\nz/LaYMW7da1ZVuTiISY5nrpKkxxJCie1NsmxvBu1PJ/fFehpkjP30DaTHEmKyGY/tzxcPOEGsyzX\nsXmQ1mD4DzjFY1vY8jgO/WaJSY7nurtMciTJt2+HSU7ojB4mOYdZXUPbJNjcP4YSbc7Bh1VXnfyx\n3MZfZ1CSz0X8rcyy4pETsqkr15dokvN5WMQuy+h8blVPkuSEbe6NrbZNis/93KyeZPj9hezK5Cam\nmGVFEpJMchzDxrDlMWPF8jzlRGyuxYqEbXL+CZheZ6xYXa8Mz+dm+6bsnwPFE8trjOWz6jqjXSrR\nsF9IPD7j8v+jxCyrof35Jjnx+B4lYnjeDEfsNtDqXUo8vkexOoYlKdGJv3siS/H4HiW1lWE9Gdb5\n6fwexfS5otGzKW/Y8D7GaD+wek4tSUmB+Lv3R/yq++3zLV0EnCISM0a36Prjr6UDAAAAAAAAAAAA\nAAAAAAAAIC7Q2RgAAAAAAAAAAAAAAAAAAABAk+hsDAAAAAAAAAAAAAAAAAAAAKBJdDYGAAAAAAAA\nAAAAAAAAAAAA0CQ6G7egTZs2ae7cuY2mvfjiixo8eLBWrVp1wrn/+7//q5ycnJMt3j+NnJwcffLJ\nJy1dDFOrV6+O7kMvvfSSfvGLX5xU3k9/+lP169evUT1NnjxZl19+uSKRyFGXfeSRR3TLLbdo5MiR\n+vTTT/XUU08pGAzq0ksvVWZmpp588knl5uZq6NChyszM1Ntvv31SZQUAAAAAAAAAAAAAAAAAAHZ8\nLV2Af3aO4zT6+6abbpLf71coFGqhEgFHeuCBB1RbW9to2jPPPKPMzMyjLrd9+3ZVV1ersLBQ9fX1\nkqS7775bkjRq1Cjl5+dLknJzczV9+nRdfPHFGj9+vJYtWyaPh99CAAAAAAAAAAAAAAAAAADQ0uhs\n3MI2b96sMWPGKC0tTbNnz5Ykua7baJ6PPvpIM2bMUDgc1rhx45SRkaG//vWveuKJJyRJ2dnZ6tu3\nr9atW6elS5eqa9eu8vma/2oHDx6s7t276+DBg5o3b57S09OVm5uriooK/c///I8uvfRSTZkyRffd\nd5/Ky8t19tln6+GHH1ZNTY0mTJigSCSiK6+8UuPHj9fu3bs1efJkJSYm6oYbbtCwYcOUk5OjO+64\nQx07dlRWVpYKCgpUVlamhx56SK7r6sCBA1q5cqXWr1+vpUuXyufz6dFHH9XZZ599RFlzc3P1t7/9\nTZJ06NAh3XrrrbrmmmuOKFtJSYkefPBB+Xw+ZWRkKCsrS7m5uSorK9POnTs1aNAgZWVlHfW7WL58\nuRoaGpSVlaWbb75ZvXr10ubNm5Wbm6uuXbtq9uzZ2rJli9LS0jRnzhxNnTpVCxYsiC4/ceJEjR49\nWosXL5bjOPL7/XrmmWeaXNf27duVnZ2tLl266OOPP9aqVauUk5OjQCCgrVu3aty4cRo8ePARy23a\ntEnz5s1TXV2dOnTooI4dO+r888/Xq6++qlAopISEBPXv319t2rQ5Yj+qq6vTnXfeqUgkosrKSs2d\nO1cdO3Y8Yh3FxcWaP3++PB6PbrnlFg0ZMqTZOvvyOr7McRzt3LlT+/fvV3p6+jGXTU5Ol0zwkQAA\nIABJREFU1jnnnKNPPvlEXbt2PWo2AAAAAAAAAAAAAAAAAAD46jF0aAtr3bq1lixZovT0dG3durXJ\neZ577jnNnDlTBQUFWrx4sSQpLy9PeXl5mj9/vvLy8iRJ+fn5Wr58uQYNGnTUdR7uZJyVlaVVq1ZF\np7dt21YFBQWaPHmy3njjDXXq1EnLli3TGWecob/97W/68MMP1blzZxUWFmrs2LGSpK1bt2rAgAEq\nKCjQ0KFDj1jXF0du3rlzp/Ly8rRy5Uq5rqslS5aosLBQs2bN0qJFi5otb3Z2thzH0ZIlS/SXv/yl\nybJ16dJFK1asUGFhodasWRNd9qKLLtLy5cv12muvHbVO1q5dqz179kQ7JB88eFD33HOPJk6cqA0b\nNmj37t3avn27ioqKdNlll+n1119Xly5dVF5erhUrVqiqqkppaWmSpJSUFP385z9XTU2NPvvssybX\nt3TpUs2aNUszZsxQZWVldPpVV12lRYsW6Ze//GWzZR0yZIguv/xyTZ06VQcOHJDjOLr11luVnp6u\n+fPnq6SkRJK0ZMkSBYNBPffcc5Kk119/Xf369dOSJUvU0NDQbH7fvn31wgsvaNmyZVq2bNlR6+3L\nI3N/WY8ePfSDH/xAmZmZmjRpkg4dOnTMZVNSUnTgwIGj5gIAAAAAAAAAAAAAAAAAgK8HnY1bWI8e\nPSRJ3bt3165du5qcp7y8XOeee678fr8SEhIkSTU1NUpPT1e7du1UU1MjSfL5fEpISFD37t2Pus7O\nnTvL5/Ope/fuKi8vj06/+OKLJUkej0cfffSRXn/9dWVmZurPf/6z9u7dq969e6tjx46aMmWK1q1b\nJ0kaMGCAqqqqNGXKFG3cuPGo6+3du7e8Xq8cx1FFRYVKS0s1evRo3X///aqtrW12uaSkJJ1xxhlK\nSkpSTU2NPvroI61fv75R2crKyjR27FgFg0GVlpZGR83t2rWrPB6PvF7vUcu2ceNG1dXVRf9OT09X\nSkqK2rZtq6qqKu3atUvnnHOOpM+/s/LycvXp00dbtmxRYWGhiouLdeGFF0bXKX3eebu6urrJ9ZWX\nl6tHjx5KT09XmzZtotO7deumtLS0Rp1yvyw5OVnJyclKSkqKdtj98jTHcTR27FgVFBRozJgxcl03\nus4vlrEp27Zt06233qrbbrvtmJ1+jzWysSSNHDlSv/rVr9SrV69GHcGbU1lZGe24DQAAAAAAAAAA\nAAAAAAAAWpavpQvwz27Hjh2SPh/1d8iQIZI+71xbWloanadTp0768MMPde655yoUCkmSAoGA9u/f\nL9d1FQgEJEmRSEQNDQ3RzOZ88sknqq+v10cffaQOHTpEp3+xQ263bt100003adSoUZKkcDishoYG\n3XnnnWpoaNCIESP0gx/8QF6vV9OnT9fu3bv1wAMP6Dvf+Y4CgYCqq6v16aefNuqM6vH8X9/2tm3b\nqmfPnlqyZIkkHXWk3S/r3r27br755mjZQqGQHn/8cU2YMEHf+ta39L3vfe+ITrDH6hT70EMPKTc3\nV++++67+5V/+5Yj5O3ToEK3XHTt2qFOnTurVq5fuu+8+jR8/Xvn5+Zo+fbrq6+tj2oaOHTtqx44d\nOvPMM5sc/TiWTryxcl1XjuOoY8eO2r59u/r376+dO3c2O/+SJUv06KOPKi0tTT/60Y+i05OTk1VR\nUaGzzz47Oi0QCKiiokJnnHFGk1lVVVUKh8Nq06aNOnToEO0Yf7hcX1ZdXa0dO3Y0WgcAAAAAAAAA\nAAAAAAAAnJY8Rx9EE4gXdDZuYQcPHtTo0aOVnp4eHVn429/+tsaPH68tW7ZowYIFGj16tGbMmKFw\nOKxx48ZJkm6//XZNnDhRjuNo+vTpkqRbbrlFo0aNUpcuXaIjIDelTZs2mjJliiorK/X00083OU9G\nRoZmzpypW2+9VY7j6JFHHlFlZaUeeugh1dbWatiwYZI+HxF4wYIFqqmp0e233y5JGjx4sGbPnq2L\nL744OvKupEb/3+Px6Oabb9Ytt9wir9er73//+7rppptiqrOMjAzNmDGjUdkGDBigWbNm6bzzzlNK\nSsoRy3xx3c2ZPn26pk6dqueff/6I+du3b68ePXpo1KhRatOmjebOnSu/369du3bphz/8oebNm6de\nvXrpnXfeiWmdt956q3JyctS5c2e1bt36uMoby7Y0JSMjQ3feeaeKi4vl9Xobdf7+omuuuUaTJk1S\n7969lZqaGp0+ZMgQ3X///br66qs1depUSdL111+vcePG6cYbb4x2/v6i6upqTZkyRX6/X36/X3Pm\nzGl2O5544gmlpqbqzjvvbLZsAAAAAAAAAAAAAAAAAADg6+W4lkOo4pQwcuRIFRUVtXQx8P99nd9H\nKBSSz+dTMBjUkiVL5Pf7v5b1Wqn9wsjI8cJpsCuTm5BsktNgeFZPOLG+7V8p9wQ73Dclsexdk5z6\njn1MciQpZPn9RWIbbf1YXK/ducJq+zyG+4FH8dcUqg3blSnQcNAkJ5LUxiTHmuU5r7Y6ZJLTOmAS\nI9dj+7vAyqrTd/ssrw1WvFvXmmVFLh5ikuOpqzTJkaRw0pE/mDsRlnejlufzuwI9TXLmHtpmkiNJ\nEdns55aHiycc+79QcyyuY/ODwwbZ/XAxHtvClsdx6DdLTHI8191lkiNJvn1H/5eaYhU6o4dJzmFW\n19A2CTb3j6FEm3PwYdVVJ38st/HXGZTkcxF/K7OseOSEbOrK9SWa5HweFrHLMjqfW9WTJDlhm3tj\nq22T4nM/N6snGX5/IbsyuYlHDlBxoiIJSSY5jmFj2PKYsWJ5nnIiNtdiRcI2Of8ETK8zVqyuV4bn\nc7N9U/bPgeKJ5TXG8ll1ndEulWg4fk48PuPy/6PELKuh/fkmOfH4HiVieN4MR+w20OpdSjy+R7E6\nhiUp0Ym/eyJL8fgeJbWVYT0Z1vnp/B7F9Lmi0bMpb9jwPsZoP7B6Ti1JSYH4u/dH/Kr7XX5LFwGn\niMSBmS26/tP3zhXNOtGRcU91xcXFWrhwYXT7+/fvHx0p+quyd+9eTZs2TY7jyHVdnXnmmZo9e3aj\neZr7PlavXq1XXnkl+vmwYcM0dOjQEy6L67oaMWKEEhISdNVVV+ngwYPHLNvxWLhwoYqLiyV9vk3j\nx49Xv379TjgPAAAAAAAAAAAAAAAAAAC0PEY2BnDKYGTj2DCycewY2Tg2jGz89WNk49jF4y/y4/EX\n69Lp/Yv8eBz1hZGNY8PIxrFjZOPYMLJx7BjZOHaMbHxsjGwcO0Y2jjGGkY2/doxsHDtGNo4NIxuf\n2hjZOMYoRjaOCSMbxy4en3ExsnFsGNn468fIxrGLx/cojGwcG0Y2Pg6MbIxTHCMbI1YtPbJx/LV0\nAAAAAAAAAAAAAAAAAAAAAMQFOhsDAAAAAAAAAAAAAAAAAAAAaBKdjQEAAAAAAAAAAAAAAAAAAAA0\nyXFd123pQgBALPZVHjLLcoxyAj6rpPhUF7HLSnRswhzXrlCux2eS42x8xSRHksp6X2eW1SElwSTH\nicOmghOuN8sKexPNshoiNnWVaPlzMKtjxrErlBMJmWVZHceSVFllU66UVJtjL2y0Px1WU22zfa0D\nJjGm353VPhXx2nx3kuREwmZZlsefFdexaQNZXmJqQnZthFZGbby7Aj1NciTpP6u3meQknN7NVzkN\nNWZZ4QSbE57R4SJJ8tTb3RO5CclmWVYiRndqHtleQ+OtjWDdPrfYvtRWhtcqw+ue1fXKUjzeX1my\nqvP6sF09WT2PcD1ekxxJqqwzbCsaae0/fduc1qza+nWuXZ37vfFXV6f7+e50Z9Uu89XsN8mRJDcx\n1SSnwbF7HhGPrwcOheyOPa/HZgOtrsWS4vIZZa3s9inTurJiWOee6n0mOWVqY5IjSWedxu9RJMPn\nJIbPTeuNzsP+cJ1JjiS5httndswYvg+1PI7j7RmJZPuMubqqwSSnldG5xfoZlxUnZHP8mR57cSgp\n0Kqli4BTSN3v8lu6CDhFJA7MbNH1x98TRAAAAAAAAAAAAAAAAAAAAABxgc7GAAAAAAAAAAAAAAAA\nAAAAAJpk9++6AAAAAAAAAAAAAAAAAAAAIDYeb0uXAIgJIxsDAAAAAAAAAAAAAAAAAAAAaBKdjXFK\nevjhh497mZycHH3yySdfQWla3mOPPSbXdaN/l5SU6L333jPJnjx5si6//HJFIhFJUkNDg4LBoAYN\nGnTU5cLhsO655x4Fg0EFg0GFw2Hl5OQoGAzq0ksvVWZmppYuXaqcnBzdfPPNGjNmjD744AOTMgMA\nAAAAAAAAAAAAAAAAABt0NsYpaebMmS1dhLiSk5Mjx3Gif2/btk1///vfTbKfeeYZXXDBBdG/ExIS\nVFBQoHbt2h11uT/96U/q0aOHCgoKlJeXJ6/Xq8cee0wFBQU6//zzlZ+fr6ysLEnSk08+qZ/97Gd6\n/PHHTcoMAAAAAAAAAAAAAAAAAABs+Fq6AGh5zz33nM4991xdeeWVWrRokbxer9avXy+fz6eMjAxl\nZWVp9+7dmjx5shITE3XDDTdo2LBh+utf/6onnnhCkpSdna2+ffsqGAyqW7duKikp0fTp03XppZdq\n06ZNWrlypfbt26ekpCQtWLBAhYWFWrdunQKBgJ588kmlpaXpgQce0Pvvv6+zzjpLc+fOleu6mjx5\nsvbv369evXpp5syZ2rt3r6ZNm6ZIJKLly5dLknJzc1VWVqadO3dq0KBB0Q6szVm+fLkaGhqUlZWl\nm2++Wb169dLmzZuVm5urrl27avbs2dqyZYvS0tI0Z84cTZ06VQsWLIguP3HiRI0ePVqLFy+W4zjy\n+/165plnmlzX9u3blZ2drS5duujjjz/WqlWrlJOTo0AgoK1bt2rcuHEaPHhwk8uOHDlSRUVFeuut\nt7Rlyxbdeeeduu6663T++edr+/btWrp0qVq3bq27775bxcXF2rhxozwej1asWKH8/HxJ0quvvqpl\ny5aptrZWEyZMUCQS0ZVXXqnx48c3uc6XX35ZL730kjwej6ZNm6bLLrtMkhqNmhwrj8ej999/X1VV\nVUpJSWn0WVN5Z5xxhjwej0KhkHw+Tk0AAAAAAAAAAAAAAAAAAMQDRjaGMjIytGHDBknS5s2bNXz4\ncK1YsUKFhYVas2aNJGnr1q0aMGCACgoKNHToUElSXl6e8vLyNH/+fOXl5UXzRo0apYULF2rhwoXR\naZ9++qmWLl2qZ599Vvv379eGDRtUVFSk0aNH68UXX4yu44UXXtBTTz0lSaqoqFBVVZWKiop03333\nSZLatWungoKCI7bhoosu0vLly/Xaa68ddVvXrl2rPXv2RDskHzx4UPfcc48mTpyoDRs2aPfu3dq+\nfbuKiop02WWX6fXXX1eXLl1UXl6uFStWqKqqSmlpaZKklJQU/fznP1dNTY0+++yzJte3dOlSzZo1\nSzNmzFBlZWV0+lVXXaVFixbpl7/8ZbNl/eJIxYd99tlneuKJJzR48GBt3LhRkvTUU0+pZ8+e0XlG\njBihCRMmaMyYMcrPz5fjOPrwww/VuXNnFRYWauzYsc2u89prr9ULL7ygefPmNfr+mirLsfTr10/n\nn3++brzxRs2YMUORSOSYeSkpKTpw4MBxrwsAAAAAAAAAAAAAAAAAAHw16GwMdenSRWVlZdq3b5/S\n0tJUVlamsWPHKhgMqrS0VK7rasCAAaqqqtKUKVOinVxramqUnp6udu3aqaamJprXo0cPtW3bttG0\niy++WNLno92WlpZqx44dyszM1LPPPquqqipJ0oQJEzRt2jTNmTNHkpSenq5/+7d/09SpU5vsYPxF\nXbt2lcfjkdfrPep8GzduVF1dXfTv9PR0paSkqG3btqqqqtKuXbt0zjnnRLejvLxcffr00ZYtW1RY\nWKji4mJdeOGF0XVKUtu2bVVdXd3k+srLy9WjRw+lp6erTZs20endunVTWlqaDh06dNTyflnnzp3l\n8XiUlpbW7DqlI0cOvvDCC9WxY0dNmTJF69ata3a5N998U8FgUNOmTWv0/TU1EvGxRjt2HEeTJk3S\nb37zG7muqz//+c9HnV+SKisro525AQAAAAAAAAAAAAAAAABAy6OzMSRJvXr1Ul5enq6++mqtXLlS\nEyZM0NKlS9W6dWu5riuv16vp06drxowZWrZsmSQpEAho//792rdvnwKBQDRrx44d2r9/v5KTk6PT\nvtgJuHPnzrrkkkuUn5+v5cuXa/LkyZKka665RnPmzNF///d/q6KiQqFQSKNGjdLTTz+tV155pVF5\nm+voeqwOsA899JAqKir07rvvNjl/hw4dtGPHjuh2dOrUSb1791ZRUZHGjx+v/Px89e7d+6jr+KKO\nHTtG66Op0Y+PVl6P5/PDc8+ePcec33XdRp/5fD41NDRE/w6FQrrzzjs1e/ZsLV26tNl1Ll68WIsX\nL9ajjz7aaCTiQCCgioqKRvM2NDQ0mufL9u3bp9raWkmf1+sX5/3ydriuq71798p1Xfl8vmYzAQAA\nAAAAAAAAAAAAAADA14tefZAkZWRkREe0bdWqlWbNmqXzzjtPKSkpkj4fEXjBggWqqanR7bffLkm6\n/fbbNXHiRDmOo+zs7GhWYWGhSkpKNH369CbXlZ6err59+yoYDMpxHGVlZenqq6/WmDFj1NDQoLPP\nPltt27bV3r17ddddd6m+vl79+/eXJP32t7/VsmXL9MEHHygzM1OPPPJIo2zHcY65rdOnT9fUqVP1\n/PPPHzF/+/bt1aNHD40aNUpt2rTR3Llz5ff7tWvXLv3whz/UvHnz1KtXL73zzjsxrfPWW29VTk6O\nOnfurNatWx/x+dGWvfrqq5WdnS2v16sOHTo0OX9paalycnL0/vvvKysrS8FgUNdee6369u2r7Oxs\nbd26VT/72c+0Y8cOPfTQQ6qtrdWwYcOOus5gMKhvfetbjdZ1/fXXa9y4cbrxxhs1atQoSdLgwYM1\nfPhwjR07Vtdee+0RWXv27NFPfvITJScnq23btpo4cWKz233vvfcqOTlZOTk5zZYNAAAAAAAAAAAA\nAAAAAAB8/Rz3WEPBAschGAxq2bJl0VF58X9GjhypoqKili7GKW1f5SGzrGN3S49NwGeVFJ/qmh+8\n+rglOjZhjmtXKNdj85sbZ+Mrx54pRmW9rzPL6pCSYJLjxGFTwQnXm2WFvYlmWQ0Rm7pKtLyMWh0z\njl2hnEjILMvqOJakyiqbcqWk2hx7YaP96bCaapvtax049jyxsPzurPapiNfmu5MkJxI2y7I8/qy4\nMfzIL6Ycw928JmTXRmhl1Ma7K9DTJEeS/rN6m0lOwundfJXTUGOWFU6wOeEZHS6SJE+93T2Rm5B8\n7Jm+ZhGjOzWPbK+h8dZGsG6fW2xfaivDa5Xhdc/qemUpHu+vLFnVeX3Yrp6snke4Hu+xZ4pRZZ1h\nW9FIa//p2+a0ZtXWr3Pt6tzvjb+6Ot3Pd6c7q3aZr2a/SY4kuYmpJjkNjt3ziHh8PXAoZHfseT02\nG2h1LZYUl88oaw3H9jKtKyuGde6p3meSU6Y2JjmSdNZp/B5FMnxOYvjctN7oPOwP15nkSJJruH1m\nx4zh+1DL4zjenpFIts+Yq6sajj1TDFoZnVusn3FZcUI2x5/psReHkgKtWroIOIXU/X55SxcBp4jE\nq0a16PoZ2RimYhlZ+KtWXFyshQsXRsvSv39/jRs37itd5969ezVt2jQ5jiPXdXXmmWdq9uzZjeZp\nrm5Wr16tV155Jfr5sGHDNHTo0K+0vCUlJXrkkUei6+zZs+dJjSr86KOPatu2zzs/OI6j++67Txdc\ncIFJWQEAAAAAAAAAAAAAAAAAQMthZGMApwxGNv76MbJxbBjZ+OvHyMbHgZGNYxZvv8hnZOPYMbLx\n14+RjWPDyMZfP0Y2jh0jG8cu3toIjGwcu3gcFTUe768sMbJxbBjZODbxeAxLjGwcq9P9fHe6Y2Tj\n2MTj6wFGNj6OKEY2jg0jG8ckXq97jGwcG0Y2jl28PSORGNm4JTCycWwY2RjHo774hZYuAk4R/v7D\nW3T98fcEEQAAAAAAAAAAAAAAAAAAAEBcoLMxAAAAAAAAAAAAAAAAAAAAgCbR2RgAAAAAAAAAAAAA\nAAAAAABAk+hsDAAAAAAAAAAAAAAAAAAAAKBJvpYuAADEKsVpsAuLhG1inIBJjiQ5rmuS4zqOSY4k\nJTo29SRJEcdrE2SVI8mqqtxv32gTJCnh4UlmWaH7ck1y/G7IJEeSXI9N06PW8ZvkSJLf7pBR6u6/\nm+Q0tD/fJEeS6h2bOk8wSfmc1X4g2Z7zrBidzuNWxGuzN1hd9yS7MnnCdm0N14m/33VGZHi8GH19\nHqsgSck+uzqPGOX8Z/U2oyTpx616muRYlinBrKbsRPx27XNvQ61JTmRDvkmOJNUMHGuWleQafX+G\n5ztvxOY8HPZYtlzsWF774o1jeQ31JZplxWOdh4yK5DO8rFu2ETxGde4x3L7aiE2Y5f7U2m937jS7\nJ4rD4+VQg11bI5BgWOcem2dTCYZVbvX1RQz3g3g8T1lu3+kuIVJnkhMOpJvkSFI4YvP9+RuqTXIk\nKeRPMcuyuj9upXqTHElyQjbPheOxniSpxrU5nyfZvbJQyLW5XnkMn5laPn6tTLQ5J5y1YbFJjiSF\nMsaZ5Pgjdsee67V7/1HvSzbJSTDcDxKr95nkuMltTHIkKWQ4Rp/Z2484fL5syeq6Hq/Mzp2G1eSE\n7c5TNUbvaR3Xsl+Dzf2jWZ8GADhNnd4tFAAAAAAAAAAAAAAAAAAAAAAnjM7GAAAAAAAAAAAAAAAA\nAAAAAJpEZ2MAAAAAAAAAAAAAAAAAAAAATaKzMQAAAAAAAAAAAAAAAAAAAIAm0dkYX5uHH374uJfJ\nycnRJ5988hWUpuU99thjcl03+ndJSYnee++9mJatqanR7bffftR5iouL9Yc//OGkyihJv/vd7zR0\n6FA9/fTT0WkvvviiBg8erFWrVh112bfeekvDhw/XyJEj9fLLL+vtt99WMBjUwIEDdf311yszM1Pv\nvfeerrjiCt16662aM2fOSZcXAAAAAAAAAAAAAAAAAADY8bV0AfDPY+bMmS1dhLiSk5PT6O9t27Yp\nFAqpV69ex1z2V7/6la677rqjztO/f/+TKt9hAwcOVGpqqt58883otJtuukl+v1+hUOioyy5YsED5\n+fny+/06ePCgWrdurYKCAuXm5upb3/qWvvOd76isrExXXHGFfvazn+k///M/9eabb+q73/2uSdkB\nAAAAAAAAAAAAAAAAIG55GC8WpwY6G5+innvuOZ177rm68sortWjRInm9Xq1fv14+n08ZGRnKysrS\n7t27NXnyZCUmJuqGG27QsGHD9Ne//lVPPPGEJCk7O1t9+/ZVMBhUt27dVFJSounTp+vSSy/Vpk2b\ntHLlSu3bt09JSUlasGCBCgsLtW7dOgUCAT355JNKS0vTAw88oPfff19nnXWW5s6dK9d1NXnyZO3f\nv1+9evXSzJkztXfvXk2bNk2RSETLly+XJOXm5qqsrEw7d+7UoEGDlJWVddTtXb58uRoaGpSVlaWb\nb75ZvXr10ubNm5Wbm6uuXbtq9uzZ2rJli9LS0jRnzhxNnTpVCxYsiC4/ceJEjR49WosXL5bjOPL7\n/XrmmWeaXNf27duVnZ2tLl266OOPP9aqVauUk5OjQCCgrVu3aty4cRo8eHCTy44cOVJFRUV66623\ntGXLFt1555267rrrdP7552v79u1aunSpWrdurbvvvlvFxcXauHGjPB6PVqxYofz8fEnSq6++qmXL\nlqm2tlYTJkxQJBLRlVdeqfHjx0fXs379euXl5UmShgwZIr/fr549e6q8vFzLli3T6tWrtXDhQo0Z\nM0Y/+tGPJKnJevuyUCikrKwseb1etW/fXj/72c8kqdEIzIc1Ne3LGhoa9O677+rSSy9V69atjzn/\ntddeq9/97nd0NgYAAAAAAAAAAAAAAAAAIE7QLf4UlZGRoQ0bNkiSNm/erOHDh2vFihUqLCzUmjVr\nJElbt27VgAEDVFBQoKFDh0qS8vLylJeXp/nz50c7q0rSqFGjtHDhQi1cuDA67dNPP9XSpUv17LPP\nav/+/dqwYYOKioo0evRovfjii9F1vPDCC3rqqackSRUVFaqqqlJRUZHuu+8+SVK7du1UUFBwxDZc\ndNFFWr58uV577bWjbuvatWu1Z8+eaIfkgwcP6p577tHEiRO1YcMG7d69W9u3b1dRUZEuu+wyvf76\n6+rSpYvKy8u1YsUKVVVVKS0tTZKUkpKin//856qpqdFnn33W5PqWLl2qWbNmacaMGaqsrIxOv+qq\nq7Ro0SL98pe/bLasjuMcMe2zzz7TE088ocGDB2vjxo2SpKeeeko9e/aMzjNixAhNmDBBY8aMUX5+\nvhzH0YcffqjOnTursLBQY8eOjc777rvvqlevXvL5Pv+twHnnnadp06apd+/e6t27tyoqKnTDDTdo\nwoQJjcrx5Xpritfr1YIFC7Rs2TIlJyfr3XffbXZbY3H//fdr4cKFGjJkiDZv3nzM+VNSUnTgwIGT\nWicAAAAAAAAAAAAAAAAAALBDZ+NTVJcuXVRWVqZ9+/YpLS1NZWVlGjt2rILBoEpLS+W6rgYMGKCq\nqipNmTIl2sm1pqZG6enpateunWpqaqJ5PXr0UNu2bRtNu/jiiyVJHo9HpaWl2rFjhzIzM/Xss8+q\nqqpKkjRhwgRNmzZNc+bMkSSlp6fr3/7t3zR16tQmOxh/UdeuXeXxeOT1eo8638aNG1VXVxf9Oz09\nXSkpKWrbtq2qqqq0a9cunXPOOdHtKC8vV58+fbRlyxYVFhaquLhYF154YXSdktS2bVtVV1c3ub7y\n8nL16NFD6enpatOmTXR6t27dlJaWpkOHDh21vF/WuXNneTwepaWlNbtO6ciRgi+88EJ17NhRU6ZM\n0bp166LTX3zxRd18883Rv5OTkxUIBBQIBJScnKza2tom875cb02pqanR/fffr8wV01eVAAAgAElE\nQVTMTP3pT3867m39sgsuuCDaif3JJ5/8f+zde3wV1b3///fsJDsXAiQEuYjIRUTA4P1wsMpX5VdA\netAiikrIDipyVxGwQLAtIgL1EhChDyWAXEIQUUGpUk37rdr0HBBBbKuCYoKtAoJIuCTksi/z+4Mv\nOQZy2cJHssXX8/Hg0TqZec+aldlr1sysvVLn+t8dGA4AAAAAAAAAAAAAAAAAAOofg41/xLp06aJn\nn31WN9xwg1588UWNGDFCS5cuVaNGjeS6rqKiojRp0iQ9/PDDWrZsmSQpISFBBw4c0LfffquEhITK\nrMLCQh04cEDx8fGVy747CPi8887TFVdcoeXLlys3N1f333+/JKlXr16aM2eOPvroIxUVFSkQCGjw\n4MGaO3eu1qxZU6W8Jw5+rWv5cY8++qiKiooqZ9k9cf2WLVuqsLCw8jhatWql1NRUrVy5UsOHD9fy\n5cuVmppa6z6+69xzz62sj+pmP66tvB7PsY/Uvn376lzfdd0qP4uOjpbf76/870AgoPvuu09ZWVla\nunSppGOzExcXF+vcc8+tsQzfzazp/9fkb3/7m9q3b6/ly5frqquuqtwmLi5ORUVFVdatbtmJvvrq\nK0nHBnfHxMTUWea33npL3bp1q7OcAAAAAAAAAAAAAAAAAADgzIiu7wLg1P385z+Xz+fTuHHj1KBB\nA02fPl0dO3ZUYmKipGMzAj/33HMqLS3VyJEjJUkjR47UqFGj5DiOJk+eXJm1YsUKbd++XZMmTap2\nX02aNNHll18un88nx3F011136YYbbtDQoUPl9/vVunVrJScna//+/XrwwQdVUVGhHj16SJL+/Oc/\na9myZdqxY4cyMjI0Y8aMKtmO49R5rJMmTdLYsWO1ZMmSk9Zv3ry52rdvr8GDB6tx48Z6+umn5fV6\ntWfPHt1000165pln1KVLF3344Ydh7XPIkCHKzMzUeeedp0aNGp3089q2veGGGzR58mRFRUWpZcuW\n1a7/1VdfKTMzU59++qnuuusu+Xw+9e7dW5dffrkmT56srVu36oknnlBhYaEeffRRlZWVacCAAZKk\ntWvX6pZbbqmzvn77299q8+bNcl1X//jHPzR9+vSw6vnSSy/Vc889p48++qjK8s6dO6ugoEAZGRla\nsGCB4uPj1b17dw0fPlxbtmzRc889V23e4sWLtW3bNrmuq9GjR9e43w0bNigjI0OXXHKJrrnmmjrL\nCQAAAAAAAAAAAAAAAAAAzgzHDWe6U5zVfD6fli1bVjkrL/5XWlqaVq5cWd/FqPT666+rX79+9V2M\nelNefPJM06csFLSJ8SbUvVKYHKPm2A1jYHm4HKN6kqSQE1X3SmeYYVWZ2f/YGLOspCnzTXK8bsAk\nR5Jcj833nMpDJjGSJG+U3YkQu/ujulcKg7/5RSY5klTh2NR5TAR+XiTbNq/4iL/ulcLQILHm2fy/\nj5BxN720xOaznNjQ5visrnuS3XngCdqcA5LkOoZ9a6OskCLvg+yR3XkQiccXNDzPf9Wgs0nOkyXb\nTHIkKUaGF2Qjrseuz+nxl5nkhN5ebpIjSeU97zXLivMYnZ+G7Z0TsrlWBT0216rjSoptrg8NEyPz\nO/9Hik+/3hvF2d07utGxZlmRKGD00Ys2vOxZXkOtru1+w65wMGQTFs4X+cMVa9hVtOoLW/bPrZRY\nfWAkJcRE3rPvCKxy0/vQSGynrO+zz2YxoQqTnJDhdd2qPff6S0xyJCngTTTLsrqGOoFykxzJrn8e\nifUkSWVBm6w4w+fLVpc+j+V7IsP2/Kjf5jlCwtuLTHIkKfDzYSY5XqN2U5LcKK9ZllW/2vL9gKfk\nW5McN76xSY4k+Y3eo0i2faBIZPEMQZLiG0TmM5Kz+T2KE7Rrp0pldHyW99mOzTXGckxDQnycWRbO\nfhX/vbq+i4AfCe81t9fr/iPzCo4zyvICfqry8/OVnZ1dWZYePXpo2DCbm7ua7N+/X+PGjZPjOHJd\nV82aNVNWVlaVdWqqm7Vr12rNmjWVPx8wYID69+//g5ZXkulA45kzZ2rbtmMDDRzH0ZQpU9SpU6dT\nytq+fbtmzJhRWR+dO3dWZmamWVkBAAAAAAAAAAAAAAAAAED9YLAxtHy53SxLp6pHjx7q0aPHGd1n\n06ZNlZOTU+s6ubm51S6/5ZZbdMstt/wQxTpjpkyZYpbVqVOnOusSAAAAAAAAAAAAAAAAAAD8+ETe\n3w4DAAAAAAAAAAAAAAAAAAAAEBEYbAwAAAAAAAAAAAAAAAAAAACgWtH1XQAAAAAAAAAAAAAAAAAA\nAICfHE9UfZcACIvjuq5b34UAgHCUlZbWdxFOEjBsQaMdoyA3ZBQkybGbAD8kmwOM8h81yZGkkDfB\nJMcxvJQeNTypGpbuM8nxN2xhkiNJjtF5blnnVuemZHd8ljxBv0mO67H7jpoTCphlVTh25SorsSlX\nwwZGbadhGyxJR4qNji/x7P2+ohOsMMsKRceaZVm1ea5hI+WEgjY5Rm2UJDnlxWZZwcSmJjmW1yu/\nUdSvGnS2CZI0t/ifZllW1xnLz7FVOxyKijHJkeyu65YisY/gN+wfSFKpVR/B6Bpq2Z5LUvGR0z+v\nGsXanZtuTLxZlqfskFmWGaN79lB8skmOZNs/dypKTHKiDu81yZEkNybOJCfY+FyTnEjlKfnWLMu1\net7iLzPJkSQZXkNdo76+VZ9TkqIP7jLJcb12bXAktlNWbdRPQSi2oUmOp/yISY5kVyZLjuGzeKt+\nteWzTiuW3VfL+2wr1v1zC5b1FInHVx6w++wlBGyeJ5V77dqoaI9dnQdCNueCUYwkKdbosbfluekx\n7Hda9RUt79Msn5NYPSNJbGj3vMyyzbN6j2J1fJbH5iktMsuS4fNAK06ZTb8z2MjuvXhcQgOzLJz9\nKja8Ut9FwI+E9+pb63X/tiMYAAAAAAAAAAAAAAAAAAAAAJw1GGwMAAAAAAAAAAAAAAAAAAAAoFoM\nNgYAAAAAAAAAAAAAAAAAAABQLQYbAwAAAAAAAAAAAAAAAAAAAKgWg41xxuzfv18LFiyodR2fz6dQ\nKHTS8ldeeaXW7Xbt2qVf/epX36s8aWlp32v9zMxMffnll99rm/pUU12eitWrV6tv3756+eWXK5f9\n/ve/V8+ePbVhw4Zat123bp3uvPNODRo0SPn5+Vq/fr18Pp+uvfZa3X777Ro6dKg2bdqknj17yufz\nKScnx6TMAAAAAAAAAAAAAAAAAADg9EXXdwHw09G0aVONGDGi1nUcx6l2+SuvvKJbb731lLa1Wv/H\nxvL4br/9dnm9XgUCgcplY8aMkeu6dW67cuVKrVq1SpJ05MgRNWzYUL/4xS+UmZmp0aNHq3Xr1tq0\naZN++ctfauzYsRo/frx69Oihtm3bmpUfAAAAAAAAAAAAAAAAAACcGmY2xmn57uDhYDCoBx54QEeP\nHtUDDzygjIwMPf3005Kk7du364477tDEiRMr19+8ebMGDBig3/zmN8rIyJAkua6r2bNn6+abb9YH\nH3ygr776Sj6fTzt27FBGRobefffdGsuyc+dO3XvvvRo2bJjKy8tVXl6uUaNGafDgwZo9e7akY7Mr\np6ena9SoUSoqKpIkPfjggzpw4IAkacKECfr2229rPebc3FwtXbpUknTHHXdo2rRpuummm/Svf/1L\nkpSVlaW0tDSNHj1a5eXlGjlyZJXtR40apU2bNmn48OEaMWKE7r///hr3VVBQoIEDB2rChAm67bbb\nJB2bYXn69OkaMGCA/vjHP9ZaVtd19dRTT+mtt96SJD3++OPy+Xy699579eqrr1a7zb59+zRo0CD5\nfD49/vjjVbJOxZEjR7Rjxw5JUsOGDetc/+c//7nef//9U9oXAAAAAAAAAAAAAAAAAACwxWBjnJaE\nhAQFAgG98MILKigo0IUXXqjVq1erZ8+eWr58uXbt2qV9+/apU6dOlQN+j8vOztbzzz+vtLS0KssH\nDBigxx57TOvXr9d5552nnJwcdezYUcuXL9d1111XY1kCgYAWLVqka6+9Vnl5ecrLy1O3bt2Um5ur\nzz//XHv37tVLL72ku+66S3PnztWhQ4ckSX369NGf/vQnVVRUqKSkRCkpKTXu44033tC+fft01113\nSZIOHz6sCRMmaNSoUXr77be1d+9eFRQUaOXKlfqP//gP/elPf9L555+v3bt364UXXlBxcbGSkpIk\nSYmJiVqwYIFKS0sry3KipUuXavr06Xr44Yd15MiRyuXXX3+9Fi5cqNdee63Gsrquq8WLF6tVq1bq\n06eP9u7dqy+//FI5OTlq165djdslJSVp2bJlysnJ0Y4dOyoHYp+qqVOn6tFHH9WAAQNUUFBQ5/qJ\niYmVA8EBAAAAAAAAAAAAAAAAAED9YrAxTstFF12kvLw8rV69Wh999JFSU1P1xRdfaOXKlfL5fPr8\n88/1zTffVLvt0aNHlZSUdNLA17Zt2yopKUklJSWVy8KZVfd4Ttu2bbVnzx7t2bNHHTp0qPzZ119/\nrT179qh9+/byer1q1aqVpGMDd99991397W9/0//5P/+n1n289957Ki8vr/zvJk2aKDExUcnJySou\nLtaePXt0wQUXSJLat2+v3bt3q2vXrtqyZYtWrFih/Px8XXzxxZKkNm3aSJKSk5OrHOt37d69W+3b\nt1eTJk3UuHHjk+ro6NGjtZZ3w4YN8vv9kqQ9e/ZU1lFtg40PHjyosWPHKiMjQ9u3b6+xbOHq1q2b\ncnJyNGXKFM2fP7/O9YuLi5WcnHxa+wQAAAAAAAAAAAAAAAAAADYYbIzTkpqaqpycHA0ZMkQvvfSS\nUlNT1bZtW40ePVo5OTl66aWXKgfXuq5bZdBwQkKCDhw4oMLCwjr34zhOnescz/niiy/UqlUrnXvu\nuZUz6e7cuVMtWrRQq1atVFhYqIqKCn311VeSpPj4eMXHx2vNmjXq06dPrft49NFHVVRUpH/84x+V\nx/RdLVu2rCxHYWGhWrVqpdTUVK1cuVLDhw/X8uXLlZqaWuexHHfuueeqsLBQBw4cqHb249oGYTuO\no0WLFumvf/2r9uzZo5YtW2rnzp2V9VGTN954Q71799by5curDEqOi4s7acbh6pad6Hg9N2/eXKFQ\nqMb1jh/Ln//8Z1111VW1ZgIAAAAAAAAAAAAAAADAj53jieIf/8L6V98YbIzTkpqaqsOHD6tv377a\nt2+fzjnnHN1+++1au3athgwZohEjRqi0tFQvvPCCJkyYoA0bNigjI0OlpaUaNmyY7r33Xq1YsUIe\nz7FTsaZBxa1bt9aECRP0/vvv11gWr9eroUOH6r//+7/Vq1cv9erVS++9957S09PVoUMHNW/eXLfd\ndpuWLFmiBx54oMrsub169dLhw4eVkpJS5zFPmjRJTz75pAKBwEnlbd68udq3b6/Bgwfr/fffV69e\nvdSuXTvt2bNHN910k/bt26cuXbpU2aa2gdRDhgzRb37zG02fPl2NGjU66ed1DcJ2HEeTJ0/W9OnT\n1bx5c5133nnKyMhQQUFBjdt2795dS5Ys0ZgxY05anpeXp5EjR1Yu69mzpxYuXKjf/OY3NZZh1qxZ\nGjRokCZOnKh77723xvXWrVsnn8+nSy+9tNaZlwEAAAAAAAAAAAAAAAAAwJnjuLVNjQr8gAKBgKKj\no7Vz504tWLBAv/vd7+qtLHl5edq/f7/S0tLqrQx1SUtL08qVK08r43idz549W9dcc43+8z//06h0\nZ0ZZaWl9F+EkAcMWNLruCbzD49Y8g/T35th9JyUkmwOM8h81yZGkkDfBJMcxvJQeNTypGpbuM8nx\nN2xhkiNJYUxUH16OYZ1bnZuS3fFZ8gT9JjmuJ9okR5KcUMAsq8KxK1dZiU25GjYwajsN22BJOlJs\ndHyJdnUeaZxghVlWKDrWLMuqzXMNGyknFLTJMWqjJMkpLzbLCiY2NcmxvF75jaJ+1aCzTZCkucX/\nNMuyus5Yfo6t2uFQVIxJjmR3XbcUiX0Ev2H/QJJKrfoIRtdQy/ZckoqPnP551SjW7tx0Y+LNsjxl\nJ/+VqHpndM8eik+ue6UwWfbPnYoSk5yow3tNciTJjYkzyQk2PtckJ1J5Sr41y3Ktnrf4y0xyJEmG\n11DXqK9v1eeUpOiDu0xyXK9dGxyJ7ZRVG/VTEIptaJLjKT9ikiPZlcmSY/gs3qpfbfms04pl99Xy\nPtuKdf/cgmU9ReLxlQfsPnsJAZvnSeVeuzYq2mNX54GQzblgFCNJijV67G15bnoM+51WfUXL+zTL\n5yRWz0gSG9o9L7Ns86zeo1gdn+WxeUpr/4vV3y8s8t4TOWU2/c5gI7v34nEJDcyycPbzv/dqfRcB\nPxIx/9m/XvcfeVcA/GT89a9/VXZ2tiTpkUceqbdy/OEPf9CaNWs0b948SVJ+fr6ys7MrZ/7t0aOH\nhg0b9oOWYf/+/Ro3bpwcx5HrumrWrJmysrKqrFPTTMRr167VmjVrKn8+YMAA9e9ffcMybdo07dy5\nUykpKRo3bpzGjx+v/fv3y3VdOY6jOXPmhDW7c3Xqo94AAAAAAAAAAAAAAAAAAMAPi5mNAfxoMLNx\nmJjZOGzMbBweZjYOXwRO8sDMxt8DMxuHh5mNw8PMxmHmMLNx2JjZODzMbHzmRWIfgZmNvx9mNj7D\nmNk4LMxsfOYxs3H4mNk4PJHYTjGzcfiY2Tg8zGwcHmY2PvOY2Th8zGwcHmY2Dh8zG4eHmY3Dw8zG\n4WNmY/zYMbMxwlXfMxvbjmAAAAAAAAAAAAAAAAAAAAAAcNZgsDEAAAAAAAAAAAAAAAAAAACAajHY\nGAAAAAAAAAAAAAAAAAAAAEC1GGwMAAAAAAAAAAAAAAAAAAAAoFrR9V0AAPgxi1bIMM3m+x+uJ8ok\nR5Ic17XLcmxyQt4EmyBJnoqjJjluTLxJjiTFx9h9DyjkSTHJcf6UbZIjSeo93CTGtTqhJHkMz3MZ\nRplxLdupyBPtsTsXIk0gEs8nSU4oYJLjeuxuRazaBDc61iRHkjyBcrMsN8prkuMJ+k1yJLvfnxsV\nY5IjSf4Em+ueJMUY1ZXleR5j1O+cW/xPkxxJGpvY1SzrmQMbTXKC8UkmOZJdX9iyT20qAvsIjlHb\nGWP8tKvUKMdT8q1Jjhvf2CTHlBOZ8xlYtglWLK/HZgzbA6s695QdMcmRpGDDZjZBhvVk1b+T7PrC\nwYYtTHIkyeMGTXIcy3oy7Otb1bllHyGUkGwTZNg/N2X0+XO9DUxyfhKMru2huAjst1gyekZiyWP4\ngNKsvQvZXBeOhRk+P5fN8Zk+XzZi+vzcX2aWZXU9jo22Ow9cx+b9Tqy/xCRHkspj7K5XVs/PI/HZ\nhmmZIvAZiQzvHWPsXh2bPSMxPaUM2zwrkfgOOvrAv82yys+7zCTH9D1KA7v7RwBAzSLzTQAAAAAA\nAAAAAAAAAAAAAACAesfMxgAAAAAAAAAAAAAAAAAAAGeah/li8ePAmQoAAAAAAAAAAAAAAAAAAACg\nWgw2BgAAAAAAAAAAAAAAAAAAAFAtBhujXvj9fvl8PvXp08ckb/Xq1erbt69efvnlKsv379+vBQsW\nmOwjLS3NJKe+7Nq1S7/61a9Oadtp06bp2muv1Zdfflm57P7771e3bt0UCoVq3XbGjBlKT09XWlqa\nvvnmG82ePVs+n09XXXWVMjIy9NRTT2n+/Pnq37+/MjIy9P77759SGQEAAAAAAAAAAAAAAAAAgL3o\n+i4AfppiYmKUk5OjwYMHm+Tdfvvt8nq9CgQCVZY3bdpUI0aMMNmH4zgmOfXpVI9h6tSpKisrq7Js\n3rx5ysjIqHW7goIClZSUaMWKFaqoqJAkjR8/XpI0ePBgLV++XJI0f/58TZo0SZdddpmGDx+uZcuW\nyePhuxAAAAAAAAAAAAAAAAAAANQ3BhujWps2bdKiRYvkOI68Xq/mzZunAwcOaPz48SorK1O/fv2U\nnp4u6diMvx07dtRnn32mSZMmKTMzU16vV507d9bu3bu1bNkyPfvss8rPz1dUVJQeeeQRXXDBBWGX\nZerUqfr000/VokULPf3009q3b5/Gjh2r6OhopaamatKkSZIk13WrbLd9+3ZNnTpVbdq00RNPPCFJ\nyszMVEJCgrZu3aphw4apb9++2rJli7KysiRJkydP1iWXXFJjWVzX1ZQpUzRw4EA1b95ckyZNUlJS\nkoqKipSTkyO/368HH3xQhw8f1pVXXqkxY8Zo4sSJmjt3riRp7969eu6555SSkqJdu3bpiy++UJ8+\nfXTXXXdVu7/169dr6dKlatOmjaKjozVr1izdcccd6tKlizZv3qz58+erTZs2J203f/58/f3vf5ck\nHT16VEOGDNHFF18cVn3n5+fr97//vTwej9LT0/WLX/yi1vqojeM4+uKLL3TgwAE1adKkzm3j4+N1\nwQUX6Msvv6z2uAAAAAAAAAAAAAAAAAAAwJnF1KGoUWJiohYsWKCysjIdOnRIq1evVlpamlatWqXX\nX39dwWBQkvTNN99o6NChWrlypVJTU9WxY0eNGzdOqampSk1NVVFRkdLT07Vy5Uo99NBDysnJ+V7l\n2Lp1q1atWqXZs2dLkpKSkrRs2TLl5ORox44dOnDgQLXbderUqXKb77r++uu1cOFCvfbaa5KkOXPm\nKDs7W9nZ2VqwYEGN5XBdVzNmzNCNN96oK664QpIUCAQ0f/58XXjhhdq+fbvy8vLUrVs35ebm6vPP\nP9fBgwcVDAZ19OhRrVu3Tp988om6du0qSbr00kuVm5urN998s8Z95uTkKDc3V3369KlcdvjwYU2Y\nMEGjRo3S22+/XeO2kydPluM4Wrx4sTZu3Fjjeie6/PLLtWrVKi1btkzLli2rdd26Zkpu3769+vXr\np4yMDI0ZM0ZHjx6tc9vExEQdPHgw7PICAAAAAAAAAAAAAAAAAIAfDoONUaPjM8smJyerpKREu3fv\nVocOHSRJLVq0qBwQmpKSotatW0uSoqKiFB8fr4SEBCUkJCg+Pl5lZWX6wx/+oPT0dM2aNUulpaWV\n+6hrZlxJGjFihMaNG6c5c+ZIkg4ePKixY8cqIyND27dvV0lJyfc6rrZt2yopKaly4GthYaFGjx6t\nUaNGVSnbib755hvt2LGjcpC1JJ1//vmSjg2ALikp0Z49eyrrqF27dvr666/VpEkTvfPOO1q/fr22\nbdum1NRUScfq1+PxKCoqqsZ9RkdHKyYmRu3atatc1qRJEyUmJio5OVnFxcU1bhsXF6eUlBTFxcXV\nelwn2rZtm4YMGaJ77rmnzkG/4fz+0tLS9Prrr6tLly5at25dnesfOXJESUlJYZcXAAAAAAAAAAAA\nAAAAAAD8cBhsjDodH1DaqlUrFRQUyHVd7d27t3JAqMdT+2kUCoW0atUqrVixQg8++GCVAap+v1+h\nUKjW7Xv16qU5c+boo48+UlFRkd544w317t1by5cvrzIINy4uTkVFRSeVva4BsampqVq0aJFycnJq\nndm4WbNmWrhwoZ5//vkaB/mee+65KigokCTt3LlTLVq00MUXX6xXXnlF1113nTZv3qwLL7zwpDLW\nJBAIyO/3a+fOnWGtX5dwtl28eLFmzpyp5557rsrvNj4+/qT6TUhIOGnZdxUXF+vQoUOSpJYtW1YZ\nqF1dWUpKSlRYWFg5eB0AAAAAAAAAAAAAAAAAANQvBhujTo7jSJIGDhyo3NxcDRo0SP369auckff4\nz2vb/rLLLpPP51NeXl6Vn/Xt21d33nnnScuPc11XQ4cO1Z133qlzzjlHycnJ6t69u5YsWaIxY8ZU\nWbd79+7Ky8vTyJEjJUkvvPCCJkyYoA0bNigjI6NyJuMTDR8+XEOHDtWQIUOUnZ1d67F4vV6NHj1a\nTz755EnHKB0bGP3ee+8pPT1dHTp0UPPmzdW1a1dFRUXpmmuuUVlZ2Un1VVv9paenKy0tTW+++WZY\n69dl48aNuueee3TPPfforbfeqnadXr16acyYMZo1a5YaNmxYufwXv/iFfvvb32ru3LmVy375y19q\n2LBhys3NrTarpKREw4cPl8/n0xtvvKGbbrqpxuN4/PHHNXLkSN133311DmAHAAAAAAAAAAAAAAAA\nAABnhuOezjSpAM6If//733r22Wc1a9as+i5KvSorLa3vIpzMrX1m7u/FsRlk7Z7GgPQTOYaXCMty\nWfFUVP8lhO/LjYk3yZFs68kT9JvkhP7vEpMcSVLv4XZZRizP80jkBCtMctwor0mOJDmhgFlWKCrG\nLKv4iM1npmEDm/Y8YPy9wNISm3pvlGASI9cTbROkCL3GBMrNsqw+f5afPbPfn2FfyvIzE+Pa1JXl\neW5VV45hnY9N7GqW9cyBjSY5wfgkkxwpMvsIlp9jq3PKso/gqSgxyXGjY01yjjtsc9ugxs4hkxw3\nvrFJznEWx9coLlj3SmGy/P1FZB/B6D7N8hpjdc8gSSGj319M0ZcmOZIUbNjMLMuKZdtpdZ5bXvY8\nrk2b4Bh9XqTIbFss+xqO3+i5qeE9dkS2U0bPX38KTO9lzmKW11DLa4MVs/YuZNdXtPwch2RzfB5F\n3r2j6XsGf5lZltX1OBLfoziGzwLLYxqYZUV7Iq/fEonM+lKye2doWSbLPp7VM5IGiXZlsrz1t3pP\n1CjW6N7f8B20d9ffzbLKz7vMJMfyPYrVTa1r+HmJS7Brz3H2C2x5o76LgB+J6Cv/q373X697ByJQ\ndna28vPzJR2bfXf48OG69tprf9B95ufnKzs7u3K23x49emjYsGFhbTtz5kxt27ZN0rHyTpkyRZ06\ndapzu/3792vcuHFyHEeu66pZs2bKyso65WOoj3oDAAAAAAAAAAAAAAAAAAA/LGY2BvCjwczG4WFm\n4/Axs3F4mNn4x42ZjcPHzMbhYWbj8DCzcbhBzGwcfhgzG4eDmY2/B2Y2DhszG9eNmY3Dx8zG4WFm\n4++RxczGYYnEtoWZjcPHzMZnHjMbh4eZjcPDzMZnHjMbh4+ZjcMTic9ILMWs0V4AACAASURBVDGz\ncfiY2Tg8zGwcHmY2Bv4XMxsjXPU9szFPVgAAAAAAAAAAAAAAAAAAAABUi8HGAAAAAAAAAAAAAAAA\nAAAAAKrFYGMAAAAAAAAAAAAAAAAAAAAA1WKwMQAAAAAAAAAAAAAAAAAAAIBqRdd3AQAgXK7j1HcR\nTuJE4Hc2giHXLCvKY1fnnqDfJCfoiTHJkSQ3Jt4sy4pVPUl2dRV1fbpJjiTlX9nDJOeaLfkmOZHK\nU37ELCsSz3O5IbMox7Vr86yUhWzaztjoyLvuSZLrRN61LxLPg2BUrFmWRzbHF4qyu4ZGYp3HhCrM\nslzP2XurbHlszxzYaJb1QJPuJjlPl3xskiNJisD2rsKx+/3FRN7hndWfPUkKNUgxyXFCAZMcS67h\nNQZnnmW/xaoHG2zUwijJ8N44UGaSI0XmM66QYf/O6hITiokzSpIsu6+R99uTdJa3w1btVFTI7rnb\n2S4S2ymr+1DLYwtF4L1/JP7uIvHeypJlnVtdrzyGF75I7Os7oaBZltXzMst3OxXP/9YsK/re6WZZ\nkcbxl9qFReB5btl22j7Tt3m/EzRsp2IM3zmZ8UTVdwlOEjinQ30X4SSWzwJDjk2dW/XJAOBsdXbf\n3QEAAAAAAAAAAAAAAAAAAAA4ZQw2BgAAAAAAAAAAAAAAAAAAAFAtBhsDAAAAAAAAAAAAAAAAAAAA\nqFZ0fRcAAAAAAAAAAAAAAAAAAADgJ8cTVd8lAMLCzMY4ZX6/Xz6fT3369DHJW716tfr27auXX365\nyvL9+/drwYIFJvtIS0szyakvu3bt0q9+9asaf37PPfdIkubPn68NGzaY7HPPnj3y+XwaPHhw5bJ/\n/OMfuuOOOzRx4sRat/3666911113yefz6dFHH1VxcbF8Pp/69++vnj17KiMjQxs3btSNN96oIUOG\naMKECSouLjYpNwAAAAAAAAAAAAAAAAAAOH0MNsYpi4mJUU5Ojpo2bWqSd/vtt2vEiBEnLW/atGm1\ny0+F4zgmOfWppmP4n//5H3Xv3t18fy1btlROTk6VZZdccolmz55d57Y5OTm67777lJOTowcffFCJ\niYnKycnRww8/rF/+8pdavny5unfvrpSUFC1btkw333yzFi5caH4MAAAAAAAAAAAAAAAAAADg1ETX\ndwHww9m0aZMWLVokx3Hk9Xo1b948HThwQOPHj1dZWZn69eun9PR0Scdm/O3YsaM+++wzTZo0SZmZ\nmfJ6vercubN2796tZcuW6dlnn1V+fr6ioqL0yCOP6IILLgi7LFOnTtWnn36qFi1a6Omnn9a+ffs0\nduxYRUdHKzU1VZMmTZIkua5bZbvt27dr6tSpatOmjZ544glJUmZmphISErR161YNGzZMffv21ZYt\nW5SVlSVJmjx5si655JIay+K6rqZMmaKBAweqefPmmjRpkpKSklRUVKScnBz5/X49+OCDOnz4sK68\n8kqNGTNGEydO1Ny5cyVJe/fu1XPPPaeUlBTt2rVLX3zxhfr06aO77rqr2v2tX79eS5cuVZs2bRQd\nHa1Zs2bpjjvuUJcuXbR582bNnz9fbdq0OWm7+fPn6+9//7sk6ejRoxoyZIguvvjiGo/rlVde0cMP\nP1z53+vWrdMzzzyj3r176+6775YkDRw4UK1atdLXX3+tuXPnqnnz5iflPProo9qxY4e8Xq9+97vf\n6Zxzzqlxn3XxeDzaunWrLrvsMjVq1Khy+Ym/5+P/fd1112nJkiWnvD8AAAAAAAAAAAAAAAAAAGCL\nmY3PcomJiVqwYIHKysp06NAhrV69WmlpaVq1apVef/11BYNBSdI333yjoUOHauXKlUpNTVXHjh01\nbtw4paamKjU1VUVFRUpPT9fKlSv10EMPnTTTbV22bt2qVatWVc6Gm5SUpGXLliknJ0c7duzQgQMH\nqt2uU6dO1c6ge/3112vhwoV67bXXJElz5sxRdna2srOztWDBghrL4bquZsyYoRtvvFFXXHGFJCkQ\nCGj+/Pm68MILtX37duXl5albt27Kzc3V559/roMHDyoYDOro0aNat26dPvnkE3Xt2lWSdOmllyo3\nN1dvvvlmjfvMyclRbm6u+vTpU7ns8OHDmjBhgkaNGqW33367xm0nT54sx3G0ePFibdy4scb19u3b\np+joaDVp0qRy2fGyvfXWW5XL/vWvf+mxxx7TqlWr1KxZs2qzxo0bp5ycHN16662V9Xuq7r33Xu3c\nuVM33nijcnNzw9rm+DkJAAAAAAAAAAAAAAAAAADqHzMbn+WOz5ibnJyskpIS7d69W71795YktWjR\nQgcPHlRKSopSUlLUunVrSVJUVJTi4+OVkJCghIQExcfHq6ysTG+//bbWr1+vQCBQZSbeE2eprc6I\nESM0btw4nXfeeZowYYIOHjyoqVOnqqSkRIWFhSopKakyULYubdu2VVJSko4ePSpJKiws1OjRo+W6\nrmJiYmrc7ptvvtGOHTv0s5/9rHLZ+eefL+nYAOiSkhLt2bNHnTt3liS1a9dOX3/9tZo0aaJ33nlH\n69ev1yWXXKKf//zn2r17t9q0aSOPx6OoqKga9xkdHa2YmBi1a9euclmTJk2UmJio5ORkFRYW1rht\nXFycUlJSFBcXp9LS0hrXW716tQYOHFhlWXVla9++vRITEyVJjuNUm/X888/r/fffV0lJiW644YbK\n5eH8nk/UuHFjzZw5UxUVFbrtttt0yy23KCEh4aT1vluW6GiaJQAAAAAAAAAAAAAAAAAAIgUzG/9E\nHB8o2qpVKxUUFMh1Xe3du1dJSUmSJI+n9lMhFApp1apVWrFihR588MEqA0/9fr9CoVCt2/fq1Utz\n5szRRx99pKKiIr3xxhvq3bu3li9fXmUQblxcnIqKik4qe10DXVNTU7Vo0SLl5OTUOrNxs2bNtHDh\nQj3//PMqLi6udp1zzz1XBQUFkqSdO3eqRYsWuvjii/XKK6/ouuuu0+bNm3XhhReeVMaaBAIB+f1+\n7dy5M6z163LitqFQSH//+9911VVX1bl+Xb/ngwcPavPmzVqxYoXS09OrbFtWVlZl3fj4+JN+Vyfa\ntWuXJMnr9SopKanG4z6+/J133tEll1xSayYAAAAAAAAAAAAAAAAAADhzGGz8E3F85tiBAwcqNzdX\ngwYNUr9+/Spnva1pltvvbn/ZZZfJ5/MpLy+vys/69u2rO++886Tlx7muq6FDh+rOO+/UOeeco+Tk\nZHXv3l1LlizRmDFjqqzbvXt35eXlaeTIkZKkF154QRMmTNCGDRuUkZFROZPxiYYPH66hQ4dqyJAh\nys7OrvVYvF6vRo8erSeffPKkY5SODYx+7733lJ6erg4dOqh58+bq2rWroqKidM0116isrOyk+qqt\n/tLT05WWlqY333wzrPXrsnHjRt1zzz2655579NZbb+kvf/mLrr/++hrX/+6+6tpv48aN1aBBA919\n993avHlzlZ9deeWVSktL0wcffCDp2OzM8fHx8vl8+vLLL6vNe++993Trrbdq0KBB6t69uxo0aFDt\nekVFRRoyZIhee+013XvvvbWWEQAAAAAAAAAAAAAAAAAAnDmOezpTrAII27///W89++yzmjVrlmnu\nX/7yF3Xr1k2JiYmmuZGo9ITZlSOBE4FNaMCwSFGeUx8YfyJP0G+SE/TEmORIkkeR9/tzQgGzLKu6\nivJX/0WPU5F/dR+TnGu25JvkSJH5OfaUHzHLcmPibXI80SY5kuQEK8yy3CivWdaRYpvPX0x8lElO\nbLTt9wKLj9i0ww0bGJXLObu/9xiS4TXU6HrlnsYX3k5k1na6tf+FlO/D8hpq1uZZnudWdWVYJk/Z\nIbOsB5p0N8l5uuRjkxxJEdlO+Q27LTF2TYIZJ1BuE+SxuRYfd9ioO9ww0aZtsWzvJJvjM+sfSKaf\nPctrnxWre2PL/rllv8Wqyq3qSTK8Nw7YPZcKxcSZZVkJhuwuMtGy6be4hu255a2/1Xlu+TzC+tpg\nIRLbqaiQXdtytgtF2T2DtWL1mbHsH1i2LZF4728lEp+/SnZti2WVW1WV6bsPw2c3Zn19wzJZ9Tc8\nFXbvUYqX271LTrh3uklOJH6OHX+pXZjhdc+qD2T2jESSa3h8R0psPn9xDez6ijFG9x+S3fE1ije6\nJzJ8B+apKDHLCsbajE1xQkGTHEkKOUbtueE1NC7e5h0tfhoCW9+seyVAUvTlN9bv/ut178APJDs7\nW/n5xwaiOY6j4cOH69prr/1B95mfn6/s7OzK2YN79OihYcOGhbXtzJkztW3bNknHyjtlyhR16tQp\nrG179ux5SuVdu3at1qxZU1neAQMGqH///qeUJUk+n0+O48h1XTmOo+XLl59yFgAAAAAAAAAAAAAA\nAAAAiAzMbAzgR4OZjcPDzMbhY2bj8DCz8ZnHzMbhY2bj8DGz8ZnFzMZhYmbj8DGzcViY2Th8zGwc\nPmY2rhszG4ePmY3Dw8zGZx4zG4ePmY3DE4ntFDMbh4+ZjcPMYmbjsETi81eJmY3DxszGYWFm4zOP\nmY3Dx8zG4WNm4/Aws3F4mNkY3wczGyNczGwMAAAAAAAAAAAAAAAAAADwU+OJvMlPgOpwpgIAAAAA\nAAAAAAAAAAAAAACoFoONAQAAAAAAAAAAAAAAAAAAAFTLcV3Xre9CAEA4vjpQbJYVNGr5kuKibIIk\nxRp9/eNgRcgmSFKMxzHLSvQETXKiD3xhkiNJgaTWJjluVIxJjiRFlXxrlhWKTTTJcWPiTXIkyQkF\nTHIOPftrkxxJSmzdwizL22OASU4g+XyTHEkKGLV30XbNgTxlh8yyQnGNzbKOFNucn/ENok1yyq0u\nVv9PqMymHW7sLTfJCXkbmORIdm2Lgn6bHEny2PUR3CivSU7Ukb0mOZIUTDzHJMdx7fotTqld21Ke\nkGKS4w2UmuRIUsibYJLjCdh8hiUpFB1rluWEbNqoBxtcbJIjSfM2PWOSE+ja2yRHkjyW7ZQR12Nz\n3ZPs+gjB+CSTnOOKj9jUe4NEm/sGj2z7CBZ9oMbRJQYlOcayf+cpP2KWZcWsD+TYzSERkl1nP7r8\nsEmOVf9Hklm/rDhk179rVLrPLMsxujZUGD0jkaTSgE0fr9Rv11dsJptzU5KiDn1tkhNMOtckR5Jk\ndD0OGT4DisR2yvoaejZzghVGOXb9V9fq/sPwPjQYZXdPZHV+7ikxekZiqHkDu+fnlp9jy3cpVpKM\nqipm3w6bIEn+ZheaZVk9w/McLTLJkSTX6D2K6bNOozZYkvZnTTTJSU61Ow+8P/ulSU6wkd27Hctn\nG1Y8lu8LG9g865Ts3qPEGb1HkaQKw3cpVu9RGsXa9IEs39H6DbvC0X953iTHc0OGSY4ly7EIUa27\nmmXh7Bf4e159FwE/EtGX2r1zOhXMbAwAAAAAAAAAAAAAAAAAAACgWgw2BgAAAAAAAAAAAAAAAAAA\nAFAtBhsDAAAAAAAAAAAAAAAAAAAAqBaDjQEAAAAAAAAAAAAAAAAAAABUK7q+C4Cz06uvvqqOHTuq\nS5cup5Wzdu1aBYNB3XbbbXWuu337dn388ce69dZbT2ufkpSWlqaVK1eeds7ZwO/365577tG+ffv0\n1ltvSZL27NmjiRMnKhQKKTc3t8Zti4uLNWHCBB09elRJSUmaN2+ehg0bpsOHD+urr77SBRdcoNtv\nv10vvviiJCkxMVGPPPKImjdvfkaODQAAAAAAAAAAAAAAAAAA1I7BxvhB9O/f/4zvs1OnTurUqZNJ\nluM4Jjlng5iYGOXk5Gjw4MGVy1q2bHnSsuqsW7dOffv2Vf/+/XX48GFJ0sKFC7Vr1y7NnTtXTzzx\nhCRp9erVWrZsmT7//HM9+eSTeuqpp364AwIAAAAAAAAAAAAAAAAAAGFjsPFP0KZNm7Ro0SI5jqPY\n2Fg98sgjGj9+vMrKytSvXz+lp6dLOja7b8eOHfXZZ59p8uTJatCggaZNmya/369hw4apZ8+e8vl8\natu2rbZv365JkybpqquuUnZ2tlatWqUZM2bo6quvliTdfPPNuuiii1RQUKClS5eqUaNGysrK0ocf\nfqjk5GRlZWVp69atmjdvnrxer5KSkpSVlSVJys/P1xtvvKEOHTro4YcfrrZshw4dUlZWlm644QaN\nHTtWkuTz+XTppZfq3Xff1bRp03TFFVcoLy9PS5YsUXR0tGbOnKnWrVvXWE/l5eV66KGHNGHCBO3b\nt6+yzrxer+bNm6cDBw5Uqbdrr71WL7zwgjIzMyVJW7Zs0datW1VQUKCEhARt3bpVw4YNU9++favd\n39KlS5WXl6eUlBRddNFFuu+++6qttxNlZmaqqKhIHo9H+/fv169//WtdcsklysrK0gcffKC4uDgt\nXrxYhYWFmjhxotq0aaN///vfeumll6otx7PPPqv8/HxFRUXpkUce0QUXXBDOaVUtj8ejjz/+WH37\n9q227Me5rivXdXXhhRdq//79p7w/AAAAAAAAAAAAAAAAAABgy1PfBUD9SExM1IIFC3T06FGtXr1a\naWlpWrVqlV5//XUFg0FJ0jfffKOhQ4dq5cqVuvjiizV79mzNnDlTubm5WrFiRWXW4MGDlZ2drezs\nbEnS8OHDNWDAgCr7O3TokB5//HH17dtX7733nrZt26b9+/crJydH1157rfLy8iRJjRo10uLFi5WS\nkqIPP/xQknT++edryZIl2rp1a2Xed8uWmpqqHj16VA5EPs5xHA0YMEAzZszQ+vXrFQqFtGjRIq1Y\nsULTp0/XwoULa6yfYDCoKVOmaOTIkWrbtm2VOisrK9OhQ4dOqrfWrVtr165d2rNnj959911t27ZN\nXbt2lSRdf/31WrhwoV577bVq9xcIBJSXl6eVK1fqyiuvrLHeavL0008rEAho1qxZev/99/XJJ59o\n//79ys3N1e9//3tJxwYzP/bYY3r44YcrZxmuTnp6ulauXKmHHnpIOTk5Na4XjltuuUUej0f/9V//\npTlz5oS1zfHzDwAAAAAAAAAAAAAAAADOZk5UFP/4F9a/+sbMxj9Rbdq0kSQlJydr8+bN6t27tySp\nRYsWOnjwoFJSUpSSklI5829UVJS+/PJLTZkyRa7r6uDBg5VZ7du3l9fr1dGjR2vc33nnnSePx6Ok\npCSVlJRo586d+uCDD5SRkaGKigrddNNNOuecc9S+fXtJUtu2bbV79+4qZY2Nja3M+27ZPJ5jY+Zd\n1z1pv23bttVXX32lkpISFRUV6auvvtLdd99deaw12bZtm2JiYuQ4TrV1VlJSot27d1fWW8uWLVVU\nVKTo6Gi9++672rFjhyoqKtS/f3+9+uqratu2rZKSkmqso6KiosrytGvXTv/85z+rrbeaxMXFKSUl\nRfHx8SotLdW//vWvyoHOcXFxkqRdu3ZV/q4aN25cY9a6dev0xz/+UYFAoPKYperrt7pl3xUbG6vM\nzExNnjxZQ4cOVWFhYeXv+Lu+W89REdAwAgAAAAAAAAAAAAAAAACAYxhsDP3Hf/yHCgoK1K5dO+3d\nu1dJSUmS/ncQ73EXXHCBpk6dqqSkJPn9/srlhYWFatasmRISEmrcx4mDUtu1a6eePXtq0qRJkiS/\n36+tW7eqsLBQkvTFF1+ob9+++uKLL6rNOLFs1a1z4j6Tk5PVuXNnLV68uHKfNUlNTdXcuXM1btw4\nLVmypNp9tGrVqrLevv76ayUnJ+v888/XP//5T7Vp00Yff/yxEhMTa62H45KSkrRnz57KY69r/bq0\nadNG77zzjtLS0lReXq7Y2Fi1atVKn3/+uVq0aKFDhw7VuO2LL76odevWaePGjVqzZk3lcr/fr1Ao\nVKXuy8rKai3H3r171bRpU0VFRalZs2YKhULVHpvrunJdV5999pmaNm16KocMAAAAAAAAAAAAAAAA\nAAB+ANWP2MRPhuM4+tnPfqbc3FwNGjRI/fr1q5xZ9ruzzUrSfffdp3HjxikjI0MzZ86sXL5ixQoN\nHz5cw4cPlySNHj1aa9eu1eOPP665c+dWm9W5c2fFxMQoIyNDQ4YM0bZt2yRJhw4d0t133639+/fr\n8ssvP6ms1f1/SZo3b55mzZqldevWaeTIkdWu4/F4dMcddyg9PV1DhgzR2rVra62bJk2aqF+/flq0\naFG1+x44cOBJ9da1a1d5vd7K/z3RiWU6LiYmRr169dKgQYO0efPmOtevS5cuXZSSkqK0tLTK+hgy\nZIh++9vfavr06ZUDyqtz2WWXyefzKS8vr8ryvn376s4776yy/Morr1RaWpo++OCDarM+++wzDRw4\nUOnp6YqNjVWHDh2qPTbHcXT33Xdr9uzZeuihh07pmAEAAAAAAAAAAAAAAAAAgD3HPdWpUwFJPp9P\ny5Ytq3Gm4e9j06ZN2rBhg8aOHWtQsh+vDRs2aMuWLbrvvvtMcwOBgKKjo1VSUqL7779fzz//vGn+\nmfDVgWKzrKBRy5cUF2UTJCnW6OsfBytCda8UphjPqQ14r06iJ2iSE33gC5McSQoktTbJcaNiTHIk\nKarkW7OsUGxi3SuFwY2JN8mRJCcUMMk59OyvTXIkKbF1C7Msb48BJjmB5PNNciQpYNTeRds1B/KU\n1TzD/vcVimtslnWk2Ob8jG9g88dDyq0uVv9PqMymHW7sLTfJCXkbmORIdm2LgjX/5YvvzWPXR3Cj\nTv4S26mIOrLXJEeSgonnmOQ4rl2/xSm1a1vKE1JMcryBUpMcSQp5a/5LMt+HJ2DzGZakUHSsWZYT\nsmmjHmxwsUmOJM3b9IxJTqBrb5McSfJYtlNGXI/dH82y6iME42v+gu2pKD5iU+8NEm3uGzyy7SNY\n9IEaR5cYlOQYy/6dp/yIWZYVsz6QYzeHREh2nf3o8sMmOVb9H0lm/bLikF3/rlHpPrMsx+jaUGH0\njESSSgM2fbxSv11fsZlszk1Jijr0tUlOMOlckxxJktH1OGT4DCgS2ynra+jZzAlWGOXY9V9dq/sP\nw/vQYJTdPZHV+bmnxOgZiaHmDeyen1t+ji3fpVhJMqqqmH07bIIk+ZtdaJZl9QzPc7TIJEeSXKP3\nKKbPOo3aYEnanzXRJCc51e488P7slyY5wUZ273Ysn21Y8Vi+L2xg86xTsnuPEmf0HkWSKgzfpVi9\nR2kUa9MHsnxH6zfsCkf/xWasieeGDJMcS5ZjEaJadzXLwtkv+NH/re8i4EciKvX/q9f9R16vCT8q\npzrzbqSYOXNm5azKjuNoypQp6tSp0w+6z7Vr12rNmjWVdTdgwAD1798/rG3Hjx+v/fv3y3VdOY6j\nOXPmKCUlvJuDTz/9VNOmTZPjOBo7dqzy8/OVnZ1dWY4ePXpo2LBhp3ZQp1k2AAAAAAAAAAAAAAAA\nAAAQmRhsjNOyfPlys6xu3bqpW7duZnnhmDJlyhndnyTdcsstuuWWW2r8+dVXX62rr7662p/Nnj37\nlPd78cUXa/Xq1VWW9ejR45TzTnQ6ZQMAAAAAAAAAAAAAAAAAAJHJ7u9YAQAAAAAAAAAAAAAAAAAA\nADirMNgYAAAAAAAAAAAAAAAAAAAAQLUYbAwAAAAAAAAAAAAAAAAAAACgWgw2BgAAAAAAAAAAAAAA\nAAAAAFCt6PouAACEq2FslFlWlGOU4zEKkiTXNYlpEGP3PRLDo5Pr2FxyAkmtTXIkKRQTZ5JTHgiZ\n5EhSQrTXLCsYk2CS45HNuSlJrsfmPGg6wGeSI0kV2983ywo2amGWZSXa8oNsJBTb0C7LtKWyYfWJ\nibwjO8aNiqnvIpzEqm0JGF2rJCnGDZhlWQnFNTLLcj02/TJXdv07T2yiWVaM0QfQ6losSVH+Mpsg\no9+dJDlG/ddjYTZ92HmbnjHJkaT7uz1gkvN0yccmOZJdeydJTijy2ik32qZ/bnlqWnKM2hY3AnsJ\nlv07S5afGStO0G+S40bHmuRIkscNmmWZ1bnVB0aSU3rIJCchsalJjiSp1C7KNbqGWp4HCTE2/Y0E\nw2dcOmoXFWrQxCTH9TYwyZEkhWx+f1ZtlBSZ7ZQTKDfJ+Umwum+wuo+R3XOSUEy8UZJt22l1T5To\ntbvn8xq9SAkZdtAtX8lYvUupCFo+P7cpUzDpXJMcye4ZkCSFHJssx/AZUNAoy/IZScjwGtoyfahJ\njuu3u4b6G9udn1Zcy/sPo3PBjW9skhOpgiG7z4zVe39JMnvjG4HvUayeeUuSt9OVJjl+1+4du+O3\nudEONmxukiPJ8O0HfhIM+1zAD4mZjQEAAAAAAAAAAAAAAAAAAABUi8HGAAAAAAAAAAAAAAAAAAAA\nAKrFYGMAAAAAAAAAAAAAAAAAAAAA1WKwMQAAAAAAAAAAAAAAAAAAAIBqMdj4LPPqq6/qk08+Oe2c\ntWvX6uWXXw5r3e3bt+uVV1457X1KUlpamknOj8Xu3buVmZkpScrMzNSXX34Z9rbPPvusNm7cWOs6\njz322GmV77j7779f3bp1UygUkiT5/X75fD716dOn1u2CwaAmTJggn88nn8+nYDCozMxM+Xw+XXXV\nVcrIyNDSpUuVmZmpO+64Q0OHDtWOHTtMygwAAAAAAAAAAAAAAAAAAE5fdH0XALb69+9/xvfZqVMn\nderUySTLcRyTnB+LF198UXfeeef33i4UCmnz5s0aNWpUrev9+te/PtWiVTFv3jxlZGRU/ndMTIxy\ncnI0ePDgWrf729/+pvbt2ysrK0vFxcWKiorSrFmzJEmDBw/W8uXLJR0baP3UU08pISFBEydO1OLF\ni03KDQAAAAAAAAAAAAAAAAAATg+Djc+gTZs2adGiRXIcR7GxsXrkkUc0fvx4lZWVqV+/fkpPT5d0\nbHbfjh076rPPPtPkyZPVoEEDTZs2TX6/X8OGDVPPnj3l8/nUtm1bbd++XZMmTdJVV12l7OxsrVq1\nSjNmzNDVV18tSbr55pt10UUXqaCgQEuXLlWjRo2UlZWlDz/8UMnJycrKytLWrVs1b948eb1eJSUl\nKSsrS5KUn5+vN954Qx06dNDDDz9cbdkOHTqkrKws3XDDDRo7dqwkAzuRjwAAIABJREFUyefz6dJL\nL9W7776radOm6YorrlBeXp6WLFmi6OhozZw5U61bt66xnsrLy/XQQw9pwoQJ2rdvX2Wdeb1ezZs3\nTwcOHKhSb9dee61eeOGFyhmCt2zZoq1bt6qgoEAJCQnaunWrhg0bpr59+1a7v6VLlyovL08pKSm6\n6KKLdN9991VbbyfKzMxUUVGRPP8/e3ceH1V973/8NUuGJATMggs7QSygKCrYhwpelKrcuFJ6GwJk\nQpBVZBFphYDFKhCKEmWTJYQtC6uC2spPcKm2VmQXey+BsgSFgEIkEBISMpOZ3x88mBKYkAG+moG+\nn48HD83kzPt8z/ecOet3PrFaKSgo4KWXXuKOO+4gLS2NrVu3Ehoayvz589m3bx8vvvgiTZs25bvv\nvmPlypUAuN1uduzYwYgRIyrl5uTk4HK5SE5OZtGiRaxdu5Z69er52gbw2Wef0alTJwBmzpzJ9u3b\nATh16hS9e/fm0Ucfxel0cuTIEdauXQucqVb92WefUVRUVGmdnu+dd95h5cqVWK1WRowYwT333AOA\n1+utcp1VxWq1smvXLoqLi4mIiKj0O395MTExWK1W3G43drt2TyIiIiIiIiIiIiIiIiIiIiIiIiI1\nzVrTDfhPExERwdy5czl16hQrVqygZ8+eLFu2jL/85S9UVFQAcPToUfr27cuSJUu47bbbeOONN0hN\nTSUnJ4fs7GxfVq9evUhPTyc9PR2AAQMG0K1bt0rzO3HiBJMnTyYuLo4NGzaQm5tLQUEBWVlZdOzY\nkXXr1gFQt25d5s+fT0xMDF9//TUATZo0YeHChWzbts2Xd27b2rRpwwMPPHDBoFWLxUK3bt2YOHEi\na9aswePxkJGRQXZ2NuPHj2fevHlV9k9FRQVjxoxh0KBBNGvWrFKflZWVceLEiQv6rXHjxuTn53P4\n8GE+//xzcnNzuf322wF48MEHmTdvHu+9957f+bndbtatW8eSJUto165dlf1WlalTp+J2u5k0aRKb\nNm1ix44dFBQUkJOTw1tvvQWcGcw8YcIExo4dS1FRke+9H330EY888kilvA8++IAjR46QnJzsa9vS\npUsrtQ3g3Xff5de//rXv59GjR2OxWJg/fz5fffUVAFlZWdSrV6/S+/yt0/M9+uijLFu2jOnTp/u2\nLbi8qtMdO3akZcuW/OY3v2Hs2LF4PJ5q8yIiIjh+/Pglz0tEREREREREREREREREREREREREzNNg\n459Z06ZNAYiKimLz5s20aNECgJtuusk3wDImJsZX+ddms3HgwAHGjBlD7969OXr0qC+refPmREVF\ncerUqSrn16hRI6xWK5GRkZSUlJCXl8fWrVtJSkpi1apVvnk2b94cgGbNmnHo0KFKba1Vq5Yv79y2\nWa1nNh9/FWqbNWvmm2dhYSEHDx6kT58+jBs3jrKysirbm5uby5EjRyoNRD23z0pKSjh06JCv3+rX\nr09hYSF2u53PP/+cv/3tb+zatYvbbrutUjuq6qPCwkJuuukmAGJjY6vst6qEhoYSExNDWFgYpaWl\nfPvtt76BzqGhoQDk5+fTvHlzoqOjK1VI/vOf/8yTTz5ZKW/Dhg2cPn36om07ePAg1113HXXq1Lmg\nHaGhoZSWllbZXn/r9HxffvklTqeTESNGVMryt56rq3ZssVh47rnnWLt2LV6vl3/84x8XnR7g5MmT\nREZGVjudiIiIiIiIiIiIiIiIiIiIiIiIiPz0NNi4Bt1zzz3s3bsXr9fLDz/84BtgeXYQ71k333wz\n06dPJysri1WrVvle37dvH8eOHSM8PLzKeZw/GDQ2NpbOnTuTmZnJsmXLiI+P92UB7N+/n/r161eZ\ncX7b/E1z/jyjoqJo3bo1mZmZZGZmMnHixCrb26ZNG6ZNm8bkyZMrVcE9N7dhw4a+fvv++++Jioqi\nSZMm/POf/+TGG2+kqKiIiIiIi/bDWZGRkRw+fNi37NVNX52mTZuyfft2AN+g4YYNG7Jnzx6OHTvm\nq2y8b98+GjRoQFhYWKX3v/rqqxQWFvLNN98QFRXla1teXp5vmhUrVtC9e/eA2lPVclxs+TIyMsjI\nyCA1NbXSOggPD6ewsLDStC6X64L1dK4ff/zRN7i8fv36laY9vw1er5eCggK8Xi92u73qhRIRERER\nERERERERERERERERERGRn40GG9cQi8XC/fffT05ODj169OCJJ57AZrP5fneuIUOGMGLECJKSkkhN\nTfW9np2dzYABAxgwYAAAgwcPZvXq1UyePJlp06b5zWrdujUhISEkJSXRu3dvcnNzAThx4gR9+vSh\noKCAu+6664K2+vt/gBkzZjBp0iTef/99Bg0a5Hcaq9VK9+7dSUxMpHfv3qxevfqifRMdHc0TTzxB\nRkaG33n/9re/vaDfbr/9dhwOh++/5zu/TWeFhITwyCOP0KNHDzZv3lzt9NW59dZbiYmJoWfPnr7+\n6N27N+PGjWP8+PG+AeXLly8nISHBb8aoUaN4/fXXsVgsdOnShR49erBx40asVisul4tdu3bRpk2b\ni7Zj+/btOJ1Odu/eTVJSElu3bq30+4st30MPPYTT6WTJkiWVpnv66afp378/OTk5vtfi4uJISEhg\n3bp1frOOHDlCYmKiry0dOnSosg0vvvgiv//97xk1atRFl01EREREREREREREREREREREROSaYLXp\nn/4F9q+GWbyXW8JVapTT6WTx4sVVVhq+FBs3bmT9+vUMHz7cQMuuXuvXr2fLli0MGTLEaK7b7cZu\nt1NSUsLQoUNZsGAB7733Hk8//XTA712+fDkhISHcd9995Ofn0759e6NtvFqcKCk1lmW7vPHkF+ZY\nDQUBFkO7Y5fBvbq5pQO7oTCL+7SZIMATEmok57S76grflyrcVWQsyx0aaSTHSvCdKjgO/5+xrPKd\nm4xlWf6rp5Ecr+3CL85cU7zmPjMei7kT6pJil5Gc0NpmKvS7Ksx+9irKKozk1A0zs/6CcTt3G+zy\nEK/bWJbXamabsrjMnUt5HFX/dZWaYnWVGcvy2msZyfEYPJuyuQ0tn8EbEaa2TZNs//uRsayhvxxm\nJGdqibnzFizmvjNu8ZjZT5ncDkyd61fYzZznn2XqHCGiToiRHNOKT1758tWpbbCegcnt3OCxzxhD\ny2fqWHUmzNz5ubFrdoPHK0vZSSM5FRH1jOQA2Iu+N5aFx8x5fkXdm4zkAHiD4MHH+WynjhnLsrjL\njeR4ascYyTkTZmY7MCkY91Mm7yte8wx9jk3tgwEwdC/XExJW/UQ1wdA5wkmDDwgchh6kmHoeA+ae\nM4C5ZynlBu/hhYeY2Q5sZeaeM1SE1jWWZWpUgr282EwQUFErovqJAmDqGR+A9zKLYvlTK/8bIzle\nl7ljqKvJ3cayTDF5/mpqWzB13wbM3rs5WWymXSFhwXfNAOAqNfQcxdDt82C8/wrgyN9uJMd1U2sj\nOWDwHpDB+1KOyBuMZcm1r2Ln32u6CXKVsLV6oEbnH5xHJqnW5VbeDRapqam+qsoWi4UxY8bQqlWr\nn3Seq1evZtWqVb6+69atG127dg3ovS+88AIFBQV4vV4sFgtvvvkmMTGB3QzetWsXr7zyChaLxTeg\nO5CBxgCzZs1iw4YNhIWFMW3aNGrXrk39+vUDem91du7cycSJE3390bp1a1JSUi47rybWqYiIiIiI\niIiIiIiIiIiIiIiIiIj8tFTZWESuGqpsHBhVNg6cKhsHRpWNA6fKxgFSZeOAqLLxz0+VjQOnysaB\nUWXjn58qG19ClCobB0yVjaunysaXQJWNA6PKxoFTZeOAqLLxzy8Y91OqbHwJVNn456fKxgFRZePA\nqLJx4FTZODCqbBw4VTYOjCobByYY77+CKhsHSpWN5VKosrEEqqYrGxt8EiAiIiIiIiIiIiIiIiIi\nIiIiIiIiIiLXEg02FhEREREREREREREREREREREREREREb802FhERERERERERERERERERERERERE\nRET8sni9Xm9NN0JEJBCni0/UdBMuUG51GMsKsZjJcRncqzvcpcayPI5wIzkmj1pWgu8QaC/8zliW\nK7qpkRxLEJ4qeC2GPjCYXb5vh/cyktNk+hIjOSaZ7CeL+7SxLE9IqLGs4pMuIzl1ahv6Pp/F7PcC\nTxa7jeTUrWWmn7whYUZyANzBt5vCjsdcmKltwWuuTW5D31u1m9udG90OTLXL5PGKdelmch4dYCaH\n/4BzBE+FkZzna99mJAfgzdKdxrJsp4uN5HgctY3kgLn1Z3rbNHUMrRNhN5Jjmonlqxtm7hjjtZm7\nzg7GcwSroe3c5PWsyX1nhSf4Ov1a73NT+7xgbJNJJvcHNquZvvquqNxIDkDDiBAjOaY+LxCcn5kg\n3DSDlqn1F4z7FqPXaQaZWj6T990w1Fcug89RTN5HOGXo4FAbc/tzr72WkRwP1/b+3G3wnNNu6Lge\njOc/ABaPmetZr9Xc9aztm7VGciru6GIkJ2gZvJdr8lmDsXskpp6jQFAunyPczGem1jVePjIY7+mb\n2m8C1Kpdx1iWXPsqdv69ppsgVwlbqwdqdP7X+KFJRERERERERERERERERERERERERERELpcGG4uI\niIiIiIiIiIiIiIiIiIiIiIiIiIhfGmwsIiIiIiIiIiIiIiIiIiIiIiIiIiIiftlrugEiIiIiIiIi\nIiIiIiIiIiIiIiIiIv9pLFbVi5Wrg7ZUAeDdd99lx44dV5yzevVq3n777YCm3blzJ++8884VzxOg\nZ8+eRnKuFocOHSIlJeWi05hapytWrCAuLq7Sen3rrbfo3Lkz69evv+h733//fRISEujRowd///vf\nWbNmDU6nk44dOxIfH0/fvn3ZuHEjnTt3xul0kpWVdcXtFRERERERERERERERERERERERERFzVNlY\nAOjatevPPs9WrVrRqlUrI1kWi8VIztVi+fLlJCQkXHQaU+s0Pj4eh8OB2+32vfbcc8/h9Xqrfe+S\nJUtYtmwZACdPnqROnTo89thjpKSkMHjwYBo3bszGjRt5+umnGT58OC+88AIPPPAAzZo1M9J2ERER\nEREREREREREREREREREREbkyGmx8Fdi4cSMZGRlYLBZq1arFH//4R1544QXKysp44oknSExMBM5U\n9/3FL37Bv/71L0aPHk3t2rV55ZVXcLlc9O/f31c9tlmzZuzcuZNRo0bRvn170tPTWbZsGRMnTuS+\n++4D4KmnnqJly5bs3buXRYsWUbduXdLS0vj666+JiooiLS2Nbdu2MWPGDBwOB5GRkaSlpQHw97//\nnQ8++IAWLVowduxYv207ceIEaWlpPPTQQwwfPhwAp9NJ27Zt+fzzz3nllVe4++67WbduHQsXLsRu\nt5Oamkrjxo2r7KfTp0/zu9/9jpEjR3LkyBFfnzkcDmbMmMGxY8cq9VvHjh1ZunSpr0Lwli1b2LZt\nG3v37iU8PJxt27bRv39/4uLi/M5v0aJFrFu3jpiYGFq2bMmQIUP89tv5UlJSKCwsxGq1UlBQwEsv\nvcQdd9xBWloaW7duJTQ0lPnz57Nv3z5efPFFmjZtynfffcfKlSsBcLvd7NixgxEjRpCfn8+wYcOo\nqKjgF7/4BRUVFaSlpQW8Ts935MgRhg8fjt1up02bNowaNQogoIHF/pw8eZLdu3dzyy23UKdOnWqn\nf/jhh9m0aZMGG4uIiIiIiIiIiIiIiIiIiIiIiIgECWtNN0ACExERwdy5czl16hQrVqygZ8+eLFu2\njL/85S9UVFQAcPToUfr27cuSJUu47bbbeOONN0hNTSUnJ4fs7GxfVq9evUhPTyc9PR2AAQMG0K1b\nt0rzO3HiBJMnTyYuLo4NGzaQm5tLQUEBWVlZdOzYkXXr1gFQt25d5s+fT0xMDF9//TUATZo0YeHC\nhWzbts2Xd27b2rRpwwMPPOAbiHyWxWKhW7duTJw4kTVr1uDxeMjIyCA7O5vx48czb968KvunoqKC\nMWPGMGjQIN9A1bN9VlZWxokTJy7ot8aNG5Ofn8/hw4f5/PPPyc3N5fbbbwfgwQcfZN68ebz33nt+\n5+d2u1m3bh1LliyhXbt2VfZbVaZOnYrb7WbSpEls2rSJHTt2UFBQQE5ODm+99RZwZjDzhAkTGDt2\nLEVFRb73fvTRRzzyyCO+n++9917i4+N5/PHHcTgcQGDr1J/IyEgWL15MVlYWu3fv5tixY1UuQyBe\nfvllXn31Vbp168bevXurnT4iIoLCwsIrmqeIiIiIiIiIiIiIiIiIiIiIiIiImKPKxleJpk2bAhAV\nFcXmzZt59NFHAbjppps4fvw4MTExxMTE+Cr/2mw2Dhw4wJgxY/B6vRw/ftyX1bx5cxwOB6dOnapy\nfo0aNcJqtRIZGUlJSQl5eXls3bqVpKQkysvLefLJJ7n++utp3rw5AM2aNePQoUOV2lqrVi1f3rlt\ns1rPjHH3Vy23WbNmHDx4kJKSEgoLCzl48CB9+vTxLWtVcnNzCQkJwWKx+O2zkpISDh065Ou3+vXr\nU1hYiN1u5/PPP2f37t2Ul5fTtWtX3n33XZo1a0ZkZGSVfVRYWOhrT2xsLP/85z/99ltVQkNDiYmJ\nISwsjNLSUr799lvfQOfQ0FAA8vPzfevq3CrEf/7zn31VpAHCwsIIDw8nLCysyvkF2rbjx4/z8ssv\nU1JSwr59+ygpKSE6OvqiuRfzy1/+kqysLDZv3szMmTN58803Lzp9cXExUVFRlz0/ERERERERERER\nERERERERERERETFLlY2vQvfccw979+7F6/Xyww8/EBkZCfx7EO9ZN998M9OnTycrK4tVq1b5Xt+3\nbx/Hjh0jPDy8ynmcPxA4NjaWzp07k5mZybJly4iPj/dlAezfv5/69etXmXF+2/xNc/48o6KiaN26\nNZmZmWRmZjJx4sQq29umTRumTZvG5MmT8Xg8fufRsGFDX799//33REVF0aRJE/75z39y4403UlRU\nRERExEX74azIyEgOHz7sW/bqpq9O06ZN2b59OwCnT5/2tXfPnj0cO3bMV9l43759NGjQoNqBxf4E\n0rYPPviARx99lMzMTGJjY32vh4aGXlBx2N9r5zt48CAAN9544wXrxV/bPv74Y9q3b19tO0VERERE\nRERERERERERERERERETk56HKxlcZi8XC/fffT1paGvPnz+fJJ5/EZrP5fneuIUOGMGLECCoqKrj5\n5pt5+eWXAcjOzmbnzp2MHj0agMGDB7Nr1y4+/vhjHnroIYYPH35BVuvWrfl//+//kZSUhMViYeTI\nkQCcOHGCPn36EBUVxV133VVp4O25GefnzZgxg08//ZQTJ06wc+dO5syZc8E0VquV7t27k5iYiM1m\n4/HHH/cNcvYnOjqaJ554goyMDO66664L5v3b3/6WF154oVK/3X777Xz55Zfcfvvt7N69229/+xMS\nEsIjjzxCjx49qFevHi1btrzo9NW59dZbiYmJoWfPntSqVYuFCxfSu3dvRo0aRePGjX0DypcvX05C\nQkK1eYGsU3/uvfdeRo0axccff3zB6wMGDGDLli3MmTMHgM6dOzNy5EjWr1/P+PHj/eZNmjSJY8eO\nATBmzJgq5/v++++zZcsWHn744UqDnEVERERERERERERERERERERERESkZlm8l1uKVa5KTqeTxYsX\nV1lp+FJs3LiR9evXM3z4cAMtu3qtX7+eLVu2MGTIEKO5brcbu91OSUkJQ4cOZcGCBbz33ns8/fTT\nRudzNTldfKKmm3CBcqvDWFbI5Y1Vv4DL4F7d4S41luVxVF1N/VKYPGpZCb5DoL3wO2NZruimRnIs\nQXiq4L3ML3f4Y3L5vh3ey0hOk+lLjOSYZLKfLO7TxrI8IaHGsopPuozk1Klt6I+HWMz+EZKTxW4j\nOXVrmeknb8il/6WGqriDbzeFnar/qsMlM7UteM21yW3oj+TYze3OjW4Hptpl8njFunQzOY8OMJPD\nf8A5gqfCSM7ztW8zkgPwZulOY1m208VGcjyO2kZywNz6M71tmjqG1okIzu/8m1i+umHmjjFem7nr\n7GA8R7Aa2s5NXs+a3HdWeIKv06/1Pje1zwvGNplkcn9gs5rpq++Kyo3kADSMCDGSY+rzAsH5mQnC\nTTNomVp/wbhvMXqdZpCp5TN53w1DfeUy+BzF5H2EU4YODrUxtz/32msZyfFwbe/P3QbPOe2GjuvB\neP4DYPGYuZ71Ws1dz9q+WWskp+KOLkZygpbBe7kmnzUYu0di6jkKBOXyOcLNfGZqXeN/qz4Y7+mb\n2m8C1Kpdx1iWXPs8//pHTTdBrhLWX3So0fkH51MO+clcbuXdYJGamkpubi5wZlnGjBlDq1atftJ5\nrl69mlWrVvn6rlu3bnTt2jWg977wwgsUFBTg9XqxWCy8+eabxMTEBPTeXbt28corr2CxWHwDuk0O\nNL6Stp3v73//O+np6b4+euCBB+jfv7+xtoqIiIiIiIiIiIiIiIiIiIiIiIhIzVBlYxG5aqiycWBU\n2ThwqmwcmGD8Rn4wVkUBVTYOOEuVjQOjysYBC8aqhapsHBhVNr4EqmwcEFU2DpwqGwdOlY2rp8rG\ngbvWq+yqsnFggvGaNhjbZJIqGwdGlY3lLFU2/vmpsnFgVNk4MKpsHDhVNg6MKhvXAFU2DlwQLp8q\nGwcmGO/pq7Kx1BRVNpZAqbKxiIiIiIiIiIiIiIiIiIiIiIiIiMh/GqutplsgEpBr/HswIiIiIiIi\nIiIiIiIiIiIiIiIiIiIicrk02FhERERERERERERERERERERERERERET80mBjERERERERERERERER\nERERERERERER8cvi9Xq9Nd0IEZFAnDxVaizLE4R7vlqGvv7hCsJlA7BbLUZybMUFRnIAvGHXGcnx\n2EKM5ACccnmMZYWHBN93ik67zSxfqNXchm7xmutzr9VuJCdu7iYjOQBrBv3SSI7F4CmjxX3aWFaZ\ntZaxrPJTbiM5dUMrjOR4QkKN5JxVfNJlJOc6h5n153HUNpIDYPGYWXcY3B9g8DPjtZvZzq1lJ4zk\nAHgNrT+T+wOjDG0Lpo4LAKVWM/uEMIuZfZRp5RYzfeXwGtofYG79eS1mzoMBRoS1MpY17eR2Izle\nm8NIDoCt+KiRHFfEDUZyziopNnMMjahj5rrB5HkZwMniK//cXGcvMdCSMzyhZq7TgpWpY5+p84Ng\nZfK8xXLazPbpCY8ykgPgDQkzlmXsXNhj8BzB0LmUtazISA6A1xFuLsvQ+jN5rmhxGbpvajF3L8no\nfsrQNmWpMHNM/09g6p6E6fMWI0xe+5tk6PPnNtjlFUG4+kw9RwHwYOZazWNwO7cbuny0lhaaCcLc\nPSAAl9XM9aPb4EO+UJuh7cDQ9gTgMrl83nIzQUF4r3PJ/5m5hwDQo425+wimjn3Gzu+AMpu56w9j\nz1HCzB2PPQbPO009R6lby0yOyWtHa7nBezeG2mXsehaMnUtZTp80kgPgiG5gLEuufZ49X9V0E+Qq\nYW1xb83Ov0bnLiIiIiIiIiIiIiIiIiIiIiIiIiIiIkFLg41FRERERERERERERERERERERERERETE\nLw02FhEREREREREREREREREREREREREREb802FhERERERERERERERERERERERERERET80mDjq9jO\nnTvZsWNHTTeD/Px8vvrqq58s3+l04vF4Ap5+5cqVvPvuuwFPv3HjRqZOnXo5TatxPXv2vKTpnU4n\nTqeTpKQkZs2aFfD7Pv30U7p27cq0adN8r61YsYK4uDjefvvti753/fr1JCQk0LNnT9555x02bdqE\n0+mkc+fOPP300yQlJbFjxw46dOhA7969efPNNy9pmURERERERERERERERERERERERETkp2Ov6QbI\n5cvNzcXtdnPrrbfWaDvODja+9957f5J8i8Xyk+T+3PP4KVxquy0WC4sXL77k93Xu3Jk6derw5Zdf\n+l6Lj4/H4XDgdrsv+t45c+aQmZmJw+GgqKiIunXrkpWVxcyZM2nXrh333Xcf+fn5dOjQgddee43X\nX3+dL7/8kvvvv/+S2igiIiIiIiIiIiIiIiIiIiIiIiIi5mmw8VVq6dKlZGZmAvDnP/+ZxYsXU1pa\nyujRozl+/Dh33303zz//PImJiZSXl9O0aVO+/fZbFi9ezKuvvorb7ea7774jOTmZuLg4tmzZQlpa\nGgCjR4/mjjvuYOPGjSxfvpwff/yR0NBQ5syZw9ChQzl+/Dh169b1DQqdOXMmRUVFbN26lSlTprB/\n/36+/PJLnn/+eX7/+98zYsQIGjRogNPppH379mzatInk5GTatm1LSkoKZWVlPPHEEyQkJPhdVq/X\nyx//+Ed27NjB6NGjad++PVlZWXzwwQeEhYWRlpZGdHQ0f/rTn8jNzcXhcPD444/z17/+lX379tG3\nb1/+9re/sWfPHp555pkq+/TAgQNMnjyZKVOmkJGRQX5+Pvv376dLly4kJyezdetWJk+eDMCoUaPY\ns2cPMTEx/OpXvwJg9uzZdOjQgYkTJ3LrrbeyefNmZs6cSdOmTf3Ob+TIkRQWFuJyuRg2bBher5eM\njAwsFgsOh4MZM2b4fd/evXsZPXo0TZo0oby83PfaK6+8gsvlon///nTu3Jk1a9awcOFCmjVrht1u\nZ9KkSXi9XjweDzabrcp+cLvdJCcnY7PZuPHGG3nttdd868HfuqmOy+Xim2++oX379tStW7fa6R99\n9FE+/fRTDTYWEREREREREREREREREREREZFrm8Va0y0QCYi21KtUjx49GDhwIH379iUzMxOLxcKK\nFSvo3LkzmZmZ5Ofn88MPP1CvXj0mTZrE9ddfT9euXdmzZw8AXbp0IScnxzdg+c033yQ9PZ309HTm\nzp3rm8/Ro0dZtGgRs2bNAiA1NZWsrCzatm3L559/zsMPP8yYMWN4+umnyczM5IYbbgCqrrh73333\nkZ2dzUMPPUR6ejoDBw4kOzubjz76CI/HU+Xy9uzZk3nz5jFzKCx/AAAgAElEQVR37lzcbjcffPAB\ny5YtIyEhgZUrV/L9999z8OBBFi9eTLNmzQDo2LEjX331FQAfffQRXbp0qTL/6NGjTJgwgUmTJhEa\nGgpA27ZtycnJ4cMPPwTODCaePXs2s2bNYs6cOdxxxx3k5uayYcMG8vLy2LNnD61ataKoqIiRI0fy\n7LPP8te//tXv/LZu3UpMTAwLFiyoNAA3IiKCuXPnUlpayokTJ/y+d+HChYwfP56xY8dSVFQEwBtv\nvEFqaio5OTlkZ2cDkJ2dzZIlSy5Y7uTkZJKSkqpsm81mY86cOSxevJiwsDC++eabKvstEOPGjSM9\nPZ3HHnuMzZs3Vzt9REQEx48fv6J5ioiIiIiIiIiIiIiIiIiIiIiIiIgZqmx8FTu/quz+/fvZsWMH\n77zzDsXFxRQUFBAWFkZYWBjh4eGEh4dTVlYGQPPmzbHb7djtZzaBffv2MXjwYLxeLyEhIb7MO++8\nEwCr1YrH42HKlCns27ePH3/8kb59+15Sey0Wiy/PZrOxf/9+pk+fDsCJEycoLCwkJibG73ubN2+O\nw+GgrKyM48eP06BBAwBatGjB+vXr+f7774mNjQXw/TckJITrr7+eQ4cOceTIERo2bFhl27766ivq\n169fqeJv06ZNsVqtvtdKS0uJjo72/f8tt9zCvHnzOH36NNHR0bjdbhwOB9HR0URERBAVFcW+ffv8\nzu/w4cM0b94cwDc4+uw8AaKioigpKeG6666r8r0Oh8P3+wMHDjBmzBi8Xq9voK7VaiUkJMTXH2ed\nHZxeldLSUsaNG0dBQQH5+fnExcVVOW0gWrVqRXp6OgcPHuR3v/sdy5Ytu+j0xcXFREZGXtE8RURE\nRERERERERERERERERERERMQMDTa+itntdt/gYTgzaPXBBx/kwQcfpKKiAqv1wsLVZwco79u3j0aN\nGuF2uwFo06YNM2fOxOFw4HK5fNOfO/g2NzeX8vJysrKymD59ui/LbrdXek94eDilpaXAmYrB5877\n7ODms+2Nj4/nlltuoby8HIfDUeWy7tu3jxtuuIHw8HAiIyM5dOgQAHv37qVBgwbUr1+f/fv3A5CX\nl8dtt90GnKngnJqayi9/+cuLdSVPPvkk7du3Jy0tjT/84Q9+pwkPD+fYsWN4vV7Cw8Ox2WxYLBZC\nQ0M5cuQIUVFRvuWszk033eSrGHy23YFq2LChrz/OVj+++eabefnll4mMjPStC4/HQ3l5+QUDnr1e\n70UHG3/xxRc0b96cN954g1GjRvmWJzQ0lMLCwkrThoaGcvDgwYu29+DBgzRq1IioqKhKA9nPd3Y+\na9eupUOHDhfNFBEREREREREREREREREREREREZGfx4WjUeWqcdddd/HBBx/w4osvAhAfH8/q1avp\n3bs3AwYM8A349efDDz/E6XTidDoBGDBgAH379qV3796kp6f7fU9sbCzfffcd/fv3rzSAtWXLlmzf\nvp0XX3yRY8eO0apVK/bs2cPrr79OSUmJb7rzB7j279+fKVOmkJSUxMiRI6tsq8ViITs7m4EDBzJg\nwADsdjtPPvkkCQkJLF26lP/5n//hxhtvpGHDhiQlJZGXl+d77/3338+mTZv47//+74v05BkdOnSg\nuLiYbdu2+f39oEGDePbZZ3nuued49tlngTMViGNjYwkNDfUNcL7YQN6z2rVrx5EjR+jTpw9FRUV+\nl7kqvXv3Zty4cUyYMIG6desCMGTIEEaMGEFSUhKpqakAJCYm0qtXLz788EPfwPNA2ta2bVs+/fRT\nBg0a5BvMDNC6dWv27t1LUlKSb9u69957WbduHYMGDaoyb/78+SQkJPDMM8/Qr1+/Kqdbv349SUlJ\nWK1WDTYWERERERERERERERERERERERERCRIWbyBlWOWakpKSwuDBg2ncuHFNN+UnV15eznPPPce8\nefNquilVmjp1Kh06dOCee+4xmut2u7Hb7XzxxRds27aNoUOHGs2vCSdPVT2A/lJ5gnDPV8vQ1z9c\nQbhsAHZr9YPdA2ErLjCSA+ANu85IjsdWddXuS3XK5TGWFR4SfN8pOu02s3yhVnMbusVrrs+9VjN/\nNCJu7iYjOQBrBl28un+gLAZPGS3u08ayyqy1jGWVn3IbyakbWmEkxxMSaiTnrOKTruonCsB1DjPr\nz+OobSQHwOIxs+4wuD/A4GfGazeznVvLTlQ/UYC8htafyf2BUYa2BVPHBYBSq5l9QpjFzD7KtHKL\nmb5yeA3tDzC3/rwBfOkzUCPCWhnLmnZyu5Ecr63qv1J0qWzFR6ufKACuiBuM5JxVUmzmGBpRx8x1\ng8nzMoCTxVf+ubnOXlL9RAHyhJq5TgtWpo59ps4PgpXJ8xbLaTPbpyc8ykgOgDckzFiWsXNhj8Fz\nBEPnUtayC4s0XC6vI9xclqH1Z/Jc0eIydN/UYu5ektH9lKFtylJh5pj+n8DUPQnT5y1GmLz2N8nQ\n589tsMsrgnD1mXqOAuDBzLWax+B2bjd0+WgtLax+ogCZugcE4LKauX50G3zIF2oztB0Y2p4AXCaX\nz1tuJigI73Uu+T8z9xAAerQxdx/B1LHP2PkdUGYzd/1h7DlKmLnjscfgeaep5yh1a5nJMXntaC03\neO/GULuMXc+CsXMpy+mTRnIAHNENjGXJtc+zd2NNN0GuEtabzYz/uFzm7maJBJkjR44wcuRInnnm\nGd9rTqcTi8WC1+vFYrGQmZn5k7cjNTWV3Nxc4Exl4TFjxtCq1b8fEFdVbbigoIARI0b42nvDDTeQ\nlpYW8Hzffvtt3nvvPex2O1OmTLmstl2KnTt3MnHiRN/ytG7dmpSUlMvKEhERERERERERERERERER\nEREREZHgoMrGInLVUGXjwKiyceBU2fjnp8rGgVFl48CpsnHgVNk4AKpsHDBVNg4wRpWNA6bKxoFR\nZePAqLLxpVFl45+XKhsHRpWNA6fKxoFRZeNAg1TZWM5QZeMaoMrGAVFl48CosnHgVNk4QEF4r1OV\njQOnysaBU2XjwKiycWBU2VguhSobS6BqurJx8I1CEhERERERERERERERERERERERERERkaCgwcYi\nIiIiIiIiIiIiIiIiIiIiIiIiIiLilwYbi4iIiIiIiIiIiIiIiIiIiIiIiIiIiF/2mm6AiIiIiIiI\niIiIiIiIiIiIiIiIiMh/HIvqxcrVQYONReSqYTGYFWI1k2Yx2Siv10hMhcdMDoDDZu6Exuo+bSTH\nG1rHSA6A9eQRM0F1bjCTA4SHhBjLshjapvB6zOQAtew2M0GeCjM5hlk8biM5q/u1N5IDYCsuMJLj\nqR1jJAcwuk2FesuNZZUb+qMf5bZaRnJCTH2GTTO0nZvkspi5rLEaOj8A2PtMN2NZtyx4x1iWKR6b\nmeNVhaF1B2DH3L7F8+fpRnKsTz1vJAcg1NS+0+SuxeD+PMTUaafB5TN1XDd1Hgww7eR2Y1nD67Q1\nkjP1VK6RHADbiUNGcjxh1xnJ+TczG6jVVWYkxxMSaiTHJIvb3DmZSZaKIGyX0RsJZpja3wHGjg3e\nkDAjOQBeR20zOQYf+rhNHo8NnU8ZOxYDYOba3+R1aIXV3P0Wj6FrtRCT+yhD5+cmz+9MsgRpu65l\nxu7lWoPvMaTXauj+JGCtcBnLMnWcOV1h7iBj6qwlzORBxuD9soogfCZjt5rJMnX+A2AxeE1rdxi6\nh2cz9zk2dSPB6jX3zCLE4H7K6w2+/bAp3VrVM5ZldH9u6thncDsIrSg1llWOmfPOMovDSA5ArWB8\nlmJw/ZnitZt5dgXgNnSvzOxzMFP3I8KN5IiIXKs0LF5ERERERERERERERERERERERERERET80mBj\nERERERERERERERERERERERERERER8UuDjUVERERERERERERERERERERERERERMQvDTYWERERERER\nERERERERERERERERERERvzTY+CI2btzI1KlTK722YsUK4uLiePvtty8797vvviMlJeVKmxd0pk6d\nyqZNm3w/T5gw4bJyVq9efdHfu1wunE4nXbp0ueB38+bN48iRI5c0P3/r+VrQs2dPACoqKnA6nVeU\n9emnn9K1a1emTZvmey3Qz8L69etJSEigZ8+evPPOO2zatAmn00nnzp15+umnSUpKYseOHXTo0IHe\nvXvz5ptvXlFbRURERERERERERERERERERERERMQce003INhZLJZKP8fHx+NwOHC73TXUoqvHSy+9\ndFnvW7VqFU899RQ2m83v70NCQsjKyqJXr14X/K5///6XNc/z1/O14NxlutLl69y5M3Xq1OHLL7/0\nvRboZ2HOnDlkZmbicDgoKiqibt26ZGVlMXPmTNq1a8d9991Hfn4+HTp04LXXXuP111/nyy+/5P77\n77+iNouIiIiIiIiIiIiIiIiIiIiIiIjIldNg42ps3ryZvn37EhkZSVpaGgBer7fSNHl5eYwdO5aK\nigr69+/Pww8/zNatW5k8eTIAo0eP5q677mLNmjUsWrSIpk2bYrdX3fVxcXHExsZSVFTE9OnTiY6O\nZubMmRQWFvKvf/2L9u3bM2zYMMaMGcOhQ4do3LgxEyZMoLS0lIEDB+LxePiv//ovBgwYwA8//MDQ\noUOpVasWv/71r+nWrRspKSkMHjyYBg0akJycTFZWFvn5+bz66qt4vV6OHz/O8uXLWbduHYsWLcJu\nt5Oamkrjxo39tnfkyJEUFhbicrno0KEDAE6nkyNHjrB27VoAdu7cyR//+EfsdjsPP/wwycnJfts2\nePBgdu3aRXJyMh07dmTgwIGsW7eOjIwMQkJCmDhxIs2aNfPbjtTUVNasWcPSpUt9bV27di0LFy4k\nJCSEl19+mRYtWlTZ7wcOHGDy5MlMmTKFjIwM8vPz2b9/P126dCE5ObnSOh01ahR79uwhJiaGX/3q\nVwDMnj2bDh06MHHiRG699VY2b97MzJkzadq0abX9NmzYMLxeLxkZGVgsFhwOBzNmzPD7vsTERMrL\ny2natCnffvstixcvplu3btSqVYvWrVtz6NAhFi9e7NtOz91eFy1axNq1a6lXrx4tW7ZkyJAhF+S7\n3W6Sk5Ox2WzceOONvPbaaxfknOXvtfO5XC6++eYb2rdvT926daud/tFHH+XTTz/VYGMRERERERER\nERERERERERERERGRIGCt6QYEu7p16zJ//nyio6PZtm2b32kWLFjASy+9RFZWFhkZGcCZgaezZ8/m\nrbfeYvbs2QBkZmaSk5NDly5dLjrPs4OMk5OTefvtt32vR0VFkZWVxdChQ/nkk09o2LAhixcvJiYm\nhu3bt7Nnzx4aNWpEdnY2/fr1A2Dbtm106tSJrKwsunbtesG8zq14u3//fmbPns3y5cvxer3Mnz+f\n7Oxsxo8fz7x58/y2dcuWLcTExLBgwQLq1Knjez0rK4t69er5fm7SpAlLly4lOzub999/v8q2zZo1\ni1atWpGZmcnAgQN9/ZuTk0NKSgoLFiyost/GjBnDAw884PvZ4/GQkZFBTk4OWVlZNGrUqMr3Hj16\nlAkTJjBp0iRCQ0MBaNu2LTk5OXz44YfAv9fprFmzmDNnDnfccQe5ubls2LCBvLw89uzZQ6tWrSgq\nKmLkyJE8++yz/PWvf/U7v61bt/r67dwBuBEREcydO5fS0lJOnDjh97316tVj0qRJXH/99XTt2pU9\ne/bQsmVLRowYQZs2bWjTpg3Hjh3jX//6F0lJSfTp0wc4M4h47dq1LF26lHbt2lXZFzabjTlz5rB4\n8WLCwsL45ptvqpw2EOPGjSM9PZ3HHnuMzZs3Vzt9REQEx48fv6J5ioiIiIiIiIiIiIiIiIiIiIiI\niIgZGmxcjebNmwMQGxvL4cOH/U5z6NAhWrRogcPhICQkBIDS0lKio6OpV68epaWlANjtdkJCQoiN\njb3oPBs1aoTdbic2NpZDhw75Xr/zzjsBsFqt5OXl8dFHH5GUlMQ//vEPCgoKaNOmDQ0aNGDYsGGs\nWbMGgE6dOlFcXMywYcPYsGHDRefbpk0bbDYbFouFwsJCDh48SJ8+fRg3bhxlZWV+3/P9999X6qOq\n5Ofn069fP5xOJwcPHsTr9VbZNq/XW6li7tl+a9GiRaV1UF1V3cLCQho2bIjNZgPwDSL256uvvuLU\nqVO+aQGaNm2K1Wr1vXZ2ncbExFBaWsott9xCXl4eX3zxBZ999hlutxuHw0F0dDQRERFERUVRXFzs\nd36HDx/29du5lZrPVkGOioqipKTE73vDwsIICwsjPDyc8PBwysrKKv0cFhZGWVkZLVu2JDMzk0WL\nFgFw/Phx6tevD1x8XZWWljJu3DiSkpL44osvOHXqVJXTBqJVq1akp6eTnp7OlClTqp2+uLiYyMjI\nK5qniIiIiIiIiIiIiIiIiIiIiIhIsPNarPqnfwH9q2n2mm5AsNu3bx9wpurvY489BpwZtHrw4EHf\nNA0bNmTPnj20aNECt9sNQHh4OMeOHcPr9RIeHg6cqbTrcrl8mVU5cOAA5eXl5OXl+QaHApUGwjZr\n1oz4+Hh69eoFQEVFBS6XiyFDhuByuejRowdPPPEENpuNUaNG8cMPP/Dyyy9z3333ER4eTklJCUeP\nHq00YNdq/fcGGRUVRevWrZk/fz4ALpfLb1vr16/vq3ybl5fHgw8+6PvdudnLly9n4MCBtGvXji5d\nuuD1ev22DcDhcOByuahVq5Zv2crLy9mzZ0+l/nC5XHg8nkrtPne+UVFR5Ofn43K5CAkJ4fTp077M\n8z355JO0b9+etLQ0/vCHP/id5vx1enZgdmhoKEeOHCEqKuqC5a7KTTfd5Ou3/fv3Vzv9xfib3/kD\ntgEiIyN9g7Xz8vKqzPviiy9o3rw5b7zxBqNGjfLlhIaGUlhYWGna8z8L/hw8eJBGjRoRFRXlG4x/\nseVYu3YtHTp0uGimiIiIiIiIiIiIiIiIiIiIiIiIiPw8NNi4GkVFRfTp04fo6GhfZeF7772XAQMG\nsGXLFubMmUOfPn0YO3YsFRUV9O/fH4BBgwbx7LPPYrFYGDVqFACJiYn06tWLJk2aXHTQ5XXXXcew\nYcM4efIk06ZN8zvNww8/zEsvvUTv3r2xWCxMnDiRkydP8uqrr1JWVka3bt0A2LBhA3PmzKG0tJRB\ngwYBEBcXR1paGnfeeScWi8WXee7/W61WunfvTmJiIjabjccff5z4+PgL2nH33XeTk5NDcnIyFRUV\nAHz99dekpaWxe/dukpKSeP755+nUqRPjx4/nF7/4BRERERe0beDAgb7Mzp07M3z4cB588EESEhLo\n06cPiYmJhISEMHHiRN90cXFxJCQk0K9fPzp16kS/fv3Iy8tj3759PPXUU/Tq1YtnnnmGxMREHA4H\n48aN45Zbbqmy3zt06MD777/Ptm3b/P7+3HU6evRo4MyA5tjYWHbv3u2rVHxuP1alXbt2ZGdn06dP\nH98A9XMFklGd8zPsdjtdunShR48eREVF0aZNG7/va9u2LXPmzOF///d/K73eunVr9u7dS1JSEnPn\nziUsLOyCz4I/8+fPJzc3F6/Xy+DBg6ts7/r160lKSuKOO+7QYGMRERERERERERERERERERERERGR\nIGHxBlKGVX5WPXv2ZMmSJTXdDPmZTJ06lQ4dOnDPPff85PNyu93Y7XaWL19OSEiIb1D61aL4VKmx\nLKuBAd0AhmLOZBnaHZdVmNutO2zmSvDbKk4byzLFWlxgJMdT5wYjOQAeW9VfRrlUprYpvB4zOYDX\naqt+ogBYPBVGcgAsBpfPlFKvmX4CCC87ZiTHUzvGSA6AxWVuf46hbQqgqNTMPi+0tpnv84UYPMYA\nnCy+8AtOl+M6e4mRHE/odUZyANyGdnemzg8A9j5j7jzrlgXvGMmxlp0wkgNQERZpJsdj7rzFjrn9\nuefP043kWJ963kgOYOx4bPS4Z/IcweYwkmPxmNnXmWRxmzsP9ho8Vxxep62RnKmnco3kADjytxvJ\ncd3U2kjOWabOEeqGmjmH9YSEGsk5q/ik/79mdSkiKax+ogBVRFxvLMtSUW4sK9iY2m+C4X1nEF5f\nYejPC5r8M4Vuav5PHp4vxBt8x1CTKqzmjqEeQ/dbQjwG91Gmts8gPL8Dg/spg/eTrnmGro+91uCr\neWTq/iSAteLKz6POMtVXJaZukgCm7pKEhZg77hm75w24DEWZvLcRajWTZfL8zuQ1rcdR20yOxeDn\nmOB7jmJ0+bxBeOwzdN5i8nlomMVcP5nanxu9njV4DlR02sx5tSPc3DlCLYOXV6aeo9QNM7NPCMpz\nasBlMfQczOT4AVPPdwyea9SqY+Y5ivxnqMjbWtNNkKuELfbuGp1/8F3li5GqtuKf0+nEYrHg9Xqx\nWCxkZmb+5PNMTU0lN/fMw1eLxcKYMWNo1aqV7/dVre+CggJGjBjha+8NN9xAWlraFbVl1qxZbNiw\ngbCwMKZNm1Zt2y7Fzp07mThxom95WrduTUpKyhW1V0RERERERERERERERERERERERERqliobi8hV\nQ5WNA6PKxoFTZeMAqbLxz06VjS+BKhsHTJWNq6fKxoFTZePAqLLxJUSpsnFAVNk4MKpsfGlU2fjq\nFKzVjVTZODCqbPzzU2XjAAXh+R2osnGNUGXjgKiycWBU2ThwqmwcYI4qGwdMlY0Do8rGgVNl48Co\nsnFgVNlY5N9U2VgCVdOVjYPvrqaIiIiIiIiIiIiIiIiIiIiIiIiIiIgEBQ02FhERERERERERERER\nEREREREREREREb802FhERERERERERERERERERERERERERET8sni9Xm9NN0JEJBBlpaU13YSf1DMr\n/9dIzoLftjGSY5rL0NHGbrWYCQIsOgQGxIO5PreiPv+5eS1m1l985jYjOQBv97zVWJbX5jCWdbLY\nbSSnToTdSI5pwbZ8S/7vqJEcgJ63XW8sKxj9pVl7IzlP7N9sJEdE5FzPh7c2lvXGqZ1Gckyfcwbb\nMdQ0E8tnctl2JnY1ltUy5z0jOSavHU2dn3//Un8jOQD1x6cbyxIROevwHwYYy2rwyiwjOV6rwWOx\n12MuKxhZVKvo53ZyzhgjOXUGpRrJCVZf5hcby7q/YYSxLFPchk47bXqO8rPTc5Srm6nrNICuC7YY\nyXnfeZuRHACvvZaxLN0jCYyp5bMVm3uO4q5zg7Gsa/nYYHJ/EBYaaixLrn0VeVtruglylbDF3l2j\n89fdAhEREREREREREREREREREREREREREfErOL8uJCIiIiIiIiIiIiIiIiIiIiIiIiJyLdNfl5Gr\nhLZUERERERERERERERERERERERERERER8UuDjUVERERERERERERERERERERERERERMSva2qw8caN\nG5k6dWql11asWEFcXBxvv/32Zed+9913pKSkXGnzgs7UqVPZtGmT7+cJEyZcVs7q1asv+nuXy4XT\n6aRLly4X/G7evHkcOXLksuZbnZkzZ7J+/fqfJDsYzJ49m6+++uqi01zuOj3f0KFD+eUvf4nH4wEu\nvk7PVVFRwciRI3E6nTidTioqKkhJScHpdNK+fXuSkpJYtGgRKSkpdO/enb59+7J7924jbRYRERER\nERERERERERERERERERGRK3dNDTYGsFgslX6Oj49n4MCBNdSaq8tLL710We9btWoVFRUVVf4+JCSE\nrKws6tWrd8Hv+vfvzw033HBZ8/1P5vF42Lx5M/fee+9Fp7vcdXq+GTNm0KpVK9/PF1un5/riiy9o\n3rw5WVlZzJ49G5vNxqRJk8jKyqJly5ZkZmaSnJwMwJQpU3jttdf405/+ZKTNIiIiIiIiIiIiIiIi\nIiIiIiIiInLlrrnBxps3b6Zv376MHDnS95rX6600TV5eHj179qR79+58/PHHAGzdupXu3bvTvXt3\ntm3bBsCaNWuIj49nxowZF51nXFwcgwcPJjExkWPHjgFnquqOHz8ep9PJtGnT8Hq9pKSk0Lt3b98A\n0NLSUpKSkkhMTCQ9PR2AH374gfj4eJxOJ6tWrQIgJSWFAwcOUFFRgdPpBCA/P5+BAwcyYMAA4uPj\n8Xq9rF27lh49euB0Ojlw4ECV7R05ciTPPPMMW7Zs8b12fpXanTt3kpCQQGJiIosWLaqybYMHD2bX\nrl0kJyczd+5cANatW0d8fDy9evVi//79VbYjNTWVjh07Vmrr2rVrSUhIwOl0smfPHr/vW716ta9S\ndc+ePX39nZKSQo8ePXztPeuTTz7xDWB1Op1MmTKFJ598kq1btwKQlZVFQkICffr04dixY/zud7+j\nuLjY9/7nnnuOAwcOkJiYyJAhQ+jVq5evwu/5fvzxRxITE3n22WeJi4urtm3nOnLkCP369SMpKYkF\nCxYAsHfvXpxOJ0lJSbz//vu+aT/77DM6derky+/fvz/9+/enV69erFu3zres567T1atXM3z4cPr0\n6cPEiROrbMc777xDQkICPXv2rFT5+vzPUSCsViu7du2iuLiYiIiISr/zlxcTE4PVasXtdl/yvERE\nRERERERERERERERERERERETEvGtusHHdunWZP38+0dHRvkHD51uwYAEvvfQSWVlZZGRkADB79mxm\nz57NW2+9xezZswHIzMwkJyen0oBNf4qKipg+fTrJycm+QbAAUVFRZGVlMXToUD755BMaNmzI4sWL\niYmJYfv27ezZs4dGjRqRnZ1Nv379ANi2bRudOnUiKyuLrl27XjCvcys379+/n9mzZ7N8+XK8Xi/z\n588nOzub8ePHM2/ePL9t3bJlCzExMSxYsIA6der4Xj+/Sm2TJk1YunQp2dnZvkGu/to2a9YsWrVq\nRWZmpq+C9IIFC8jJySElJcU3aNafMWPG8MADD/h+9ng8ZGRkkJOTQ1ZWFo0aNaq60/30R9u2bcnJ\nyeHDDz/0vbZ582Y++eQTRo8e7Zu+W7duTJw4kTVr1uB2u/nggw9YtmwZPXr0YOXKldx+++3k5uay\ncuVK3G43VqvVNwB25syZ3HLLLezcudNve1auXEmfPmxQcRAAACAASURBVH2YNm0aRUVFF23b+dLT\n0xkwYACZmZn06NEDgDfeeIPU1FQyMzN55JFHfNO+++67/PrXv/b9PHr0aCwWC/Pnz+err74CLlyn\ncGa9Lly4sMrPBsCjjz7KsmXLmD59um8Q/Pl9HaiOHTvSsmVLfvOb3zB27NhKg7SryouIiOD48eOX\nPC8RERERERERERERERERERERERERMe+aG2zcvHlzAGJjYzl8+LDfaQ4dOkSLFi1wOByEhIQAZ6oM\nR0dHU69ePUpLSwGw2+2EhIQQGxt70Xk2atQIu91ObGwshw4d8r1+5513Amequ+bl5fHRRx+RlJTE\nP/7xDwoKCmjTpg0NGjRg2LBhrFmzBoBOnTpRXFzMsGHD2LBhw0Xn26ZNG2w2GxaLhcLCQg4ePEif\nPn0YN24cZWVlft/z/fffV+qjquTn59OvXz+cTicHDx7E6/VW2Tav11upSu3ZfmvRokWldVBdZdzC\nwkIaNmyIzWYDIDQ09KLTn69p06ZYrVbf+wE2btzoW59nNWvWjMjISEpKSigsLKRBgwYA3HzzzRw+\nfNg32Pjdd9/lo48+8g16btKkCYDvvf4cOnSI2NjY/8/encdHVd/7H3/PZBKSkEBYFNnBFRQVl1p7\nkQumKuB1QVCWkAlBBGQXEWxwwcomXqBgsVRAhGwgNaTyaCnwQ3q9tCKL4NIr8cGqIYKAbEkgJJM5\nvz+4zCUwIQN8MAFfz8ejj8rknPf5nDNnzjbffKKIiAg1bNjwnLWd6dtvv9Vtt90mSYqKipIkHTly\nRI0bNy7z2u7du1WzZs0yg8UjIyNVp04dRUZGnrW+Z24jSapWrVq503zyySfyer0aMWJEmaxg719F\n76nL5dLgwYO1YsUKOY6jf/7zn+ecXpLy8/MVFxdX4XQAAAAAAAAAAAAAAAAAAODSu+IGG+/YsUPS\nya6/pwaRRkZG6tChQ4FpGjZsqG3btqm4uFg+n0+SFB0drYMHD+rHH39UdHS0pJOddktKSgKZ5cnN\nzVVxcbF27typ+vXrB14/fWBps2bN1K1bN6WmpuqDDz5Q+/btVVJSoiFDhmjq1KmaP39+YJ4XX3xR\nL730khYsWBCorbCwUPv37y8zuNPt/r+3r1atWmrZsqVSU1OVmpqqCRMmBK21fv362rlzpyQF/v+U\n07Pff/99DRgwQPPnz1eNGjXkOE7Q2iQpIiJCJSUlgX+XlpaquLhY27ZtK7M9SkpKynS2PXO5tWrV\nUl5eXiDrxIkTQdchOjo6MAh237595eZJ0qBBg9SkSROtWLHirJ+dWuapAeLbt29XgwYNdPPNN2vl\nypXq0qWLMjMz1apVq6B1BNOgQQPt2LFDxcXFysvLO2dtZ2ratKk+//xzSQoMFq9Zs6a+++67Mq8t\nXrxY3bt3D6me8pZ3rjrmzp2ruXPnauLEiWXer+jo6DKfI6n89/SUH3/8MVB3/fr1y0x7Zg2O4+jA\ngQNyHEcej6f8lQIAAAAAAAAAAAAAAAAAAD+ZK26w8dGjR9WnTx/9+OOPgc7C9957r1auXKlnn31W\nktSnTx+NHz9eXq9Xffv2lSQ9++yzGjhwoAYPHhyYLjExUb169QoMVC1PzZo1NWzYML333nvq2rVr\n0GkeeOABff311+rdu7eSk5O1d+9e7dixQwkJCerevbs6d+4sSVq3bp169eqlgQMHqkuXLpKkTp06\naerUqcrKypLL5Qpknv7fbrdb3bt3V2Jionr37q3s7Oygddx55506cOCAkpOTlZ+fL0n6/PPP5fV6\ntXXrViUlJWnTpk1q166dxo0bp9GjRysmJuas2p544olAZnx8vIYPH65FixYFtm9iYqImTZqkp59+\nOjBdp06d1KNHD61cuVInTpyQ1+vVmjVrNGrUKGVkZMjtduvpp59WYmKivF5vYJDtme655x6tWrVK\nU6dODdop+PTtIp0ccJyWlqajR4+e9TOPx6NHHnlEPXr00MKFC/Xkk08qMjJSBQUFat++vfx+/1mD\njc/MOF3Xrl01b948DRs2TDVr1qywttP169dPs2fPltfrVUZGhiTpueee05gxY+T1erVy5UqVlJTo\nm2++qXAA9BdffHHWexpqHffff7+8Xq8yMzPLTPf444+rX79+gdqksu9pMPv27Qu8n1u3blWbNm3K\nrWH06NEaNWqUXnzxxXOuGwAAAAAAAAAAAAAAAAAA+Om4nHO1OEVIEhISlJmZWdlloIq5FPvF999/\nr++//1533323ae7louh/O1pfqZ7+079McuY9FXo37p9SidHZxuMuf7D8+XJxCgyJX3bb3C22+U/N\nOccvmJyPbqmbTXIk6YOEm82ynLAIs6z8Ap9JTmxM1ezQX9XWL/N/9pvkSFLCLVeZZVVFf2lmc+33\nyK6NJjkAcLrnoluaZU07lmOSY33NWdXOodYs1s9y3XISO5tl3ZTxoUmO5b2j1fX53pf7meRIUv1x\ns82yAOCUPa/0N8tq8Ns/mOQ4bsNzsVP+X/y7IriuuF5FVV7+H8eY5MQ+O9Ekp6r6JK/ALOvfGsaY\nZVnxGV12hvE9yk+O71Eub1b3aZLUed5nJjlLvbeY5EiS46lmlsUzktBYrV9Ygd33KL7Yq82yruRz\ng+XxICoy0iwLV77SXZ9Xdgm4TIQ1a12py6+aZ/DLzLm6xOLieL1euVwuOY4jl8ul1NTUyi4poKLa\nytsv1qxZo9mzZwd+3rZtW/XrF9oXRA0aNFCDBg0urvD/lZOTowkTJgTqaNmypVJSUi44b+LEidqy\nZYukk+s+ZswYtWjRwqRWAAAAAAAAAAAAAAAAALjiMPYQlwkGGxvIyMio7BKuWGlpaZVdQrkqqq28\n/aJt27Zq27btpSjpvLRo0cJ0+44ZY/Nb9wAAAAAAAAAAAAAAAAAAoOrg7yABAAAAAAAAAAAAAAAA\nAAAACIrBxgAAAAAAAAAAAAAAAAAAAACCYrAxAAAAAAAAAAAAAAAAAAAAgKAYbAwAAAAAAAAAAAAA\nAAAAAAAgKJfjOE5lFwEAoThSeNwsy+2yyfFYBUly+UtNco6V2tV03Gd3ioiJsPn9lshSu/1A7jCb\nHMNTqeOpZpYlx2+T47L73SSX32cTZPR5kSS57D4zTliESY6rxG4/d8KjjIKM9idJ4T98Y5a1v/ZN\nZllhxTbrGB5lc2yp5rH9vcCC/BKTnDjnR5Mcf/U6JjmS5C44YJLjhIWb5EiSO/dfZlklLdub5ETs\n32qSI0n+arE2OZE1THIkyVV8zCzLXXTEJKe4znUmOZIU5rf5DFty+U6YZTluj0mOy1dkkiNJjifS\nJMcfbpMjSZ78fWZZYUe+N8kpatjaJEeSno9uYZIzo+Ark5xTjhodXmpE2+SUuu3OV5JUWHDxx5e4\nHR8ZVHKS7/aOZlkRhtedZo4fNYkpaXKnSY4kuU/km2WFHf3BJMc5bJNjyalnd163vPd3ldpcI5jd\nr0tyjJ4juEvsru/kt7undTw29/6m90Tffm6S46pm9AxBVfM4FbYnxyTn56D0mhtNctzHbe6tJLvP\njLvQ5rmGJPmja5llORHVTXIK/EbPvCX5jR57x3rsnp/7XXbrV1Bs84y5uNRu/aLDbc6h1VVskiPZ\nPi9zGT1jtnqGcDLsCv4eRaqS6+c32qfcJZbPgAy/mzMSfmCbWdbhOLt7GX+RzbEzLNLueB7tsfue\nL7/A5vMXp0MmOZbXGi7D6zKF2RyHPQe/M8mRpNLYq01yrO73JCmidgOzLFz5Sr/9orJLwGUirOnt\nlbp8OhsDAAAAAAAAAAAAAAAAAAAACIrBxgAAAAAAAAAAAAAAAAAAAACCYrAxAAAAAAAAAAAAAAAA\nAAAAgKAYbAwAAAAAAAAAAAAAAAAAAAAgKAYbXyHWr1+v6dOnm2ZmZWWZZeXk5Ojrr78+7/lmzpyp\ntWvXmtVxqXm9Xvn9/guaNy8vT59++mnI0z/99NPn/HlOTo7Je/jll1+qe/fuGj16dOC11atXq3Pn\nzpoxY0aFNfTq1UuJiYmaNWuWdu7cKa/Xq06dOqljx45KSkrS9u3bdffdd6t3794aO3asSkpKLrpm\nAAAAAAAAAAAAAAAAAKjy3G7+x/9C+18l81R2AbDjcrlM87KystS1a1eTrC1btsjn8+nmm282yauq\nLuY9ODXY+N57761w2k8++aTC6Vq0aKEWLVpccD2n3HbbbZo2bVqZgcXx8fGKjY3VJ598cs55//jH\nP2rKlCmqX7++jh49qho1aigtLU1//vOf5fP59OSTT0qSbrrpJi1YsECZmZnKzs5Wt27dLrpuAAAA\nAAAAAAAAAAAAAABw8Sp/uDPM/M///I8GDBigoUOHSpKOHTumYcOGKSkpKdD1eM2aNerRo4cSEhK0\nbNmywLxPPfWUnnvuOfXo0UM//PCDvF6vtm7dqqSkpHN2x83OztZLL72kpKQkvfzyy/L5fEpMTFTv\n3r0DnXAXLlyo2bNna968eUpKSpLjOEFrO5ePPvpIb7zxhqST3YOnTJmiRx99VJs2bZIkpaWlqUeP\nHurTp48OHjyoF154QQUFBYH5Bw8erNzcXCUmJmrIkCHq1atXuR2If/zxRyUmJmrgwIHq1KmTpJMd\nllNSUtSzZ0/Nnz+/3Dodx9Frr72mJ598Uhs3bpQkrVy5Uj179pTX61Vubq4kaejQofJ6vRo8eLCO\nHTumVatWaeLEiVq6dKmSkpK0b98+OY6jIUOGKCEhQePHjy+znKysrMBA3cTERHXr1k2jRo1St27d\nVFRUpDVr1pzVefjUdnvssccC2y2YM2s717pWJCwsTJs2bZLjOKpRo0aF8z700ENat25dhbkAAAAA\nAAAAAAAAAAAAAOCnQWfjK0hMTIymTZumfv366ciRI8rOzlZ8fLw6d+6sUaNGad++fbrjjju0aNEi\nlZSUKDExUQ8//LAk6dtvv9V7772nmJgYOY6jtLQ09erVS6mpqRUu1+/3KzU1VX6/Xy6XS3/84x8V\nExOjsWPH6ssvv1TPnj0VFRVVppPt4sWLz6rt6quvDpq/ceNG7dmzRxMnTpR0sntwly5d9NBDD2np\n0qW67bbb9Ne//lWLFi3SypUr9ac//Um33nqrtmzZol27dumJJ56Q2+2W2+2Wz+fTzJkz9dprrykn\nJydop+U//elP6tOnj9q2bav7778/8Prtt9+uCRMmKCEhQcnJyeVuj4SEBNWrV0+jR4/WnXfeqblz\n52rhwoXKzc3VnDlz9Prrr2vixImKjY3V7Nmz9fHHH6tTp06qUaOG1q5dq+HDh0uSDh48qIKCAmVm\nZpYZGL1v3z55PB7Vrl1bklS3bl0NHTpUWVlZuuOOO7Rt2za1bdtW1apV09q1awPznbnd7rzzzqD1\nB6vtQo0cOVKTJ0/WjBkzNHLkSHXo0OGc08fGxurIkSMXvDwAAAAAAAAAAAAAAAAAAGCLwcZXkKZN\nm0qSatWqpcLCQu3atUtff/21srKyVFBQoP379+vYsWOaOXOm/H6/Dh8+HJj32muvVUxMjKSTg1Kl\n0DrXSlLr1q0lSW63W8eOHdOrr76qAwcOKC8vLzBQ9cysYLWVN9h4/fr1qlu3bpnXmjVrpt27d6uw\nsFCHDh1SgwYNJEnXXXedPvnkEz322GP617/+pRUrVigmJkaNGjWSJDVp0kSSFBcXp8LCwqDL+/77\n7/XQQw8pIiJCDRs2DLzetGlTud1uhYWFnXN7XHvttYqIiFBRUZEOHTqk3bt3q0+fPpKk+vXry+/3\na8qUKdqxY4d+/PFH9e3bN2hO7dq19etf/1rDhw/XnXfeqd69e0s6OVD7qaeeCkwXFRWlqKgoRUdH\nKzo6WkVFReXWdvp2CybU2kLVoEEDzZgxQ/n5+erevXuFg43z8/MVFxd3UcsEAAAAAAAAAAAAAAAA\nAAB2GGx8BTo1sLdZs2Zq37692rdvr9LSUrndbg0cOFATJ05UXFxcoMuwdHKg8JlODTquyOmDb//x\nj3/o2muv1bRp0/Tiiy8GavF4PGUGwZ5em8/nk8dT/q44aNAgffrpp1qxYoU6dOhw1sDlWrVq6fvv\nv5ckbd++XQ0aNNDNN9+sadOmqUuXLsrMzFSPHj1CWhfp5ADZHTt2qFGjRsrLyzvr5xUNwt6xY4eu\nvvpqRUdHq1atWmrZsqXeffddSVJJSYm2bNmi4uJipaWl6a233iqzjUpKSgI5Pp9PvXr1ktfr1eOP\nP67evXvL7/friy++0JAhQ8pd/un1lfff5SmvtqioKB06dKjMtJGRkWe9dqbdu3erUaNGio6OVvXq\n1SusecWKFbrnnnsqrBMAAAAAAAAAAAAAAAAAAPw0zh5hisveqUHC3bp1U3Z2tnr37q3+/furqKhI\nDz74oAYPHqxJkyYpNjb2rHlOd9ddd2nYsGFauXJlyMu+/fbbtXr1aj377LM6cuRI4PU77rhDf/3r\nXzV69OizahswYICOHz9+ztxBgwYpLS1NR48ePatWj8ejRx55RD169NDChQv15JNPKjIyUgUFBWrf\nvr38fr9atWoVdBsF07VrV82bN0/Dhg1TzZo1z/r5ueZ1uVxKT0/XgAED1K9fP7ndbnXv3l2JiYnq\n3bu3srOz1bx5c3377bfq16+fduzYEZj3pptu0hdffKHRo0fr4MGDOnz4sJKSktStWze1bdtWkrR6\n9Wq1b9/+nNtKkn7/+99r4sSJWrp0qZ599tkK6z6lefPm+u67786qrXbt2oqKipLX61Vubq4kqWXL\nltq+fbuSkpLKff/+8pe/6KmnnlJCQsI5B3xv3bpVvXv3Vk5Ojp544okK6wQAAAAAAAAAAAAAAAAA\nAD8NlxNKu1PgZyohIUGZmZmVXUbA6tWrdc899ygmJqayS6kURwrPPSj9fLhDa9xdIY9VkCSXv9Qk\n51ipXU3HfXaniJgIm99viSy12w/kDqt4mlAYnkodTzWzLDl+mxyX3e8mufw+myCjz4skKcRO/qFw\nwiJMclwldvu5Ex5lFGS0P0kK/+Ebs6z9tW8yywortlnH8CibY0s1j+3vBRbkl1Q8UQjinB9NcvzV\n65jkSJK74IBJjhMWbpIjSe7cf5lllbRsb5ITsX+rSY4k+avFVjxRKDmRNUxyJMlVfMwsy110pOKJ\nQlBc5zqTHEkK89t8hi25fCfMshy3zR9ecvmKKp4oRI4n0iTHH26TI0me/H1mWWFHvjfJKWrY2iRH\nkp6PbmGSM6PgK5OcU44aHV5qRNvklLrtzleSVFhw8ceXuB0fGVRyku/2jmZZEYbXnWaOHzWJKWly\np0mOJLlP5JtlhR39wSTHOWyTY8mpZ3det7z3d5XaXCOY3a9LcoyeI7hL7K7v5Le7p3U8Nvf+pvdE\n335ukuOqZvQMQVXzOBW2J8ck5+eg9JobTXLcx23urSS7z4y70Oa5hiT5o2uZZTkR5f91yPNR4Dd6\n5i3Jb/TYO9Zj9/zc77Jbv4Jim2fMxaV26xcdbnMOra5ikxzJ9nmZy+gZs9UzhJNhV/D3KFKVXD+/\n0T7lLrF8BmT43ZyR8APbzLIOx9ndy/iLbI6dYZF2x/Noj933fPkFNp+/OJ37L0SHyvJaw2V4XaYw\nm+Ow5+B3JjmSVBp7tUmO1f2eJEXUbmCWhStfaa7tM21cucIa31qpyze8EgcuXE5OjiZMmBDovtuy\nZUulpKRc8uV6vV65XC45jiOXy6XU1NQyPy+vG/CaNWs0e/bswM/btm2rfv36XfJ64+PjzbJmz56t\nNWvWSDq5nv3799d99913QVkHDhzQiBEjAtvy6quv1tSpU81qBQAAAAAAAAAAAAAAAAAAlYPBxqgS\nWrRoobS0tJ98uRUtMyMjI+jrbdu2Vdu2bS9FST+Z/v37q3///iZZdevWrZT3DwAAAAAAAAAAAAAA\nAAAAXFq2f5sZAAAAAAAAAAAAAAAAAAAAwBWDzsYAAAAAAAAAAAAAAAAAAAA/McdFv1hcHthTAQAA\nAAAAAAAAAAAAAAAAAATlchzHqewiACAUx44XmWW5XDY5nqN7bYIklcbWswly/DY5klx+n11WaYlJ\nTnF4dZMcSYoozjfJ8UfY1eS4w8yyrLiN3jtLpe7wyi7hkvIUF5hluY8dMsnxxTUyyZEkd3GhWdbe\nN0aZZUU9/5ZJTmR1mz8e4nEbnaz+V0G+zWc5Nqbq/XGUE3anPjOR/hNmWY6nmklOUandrZ/V/ml5\nM2r5mXFVwdtkv2zWz2+4buGO3bWiFX+Y3TWC1aZyG+7pVvuBJIWV2hynnLAIkxzJ7v5jeMytJjmn\njNv3lUlOjWiTGDlu23NxfsHFb3er6x9JCje8BLL8zFgp8dscE6oZtpBwrB6SyO7YWeSzu8ArNtrm\n1cOv7L4dJYbXilZJlp/gqnjdafk5trrWdxkeD6riccpndDz4ObDaz0sNt3lVfPeq4n2o5fWP1SEh\n7NhBmyBJ/qhaZlmu0mKzLCsun819mq9aDZMcSQrz230/YHUvY3n9asXyWZLlvlkaZvNc0ZLVs6lw\n33GTHElyn7D7TqY05iqTHKvjgSS5v/4vs6zD1/7aJCci2u45QkSY3THhSv4epcTwYirM6DjsOXHU\nJEeSTkTEmuRYnmFioqMM03Cl8+3+n8ouAZcJT6NbKnX5V/YTUgAAAAAAAAAAAAAAAAAAAAAXjMHG\nAAAAAAAAAAAAAAAAAAAAAIJisDEAAAAAAAAAAAAAAAAAAACAoBhsDAAAAAAAAAAAAAAAAAAAACAo\nBhvjkli1apWOHj16QfNmZWWZ1jJ+/HiTHK/XK7/fb5JVWRISEi5ovrffflvx8fFau3Zt4LXf/va3\nuu+++5Sbm3vOeefOnauePXuqZ8+eysnJUWpqqrxer37xi1/I6/XqN7/5jbKzs9WxY0d5vV4tX778\ngmoEAAAAAAAAAAAAAAAAAAD2PJVdAK5MH330kW688UbVqFHjvOfNyspS165dzWp5+eWXTXJcLpdJ\nTmW60HUYPHiwHMcp89rYsWNVVFR0zvkKCwv1z3/+UwsXLpTf79fx48fVokULJSUlKSkpSQsWLJDL\n5VJ2draeeeYZPfHEE+rfv7/atGmj2NjYC6oVAAAAAAAAAAAAAAAAAADYobMxQnbixAkNHDhQvXr1\n0rRp0yRJ2dnZ+uCDDyT9X9fcV199VWvWrNGoUaMCXYVTUlI0atQode/eXX/7298k/V+n4O+++04p\nKSnKy8uT1+vV1q1blZSUpI8//jhoHXl5eRo1apQkafr06dqwYUNgGW+++aa8Xq8yMzN14MABeb1e\n9erVKzDvzJkzlZKSop49e2r+/PmSpO3btyspKUk9e/bU6tWrz7kNHMfRlClTtGLFCknSY489plGj\nRqlLly6BTs4vvviiEhMT9Zvf/EaSNGDAgMD8paWlGjZsmLKzszV8+HD16dNHEyZMKHd5GzduVNeu\nXfXKK68oKSkpsN2mTJmixx57TJs2bQo6X3Z2tp5++mklJSWpb9++WrBgQaD+iuTk5KhHjx5KTEwM\nbKOLsX//fuXl5cntdqt69eqB1x3HOauesLAw/fKXv9RXX3110csFAAAAAAAAAAAAAAAAAAAXj8HG\nCNnKlSt1zz33KCMjQ9u2bdMPP/xQ5uenuua+/vrratu2raZMmVKmq3DHjh2VkZGh1NTUMtOf0rBh\nQ6WlpenGG29Uamqq2rVrV24t5XXoveGGG5SWlqYePXqobt26SktLO2ua22+/XRkZGVq+fLkkadq0\naZo4caIyMjKUnp5e7jIdx9G7776rhg0bqkOHDpKkI0eOaPLkyerUqZPWrVunTZs2KTY2Vunp6YqJ\nidHmzZsVHR0tn8+nhQsXavv27brhhhskSU2aNNF7772nzZs3l7vM2bNn69133w0M5D6lS5cuGj9+\nvJYtW1buvL1791bt2rX19ttvKycnp9zpztSkSRMtXLhQ6enpWrp0acjzBVO9enUNHTpUw4YNk9fr\n1f79+yucJzY2VocPH76o5QIAAAAAAAAAAAAAAAAAABueyi4Al489e/aoZcuWkqTmzZufNdi4oq65\nzZs3l8fjkcfjOef0oXTfLU/r1q0lSW53+ePomzZtKrfbrbCwMElSbm6uxowZI8dxKhzkunbtWt1/\n//2Bfzdq1Ehut1txcXEqLCxUcXGxrr/+eknStddeqz179uimm27SypUrtXjxYlWrVk2tWrXS4cOH\n1bRpU0lStWrVyl3esWPHFBcXp8jIyDKvN2vWTLt371ZhYWG580ZFRSkqKqrMvOUN0j5dXl6e3njj\nDRUXF2v37t1yHCek+crToUMHdejQQX/+85+1YMECvfDCC+esJT8/P7BtAAAAAAAAAAAAAAAAAOCK\n5aJfLC4P7KkIWf369bV9+3ZJ0s6dO1WvXj1FR0fr+PHjklSma214eLiKi4vLzL9jxw4VFxfL5/NJ\nOtn19tixY9q3b1+Z6Soa2FreMiUFBjKfrqJBzdddd53eeustpaWlacmSJeUu1+Vyae7cufr444+1\nZ8+eoNn169fXtm3bJJ1c3wYNGqhVq1ZKS0tT79699ac//UmtWrUKqT7p5IDhQ4cOaefOneVOcz5C\nGcj9/vvva8CAAZo/f75q1KgRmCcyMlKHDh0KWl95SktLtXfvXkknt43f7y+3Fsdx5PP59Omnn+rW\nW28NeZ0AAAAAAAAAAAAAAAAAAMClw2BjhOyhhx7SunXrlJiYqOuvv1716tXTPffco1WrVmnq1KmB\nTsGS9O///u8aP368Zs2aFXht+fLl8nq98nq9kqRHH31UY8aM0UcffVRmOY0bN9bIkSO1YcOGoHXU\nqlVL4eHhmjRpkr7//vty6121apW8Xq+2bt2qpKQk5ebmlvn5qUHNQ4YM0YgRI5SUlKSJEyeecxu4\nXC6lpKRo3LhxZTJOufPOO5Wfn6/ExEQVFBSodevWatWqlY4ePapOnTpp3759uuqqq4LWEUy/fv30\nzDPPKDMzM6TpK5pm69atevrpp/X0008rIyMjZnI5BgAAIABJREFU6DTt2rXTuHHjNHr0aMXExARe\nj4+P15w5c/TKK68EXnv44Yf16quvasaMGUGzSktLNXLkSCUmJmrmzJlKSEgot8Z58+YpOTlZTz75\npGJjYytcRwAAAAAAAAAAAAAAAAAAcOm5nFBanQIXKSUlRYMGDVLjxo0ru5TLUmlpqZKTk5WWllbZ\npVSqY8eLzLJCGLMdEs/RvTZBkkpj69kEOf6KpwmRy++zyyotMckpDq9ukiNJEcX5Jjn+CLuaHHdY\nxRP9xNxG752lUnd4ZZdwSXmKC8yy3MfK70B/PnxxjUxyJMldXGiWtfeNUWZZUc+/ZZITWf3sv7Rw\nITxuo5PV/yrIt/ksx8bYrJ+lE3anPjOR/hNmWY6nmklOUandrZ/V/ml5M2r5mXFVwdtkv2zWz2+4\nbuGO3bWiFX+Y3TWC1aZyG+7pVvuBJIWV2hynnLAIkxzJ7v5jeIztX8sZt+8rk5wa0SYxcty25+L8\ngovf7lbXP5IUbngJZPmZsVLitzkmVDNsIeFYPSSR3bGzyGd3gVdstM2rh1/ZfTtKDK8VrZIsP8FV\n8brT8nNsda0fSqOLUFXF45TP6Hjwc2C1n5cabvOq+O5VxftQy+sfq0NC2LGDNkGS/FG1zLJcpcUV\nT/QTc/ls7tN81WqY5EhSmN/u+wGrexnL61crls+SLPfN0jCb54qWrJ5NhfuOm+RIkvuE3XcypTFX\nVTxRCKyOB5Lk/vq/zLIOX/trk5yIaLvnCBFhdseEK/l7lBLDi6kwo+Ow58RRkxxJOhFh09DO8gwT\nEx1lmIYrnS9vS2WXgMuEp2HLyl1+pS4dqIKys7O1ZMmSwIPVLl26qHPnzpd0mTk5OZowYUJgmS1b\ntlRKSkqZacp70Dt79mytWbMmME3//v113333hbRcr9crl8slx3HkcrmUmpp6wetQGdsNAAAAAAAA\nAAAAAAAAAABcWnQ2BnDZoLNxiOhsHDI6G4eGzsY/PTobh47OxqG7kn8jn87GoaGzcejobBwaOhuH\nhs7GoaOzcWjobBw6OhuHhs7GoaGzcejobBwaOhuHjs7GPz06G4emKt6H0tk4dHQ2Dg2djUNDZ+PQ\n0dk4NHQ2Po8sOhuHhM7GoaGzMSoLnY0RqsrubHxlPyEFAAAAAAAAAAAAAAAAAAAAcMEYbAwAAAAA\nAAAAAAAAAAAAAAAgKAYbAwAAAAAAAAAAAAAAAAAAAAiKwcYAAAAAAAAAAAAAAAAAAAAAgnI5juNU\ndhEAEIr9+/MruwQAAAAAAAAAAAAAAACgXFddFVvZJeAy4svbUtkl4DLhadiycpdfqUsHAAAAAAAA\nAAAAAAAAAAD4OXK5K7sCICTsqQAAAAAAAAAAAAAAAAAAAACCYrAxAAAAAAAAAAAAAAAAAAAAgKAY\nbAwAAAAAAAAAAAAAAAAAAAAgKAYbX8ZWrVqlo0ePXtC8WVlZprWMHz/eNK8iCQkJP+nyLgd//vOf\n9fXXXwf+nZ+fr//3//6fSfbbb7+t+Ph4rV27NvDab3/7W913333Kzc0957xz585Vz5491bNnT+Xk\n5Cg1NVVer1e/+MUv5PV69Zvf/EbZ2dnq2LGjvF6vli9fblIzAAAAAAAAAAAAAAAAAAC4eJ7KLgAX\n7qOPPtKNN96oGjVqnPe8WVlZ6tq1q1ktL7/8sllWKFwu10+6vMtB586dy/z7yJEjWrlypR588MGL\nzh48eLAcxynz2tixY1VUVHTO+QoLC/XPf/5TCxculN/v1/Hjx9WiRQslJSUpKSlJCxYskMvlUnZ2\ntp555hk98cQT6t+/v9q0aaPY2NiLrhsAAAAAAAAAAAAAAAAAAFwcOhtXMSdOnNDAgQPVq1cvTZs2\nTZKUnZ2tDz74QNL/dfR99dVXtWbNGo0aNSrQVTglJUWjRo1S9+7d9be//U2S5PV65ff79d133ykl\nJUV5eXnyer3aunWrkpKS9PHHHwetIy8vT6NGjZIkTZ8+XRs2bAgs480335TX61VmZqYOHDggr9er\nXr16BeadOXOmUlJS1LNnT82fP1+StH37diUlJalnz55avXp1uet/av3Wrl2rmTNnSpIee+wxjRo1\nSl26dCnTyfnEiRMaOnSodu3apfXr16t///4aMGCAhg4dKkk6ePCgkpOT1aNHD6Wnp2vXrl2aNGlS\nYP7PPvtMc+fOVUpKisaNG6cuXboEtlsw8+fPV0JCgoYOHVphbacLpbbypKSkKDc3V6WlpfJ6vZJO\nvqdTpkzRo48+qk2bNkmSZs+eXabz8Oeff66RI0dq7dq1SkpKCnQ8Hjt2rHr06KHnnnuu3GXm5OSo\nR48eSkxMDLx/F2P//v3Ky8uT2+1W9erVA687jnPWAOawsDD98pe/1FdffXXRywUAAAAAAAAAAAAA\nAAAAABePwcZVzMqVK3XPPfcoIyND27Zt0w8//FDm56c6+r7++utq27atpkyZUqarcMeOHZWRkaHU\n1NQy05/SsGFDpaWl6cYbb1RqaqratWtXbi3ldQ++4YYblJaWph49eqhu3bpKS0s7a5rbb79dGRkZ\nWr58uSRp2rRpmjhxojIyMs45uDbYMo8cOaLJkyerY8eOWrdunSSptLRUY8aM0bPPPqtmzZpJkmJi\nYvTOO++oqKhIR44c0eLFi5WQkKBFixbpL3/5ixo3bqy8vDzt2bNHH3/8sbZs2aJbb71VktS+fXvN\nmTNHH374YdC6fD6fVq5cqczMTN11111n1dapU6dAbcFUVFtpaWm58wbbNl26dNGECRO0bNkySVL/\n/v3VpUuXwM9bt26tadOm6d/+7d+Umpqqm2++WZK0efNmLVq0KDCQPZgmTZpo4cKFSk9P19KlSyus\n61yqV6+uoUOHatiwYfJ6vdq/f3+F88TGxurw4cMXtVwAAAAAAAAAAAAAAAAAAGCDwcZVzJ49e3T9\n9ddLkpo3b37WYOMzO8GeqXnz5vJ4PPJ4POecvqKcc2ndurUkye0uf/dp2rSp3G63wsLCJEm5ubka\nM2aMevfuHdKA09M1atRIbrdbtWrVUmFhoSRpy5Yt2rdvX5kBuE2bNpWkwHTff/99YFvWr19fhw4d\nksfj0ccff6z//u//1jfffKNbbrlFktSsWTPFxcXp2LFjQWs4dOiQrrnmGkknt/GZtcXFxQVqK297\nlFfbNddcc96Da0/Ve65lBjNgwACNGDFCv/vd78qdJi8vT88884y8Xq927959UfuKJHXo0EFZWVnq\n2rWrFixYEHi9vMHs+fn5iouLu6hlAgAAAAAAAAAAAAAAAAAAGww2rmLq16+v7du3S5J27typevXq\nKTo6WsePH5ekMgN1w8PDVVxcXGb+HTt2qLi4WD6fT9LJzrLHjh3Tvn37ykxX3kDPU8pbpqTAQObT\nVTSo+brrrtNbb72ltLQ0LVmypNzlnhrAfHq9wbJbtWqlGTNmaPLkyfL7/UGX2bBhQ23fvl2O42jv\n3r2qVauWmjRpoq+++kr16tXT0aNHFRMTE9J6xMXFac+ePZKkXbt2VTh9eYLV9sMPP5Q7uLZ69eoq\nLCw87wHa0sn3qaSkpMxrDz74oH73u9/pX//6lw4dOhR0vvfff18DBgzQ/PnzVaNGjUDNkZGRZ80T\nFRVVbo50sgP13r17JZ3ct09/r87cdo7jyOfz6dNPPw10nAYAAAAAAAAAAAAAAAAAAJWLwcZVzEMP\nPaR169YpMTFR119/verVq6d77rlHq1at0tSpUwOdgiXp3//93zV+/HjNmjUr8Nry5cvl9Xrl9Xol\nSY8++qjGjBmjjz76qMxyGjdurJEjR2rDhg1B66hVq5bCw8M1adIkff/99+XWu2rVKnm9Xm3dulVJ\nSUnKzc0t8/NTg5qHDBmiESNGKCkpSRMnTiw37/7779dvfvMbrV+//qyMM9WuXVuPPPKI5s6dW2aa\nU//91FNPKSMjQz179tQjjzyisLAw3XrrrYqIiAj8/5nKW1Z4eLgefPBB9ezZUxs3bqxw+vKcq7Zg\nOnbsqKlTpyorK+ucyxw0aJCys7M1efJkzZgxQ5J09dVXq7CwUKNGjQoMbO7bt6969OihunXrqlat\nWkGX2a5dO40bN06jR48uMxg7Pj5ec+bM0SuvvBJ47eGHH9arr74aWOaZSktLNXLkSCUmJmrmzJlK\nSEgodz3mzZun5ORkPfnkk4qNjQ2aBwAAAAAAAAAAAAAAAAAAflou53xbs6LKSklJ0aBBg9S4cePK\nLuWKtnbtWn322WcaMmRIZZfys7N/f35llwAAAAAAAAAAAAAAAACU66qraLKH0Pn2bK3sEnCZ8NS/\noXKXX6lLx89Wdna2lixZEuhu26VLF3Xu3LmSqzrpYmp7/vnndeDAATmOI5fLpd/97neqU6dOhfPl\n5ORowoQJgWW2bNlSKSkpF74SIfJ6vXK5XIF6U1NTLzirKr+nAAAAAAAAAAAAAAAAAADgwtDZGMBl\ng87GAAAAAAAAAAAAAAAAqMrobIzzQWdjhKqyOxu7K3XpAAAAAAAAAAAAAAAAAAAAAKosBhsDAAAA\nAAAAAAAAAAAAAAAACIrBxgAAAAAAAAAAAAAAAAAAAACC8lR2AQAQqtjqhr8f4bLJOuZzTHIkKdrj\nMslxXDY5kuQuLTHLctw2pxxXyXGTHEkqDY82y7JS6tjtUxH+YpMcl++ESY4k+arVMMnxG24nj/xm\nWVb8rjCzLKtDgstwm1vuU46nmllWfoHPJKfWd/9tkuO7Od4k5xSr9YuNqYK3EE7V+xy7DGuyOof6\nZXeNEFZq9Dk2uiaTJPlLzaJcpTbn0NJIm/OeZHsctuIu/NEsy1+9jk2O4X5eFc+hptf6JUUmOZbn\nYpff5lxl7egxm5xXrr7VJGdGwVcmOadYrF9VvF+XpPySqnfsjDK69zeKkWR77CwssbkGivVUwfsP\nt919WpErwizLbfT2Rfjsnre4fDbnGFeJ3b1jaY1rzLJOGF3qh1u9eZLcsvnMGD7qrLLHKYTG7djc\nX/1o9zHWVco3yTkSZnefVj3c7rrF6nNsec9gdStT4rc7uFSzfIxgdGwJMzrvSXb3V1bPNSTJb3jP\nZ7VPmX6PYvSMy3KbF0fEmmVZno/NGD03tfwexeq8J8nsnvZK/x4lzn/AJEeyvda/kr9HcZ+wuZaS\npGOeGJOciDC7E3tk3ucmOSX1bzHJAYArFZ2NAQAAAAAAAAAAAAAAAAAAAATFYGMAAAAAAAAAAAAA\nAAAAAAAAQTHYGAAAAAAAAAAAAAAAAAAAAEBQDDYGAAAAAAAAAAAAAAAAAAAAEJSnsgsAAAAAAAAA\nAAAAAAAAAAD4uXFc9IvF5YE99Qq2evVqde7cWTNmzLig+bOzs0OaLisrK+TM6dOna8OGDedVx4ED\nB/TOO++c1zzW1q9fr+nTp1dqDRdr5syZWrt27XnPt2fPHnm9XvXq1Svw2pdffqnu3btr9OjR55x3\n7969Sk5Oltfr1euvv66CggJ5vV517txZ8fHxSkpK0qeffqqOHTuqd+/eGjlypAoKCs67RgAAAAAA\nAAAAAAAAAAAAcGkw2PgKFh8fr5deeumC51+yZIlKS0srnO58BhtfiLp162rAgAGXdBmhcLlclV1C\npahfv77S0tLKvHbbbbdp2rRpFc6blpamIUOGKC0tTc8995xiYmKUlpaml156SY8//rhSU1N17733\nqk6dOlqwYIEee+wxzZkz51KtCgAAAAAAAAAAAAAAAAAAOE+eyi4Al5bjOGX+nZOTo9dee00ej0cP\nPPCAkpOT5ff79dJLL2n37t2qV6+epkyZokGDBumbb75RcnKy7rvvPg0YMECzZs3SmjVrFBYWptde\ne03VqlVTSkqKtm7dqqSkJPXt21ft2rVTenq6li1bpujoaE2ZMkVxcXEaOXKkDh06pJKSErVp06bc\ner1er+6++25t2LBBycnJatSokcaOHaumTZvqzTfflCSlpKQoOjpamzdvVr9+/dSpUyctW7ZM7733\nnpo1ayaPx6NJkyZpxYoVmj9/vjwejyZOnKjGjRsrOztbGzduVG5urpo0aaLx48dr7Nix+uabb3TN\nNddU2L04NzdXkydP1pQpUzR37lzl5eVp165d6tChg5KTk7Vp0yZNnjxZkvTiiy9q27ZtqlOnjn79\n619LkmbNmqU2bdpowoQJuvnmm7Vx40bNnDlTTZs2Dbq807fbsGHD5DiO5s6dK5fLpYiICP3+978P\nOl9iYqKKi4vVtGlTffvtt0pNTT3nep3u9ddf19atWxUREaE33nhDV111Vcjznsntdmvz5s1q3bq1\natSoEXj9zP3y1L/btWun995774KXBwAAAAAAAAAAAAAAAAAAbNHZ+GemSZMmWrhwodLT07V06VJJ\n0kcffaSGDRsqLS1N48aNkyT94Q9/UIsWLZSamhroKpyYmKjMzEy98MILSktLU6NGjZSWlqYbb7xR\nqampateunQ4ePKi///3vyszMVJ8+fbR48WJ99tlnqlOnjubNm6fY2NgKa/zVr36l9PR0xcfHq0WL\nFkE76LZv315z5swJrEN6eroyMzPVoUMHSZLf79e7776r9PR0jRs3rky3XL/fr9TUVL3++uuSpM2b\nN2vRokUVdurdv3+/xo8fr0mTJikyMlKSdPvttysjI0PLly+XdHIw8axZs/SHP/xBf/zjH3Xbbbdp\ny5YtWrdunXbu3Klt27apRYsWOnr0qEaOHKmBAwfq73//e9Dlbdq0KbDdTh+oGxMTo3feeUfHjx/X\nkSNHgs5bt25dTZo0SVdddZU6d+6srVu3nnPdTjdixAilpaWpa9eu+vDDD0OeL5hnnnlGO3fuVMeO\nHZWRkRHSPKF00wYAAAAAAAAAAAAAAAAAAD8NOhv/zOTl5emNN95QcXGxdu/eLcdxtGvXLt16662S\npKioqMC0juPIcRy5XC5J0tKlS/W3v/1NPp+vTCfe07vU7t69Wzt27FBSUpJKS0t11113ae/evbr2\n2mslSc2bNz9nfS6XS61bt5Z0situeZo1a6a4uDgVFhYGpg0PDw/kHzp0SLt371afPn0kSfXr1w/M\ne2b+gAEDNGLECDVq1EgjR44sd5mffvqp6tevr7CwsMBrTZs2ldvtDrx2/Phx1a5dO/DfN9xwg+bM\nmaMTJ06odu3a8vl8ioiIUO3atRUTE6NatWppx44dQZe3Z8+ewHZr1qxZmWVKUq1atVRYWKiaNWue\nNW9UVJSioqIUHR2t6OhoFRUVlbteZ5o3b542bNigwsJC3X///YHXz+xGHIqaNWtq4sSJKi4u1pNP\nPqknnnhC0dHRZ013ah+TJI+HwxIAAAAAAAAAAAAAAAAAAFUFo/qucJGRkTp06FDg3++//74GDBig\nu+66Sx06dJDjOGratKm++OILtWvXTkVFRYGuvRERESopKVG1atUC8y5dulSffvqplixZEnR5jRo1\n0p133qmpU6dKkkpKSvTVV1/pyy+/lCTt3LlT7du3L7dex3HOGmx6atDzufj9fhUXFwcG7taqVUst\nW7bUu+++G6jjlNMHC0vSgw8+qP/4j/9Qnz59dOjQIdWqVSvoMh599FHdfffdmjp1ql555ZWg00RH\nR+vgwYNyHEfR0dEKCwuTy+VSZGSk9u3bF8gOZeDuNddcE9huu3btqnD6cwl1oPDhw4e1ceNGpaen\nKysrS7t37w787MwBy1FRUWX2rWDy8vLUsGFDRUREKC4urtw6Tr3+X//1X7rttttCqhUAAAAAAAAA\nAAAAAAAAAFx65beOxRWhZcuW2r59u5KSknT8+HG1a9dO48aN0+jRoxUTEyNJeuCBB5SXlyev16uX\nX345MG98fLyGDx+uRYsWSTrZEdjr9WrlypVlltGkSRONHDlSGzZsUO3atXXHHXfI6/UqKSlJa9as\n0Z133qkDBw4oOTlZ+fn556z39A63krRw4UKNHDlSa9euVVJSko4dOxZ0vsTERPXq1UvLly+X2+2W\n2+1W9+7dlZiYqN69eys7OzvofI7jqG/fvurRo4fq1q1b7kDjU9q0aaOCggJt3rw56M+fffZZDRw4\nUIMHD9bAgQMlnRz43Lx5c0VGRuqWW24Jup7B3HXXXdq3b5/69Omjo0ePnvXzUDLOnPY///M/1adP\nHz399NOBrtCnq1mzpqpXr64+ffpo48aNZ9WTkJCgTZs2SZJq166tqKgoeb1e5ebmBl3uunXr1LVr\nV/Xs2VP33nuvqlevHnS6Q4cOqXfv3vrwww/1zDPPhLxeAAAAAAAAAAAAAAAAAADg0nI5obY8Baow\nn88nj8ejf/zjH9q8ebOGDh1a2SWZmj59utq0aaNf/OIXlV1KpSo6dvYA6Qvmsvldi2M+u0NotCf0\nAeTn4pzHQPSKuEtLKp4oRI7bppm+q+S4SY4klYZHm2VZKTU8LUf4i01yXL4TJjmS5KtWwyTHb7id\nPPKbZVnxu8IqnihEVocEl+E2t9ynHE81s6z8Ap9JTq3v/tskx3dzvEnOKVbrFxtTBf84ilP1Pscu\nw5qszqF+2V0jhJUafY6NrskkSf5SsyhXqc05tDTS5rwn2R6HrbgLfzTL8levY5NjuJ9XxXOo6bV+\nSVHFE4XA8lzs8tucq6wdDf57z+ftlatvNcmZUfCVSc4pFusXW93weG54bsgvqXrHziije3+jGEm2\nx87CEptroFhPFbz/cNvdpxW5Isyy3EZvX4TP7nmLy2dzjnGV2N07lta4xizrhNGlfrjVmyfJLZvP\njOGjzip7nEJo3I7N/dWPdh9jXaVzN7MJ1ZEwu/u06uF21y1Wn2PLewarW5kSv93BpZrlYwSjY0uY\n0XlPsru/snquIUl+w3s+q33K9HsUo2dcltu8OCLWLMvyfGzG6Lmp5fcoVuc9SWb3tFf69yhx/gMm\nOZLttf6V/D2K+4TNtZQkHfPEmOREhNmd2CPzPjfJKal/i0mOJFWrbnc8x5WvZO/2yi4Bl4nwa66r\n1OVXvTMccAE++OADffjhh/J4PJoyZcpFZXm9XrlcLjmOI5fLpdTUVKMqyzdx4kRt2bJF0skuxGPG\njFGLFi0CPy+vi/GBAwc0YsSIQL1XX321pk6dGtIys7OztWTJkkB2ly5d1Llz5wteh8rYbgAAAAAA\nAAAAAAAAAAAA4NKiszGAywadjUNDZ+PQ0dk4NHQ2/unR2Th0VfE38ulsXAnobBwSOhuHjs7GoaGz\ncYg5dDYOGZ2NQ0Nn49DR2Tg0dDYOEZ2NQ0Zn49DQ2Th0dDb+6dHZODR0Ng4NnY1DR2fj0NDZOHR0\nNg4NnY1DR2fj0FTF71HobBwaOhujspT8sLOyS8BlIrxe80pdvuEtGQAAAAAAAAAAAAAAAAAAAIAr\nCYONAQAAAAAAAAAAAAAAAAAAAATFYGMAAAAAAAAAAAAAAAAAAAAAQbkcx3EquwgACMXxoqLKLuEs\nrip4CHVcLrMsy/Xzy6Yuw9UzY7mdXH6fWZbj9tjkGG50d2mJSY7VuqGSOP7KriCo/EKbuiKr2+yf\n7g+nmuSccuyB4SY51WPCTXLcqnrnUEtW5z3JbltZHs+tTn2W+4HlNrdSFffzqnhet2R5jWC1rari\nPYNUNdfP6nNs/dnLL7C5Rq8RbRKj4TG32gT9r3H7vrrojCij6x9J8hgezr/Nr3rHqb35xSY5v2xQ\n3SRHkvYU2t2HFvttPn+1I+32qVKj41TeUbv96Za61cyyrI7nB4+XmuRIUqTlB9lIqdG+KUlR4TY9\nXMINN9OPRTb3s9sOHjfJkarmccrqGPVzUC+66j17iwyz+dAc89ntB0dO2B076xteT1mxOsdY3hKZ\nXutbPaN02fX2srxnr4qs7h+v9O9Rquxnpoqpqt+HWrF81ml5aCkwus92R4aZ5EjSkVefMcuKHfOO\nSY7VcxLLW6sThl/NGV2WKa/A7j7b6vq1msfuvB4VGWmWhStfyQ87K7sEXCbC6zWv1OXT2RgAAAAA\nAAAAAAAAAAAAAABAUAw2BgAAAAAAAAAAAAAAAAAAABAUg40BAAAAAAAAAAAAAAAAAAAABMVgYwAA\nAAAAAAAAAAAAAAAAAABBMdj4MrB69Wp17txZM2bMuKD5s7OzQ5ouKysr5Mzp06drw4YN51XHgQMH\n9M4775zXPNbWr1+v6dOnV2oNF2vmzJlau3Zt0J999tlneuuttyRJCQkJZstcvHixOnXqpA8++CDw\n2ttvv634+Phyazll6dKl6tGjh3r27Kk1a9Zo2bJl8nq9uu+++9StWzf17dtX69evV3x8vLxer9LS\n0szqBgAAAAAAAAAAAAAAAAAAF8dT2QWgYvHx8YqNjdUnn3xyQfMvWbJEjz32mMLCws45XVZWlrp2\n7XpBywhF3bp1NWDAgEuWHyqXy1XZJVwyixcv1vPPPy/Jdj27deumiIgI+Xy+wGuDBw+W4zgVzpuZ\nmalFixZJkvLz8xUbG6uHH35YKSkpGjRokBo3bqz169fr8ccf1/Dhw/X888+rbdu2atasmVn9AAAA\nAAAAAAAAAAAAAADgwjDY+DJx5qDOnJwcvfbaa/J4PHrggQeUnJwsv9+vl156Sbt371a9evU0ZcoU\nDRo0SN98842Sk5N13333acCAAZo1a5bWrFmjsLAwvfbaa6pWrZpSUlK0detWJSUlqW/fvmrXrp3S\n09O1bNkyRUdHa8qUKYqLi9PIkSN16NAhlZSUqE2bNuXW6/V6dffdd2vDhg1KTk5Wo0aNNHbsWDVt\n2lRvvvmmJCklJUXR0dHavHmz+vXrp06dOmnZsmV677331KxZM3k8Hk2aNEkrVqzQ/Pnz5fF4NHHi\nRDVu3FjZ2dnauHGjcnNz1aRJE40fP15jx47VN998o2uuuabC7sW5ubmaPHmypkyZorlz5yovL0+7\ndu1Shw4dlJycrE2bNmny5MmSpBdffFHbtm1TnTp19Otf/1qSNGvWLLVp00YTJkzQzTffrI0bN2rm\nzJlq2rRp0OWdvt2GDRsmx3E0d+5cuVxYQ6tgAAAgAElEQVQuRURE6Pe//33Q+RITE1VcXKymTZvq\n22+/VWpqarnrdCq/Xr16kiSfz6ff/va3ZWoLtt3OtG/fPg0fPlwej0etWrXSiy++KOnsfTBU+fn5\n2rp1q2644QbFxsZWOP0DDzygDRs2MNgYAAAAAAAAAAAAAAAAwJXtCm6ciSuLu7ILwIVp0qSJFi5c\nqPT0dC1dulSS9NFHH6lhw4ZKS0vTuHHjJEl/+MMf1KJFC6Wmpga6CicmJiozM1MvvPCC0tLS1KhR\nI6WlpenGG29Uamqq2rVrp4MHD+rvf/+7MjMz1adPHy1evFifffaZ6tSpo3nz5oU0aPRXv/qV0tPT\nFR8frxYtWmjatGlnTdO+fXvNmTMnsA7p6enKzMxUhw4dJEl+v1/vvvuu0tPTNW7cOM2ZMycwr9/v\n///s3XtYVOXe//HPDAeBQEXI0tyKZoWWaVr+2j9zW+7ycD3bUixFZAbJ3KZm6iZNtGxvD2ilpTuu\nDp7SGUDT0qytqdnBrXlI093hebCfqTwqWoiCCKIwzPz+8HEewQEx7wTd79d1dSVr7vVZ33XPmjVr\n1tzcyOFwaPLkyZKk3bt3a+nSpT63c6Fjx45p6tSpmj59uoKCgiRJbdu2VXp6utauXSvp3GDit956\nS2+++abefvtt3X333crMzNT27dt14MAB/fTTT4qOjlZBQYGSkpI0bNgwffHFFz63t2vXLm+/1a1b\n17s8NDRU77zzjoqLi3Xy5Emf60ZGRmr69Om68cYb1bt3b+3du7fS/ao4M3VltVXst4rq16+vxYsX\ny+l0au/evTpx4kSl26yOl156SZMnT1ZMTIz27dt3yfahoaHKy8u7om0CAAAAAAAAAAAAAAAAAAAz\nmNn4GpWdna0ZM2aopKREhw8flsfjUVZWltq0aSNJCg4O9rb1eDzyeDyy/M9vQXz00Uf65JNP5HK5\nys3Ee+HMtYcPH9b+/ftlt9tVVlamDh066Oeff1aLFi0kSc2bN6+yPovFonbt2kmSrNbKx7RHRUWp\nfv36Kioq8rYNCAjw5ufl5enw4cNKTEyUJDVq1Mi7bsX8oUOHasyYMWrSpImSkpIq3ea2bdvUqFEj\n+fn5eZc1a9ZMVqvVu6y4uFgNGjTw/vu2227TvHnzdPbsWTVo0EAul0uBgYFq0KCBQkNDFR4erv37\n9/vc3tGjR739duFsvef7Pjw8XEVFRapXr95F6wYHBys4OFghISEKCQnRmTNnKt2vrVu36qmnnvL+\nXFltl3pe8vPz9dJLL6moqEj79+9XUVGRty9+jY4dO8rpdHpnWH799derbF9YWKjw8PBfvT0AAAAA\nAAAAAAAAAAAAAGAOMxtfI4KCgsrN9vree+9p6NChWrRokerWrSuPx6NmzZrp22+/laRyg1IDAwNV\nWlpabt20tDSNHj263ADjCzVp0kTt27eXw+FQenq6Ro4cqUaNGunAgQOS5P1/ZTwej/z9/S9aVtn2\nznO73SopKfEOjg0PD1erVq3kcDjkcDg0depUb9sLBwtL0iOPPKLXX39dP/zwQ5Uz4/bq1UtPP/20\nZs2aVWmbkJAQnThxQsePH1dISIj8/PxksVgUFBSknJwc72DYS+2PJN18883e/srKyrpk+6pUtr3N\nmzerU6dO1Wpbsd8qWr16tbp16yaHw1FuUHnFY7CyZRUdPnxYknTTTTfJ7XZX2u58vRs2bNC9995b\nZSYAAAAAAAAAAAAAAAAAALg6GGx8jWjVqpX27dsnu92u4uJidenSRVOmTNG4ceMUGhoqSXr44YeV\nnZ0tm82mF154wbtu165dNWrUKC1dulTSuZltbTab1q9fX24bTZs2VVJSknbs2KEGDRronnvukc1m\nk91u16ZNm9S+fXvl5uZq0KBBOnXqVJX1np9F+bwlS5YoKSlJW7duld1u1+nTp32uFx8fr4EDB2rt\n2rWyWq2yWq3q37+/4uPjlZCQoJUrV/pcz+PxaPDgwYqNjVVkZOQlZ8bt1KmTCgsLtXv3bp+PP/30\n0xo2bJhGjBihYcOGSTo38Ll58+YKCgrSnXfe6XM/fenQoYNycnKUmJiogoKCix6vTkbFtq+++qoS\nExP15JNPqrCwUCtWrFBMTMyvzr3Q/fffr3fffVcjRoy4aPn69ev19NNPe5d17dpV8+bN04svvlhp\n3vTp0zVgwACNGzeu3MzLFX300Uey2Wxq27btJWfOBgAAAAAAAAAAAAAAAAAAV4fFU52pWYGrxOVy\nyd/fX5s3b9bu3bs1cuTImi7JqNmzZ6tTp0667777jGV6PB6tXr1af/rTn4xl1lbFF8zYXVtYauEp\n1PMrB5r7YnL/3DJTl8HdM8ZkP1ncLmNZHqv/pRtVJ8dgp1vLSi/dqBpM7RtqiKfyme5r0qkiM3UF\n3WDm+LSuqvyvMPwapx8eZSTnhtAAIzlW1b73UJNMve9J5vrK5Pnc1FufyePAZJ+bUhuP89r4vm6S\nyWsEU31VGz8zSLVz/0y9jk2/9k4VmrlGrxtiJEajQtuYCfofU3K+v+KMYEPXP5Lkb/B0/t+nat95\n6udTJUZy/k/jG4zkSNLRInOfQ0vcZl5/DYLMHVNlhs5T2QXmjqc7I+sYyzJ1Pj9RXGYkR5KCTL6Q\nDSkzdGxKUnCAmTlcAgx20/EzZj7P/nSi2EiOVDvPU6bOUf8ObgqpfffegvzMvGhOu8wdByfPmjt3\nNjJ4PWWKqfcYkx+JjF7rm7pHaTE3t5fJz+y1kanPj9f79yi19jVTy9TW70NNMXmv0+SppdDQ52xr\nUNV/jflynJxU+YRnlytswjtGckzdJzH50eqswa/mDF2WKbvQ3OdsU9evdfzNva8HBwUZy8L1rzQn\nq6ZLwDUioGFUjW6/9n1yxb+1999/X6tWrZK/v79mzpx5RVk2m00Wi0Uej0cWi0UOh8NQlZVLSUlR\nZmampHMzC0+YMEHR0dHexyubbTg3N1djxozx1tuwYUPNmlW9AUYWi+VXDzT+y1/+otzcXG8fvf76\n64qIiPhVWZs2bdLcuXO9+9i5c2cNGTLkV2UBAAAAAAAAAAAAAAAAAIDagcHGqFViY2MVGxtrJMvp\ndBrJuRwTJkyo8vFRo3zPKBgZGVkj9b722mvGsjp37qzOnTsbywMAAAAAAAAAAAAAAAAAADXP3Pzv\nAAAAAAAAAAAAAAAAAAAAAK4rDDYGAAAAAAAAAAAAAAAAAAAA4BODjQEAAAAAAAAAAAAAAAAAAAD4\n5F/TBQAAAAAAAAAAAAAAAAAAAPzbsTBfLK4NFo/H46npIgCgOo4dO1XTJQAAAAAAAAAAAAAAAACV\nuvHGsJouAdeQ0mMHa7oEXCMCbmxao9tnWDwAAAAAAAAAAAAAAAAAAAAAnxhsDAAAAAAAAAAAAAAA\nAAAAAMAnBhsDAAAAAAAAAAAAAAAAAAAA8InBxgAAAAAAAAAAAAAAAAAAAAB8YrDxFfr888/Vu3dv\nzZkz51etv3Llymq1++CDD6qdOXv2bO3YseOy6sjNzdU777xzWevUlNTUVG3durWmy6h1pk6dWu7n\nDRs2qKCg4Ipzjx49KpvNpoEDB3qXfffdd+rfv7/GjRtX5bo///yzBg0aJJvNpsmTJ6uwsFA2m029\ne/dW165dZbfbtW3bNvXo0UMJCQlKSkpSYWHhFdcMAAAAAAAAAAAAAAAAAADMYLDxFeratasmTpz4\nq9dfsWKFysrKLtnucgYb/xqRkZEaOnTob7oN/LZeeOGFcj9/9tlnys/Pv+LcRo0ayel0llt29913\n67XXXrvkuk6nU88884ycTqdGjx6t0NBQOZ1OTZw4UY899pgcDofuv/9+RUREaPHixXr00Uc1b968\nK64ZAAAAAAAAAAAAAAAAAACYwWBjAzweT7mf9+zZo9jYWMXHx2vRokWSJLfbreTkZNlsNj333HOS\npOHDh+vHH3/UoEGDvLMKv/XWW4qLi5PNZtO+fft0+PBh2Ww27d27V3a7XRs3bpQkpaWlKS4uTk89\n9ZR3QGlSUpKefPJJffPNN1XWa7PZNGfOHMXHx2vDhg3as2fPRbPUJicna8qUKYqJidEnn3wiSVqz\nZo2eeOIJjR07VsnJyZKkdevWacCAAbLZbDp06JCkc7M1T5w4UXa73TsA9qWXXlJsbKxGjx5daV0r\nV67U+++/L0mKi4uTdG4W4+TkZA0YMMDbl+d99tlnmjFjhnefZs6cqV69emnXrl2Szg10jY2NVWJi\nok6cOKHnnnuu3Ky5I0aM0KFDhxQfH69nnnlGAwcOlNvt9lnb8ePHFR8fr2HDhqlnz56XrK1if1+q\nNl+ys7M1duxYSf87W/XXX3+tP//5zxo6dKhGjhwp6dys1BVnHp40aZI2bdqksWPHemc83rNnj2Ji\nYmSz2fTPf/6z0nonT54sm82mwYMH69ixY5W2qw6r1ardu3fL5XKpbt263uUVXzPnf+7SpYu+/fbb\nK9omAAAAAAAAAAAAAAAAAAAwh8HGv4GmTZtqyZIlSktL00cffSTp3MDYW265RU6nU1OmTJEkvfnm\nm4qOjpbD4fDOKhwfH6+MjAw999xzcjqdatKkiZxOp26//XY5HA516dJFJ06c0BdffKGMjAwlJiZq\n2bJl+uabbxQREaGFCxcqLCzskjX+/ve/V1pamrp27aro6Gifs9Q++OCDmjdvnncf0tLSlJGRoe7d\nu0s6N4B6wYIFSktL05QpU8rNSOt2u+VwODR58mRJ0u7du7V06dJqzYYrSRaLxfvvtm3bKj09XWvX\nrvUu27lzpz777DONHz/e2z4mJkbTpk3TmjVr5HK5tHr1ai1dulQDBgzQ8uXL1aZNG2VmZmr58uVy\nuVyyWq2yWq1yuVxKTU3Vbbfdpj179visZ/ny5UpMTNScOXNUUFBQZW2+9qWy2mJjY7V8+fJq9cN5\noaGheuedd1RcXKyTJ08qMjLyopmHJ0+erM6dO2vmzJneAd9fffWV7Ha7nE6nHnjggUq3OWbMGDmd\nTvXt21erVq2qtF11PPXUUzpw4IB69Oih9PT0aq1TnZm+AQAAAAAAAAAAAAAAAADA1eFf0wVcj7Kz\nszVjxgyVlJTo8OHD8ng8ysrKUps2bSRJwcHB3rYej0cej8c7qPSjjz7SJ598IpfLpWbNmpVrd97h\nw4e1f/9+2e12lZWVqUOHDvr555/VokULSVLz5s2rrM9isahdu3aSzs08W5moqCjVr19fRUVF3rYB\nAQHe/Ly8PB0+fFiJiYmSpEaNGnnXrZg/dOhQjRkzRk2aNFFSUlKV9VXUrFkzWa1W+fn5eZd9/fXX\nioyMvKjew4cPq6ioSHl5eWrcuLEk6dZbb9WWLVv06KOP6ocfftC6desUGhqqJk2aSDo3OFxSuX2t\n6MiRI+rWrZsCAwN1yy23VFmbL5XV1rJlS23duvWy+0OSwsPDVVRUpHr16lVrvT59+ig1NVWff/65\nhg0bplatWvlst3DhQu3YsUNFRUV66KGHvMsrzkZcHfXq1VNKSopKSkr0+OOPq0+fPgoJCbmo3YWD\nqv39OS0BAAAAAAAAAAAAAAAAAFBbMLOxAUFBQcrLy/P+/N5772no0KFatGiR6tatK4/Ho2bNmunb\nb7+VJJ05c8bbNjAwUKWlpeXWTUtL0+jRoysd3NmkSRO1b99eDodD6enpGjlypBo1aqQDBw5Ikvf/\nlfF4PBcN6Dw/6LkqbrdbJSUl2r9/v6Rzg11btWolh8Mhh8OhqVOnettWHHz7yCOP6PXXX9cPP/xQ\nrq8uFBISouLiYklSTk6Oz7rPGz58uJo2bap169Zd9Nj52o4cOSJJ2rdvnxo3bqzWrVtr/fr1iomJ\nUUZGhu66664q9/dCjRs31v79+1VSUqLs7Owqa7vUY75q8+XC/jh27Ngla6y4nYCAAJWUlHh/Dg0N\n1aRJk5SQkKD333/fZ0Z+fr527typtLQ0xcfHl8u88LiVzg2ar+y5PO98XwUGBqp+/fqV9tP55V9+\n+aXuvvvuKjMBAAAAAAAAAAAAAAAA4HrgsVj5j/+q9V9Nq/kKrgOtWrXSvn37ZLfbVVxcrC5dumjK\nlCkaN26cQkNDJUkPP/ywsrOzZbPZ9MILL3jX7dq1q0aNGqWlS5dKOjcjsM1m0/r168tto2nTpkpK\nStKOHTvUoEED3XPPPbLZbLLb7dq0aZPat2+v3NxcDRo0SKdOnaqy3gtnkZWkJUuWKCkpSVu3bpXd\nbtfp06d9rhcfH6+BAwdq7dq1slqtslqt6t+/v+Lj45WQkKCVK1f6XM/j8Wjw4MGKjY1VZGSkwsPD\nfbbr2LGjNmzYoFmzZvmcKbhi3cOHD5fT6VRBQcFFj/n7++tPf/qTYmNjtWTJEj3++OMKCgpSYWGh\nHnzwQbnd7osGG1fMuFDfvn21cOFCPfvssz5nEq5q3erU5kt4eLgCAgI0ffp07+BkX7kbNmyQzWbT\n3r17ZbfbdejQIUnSH/7wB02dOlVvvfWWJOkf//iH4uPjNW3aNPXs2dPnNuvVq6cbbrhBiYmJ2rlz\nZ7nHOnTooLi4OO3atUuS1KBBAwUHB8tms3m3WdH27dvVt29fDRgwQPfff79uuOEGn+3y8vKUkJCg\nVatW6amnnvLZBgAAAAAAAAAAAAAAAAAAXH0Wz6WmswX+h8vlkr+/vzZv3qzdu3dr5MiRNV1SjYiL\ni1NGRkZNl/Fv6dixqgfSAwAAAAAAAAAAAAAAADXpxhvDaroEXENKcg/XdAm4RgRGNqnR7fvX6NZx\nTXn//fe1atUq+fv7a+bMmVeUZbPZZLFY5PF4ZLFY5HA4DFV55S5VW2WzGG/atElz5871Pt65c2cN\nGTKkWttMSUlRZmamN3/ChAmKjo6+gr24tJUrV2rFihXeemNiYtS7d+9fnVebn1MAAAAAAAAAAAAA\nAAAAAPDrMLMxgGsGMxsDAAAAAAAAAAAAAACgNmNmY1wOZjZGddX0zMbWGt06AAAAAAAAAAAAAAAA\nAAAAgFqLwcYAAAAAAAAAAAAAAAAAAAAAfPKv6QIAoLrqBpUZy/L4BRjJOV1mMZIjSSH+ZrLyzrqN\n5EhS/SA/Y1mnzpp5/up7iozkSJKrTl0jOVaPuWPTUlZqLEsWM8eUxy/QSI4keQzVZC05bSTnXJi5\n47zMr46RHL9Sc/tXbA0ykhPkZ+585398v7Gsn0OaGcuqU+YxkhN2g6Hf57OY/b3AU4UuIzn1/t8n\nRnLc7XsZyZHMHVMefzOvF0myeMy9H7vqm/lzOIFH/9NIjiTJbeZ4ckW2MJJjnKHXnzsg2EiOZPAa\nweCxafI8Zer63Hr2lJEcSXLXMfNn7iyGXi+SZCktNpflKjGSUxZ6o5EcSfL7bp2RnDNtuhvJ8eYV\nmXkOTV0juAzPHVBsYP9ebNjGQCXnzD6daSwrIPcnY1mmWIoLjOSU/K69kRxJshbnGcvyKzpuJMdz\n4qiRHEmyBJj5TOuOjDKSI0keq7nb8ibfZ4wxdI1gcZ01kiNJFoP3ETz+ho6pGyKM5EiS9b//ZSYn\n+AYjOVLtPE/5nzhoJOffgatBUyM51uKTRnIkqSzsJiM5foXHjORIkjvI3J/GdgeHmwkyeT/C0HWn\nmTtu5wSYu0Vp7LuUenXM3V8uLLl+v0eRJKuho8HkNYKp7wdMXt+5Ze5A9ysz1Fcec6/kEkPfowS6\nzdzXkKQSq7nvwUydp0x+nj1e19w9WEuJmXNnWKjBoUoG3/tOFZnJCj+y1UiO6/bORnIks9dAngAz\n36X45R02kiNJ7tBIM0Em75/L3LUiANQWzGwMAAAAAAAAAAAAAAAAAAAAwCcGGwMAAAAAAAAAAAAA\nAAAAAADwicHGAAAAAAAAAAAAAAAAAAAAAHzyr+kCAAAAAAAAAAAAAAAAAAAA/u1YmS8W1waOVAAA\nAAAAAAAAAAAAAAAAAAA+Mdj4GrZp0yZt3LjxstfLzs7Wtm3bfoOKLs+pU6f06aefXvZ6X3/9tWbP\nnv0bVPTbyc3N1TvvvGM086233rrk8zh16lQj2xo5cqQ6duwot9stSSotLZXNZlP37t2rXK+srExJ\nSUmy2Wyy2WwqKytTcnKybDab7r33Xtntdi1atEjJycnq37+/Bg8erL179xqpGQAAAAAAAAAAAAAA\nAAAAXDkGG1/DOnfurC5dulz2erVlsPHJkye1fv36X7WuxWIxXM1vKzIyUkOHDjWW53a7tXPnTt1/\n//1VtnvhhReMbO+NN95QdHS09+eAgAA5nU5FRkZWud7mzZvVokULOZ1OvfXWW/Lz89P06dPldDp1\nxx13yOFwaNCgQZKkmTNn6pVXXtGMGTOM1AwAAAAAAAAAAAAAAAAAAK6cf00X8O8kOTlZ4eHh+v77\n79WzZ0/17t1b48ePV35+vtq3b6/Ro0frl19+0ciRI1WnTh316dNHMTExSk5Olsvl0sGDBzVo0CD1\n7NlTK1eu1Ny5czV48GA9/vjjks7N+Pvee+/p+PHjCgoK0ttvv62RI0cqPz9fdevW1auvvqotW7Yo\nNTVVBQUF2rVrl2bOnKl69epp9OjRKigoUIcOHfSXv/xFkryzz+7YsUMJCQlavXq1Jk2apAYNGigp\nKUkTJkxQRETERfuZnZ2tyZMny+PxKD8/X++9956mTJmivXv3KjAwUDNmzFB2dramT5+u7Oxs2e12\njR8/Xq1bt9asWbP0r3/9S+Hh4Zo1a5YCAgIq7c9Dhw7p5Zdf1syZMzV//nxlZ2crKytL3bt316BB\ng7Rr1y69/PLLkqTnn39eP/30kyIiIvTHP/5R0rmZgTt16qRp06apdevW2rlzp1JTU9WsWTOf20tK\nSlJeXp5KS0v17LPPyuPxaP78+bJYLAoMDNQbb7zhc709e/bopZdeUrNmzfTKK694j4WQkBDt3r1b\nQ4YMUc+ePfXVV1/p1VdfVVhYmCZOnKjo6Gg9/vjjatasmQ4dOqQZM2aoRYsWkqQvv/zSO9A8NTVV\n3377rSTp9OnTSkhIULdu3WSz2ZSTk6N169ZJklauXKkvv/xSBQUFatmypSZOnOiz3g8++EDLly+X\n1WrVmDFjdN9990mSPB5Ppc9FZaxWq3788UcVFhYqNDS03GO+8iIiImS1WuVyueTvz+kJAAAAAAAA\nAAAAAAAAAICaxszGV9ltt90mp9Op/v37a9myZeratascDoeys7OVk5Oj3bt3q0uXLnI6nerdu7d3\nvR49eig9PV0Oh0OS1KdPH58z5R47dkyLFi3Sm2++KUlKSUmR0+lU27ZttXHjRj388MOaMGGCHnvs\nMTkcDjVs2FDr169Xx44dlZ6err179+qXX37x5v3+979XWlqa/vjHP6p79+769NNPVVJSoqKiIp8D\njc/LysrSW2+9pffee08Wi0VjxoyR0+lU3759tWrVKrVr106vvfaa/u///b9yOBxq3bq1MjMzlZub\nK6fTqQceeKDKWY+PHTumqVOnavr06QoKCpIktW3bVunp6Vq7dq2kc4OJ33rrLb355pt6++23dffd\ndyszM1Pbt2/XgQMH9NNPPyk6OloFBQVKSkrSsGHD9MUXX/jc3q5duxQREaGFCxeqbt263uWhoaF6\n5513VFxcrJMnT/pcNzo6Wq+99tpFyx988EHNmzdPq1atkiR99tlneuGFF+R0OnX77bdLkk6dOqUX\nX3xRkydP1qJFi7zrfvjhh+rTp4/35/Hjx8tisWjBggXeWat9zTzctGlTvfvuu9q9e3elfdutWzct\nXbpUf//73zV37lzv8l8zm/QDDzygO+64Q3379tXEiRPldrsvmRcaGqr8/PzL3hYAAAAAAAAAAAAA\nAAAAADCPwcZXWbt27SRJfn5+ysrKUkZGhmw2m3766ScdO3ZMXbp0UWFhoZ599llt377du17z5s3l\n7+8vPz8/7zJfM8Oez7darXK73Zo5c6ZsNps+/PBDnT592mdNR48eVcuWLSVJLVq0KDfY+MK8Bx98\nUBs3btTmzZv1hz/8ocr9vOuuu+Tn5+cdULpw4ULFx8dr3rx5ldZx4MAB7dq1S3a7XStWrKhywOm2\nbdt0+vTpcv3RrFkzWa1W77Li4mI1aNBAERERKi4u1m233aYDBw5o8+bN+vLLL+VyuRQYGKgGDRoo\nNDRU4eHhKiwsrLSPzs8qHBUVVW6bkhQeHq6ioqIq+6SiqKgo1a9f39sfgwYN0ocffuid4VqS6tWr\np/r16ysqKkpHjx6VJB0+fFj16tVTWFiYNysoKEgREREKCgpScXFxpds8X2+dOnUqbbNlyxbZbDaN\nGTOmXJav4+1Ssx1bLBaNGDFC69atk8fj0VdffVVle+ncAOv69etfsh0AAAAAAAAAAAAAAAAAAPjt\nMdj4KvP39/f+OyoqSsOHD5fT6dTy5ct15513ys/PT88//7wmTpyoxYsXe9vu379fJSUlKisrK5dX\ncbDnhYNvMzMzVVJSIqfTqR49enjb+vv7q7S01NuuUaNG2rdvn6RzA35vuukmn/UGBwcrODhYK1as\nUPfu3avcT6v1fw+t/Px87dy5U2lpaYqPj6+0jqioKO9Mz0uXLlW/fv0qze/Vq5eefvppzZo1q9I2\nISEhOnHihI4fP66QkBDv4OegoCDl5OQoPDxc0qUHzErSzTffrAMHDkg6N2vz5fJ4PJVu5/zym2++\nWVOnTlXXrl31ySefSJJOnjypvLw8HThwQI0aNZIkLVu2TP3796/2di9nuSTNnz9f8+fPV0pKSrmZ\niENCQpSXl1eubWlpabk2FR0/flxnzpyRdO44u7BtxRo8Ho9yc3Pl8XjKHXcAAAAAAAAAAAAAAAAA\nAKDmMNi4BvXr108rV65UQkKChg4dquLiYm3fvl0DBw7UsGHDFBMT4227du1a2Ww22Ww2SdKkSZM0\nb948LVy4UC+++KLP/ObNm+vgwYMaMmSI9u/f711+xx136Ntvv9W4ceN04sQJdevWTdu3b1d8fLxa\ntmzpHWx8flbiCz3yyCMqKChQRB3yaZUAACAASURBVERElft24br16tXTDTfcoMTERO3cudO7vGHD\nhioqKtLYsWO1b98+tW7dWgEBAbLb7UpISFBmZmaV2+jUqZMKCwu1e/dun48//fTTGjZsmEaMGKFh\nw4ZJOjcDcfPmzRUUFKQ777yz0v2sqEOHDsrJyVFiYqIKCgqq3N+KlixZoqSkJG3dulV2u/2imZ3P\nr/vuu+8qPj5eTqdTDz30kCQpLCxMU6ZM0UsvvaSEhASVlpbqxx9/1F133VVlvd9++61sNpv27t0r\nu92uXbt2Vbvehx56SDabTRkZGeXaPfbYYxoyZIjS09O9y3r27KnY2FitX7/eZ1ZOTo7i4+O9tXTq\n1KnSGsaNG6exY8fq+eefr3LfAAAAAAAAAAAAAAAAAADA1WPxVGdaV9So5ORkDR8+XL/73e9quhSt\nX79eubm5iouLq+lSaszs2bPVqVMn3Xfffb/5tuLi4pSRkeH9+ciRIzpy5Ijuvffe33zbtdHZU/nG\nsjx+AUZyTpdderB6dYX4m8nKO1v5bNOXq36Q36UbVdOps2WXblQN9T1FRnIkyVWnrpEcq8fMvkmS\npaz00o2qHWbmmPL4BRrJkSSPoZqsJacv3ajaYeaO8zK/OkZy/ErN7V+xNchITpCfufOd//H9l25U\nTT+HNDOWVafMzGVx2A2Gfp/PYvb3Ak8Vuozk1Pt/nxjJcbfvZSRHMndMefzNvF4kyeIx937sqt/E\nSE7g0f80kiNJcps5nlyRLYzkGGfo9ecOCDaSIxm8RjB4bJo8T5m6PreePWUkR5LcdcKM5FgMvV4k\nyVJabC7LVWIkpyz0RiM5kuT33TojOWfaVP3XmC47r8jMc2jqGsFleO6AYgP792LDNgYqOWf26ap/\n+fxyBOT+ZCzLFEvxxb/E/muU/K69kRxJshbnXbpRNfkVHTeS4zlx1EiOJFkCzHymdUdGGcmRJI/V\n3F/1Mvk+Y4yhawSL66yRHEmyGLyP4PE3dEzdUPWEHpfD+t//MpMTfIORHKl2nqf8Txw0kvPvwNWg\nqZEca/FJIzmSVBZ206UbVYNf4TEjOZLkDjLzmUGS3MHhZoJM3o8wdN1p8ovoAHO3KI19l1Kvjrn7\ny4Ul1+/3KJJkNXQ0mLxGMPX9gMnrO7fMHeh+ZYb6yuCQkhJD36MEus3c15CkEqu578FMnadMfp49\nXtfcPVhLiZlzZ1iowb90bPC971SRmazwI1uN5Lhu72wkRzJ7DeQJMPNdil/eYSM5kuQOjTQTZPB4\nCmgYZSwL17+SE0dqugRcIwIbNK7R7Rt8B8f17uOPP9aKFSv0xhtvXLVt2mw2WSwWeTweWSwWORyO\n33ybKSkp3lmVLRaLJkyYoOjoaO/jlc0KnJubqzFjxnjrbdiwoWbNmnVFtVTcVuPGjdW4sZmTxp49\nezRt2jTvNlq1aqXk5ORfnXepfgMAAAAAAAAAAAAAAAAAANceBhtfA6ZPn17TJUiSevXqpV69zM1A\nVx1Op/Oqbk+SJkyYUOXjo0aN8rk8MjLSeL3p6elG8y4UHR1ttN5L9RsAAAAAAAAAAAAAAAAA4AKG\n/+It8FvhSAUAAAAAAAAAAAAAAAAAAADgE4ONAQAAAAAAAAAAAAAAAAAAAPjEYGMAAAAAAAAAAAAA\nAAAAAAAAPjHYGAAAAAAAAAAAAAAAAAAAAIBPFo/H46npIgCgOs4UF9d0Cb+peyZ8aiRnd8ojRnJM\ncxl6t/GzWswESbLwFlgtbpnrc6vo86vN1Gtv8LLvzQRJcjzRyliWx+pvLOtUoctITliouZpMqm37\nZykrMZIjSR6/QGNZtdFPTz1uJKfl/PeN5BjlcZvLsvC7tEBN2BPf21jWHemrjOSYvs6vbe+hppnY\nP5P7NjrE3LXi7NOZxrJM8VjMfL4q++AVIzmS5B8z1ljW9czUcydxP6K6TPZ5bXS9HweuFa8ay/Lv\nk2QmyORnBpOfZWojPl9ddaZeM9f7+/q+/FJjWbfWDzCWZQrfo1y7+B7l2mby+duWfcpITqebzd3z\nNnn/nHsk1WNq/6y7PjaSI0llHR41lnU9vzeY/BwaHBRkLAvXv5K8n2u6BFwjAsNvrtHtc7cAAAAA\nAAAAAAAAAAAAAAAAgE8MNgYAAAAAAAAAAAAAAAAAAADgE4ONAQAAAAAAAAAAAAAAAAAAAPjEYGMA\nAAAAAAAAAAAAAAAAAAAAPvnXdAH49TZt2iS3260uXbpc1nrZ2dk6dOiQ7r///t+osuo5deqUtm3b\npkceeeQ3yU9NTVWHDh30+9///jfJN61Hjx666aab5HK5NG7cOLVt2/aK8vbs2SO3263WrVtLklau\nXKmysjI9/vjjl501cuRIbd++Xdu2bZPValVpaamefPJJ5eTkaN26dZWuV1ZWpnHjxiknJ0eStGjR\nIr3wwgs6fPiwMjMz1bp1a3Xt2lU//vij9u/fr9DQUI0fP1633Xbbr9tpAAAAAAAAAAAAAAAAAABg\nFIONr2GdO3f+VetlZ2dr27ZtNT7Y+OTJk1q/fv1vNtj4WhMREaHFixcrNzdXf/3rX5WamnpFeZmZ\nmXK5XN7BxlfijTfekN1u9/4cEBAgp9OpgQMHVrne5s2b1aJFC82aNUuFhYXy8/PT9OnTJUkDBw6U\nw+GQJCUnJ2vmzJkKCQnRuHHjtGDBgiuuGQAAAAAAAAAAAAAAAABqNYu1pisAqoXBxldRcnKywsPD\n9f3336tnz57q3bu3xo8fr/z8fLVv316jR4/WL7/8opEjR6pOnTrq06ePYmJilJycLJfLpYMHD2rQ\noEHq2bOnVq5cqblz52rw4MHemWq//vprvffeezp+/LiCgoL09ttva+TIkcrPz1fdunX16quvasuW\nLUpNTVVBQYF27dqlmTNnql69eho9erQKCgrUoUMH/eUvf5Ek2Ww23XvvvdqxY4cSEhK0evVqTZo0\nSQ0aNFBSUpImTJigiIiIi/YzOztbkydPlsfjUX5+vt577z1NmTJFe/fuVWBgoGbMmKHs7GxNnz5d\n2dnZstvtGj9+vFq3bq1Zs2bpX//6l8LDwzVr1iwFBARclH/hDL1xcXHKyMhQamqqsrOzlZWVpe7d\nu2vQoEHe9p999pl27Nih8ePHy2azqW3bttq4caP+9re/qX379nI6nVq9erWCg4M1a9YspaSk6K9/\n/atCQ0MlSSNGjND48eOVnJys+vXrKy8vT06nU1brxSf648ePa9SoUQoLC1NWVpY++eSTKmu7kMfj\nkSTl5eWpTp06lT6naWlpWrNmjUJCQjRz5kyFhoZq0KBB8vPz00033aRXXnlFS5Ys8Q7k/fjjj7V4\n8WJJ52bDXr16tVq2bKmJEyf6rOODDz7Q8uXLZbVaNWbMGN13333l6rscVqtVP/74owoLC739WXF/\nLxQRESGr1SqXyyV/f05PAAAAAAAAAAAAAAAAAADUNEbzXWW33Xabxo0bp7KyMjmdTnXt2lW9e/fW\n2LFjlZOTo927d6tLly4aMWKE3G63d70ePXqoS5custls6tmzp/r06SOLxSKXy1Uu/9ixY3I4HN51\nU1JSFBYWprlz52rjxo3q2bOn6tatq61bt2rUqFGSzg1G7dixoxITEzVs2DD98ssvuummmyRJv//9\n7zVq1Ci53W65XC59+umn6tOnj4qKinwOND4vKytLa9askdVqlcVi0ZgxYxQWFqY1a9Zo1apVeuqp\np/Taa69pzpw5euWVVySdm4k3NzdXTqdTy5Yt0/r16/Uf//EfVfanxWLx/rtt27aaNm2a4uLivAN6\nd+7cqaNHjyolJcXbPiYmRt26ddNHH32ku+++W6tXr9bSpUu1fv16LV++XG3atFFmZqaysrLUp08f\nWa1W7wDY1NRU/fWvf9WePXt8zhi8fPlyJSYmqnPnznrooYeqrK2iEydOyGaz6cCBA5o9e7bP5/TE\niRP64osvlJGRoa+++krLli3Tn//8Z7399tsKDQ3VSy+9pO+++04DBgxQcHCwXC6XdzC6JDVt2lRJ\nSUnlllXUrVs39e3bV7m5uUpOTvYONr6wr6vrgQce0Hfffae+ffvq3nvv1ZQpU7yDtCvLCw0NVX5+\nviIjIy97ewAAAAAAAAAAAAAAAAAAwCzm4L7K2rVrJ0ny8/NTVlaWMjIyZLPZ9NNPP+nYsWPq0qWL\nCgsL9eyzz2r79u3e9Zo3by5/f3/5+fl5l/maGfZ8vtVqldvt1syZM2Wz2fThhx/q9OnTPms6evSo\nWrZsKUlq0aKFfvnlF595Dz74oDZu3KjNmzfrD3/4Q5X7edddd8nPz887oHThwoWKj4/XvHnzKq3j\nwIED2rVrl+x2u1asWKH8/Pwqt1FRs2bNZLVay/XR119/reLi4nLtoqKiVL9+fRUVFSkvL0+NGzeW\nJN166606evSod7Dxhx9+qE8//VRNmjSRdG6griTvur4cOXJEzZs3V2BgoG655ZYqa6soIiJCTqdT\nH330kebOnetdfuFzcPjwYe3fv192u11vvvmmCgsLdfr0aU2aNEl2u12bN2/29q+v46NZs2aS5J05\n2ZctW7bIZrNpzJgx5frOV96lZju2WCwaMWKE1q1bJ4/Ho6+++qrK9pJ06tQp1a9f/5LtAAAAAAAA\nAAAAAAAAAADAb4/BxleZv///TiYdFRWl4cOHy+l0avny5brzzjvl5+en559/XhMnTtTixYu9bffv\n36+SkhKVlZWVy6s42PPCwayZmZkqKSmR0+lUjx49vG39/f1VWlrqbdeoUSPt27dP0rkBv+dnNa5Y\nb3BwsIKDg7VixQp17969yv08P3utJOXn52vnzp1KS0tTfHx8pXVERUWpa9eucjgcWrp0qfr16+cz\nOyQkxDsINicn56LHL+yT4cOHq2nTplq3bt1Fj0lSeHi4jhw5Iknat2+fGjdurNatW2v9+vWKiYlR\nRkaG7rrrrir39UKNGzf2PlfZ2dlV1lbZY6GhoTp16pR3+YXPaZMmTdS+fXs5HA6lp6frmWee0ebN\nm9WiRQs5HA7de++9lfZvdeuYP3++5s+fr5SUlHKza4eEhCgvL69c29LS0nJtKjp+/LjOnDkj6dxx\ndmHbijV4PB7l5ubK4/GUO+4AAAAAAAAAAAAAAAAAAEDNYbBxDerXr59WrlyphIQEDR06VMXFxdq+\nfbsGDhyoYcOGKSYmxtt27dq1stlsstlskqRJkyZp3rx5WrhwoV588UWf+c2bN9fBgwc1ZMgQ7d+/\n37v8jjvu0Lfffqtx48bpxIkT6tatm7Zv3674+Hi1bNnSO9j4/KzEF3rkkUdUUFCgiIiIKvftwnXr\n1aunG264QYmJidq5c6d3ecOGDVVUVKSxY8dq3759at26tQICAmS325WQkKDMzEyf2R07dtSGDRs0\na9YsnzMFV6z7/IDugoKCix7z9/fXn/70J8XGxmrJkiV6/PHHFRQUpMLCQj344INyu90XDTb21S/n\n9e3bVwsXLtSzzz6revXqXbK2C+Xl5SkhIcG7/740aNBA99xzj2w2m3cm47Zt2+rzzz/X008/rZMn\nT3rb3nPPPVq9erXGjRt3WXU89NBDstlsysjIKNfuscce05AhQ5Senu5d1rNnT8XGxmr9+vU+s3Jy\nchQfHy+bzaa9e/eqU6dOldYwbtw4jR07Vs8//3yltQEAAAAAAAAAAAAAAAAAgKvL4qlqilPUCsnJ\nyRo+fLh+97vf1XQpWr9+vXJzcxUXF1fTpdR6cXFxysjIqOkyritn/mdG6+vVPRM+NZKzO+URIzmm\nuQy92/hZKx8sf7ksvAVWi1vm+twq+vxqM/XaG7zsezNBkhxPtDKW5bGamw3/VKHLSE5YaO2cob+2\n7Z+lrMRIjiR5/AKNZdVGPz31uJGclvPfN5JjlKfyv5Jx2Sz8Li1QE/bE9zaWdUf6KiM5pq/za9t7\nqGkm9s/kvo0OMXetOPu0719kr0meKn4B/HKUffCKkRxJ8o8ZayzrembquZO4H1FdJvu8NrrejwPX\nileNZfn3STITZPIzg8nPMrURn6+uOlOvmev9fX1fvu+/6Plr3Fo/wFiWKXyPcu3ie5Rrm8nnb1v2\nqUs3qoZON5u7523y/jn3SKrH1P5Zd31sJEeSyjo8aizren5vMPk5NDgoyFgWrn8l+Tk1XQKuEYH1\nG9bo9mvnOzhqpY8//lgrVqzQG2+8cdW2abPZZLFY5PF4ZLFY5HA4rtq2L+VStVU2e/CmTZs0d+5c\n7+OdO3fWkCFDfvN6K9qzZ4+mTZvmraNVq1ZKTk7+1XkpKSne2agtFosmTJig6OhoI7UCAAAAAAAA\nAAAAAAAAAICawWDja8D06dNrugRJUq9evdSrV6+ruk2n03lVt3c5LlVbenq6z+WdO3dW586df4uS\nLkt0dLTR/p0wYYKxLAAAAAAAAAAAAAAAAAAAUDvwd5AAAAAAAAAAAAAAAAAAAAAA+MRgYwAAAAAA\nAAAAAAAAAAAAAAA++dd0AQAAAAAAAAAAAAAAAAAAAP92LMwXi2sDRyoAAAAAAAAAAAAAAAAAAAAA\nnywej8dT00UAQHWcLTxZ0yVcxFJWaiyrrE6okRyr66yRHEnKKzM3Ab6fxWIkJzTQ3O/JWAy9BXoM\n7Ztk9vnzWM08fx6rn5Eck0z2U7ECjGX5W80cC4Fn8ozkSNLpwPpGcoL8zB3nZ93GolRSZvBS9myZ\nkZjTho4Dg10uSapjqK/q1jHz3ucODDGSI0kBeYeM5LhDwo3kSJKl5LSxrLLQG43kWMpKjORIkt/J\nI0Zyyuo1NpIjSXKbeQ1Lkicg2EyOwWsEU9ct1jPmrqnLgs28x5jkd6bAWJapa6lSfzPHkyT5G3xv\nMHVOcPvXMZIjSYG//Ggk52zDO4zknFdUaOhzXx0z19UnzriM5JzXwMC5qsGZrCsv5H+URrY0ljU6\npJWxLFNGxLY2ktPy3RVGciSpTvZ3xrKGt+xnJGf04HZGciQp8u5bjeTUeWqqkRxJCtm/xViWKZbg\nMGNZRY3aGMlxG/y4F/jp28aySo4fN5IT9MRfjORI0lcP9DCSc+OdkUZyJMPnqSM/GMlZ+n/sRnL+\nHTz+4V+N5BR8s91IjiTVj3nSSM6pj51GciSpXvfHjWWdbXyXkRxTnx0lc59p/c4WGsmRJHfgDcay\nTMktNnc/ItDQDcE6/ua+R6ljcOqyUkOHZ4AM3mA2NItgbbwHJElumamrqNRcnwcburkRUGbue6IS\nP3P3NgIMHQoug9fCJr9GKTlt5p6Eqe9RJHPfzUlSoMvMsV43yMx7g8fgfTeT56mAzC+N5Kx7dJyR\nHEnq/o+ZRnJKbv+DkRxJCgkOMpaF61/JydyaLgHXiMB65u7d/BrMbAwAAAAAAAAAAAAAAAAAAADA\nJwYbAwAAAAAAAAAAAAAAAAAAAPCJwcYAAAAAAAAAAAAAAAAAAAAAfGKwMQAAAAAAAAAAAAAAAAAA\nAACfLnuw8bJly9SzZ0+9//77v0U914XPP/9cvXv31pw5c2q6FOP27NmjDz74wEhWXFyckZzf0uzZ\ns7Vjx44arWHevHnKycnx/pydna1t27YZyf7b3/6mBx54QIcOHfIuGzlypDp27Ci3213lujt37tTA\ngQMVGxurb775RpL0+uuvKz4+XpMmTZIkrVy50nuuSE1N1datW5WcnKxXXnlFkjR27Fjt2bNHNptN\nvXv3VteuXWW327V9+3Yj+wcAAAAAAAAAAAAAAAAAAK6M/+Wu0K9fPwUGBsrlcv0W9VwXunbtqrCw\nMG3ZsqWmSzEuOjpa0dHRRrIsFouRnOvdkCFDyv18frDx/ffff8XZL730ks6cOVNu2RtvvCG73V7l\neh6PR3PmzNGCBQsUFBSkU6dO6eeff9bBgweVlpaml19+Wf/6178qXX/Xrl3ef9etW1dOp1M7duzQ\nli1bNGrUqCvbKQAAAAAAAAAAAAAAAAAAYEyVMxufPXtWQ4YM0eDBg9WvXz8dOXJE0rmBhhfatGmT\nYmNjFRcXpzVr1kg6NwNuTEyMbDab/vnPf0qS1qxZoyeeeEJjx45VcnKyJMnpdCo2NlaJiYk6ceKE\nnnvuORUWFnqzR4wYUWl9aWlpio2NVUJCgk6cOKETJ05o0KBBio2NVXp6uiQpPj5e/fr109ixY9Wv\nXz+dOXNGH3zwgbfeqmatXblypfr06SObzabc3FxJ52ZzHTBggGw2m7Zu3SqXy6X4+HglJCRo3Lhx\n3nUr9tHp06f17LPPym63a/bs2ZVuc9++fbLb7RowYIA+//xzud1u78BPj8ejxMRESdK6deu8dVw4\nK21Fzz//vOLj4zV+/HhJ0tdffy2bzabBgwcrKSmp0tpSU1OVnJysAQMGaNGiRZLOPc8VZ2y22Wya\nOXOmevXq5R1AumjRIg0YMEAjR45UampqpbVJ546xkSNHKisrS19//bX+/Oc/a+jQoRo5cqQklXtO\n09LSlJWVpenTp3vX/+abbzR//nwlJydrypQpiomJ0SeffFLp9s4fM+ePN+nc8zxx4kTZ7Xa98MIL\nkqSkpCQ9+eST3hl7fVm5cqVGjRqlxMRETZs2TZJ04MABxcXFqX///tqwYUOl69psNrndbh08eND7\nWujfv7/+9re/qVevXvrv//5vSVJKSkq5mYc3bNiglJQUffTRR7Lb7crJyZHH49EzzzyjuLg4TZ06\ntdJt+nqdVqbi8VvRwYMH1bx5cwUFBUmSwsLClJmZqbZt20qS2rVrp//8z/+sdP27775b33zzTbkB\n55faJgAAAAAAAAAAAAAAAAAAuPqqHGz86aef6oEHHtCCBQtUWlpaabt77rlHS5cu1eLFi7V48WJJ\n0ldffSW73S6n06kHHnhA0rmBnhkZGerevbskyeVyafXq1Vq6dKkGDBig5cuXq02bNsrMzNTy5cvl\ncrlktfou8fjx4/riiy+0dOlSLVy4UKGhoVq2bJni4uK0dOlSffzxx3K5XIqMjNT06dN14403qnfv\n3vrpp5/UrVs3LV26VH//+981d+7cSvdr3bp1evPNN+V0OhURESFJev311zVv3jw5nU61a9dO/v7+\nevvtt7V48WIFBwfru+++85m1bNkyde3aVQ6HQ9nZ2crJyfHZ7rXXXlNKSorS09OVlpYmq9Wqli1b\n6sCBA9q1a5c6dOggt9utBQsWKC0tTVOmTNG8efN8Zu3atUthYWFKS0tTaGiod6bZunXrasGCBYqI\niNDu3bsvqu2XX36RJLVt21bp6elau3atJKlz586aOHFiuW1YLBbFxMRo2rRpWrNmjVwul9atW6cl\nS5aoQ4cOlfatJJWVlWnChAl6+umnFRUVJUkKDQ3VO++8ozNnzujkyZPlntN//OMf+t3vfqfs7Gwd\nPXpUGzduVGZmptq0aSNJevDBBzVv3jytWrXK5/ZcLpf+8Y9/aOnSpYqNjdX777/vfcztdsvhcGjy\n5Mn65ptvFBERoYULFyosLKzKfWjatKneffddb98uXLhQL7zwgpxOp+bPn1/per5mdS4oKFBSUpKG\nDRumL774QpI0YcIEde7c2dvm4Ycf1sSJE/XYY4/J4XCoYcOGysvLU2FhoTIyMjRhwoRKt+nrdXo5\n9V0oLy9P9evXL7essLBQISEhkqSQkJByvzRQUY8ePbzHFQAAAAAAAAAAAAAAAAAAqL38q3rwyJEj\natWqlSSpWbNmlbbLzMxUamqq3G638vPzJUl9+vRRamqqPv/8cw0fPlzR0dHy8/NTQECAmjdvLunc\ngMXGjRtLkm699VZt2bJFjz76qH744QetW7dOoaGhatKkic9tZmdnKzo6WpLk5+cnPz8/HTlyRN26\ndZMkNWrUSPn5+QoODlZwcLBCQkIUEhKiM2fOaOvWrXI6nZKqnk31mWee0Zw5c+R2uzVp0iSFhoZK\nkvf/wcHBOn36tCZNmqTc3FxlZ2erZ8+ePrOysrL0X//1X/rggw9UWFioY8eOqWHDhhe1O3TokCZM\nmCCPx+Pty+7du2vdunXKz8/XE088oby8PB0+fNg7y/HNN9/sc5tHjx5Vy5YtJUktWrTQkSNHFBkZ\nqRYtWkiSoqKidPTo0YtqOz+Lc7NmzWS1WuXn5+fN9NVfUVFROnz4sIqKipSXl6dGjRpJkpo3b67v\nv/++0v7NzMxUQEBAuYGt54+z8PBwFRUVXfSc5uXlyd/fXxs3btTevXtVUlKi3r1768MPP1RUVJTq\n16+v06dP+9zehcdby5YttXXrVu9j7dq1kyRZrVb9/PPP3j46f6xW5ny9gYGBks69Zlq2bKnAwEAF\nBARUup6vfmzQoIFCQ0MVHh6u/fv3V3vdBg0a6I9//KNGjRql9u3bKyEhwed6vl6nl1PfhcLDwy/K\nCA0N1fHjxyVJxcXFCgsLk9VqVVlZmbfN+V8euPHGG5WXl8dsxgAAAAAAAAAAAAAAAAD+bXksVc4X\nC9QaVR6pjRo10r59+ySdGyx7XlBQkPLy8rw/L1iwQCkpKXr77be9gwlDQ0M1adIkJSQkaPny5ZLO\nzWRbUlLiHUgZHh6uI0eOSJL27dunxo0bq3Xr1lq/fr1iYmKUkZGhu+66y2dtt9xyizIzMyWdm5W2\ntLRUt9xyi/bt2yePx6Off/5Z4eHhF63ndrs1b948zZ8/XykpKXK73ZXu/+23364ZM2aoefPm+uqr\nr7zLCwoKJElnzpzR5s2b1aJFCzkcDt17773ewZMV+ygqKkrDhw+X0+nU8uXLdeedd/rc5q233qq/\n//3vcjqdWrFihSSpY8eO+uabb5SVlaVbb71V4eHhatWqlRwOhxwOh6ZNm+Yz68Lnb//+/d6Btuf7\nPysrS40aNbqottatW5fLqTgg9MKfKz4WHh6uo0ePSpIOHDjgs67z7rrrLs2ZM0cvv/zyRc/D+Vxf\nz2nTpk31/fff66abblJBQcH/Z+/OA6Oo7/+PP3ezOTaEIwkolxyKFhQFD9C2IEhFxK9WSCWEZHe5\nJJzh0CoG+OIFQawQUCw0NfrBiQAAIABJREFUCEgWEAWNWqUC4tGg/kAhlFoTFQS5ohgIhEDu3d8f\nKfslZAMBPpqAr8c/kMnMaz7zmdmZ2dl3Pusr/q6qTae27fTj7aRTC6qbNGnia/vZtsFfe3fs2EFx\ncTGlpaVVzl+nTh1OnDhRYYTrMxXenvo7m81WYaTx0tJS4uLimDt3ru+Y8cff6xTKi+ZPPVahfGTi\n06edqkWLFuzevZuCggKg/DXRrl0738jeGRkZXHfddURGRvoKkA8ePOgbIRzg1ltv5fPPP69yHSIi\nIiIiIiIiIiIiIiIiIiIiIiJS885YbNyzZ082btzI0KFDCQgI8BUo3nbbbaxbt44RI0b45hs9ejQz\nZsygbt26ALzzzjs4HA6mT5/uG+3X4XAQFxfHe++9h9VqxWazce+99xITE8Mrr7zCAw88QEhICPn5\n+XTv3h2Px1NlsXFkZCR33HEHMTExDBo0iGPHjtGvXz+WL1/OgAEDuPfeeysUkJ5ksVi44447cDqd\nrFixosKouqd79tlniYuLIz09nU6dOgEwbtw44uPjcTqdZGRk0KFDBz744ANGjBjB0aNHfcu2a9eO\nnTt34nK5KCgoIDo6mrS0NAYOHMjw4cN9RZqnGzNmDBMmTMDlcpGUlORr8xVXXOHrC6vVSv/+/XE4\nHAwcOJC0tDS/WTfddBN5eXk4HA7y8/N9o/cePXqUwYMHk5OTw4033lipbYWFhZX6DOCFF15gxowZ\nvP322759f3r/2Ww2evXqxYABA9i8eXOFolZ/IiIiuPfee3nppZcqZJ38v799ev311xMUFOT793RV\n7VObzcZ9991X4Xirqt9ycnJ8x1V1nFzn4MGDmTZtGk6nk6FDh1Y5/3333cekSZPYsGFDle0uKirC\n6XSSnp7OI488wvLlywH4zW9+w7/+9S8effRRDh8+zJEjR3C5XERHR9O1a9cq1+nvdQpwzz33MHXq\nVObOneubdv/99zNs2DDfOv1tb0JCAg8++CD9+vXjm2++oXHjxjRv3tx3vHXo0IHf/e53ZGZm4nA4\nsFqtvpG2Ae66664zFjSLiIiIiIiIiIiIiIiIiIiIiIiISM2zeM80nCrlo6babDacTieLFi3yW9xZ\nXSezNm7cSEZGBgkJCeed9Wszbdo0BgwYwFVXXXVBOZs3b+azzz5j3LhxhlpW2cn9/OqrrxIYGEhU\nVNTPti75dSnKP3r2mX5hlrKSs89UTWXBYWefqRqspUVGcgByy2zGsgLO8Mcd5yIsyNzXR1jOfAms\nNq+hbQOz+89rNbP/vNbKf7xT00z2UwGBxrJsVjPHQlChuT/GOBHUwEhOSIC547yo6i+WOGfFZWZe\nxwAUlRmJOWHoODDY5QAEG+qresFmrn2eoFAjOQCBuXuN5HhCK38zyvmyFJ8wllUW1shIjqWs2EgO\nQMDRA0Zyyuo3PftM1eUx8xoG8AbazeQYvEcwdd9iLTR3T11mN3ONMSmgMM9Ylql7qRKbmeMJwGbw\n2mDqnOCxBRvJAQj68WsjOUWX/cZIzknH8w297ws2c199uLDqb1I6HxEGzlURhbsvvCH/VdKwzdln\nqqbxoe2MZZkyOubas89UDW2WVP3tVucqeP92Y1mj2kQbyRk/tKORHICGN1zY89STgh+cZiQHIPS7\nT41lmWKx1z37TNV0vMn1RnI8Bt/uBa1fYCyr+L/f5HahQvo9ZCQH4JMudxvJaXRdQyM5YPg8deBL\nIzkrb3UZyfk1eODNJ4zk5G3ZZCQHoEHUECM5x/7uNpIDUL+X/0FtzkdRU/+DL50rU+8dwdx72oCi\nfCM5AJ6gOsayTMkpMPc8IsjQA8Fgm7nPUYINfqN3iaHDMxCDD5gNfWV5bXwGBODBTLuOl5jrc7uh\nhxuBZeY+JyoOMPdsI9DQoVBq8F7Y5McoxSfMPJMw9TkKmPtsDiCo1MyxXi/EzLXBa/C5m8nzVGDm\nR0Zy1v7xUSM5AL3eec5ITvE1txvJAQi1hxjLkktfUd7hmm6CXCSC60XU6PrP+MmZ1+tlwIABBAYG\n0r179wsqNAZYvXo1b731FjabjeeeM3Oi/zV49tlnKSwsvOBC41/KX//6VzZt2oTdbmfu3LkkJSWR\nmZkJlI+IO2nSJNq2bfuztiEtLY033njDN1pwVFQUffr0Oe88p9OJxWLB6/VisVhITU2t1nLp6emk\npKT42tG1a1eGDRt23u2ojpycHCZMmOBr72WXXcasWbPOOy8lJYX09HSgfP/Fx8fTpUsXU80VERER\nERERERERERERERERERERkVrsjMXGFouFVatWGVtZTEwMMTExxvJ+LR591Nxf83Tu3JnOnTsby/Nn\n7NixFX6eNGnSz7o+f/r27Uvfvn2N5bnd5/eX7l27dqVr167G2lEdDRs2PO/2+hMfH098fLyxPBER\nERERERERERERERERERERERG5eBj84hMRERERERERERERERERERERERERERG5lKjYWERERERERERE\nRERERERERERERERERPxSsbGIiIiIiIiIiIiIiIiIiIiIiIiIiIj4ZavpBoiISDmL11vTTRAREfnF\n6LonInJp0PlcRESk5lkCLDXdBJGLhiVA4zCJiMjPx2sxdF+m5y2CwePJNE9ZTbdARERqiN5Ri4iI\niIiIiIiIiIiIiIiIiIiIiIiIiF8a2VhERERERERERERERERERERERERE5Jdm0XixcnHQkSoiIiIi\nIiIiIiIiIiIiIiIiIiIiIiJ+qdhYRERERERERERERERERERERERERERE/Looio1fe+01evfuzerV\nq2u6KbXWBx98QJ8+fZg7d+7Pup7XX3/dSM7mzZuZM2eOkayfU2xsbE03gWnTplX4efPmzezbt++C\nc0tKSnA6nfTq1cs3LTs7G6fTSVxc3FmXT01NxeFwMGDAAPLz8ykqKmLs2LHExcXx6quvApCYmMje\nvXsBcDqdlJWV0aNHDz7++GOgvH+/+OILnE4nPXr04P7778flcpGXl3fB2yciIiIiIiIiIiIiIiIi\nIiIiIiIiF+6iKDaOjo5m+PDhNd2MWq1Hjx5Mnjz5Z1+PqWJjAIvFYizr51Ib2jhlypQKP2/evNlX\nwHshAgMDcbvdNGzY0DetSZMmuN3usy67d+9etm7dyrJly1i8eDHBwcGsXbuW2267jeXLl7NmzRqK\ni4srLGOxWLBYLNSvX58NGzb4pt1yyy243W6ioqJ47LHHSE1NpV69ehe8fSIiIiIiIiIiIiIiIiIi\nIiIiIiJy4Ww13YDTFRUVMWbMGDweD8eOHWPOnDk0bdoUr9dbYb709HRefPFFrFYrDoeDe+65h6ys\nLCZNmkSdOnUYNmwYt99+O2vWrGHJkiW0atUKm83GjBkzcLvdvPvuu9jtdmbNmkVSUhJPPPEEYWFh\nAIwePZoXX3zRb/uWLVvGO++8Q3BwMMnJyQA89NBDFBYWct999xEXF4fD4aC4uJiWLVvy/fffk5qa\nyrvvvsuqVauwWq1MmDCBTp06+c1PS0sjNTWVsLAwkpOTadiwIV988QWzZs3CZrMxatQoOnXqxKBB\ngwgICODyyy/n2WefBajURydOnOCxxx7jyJEj3HTTTYwfP97vOu+55x6CgoJo164dBw4cYOnSpaxb\nt46XXnqJwMBApk+fjs1mIzExkW+//RaXy8XQoUPp1q0bs2bNYsuWLTRo0IA5c+YQFBTEvHnzyM3N\n5ZtvvuGWW25h3LhxVe7vvXv3MnPmTJ577jleeukl9u/fz+7du+nVqxeDBg1i69atzJw5E4CJEyey\nY8cOIiMj+cMf/gDA/Pnz+f3vf8/06dO59tpr+eKLL5g3bx4tW7b0u76JEyeyf/9+mjdvzjPPPAOU\nj74bHh7Ov//9b3r37s1dd93F+PHjqVu3Lrm5uVW2PTExkdDQUDIyMhg2bBi9e/eu1G+tWrXyu2xs\nbCwrVqxg1apVBAYG0qlTJyZOnEiDBg3Izc3F7XZjtVpxOp0cPHiQtWvXAvDCCy+QlpbG+++/T6tW\nrZgzZw4//vgjCQkJBAcH07dvX6Kiovyuc/78+aSnpxMQEMATTzzBVVddVeW2nc3/+3//j549ewJg\nt9sByMzM5I9//CMAV199NXv27PG7rN1up7S0lKKiokrHrIiIiIiIiIiIiIiIiIiIiIiIiIjULrVu\nZOP169fTpUsXFi1aRElJSZXz3XjjjaxcuZKlS5eydOlSAD755BNcLhdut5suXboA5cXBK1asoFev\nXgCUlpby7rvvsnLlSgYMGMCqVau4/vrryczMZNWqVZSWlmK1+u+WQ4cO8eGHH7Jy5UoWL15MWFgY\nr732GrGxsaxcuZK///3vlJaW0rBhQ2bMmEGjRo3o06cPO3bs4K677mLlypU8//zzpKSkVLlda9eu\n5a9//Stut5vIyEgAkpOTWbhwIW63m44dO2Kz2ViwYAFLly7Fbrezfft2v1mvvfYaPXr0IDU1lf37\n93Pw4EG/811zzTVMmDCB9u3b0759ew4fPszixYtZvnw5iYmJLF68mObNm+N2u7nmmmtITU2lW7du\n/Pjjj+zcuZMVK1Zwyy23sH79el9meHg4brebhISEKrf1p59+Ytq0acyYMYOQkBAAOnTowPLly3nv\nvfeA8gLZ+fPn89e//pUFCxZwww03kJmZyaZNm9i1axc7duygbdu25OXl8fDDDzNy5Eg+/PBDv+vb\nunUrdevWZdmyZdSpU4dt27b5fnf11Vfjdrvp378/q1atYvDgwcydO5ejR49W2X6A7t27s3DhQt5+\n+22ASv1WFX8jJpeWljJv3jyuvvpqsrKyACqNPJyQkEBUVBQTJ05kzpw5AGRkZNCtWzfcbjd9+vSp\ncp0Oh4MVK1bw5z//uVqjF59Jbm4u9evXrzAtPz/fV3hst9s5duxYpeVOFhd369aNjz76qFaMHC0i\nIiIiIiIiIiIiIiIiIiIiIiIiVat1xcYHDhzgyiuvBKhydFooH0V14MCBDBkyhCNHjgDQt29ftm/f\nztixY/nmm28ACAgIIDAwkNatWwPlRZJNmzYF4KqrriI7O9tXbPzmm2+yfv16mjdv7ned+/fvp23b\ntr7coKAgDhw4QJs2bQBo0qQJR44cwW63Y7fbCQ0NJTQ0lMLCQj777DOcTicTJkygoKCgyu0aM2YM\nc+fO5dFHH+X48eO+6SdHXbbb7Zw4cYKpU6ficrnYuHEjJ06c8Ju1e/duVqxYgdPpZMeOHfz0009+\n5zu1rXa7ncLCQgIDAwkMDKRNmzZkZ2f75j11JNrs7Gzf6LhXXXUVBw4c8P2uY8eOAFUWbkP56Lgn\nTpwgICDAN61ly5ZYrVbftIKCAiIiIoiMjKSgoICrr76aXbt2sXHjRj766CNKS0sJCgoiIiKCsLAw\nwsPDyc/P97u+7Oxs376qqr0BAQFkZ2fTunVrgoKCaNasWZXtB2jVqhUNGjTw7Subzea336qjRYsW\nABXyqqNbt27k5+czduxYNm3aVOV8b7/9Ng6HgxkzZlQ4Bv2NLny2EYfDw8PJy8urMC0sLMyXW1BQ\nQL169Srsf4vFQkBAABaLhTvuuIOPPvqoOpsnIiIiIiIiIiIiIiIiIiIiIiIiIjWo1hUbN2nShJ07\ndwLlxbInhYSEkJub6/t50aJFJCUlsWDBAl9BY1hYGFOnTmXgwIGsWrUKgLKyMoqLi/nuu++A8iLJ\nk0WmO3fupGnTplx77bWsW7eOqKgoVqxYQfv27f22rVmzZmRmZgLg8XgoKSmhWbNm7Ny5E6/Xyw8/\n/EB4eHil5TweDwsXLuSll14iKSkJj8dT5fZfc801PPPMM7Ru3ZpPPvnEN/1kYWdhYSEbN27kyiuv\nJDU1lVtuucVXGHp6H7Vq1YpRo0bhdrtZtWoV1113XZXrPZXX66W0tJTi4mJ27NhBkyZN/M7XpEkT\nX79+9913viJuoEIBcVXuu+8+RowYwaxZs6qcJzQ0lMOHD3Po0CFCQ0N9xaohISEcPHjQ199nK449\n2d6Tx9bp7bXZbL7/N2vWjO+++47i4mL27dt31txTnTzeztRv8H8jG1dVAH6q07fNZrNVGPU7ICCA\niRMnMnnyZN8o3/68+uqrLFu2jPHjx1fILCkpqXRMFhYWnrFNt956K++//z5QXlhcUlJC27ZtfaNF\n79ixgxYtWtCwYUNycnLweDyUlZX5ticoKAibzXbGwnsRERERERERERERERERERERERERqXm1rti4\nZ8+ebNy4kaFDhxIQEOArJL7ttttYt24dI0aM8M03evRoZsyYQd26dQF45513cDgcTJ8+nd69ewPg\ncDiIi4vjvffew2q1YrPZuPfee4mJieGVV17hgQceICQkhPz8fLp3747H46my2DgyMpI77riDmJgY\nBg0axLFjx+jXrx/Lly9nwIAB3HvvvX6LbE+O5Op0OlmxYoWv0NSfZ599lri4ONLT0+nUqRMA48aN\nIz4+HqfTSUZGBh06dOCDDz5gxIgRHD161Ldsu3bt2LlzJy6Xi4KCAqKjo0lLS2PgwIEMHz682oWd\nFouFIUOG+EbBHTJkiO93LVq04OGHH+bzzz/n8ssv58orryQuLo7PP/+cnj17Viv/VL///e/Jz88n\nIyPD7+9HjBjByJEjGT16NCNHjgTKC8Zbt25NSEiIr4D6TH160k033UReXh4Oh4P8/HzfaMane+CB\nB1iyZAljx471Wzx+JoMHD/bbb6e79tprefLJJ8nKyqr0u5Pbsm3bNpxOJ99++y0ul4utW7cC8Lvf\n/Y6FCxcyffp0ADZt2kRcXBwjR44kKiqqynV27NgRp9PJunXrKkzv3bs3MTExFabffPPNxMbG+tZ5\nuhYtWnDDDTfgcDgYNGgQRUVF3H333Xz66afExcXRq1cvAgMDiYmJYfbs2cTGxvradnL7/vCHP1Q4\nfkVERERERERERERERERERERERESk9rF4qzMk7C+stLQUm82G0+lk0aJFBAUFXXDWxo0bycjIICEh\nwWBLReSXVJRf+4qTLWUlZ5+pmjxBdYzkWMqKjeQA5JbZzj5TNQVU448CqiMsyNzfyVgMXQK9hrYN\nwFpaZCzLazWz/7zWs49W/0sz2U8FBBrLslnNHAtBhblnn6maTgQ1MJITEmDuOC+q+ksezllxmcFb\n2aIyIzEnDB0HBrscgGBDfVUv2My1zxtoN5IDYDtybt9GURVP6Ln9odmZWIpPGMsqC2tkJMfkPULA\n0QNGcsrqNz37TNXlMfMaBnPHp8l7BFP3LdZCc/fUZXYz1xiTAgrzjGWZupcqsRk83xm8Npg6J3gD\nzv+ZzekCD35jJKfost8YyTnpeL6h933BZu6rDxeWGsk5KcLAuSqicPeFN+S/Shq2MZY1PrSdsSxT\nRsdcaySnzZI3jOQABO/fbixrVJtoIznjh/ofJOB8NLzhKiM5wQ9OM5IDEPrdp8ayTLHY6xrLOt7k\neiM5HoNv94LWLzCWVXzokJGckH4PGckB+LRbbyM5DdtGGskBw+epA18ayVl5q8tIzq/BA28+YSQn\nb8smIzkADaKqHuDlXOSvWW4kB6DenVUPAHOuipr6HwjpXJl67wjm3tMGFOUbyQFzn6OYlFNg7nlE\nkKEHgsE2c5+jBBscuqzE0OEZiMEHzBYzG1gbnwEBeDDTruMl5vrcbujhRmCZuc+JigOCjWWZ+pyo\nzODNsMmPUYpPmHkmYepzFDDX5wBBpWaO9XohZq4NnsAQIzmmBf5ng5GctX0SjeQA9HrnOSM5xdfc\nbiQHINReO/ef1E61sR5KaqfgsPo1un5zVWSGeL1eBgwYQGBgIN27d7+gQmOA1atX89Zbb2Gz2Xju\nOTMXFzk3TqcTi8WC1+vFYrGQmpr6s68zKSmJzMxMoHwk3UmTJtG2bdvzysrKymL69Om+EXnbtWtH\nYmL1bnpSUlJIT0/3tSM+Pp4uXbqcVzuqKz09nZSUFF97u3btyrBhw84776GHHiInJ8e3/5KTk4mM\nNPfQWURERERERERERERERERERERERERqr1pXbGyxWFi1apWxvJiYGGJiYozlyblzu92/+DonTZpk\nLKtt27bnvQ3x8fHEx8cba0t1dO3ala5duxrLmz17trEsEREREREREREREREREREREREREbm4GPzi\nExEREREREREREREREREREREREREREbmUqNhYRERERERERERERERERERERERERERE/FKxsYiIiIiI\niIiIiIiIiIiIiIiIiIiIiPilYmMRERERERERERERERERERERERERERHxy1bTDRARqS6vtfadsrwB\nQTXdhEo8tmBjWYFej7Gs4yVmsuoGWozkAHgwk2WuRZDvDTSWFVZaaCSnxGY3kgPm+sobYO44D/B6\njWUZY/Dc4qmFmxdoNfeqyS82d54y1esR9gAjOaGHdhjJOelwSCsjOZayYiM5nqBQIzlg8B7BU2om\nB/Baat/fdVrKSsyFGevzMjM5gMXgfQulRWZyDN6XlRo6nwcZ7CeryWPKEE9QHWNZpl4zVou5657F\n0P1deZiZdnkNbh8FeUZiSmrjDRBgt5npqx+OmbkWnxRR78LPVRZD+w7MHlOjY641lmXKiyu/MpKT\nvMRIDAA/ve42lmWqz0sLzF1jcjO/N5Kz97ZuRnIAuqfNM5aFoetV8ddbjOQAhOQcMJJTmr3LSA5A\n0cGfjGWFtGhlLMsUS4CZ9x+mzlFg+Dy1eqmRnMZNwozk/BoENG1jJKdOrrnXnuf7/xjJsbdpayQH\nzB2bAPXG/sVIjsl7KVOPTT2B5p4vm2TqfbYtwFyfF5aZaVRQgLn3REafcRk6qAo95vrcjpn3V6VW\nc8/0Aww+Py8uNfMcyOBhbo7VzHN4gBJDrz0AUx9jBnrNPasu9ZrrK1MahJhrU2j+D8ayjlgbGsmx\nlJwwk2Pw+XLQ3q3GsmjQyEhM8982M5IDYAk0cx42+ahTRORSVPs+ARcRERERERERERERERERERER\nEREREZFaQcXGIiIiIiIiIiIiIiIiIiIiIiIiIiIi4peKjUVERERERERERERERERERERERERERMQv\nW003QERERERERERERERERERERERERETkV8ei8WLl4qAj9b82b97MnDlzKkx77bXX6N27N6tXrz7v\n3D179pCYmHihzbskvP/+++Tl5Z1xnoSEBDp37ozH46kw/c033+Srr746p/Xt37+fRx555JzbWdvF\nxsb6/f/52L59O/379+fRRx/1Tfvggw/o06cPc+fOPeOypaWlTJkyBafT6Vt+z549OBwOBgwYwL//\n/W+/7d2/fz/t27fn2LFjvteH2+3G6XTSqVMnnE4njz322AVtl4iIiIiIiIiIiIiIiIiIiIiIiIiY\noZGNT2GxWCr8HB0dTVBQEKWlpTXUokvLhg0buOaaa6hXr16V87zwwgu4XK5K0/v06XNe6zx9n14K\nTt2mC92+G264gdmzZ1coLO7Rowd169bl008/PeOyb731Fu3atWPatGkcPXoUgJSUFJ588kkiIyN5\n7LHHWLBggd/2RkREsHbtWjp37gyA0+nE6XTicrlYunTpJbnfRERERERERERERERERERERERERC5G\nKjY+xRdffMHQoUNp0KABs2bNAsDr9VaYZ9euXUyePJmysjKGDRvGnXfeydatW5k5cyYAjz32GDfe\neCNr1qzh5ZdfpmXLlthsVXdz7969ad26NXl5eTz//PNEREQwb948cnNz+eabb7jlllsYO3YskyZN\n4sCBA1xxxRVMmzaNgoIChg8fjsfj4fbbbyc+Pp4ff/yRhIQEgoOD6du3L1FRUSQmJjJq1CiaNm3K\noEGDcLvd7N+/n6eeegqv18uRI0d49dVXWbduHS+//DI2m42kpCSuuOIKv+19/PHH+frrr2ncuDFz\n5sxh2bJlNGrUiF69evHKK68QERHB7bffXqltU6dOJT09ne+++47rr7+eKVOm+O03f32ekpLCypUr\nmT59Or/97W99+2rWrFnYbDZGjRrlm+5Pbm4uiYmJJCUl8fHHH/PRRx+Rl5dHmzZtmDx5coV9+uCD\nDxIaGsrOnTt9Rc9vv/02gYGBrFixgg4dOvDPf/6TJ554gptuusnv+p555hkyMzMJDAzk3nvvpVOn\nTkycOJEGDRqQm5uL2+3Gaq08qPiYMWM4evQokZGR7Nu3j+eff55HH32U4uJiWrZsyffff8/SpUsr\n9Q/AmjVrWLJkCa1atcJmszFjxgy/bUtISODIkSPUq1ePv/zlL4SGhvqdz986TvfZZ58xceJEAOrX\nrw+Uj2x81VVXAVBQUOA3y2Kx0KlTJzZt2uQrNj51vV6vV8XGIiIiIiIiIiIiIiIiIiIiIiIiIrVE\n5YrHX7F69eqxaNEiIiIiyMjI8DvP4sWLmTJlCm63m5deegmA+fPnM3/+fF588UXmz58PQGpqKsuX\nL6dXr15nXOfJIuNBgwaxevVq3/Tw8HDcbjcJCQls2LCBZs2asXTpUiIjI/nXv/7Fjh07aN68OcuW\nLePBBx8EICMjg27duuF2u/2OBHxqAefu3buZP38+r776Kl6vl0WLFrFs2TKefvppFi5cWGV7MzIy\nWLlyJbNnzwagV69erF+/HoD09HS6d+/ut21PPfUUXbt25bnnnmPKlClV9tvp7QSIj48nKiqqwrTk\n5GQWLlyI2+2mY8eOVbb3xIkTTJo0ialTpxIREQFAixYtWLJkCdu2bQMq7tNFixZx/fXXk5WVRVZW\nFtu2bSMzM5Prr78ei8VCVFQU06ZNY82aNX7X9+OPP7Jv3z6WLl1K69atfdNLS0uZN28eV199NVlZ\nWX6XtdlsLFy4EK/XS0JCAtu3b6dhw4bMmDGDRo0a0adPH3bs2MHhw4dxuVw4nU4OHz4MwLJly1ix\nYsVZj7ekpCTcbjcdOnTg448/PuO8Z5Obm+srMj7p1MJij8dT5bJWq5Xw8HBycnIqTFeRsYiIiIiI\niIiIiIiIiIiIiIh6sh4RAAAgAElEQVSIiEjtomLjU1x55ZUAtG7dmuzsbL/zHDhwgDZt2hAUFERg\nYCBQPoJrREQEDRs29I3marPZCAwMrFBw6k/z5s2x2Wy0bt2aAwcO+KafLKC1Wq3s2rWL9evX43K5\n+OSTT8jJyaF9+/Y0bdqUsWPH+gpfu3XrRn5+PmPHjmXTpk1nXG/79u0JCAjAYrGQm5vLvn37GDx4\nMFOnTqWwsLDK5YYPH86ECRNITk4GoFGjRuTn53Pw4EHsdjvBwcFcd911ldrmz6n9duLECd/06oyq\na7FYCAsLA8But1c53+eff05+fj4BAQG+aS1btgQgKCgIqLxP69Wrx/Hjx/noo4/YuHEj2dnZNG/e\nHK/XS6tWrWjQoAHHjx/3u77s7GzfPj9137do0QLgjMva7XZCQkIIDQ0lNDSUwsJC7HY7dru9wrTI\nyEhSU1Nxu92+Amqr1XrW483j8fDcc8/hdDp58803K/T5+YiIiCAvL6/CtFNHbD7Z56f2/am/79Wr\nF++9994FtUFEREREREREREREREREREREREREfl4qNj7Fd999B5SP+tu0aVMAQkJCyM3N9c3TrFkz\nduzYQXFxMaWlpQCEhoZy+PBhDh06RGhoKFBe2FlSUuLLrMrevXspLi5m165dNGnSxDf91ALNVq1a\nER0dTWpqKqtXr6Z79+6UlJQwZswYZs2axcsvv+xbZuLEiUyePJmlS5f62nb8+HF++umnCkW8pxZ9\nhoeH065dO1JTU0lNTWX69OlVtrdnz54kJyfz5Zdf+vqla9euPPXUU/Ts2RMoH8X39LYBBAYGUlxc\n7Pv51H6rU6dOhemn9rk/Xq/XV+h6puLobt268fjjjzNt2jS/GVD1Pi0qKsJqtVbYF2fTuHFjdu/e\nDeD793z5K7r2er1+p3s8Ht9xVJXMzEyKi4txu93cfffdvhy73V6pv08/7v257bbbWLt2LQBHjx4F\n4IorrmDnzp3k5ub6isCDg4MpKiri4MGDRERE4PV6sVgs3Hzzzb7Rpc+0zSIiIiIiIiIiIiIiIiIi\nIiIiIiJSc2w13YDaJC8vj8GDBxMREeEbWfi2224jPj6eLVu2sGDBAgYPHszkyZMpKytj2LBhAIwY\nMYKRI0disViYOHEiAA6Hg7i4OFq0aOEbAdmf+vXrM3bsWI4dO8bcuXP9znPnnXcyZcoUBg4ciMVi\nYfr06Rw7doynnnqKwsJCoqKiANi0aRMLFiygoKCAESNGANC7d29mzZpFx44dsVgsvsxT/2+1Wunf\nvz8Oh4OAgAD+53/+h+jo6Ert8Hq9DB06lJKSEq644grCw8MBuPvuu5k9ezazZs0Cyou2T28bwO23\n3860adPo3LkzI0eO9NtvAPfffz/Dhg3jT3/6E3FxcYwaNYqvv/6a999/nzvuuINx48Yxbtw44uPj\nCQwMZNSoUfz2t7+tso/btGnDVVddxZo1a/z2gb99+pvf/IbS0lIaNGhAUVFRpT6rSuPGjWncuDEu\nl4ugoCCuvfbaCr+vTsbZ+Ms49XgLCQnxu1zr1q3Zs2cPw4YNo06dOr6C+oiICOx2O06nk6SkJK64\n4gratWvHzp07cblc/O1vf/M7evQf//hHnnjiCRwOB5dffjmzZs1i2LBhvr5MTEwEyvvX5XJhsViY\nOnVqhYybb76ZI0eOnHHbRERERERERERERERERERERERERKTmWLwaSrRGxcbGsmLFippuxgXJyclh\nxowZvmJjKbdq1SoCAwPp06fPz76u0tJSbDYbGzduJCMjg4SEhJ99nTWh8MTxmm5CZZbaN0C812DR\n9okSj7Gs44ayLrNXf7Txs/Fgpq9M1smb7PMwb9Ujv5+LYlvlPzg4X6a6ymqw08sM3gqZalVQibnz\nXb411EhOqM1cn5t67QHkFpYZywoqNfP6C6lj5u/5Qg/tMJJz0uGQVkZy6tvMHJ9l9gZGcgBsR7ON\n5HiDzJ3vKCs1FuWpE2kkx1ps7txiPXHmb8GorjJD2wZg8Zq7hnqtZl7HXluwkRyAUkOXq6BCM/sO\nwBtc11iWKV6D9+eWshIjOWU2/38Qej4CSs3c3wHGbmI9Bo/zoN2fG8nJv+IWIzknFZ8wc063G7pH\n2JJt9r3xtfUufB9G5m430JJyRS1uNpa1Y3DU2Wf6hb248isjOckFWUZyAPKef8RY1sGMnUZyLFZz\n7xmC65m5x9v7yR4jOQDd0+YZy8LQ9ap4h7nXcUBkk7PPVA2l2VV/i9u5Kjr4k7GskBatjORYfveA\nkRyAz3r8j5GclVvMvLeC2nme+s+yTUZyfg26vbXASE7xfz4zkgMQEN7ISI63yNw99ZEvzNy/AtQb\n+xdjWaaYemxq9Zp7fmfyMxlT77PzDT7TLy4z06h6Qeb6KdhmsM89ZravzFAOgB0z91Il1iAjOQAB\nBu+Fiww98zbY5QQFmNm+QK+556/HPeY+ezT1WYrFY277Crzmtq+kwMw5PSjU3LiIofk/GMs6Ym1o\nJKd+wDEjOR57uJEcgKC9W41lEVD1gIvn4t+JjxvJAWj/xMSzz1QNxVfeZiQHwF7FQIEi/hQdN3Pe\nkEtfcJ2a/WxOIxvXsIt9JNesrCyefvppJk2aVKPteOihh8jJycHr9WKxWEhOTiYy0lzhgj8pKSmk\np6cD5fsxPj6eLl26VGtZp9OJxWLxtTc1NfWC2rJ69WreeustbDYbzz333AW17XQ5OTlMmDDB197L\nLrtMheUiIiIiIiIiIiIiIiIiIiIiIiIivxIqNq5hy5cvr+kmXJC2bdvWim2YPXv2L77O+Ph44uPj\nq/x9v379qvyd2+022paYmBhiYmKq3bZz0bBhQ+PtFREREREREREREREREREREREREZGLg4qNRURE\nRERERERERERERERERERERER+YV6LtaabIFItOlJFRERERERERERERERERERERERERETELxUbi4iI\niIiIiIiIiIiIiIiIiIiIiIiIiF8Wr9frrelGiIhUR2FBQU034Wc1ZNWXRnIWRV9vJAfAYvASYSkr\nNpLjsQUbyQGz23cp82AxlmVFff5LM7X/+i7ZYiQH4J2oxsayyuo3NZZ1LL/USE7dMJuRHNNq2/b9\nbWu2kRyA4Tc1MZZVG+UvnGIkJ2zYNCM5Jpm6PwDwBgQZyxKR6sv+33hjWU2eWmAmyPBXztW2a6hp\nJrbP5LaVvvEXY1kBf3rUWFZtM8He1lhWckGWsSxTTL5f91rMvacVkeozeZ6ae+xfRnJMPle0lhYZ\ny6qNTPaVVM+fQ828ZmYdzzSSU1tZDL72vLXwONfnKBcvfY7yyzN5n2/yMC/xmAmrc3SPkRyA0vAW\nxrL0jKR6TG2fyefnujZUj8lziz0kxFiWXPoKTxyv6SbIRSIktE6Nrl8jG4uIiIiIiIiIiIiIiIiI\niIiIiIiIiIhfKjYWERERERERERERERERERERERERERERv1RsLCIiIiIiIiIiIiIiIiIiIiIiIiIi\nIn6p2FhERERERERERERERERERERERERERET8umiLjTdv3sycOXMqTHvttdfo3bs3q1evPu/cPXv2\nkJiYeKHNuyS8//775OXlnXGehIQEOnfujMfjqTD9zTff5KuvvvpZ2pWWlnZB+7i2e/vtt3n99dfP\nOM+MGTPwer0XvK4nn3ySLl26sHfvXt+0qvbp6b744gvi4uKIiYlhy5YtACQnJ+NwOJg6dSpQcV/N\nmzePzz77jMTERJ599lkAHnnkEbKysnA6nfTp04cePXrgcrnYtGnTBW+biIiIiIiIiIiIiIiIiIiI\niIiIiFw4W0034EJYLJYKP0dHRxMUFERpaWkNtejSsmHDBq655hrq1atX5TwvvPACLper0vQ+ffr8\nnE27pL377rs8//zzZ5zHVEH8448/TmFhYYVpVe3TU3m9XubOncuiRYsICQnh2LFj/PDDD+zZs4dl\ny5Yxc+ZMtm3bVuXyW7du9f2/Xr16uN1uPv/8cz799FPGjRt3YRslIiIiIiIiIiIiIiIiIiIiIiIi\nIsZctCMbQ/nIqkOHDuXhhx/2TTt9tNddu3YRGxtL//79ef/994HyQsf+/fvTv39/MjIyAFizZg3R\n0dG88MILZ1xn7969GTVqFA6Hg8OHDwPlI7Y+/fTTOJ1O5s6di9frJTExkYEDBzJlyhQACgoKcLlc\nOBwOUlJSAPjxxx+Jjo7G6XTyxhtvAOVFpHv37qWsrAyn0wnA/v37GT58OPHx8URHR+P1elm7di0D\nBgzA6XRWGJX2dI8//jgxMTGMHz8egGXLlrF27VoAXnnlFdauXeu3bVOnTiU9PZ1HHnmEadOmVdlv\n/vo8JSWFHj168Nlnn1XYVyfbe+r0U23evJm5c+cC5SPeHjhwgLS0NMaNG8fgwYNJSkqqMP/27dt5\n9NFHff399NNPExUVxT/+8Q8A1q1bR3R0NHFxcezatYvk5GS+/vpr3/JTpkzh8OHD/PGPf+SRRx4h\nKiqqypGcCwsLGTZsGEOHDqVfv36V2jZ9+vQq98Hx48dJSEjA5XIxc+ZMAA4ePMiDDz6Iy+Vi8eLF\nvnm//vprWrVqRXBwMGlpaQwZMgSXy8XQoUNZunQpAA899BCdOnXyjTy8efNm4uPjGT58OAkJCVW2\nIz09nZiYGGJjY1mzZk2V80HlfXq6PXv20Lp1a0JCQgCoW7cumZmZdOjQAYCOHTvyn//8p8rlb7jh\nBrZs2VLhDwZMjNQsIiIiIiIiIiIiIiIiIiIiIiIiImZd1CMb16tXjxdffJHp06eTkZHBjTfeWGme\nxYsXM2XKFNq0aYPL5eLOO+9k/vz5zJ8/H4/Hw6RJk0hJSSE1NZXly5fz8ccfs2HDhirXmZeXx/PP\nP89HH33E6tWriY+PByA8PBy3243H42HDhg00a9aMGTNmkJyczL/+9S+sVivNmzcnKSnJVySakZFB\nt27dGD16tG/aqU4txNy9ezdr1qzBarXi9XpZtGgRr7zyCnv37mXhwoU89dRTftubkZHB22+/7cvv\n1asXM2fOpFevXqSnp5OcnMw333xTqW1PPfUUJSUljBo1iiuuuALAb7+d3k6A+Ph4iouLK0xLTk5m\n4cKFhIWFUVBQUGX/+tv2Fi1a8PDDD/PAAw/4pu3cuZN//vOfzJ492zdv9+7dGTVqFFOmTKF3794s\nXryY5cuX880337BkyRJuv/12MjMz+f7777nllls4evQoERERHD16lJkzZ7Jo0SI2bdpEz549K7Vn\n/fr1dOnShYEDB9K3b98ztu10q1atokePHvTt29e37SkpKcTHx9O5c+cK/fHqq6/6iswBBg4cSFpa\nGs888wxPPPEEALNnz6408nBYWBizZ8/mwQcf5OjRo9SvX79SO2688UZWrlxJSUkJDoeDe+65p8o2\nn75PT5ebm0uDBg0qTMvPzyc0NBSA0NDQCj+f7u677/YVhYuIiIiIiIiIiIiIiIiIiIiIiPwqWS7q\n8WLlV+SiPlKvvPJKAFq3bk12drbfeQ4cOECbNm0ICgoiMDAQKB9lOCIigoYNG/oKPW02G4GBgbRu\n3fqM62zevDk2m43WrVtz4MAB3/SOHTsCYLVa2bVrF+vXr8flcvHJJ5+Qk5ND+/btadq0KWPHjvWN\nKtutWzfy8/MZO3YsmzZtOuN627dvT0BAABaLhdzcXPbt28fgwYOZOnUqhYWFVS43fPhwJkyYQHJy\nMgCNGjUiPz+fgwcPYrfbCQ4O5rrrrqvUNn9O7bcTJ074pldnRFqLxUJYWBgAdrv9rPOfmtmyZUsA\ngoODfdM2bdrE8ePHCQgI8E1r1aoVDRo04Pjx48D/7dOrrrqK7Oxsrr/+erKysnj//fdJT0/35TVv\n3hyr1Vph2dNlZ2f7jreT7amqbafbvXs3N9xwQ4Vt//777ytNO3HiBAcPHqxwDNrtdux2OyEhIWcs\nAD7ZjvDw8Cq3ITMzk4EDBzJkyBCOHDlSZRacfZ+Gh4dXyggLC/MdFwUFBdStWxerteIp5uTPjRo1\nIjc3l7KysjOuR0RERERERERERERERERERERERERq1kVdbPzdd98B5cWcTZs2BSAkJITc3FzfPM2a\nNWPHjh0UFxdTWloKlI+6evjwYQ4dOuQbedXj8VBSUuLLrMrevXspLi5m165dNGnSxDf99KLX6Oho\nUlNTWb16Nd27d6ekpIQxY8Ywa9YsXn75Zd8yEydOZPLkySxdutTXtuPHj/PTTz9VKPg8tWgzPDyc\ndu3akZqaSmpqKtOnT6+yvT179iQ5OZkvv/zS1y9du3blqaee8o3gW1paWqltAIGBgRVGKD613+rU\nqVNh+ql97o/X6yUvLw+gyuLo0NBQX/H3Tz/95DfjpNjYWO6++26WLFlS5TrLysooLi5mx44dNGnS\nhMsvv5w9e/Zw7bXX8sEHH3DNNddUyq1K48aN2bVrF1BeKHymtp2uVatWbNu2Dfi/bW/ZsmWlaX//\n+9+57777ztqWk+urTrtPtWjRIpKSkliwYEGF48lut1faf2fbpy1atGD37t2+/ZWXl0e7du3Yvn07\nUD6i9nXXXUdkZCSHDh0C4ODBg0RGRvoybr31Vj7//PNz2gYRERERERERERERERERERERERER+WVd\n1MXGeXl5DB48mEOHDvlGFr7ttttYt24dI0aMAGDw4MFMmzYNp9PJ0KFDARgxYgQjR45k9OjRvvkc\nDgdxcXGsXbv2jOusX78+Y8eOZcmSJfzpT3/yO8+dd97JV199xcCBAxk0aBA//PAD3333HbGxsfTv\n358+ffoA5aPzxsXFMXLkSKKiogDo3bs3s2bN4vXXX68wku2p/7darfTv3x+Hw8HAgQNJS0vz2w6v\n18vQoUOJiYmhYcOGhIeHA3D33Xfz2WefcccddwD4bRvA7bffzrRp05g/f36V/QZw//33M2zYMJYv\nXw7AqFGjSEtLY+bMmcydOxeAcePGER8fj9PpJCMjw29727Zty44dO/jLX/7id3Te00f27devH59+\n+il79+71mzd48GAcDgczZsxgyJAhvuk33XQTwcHBtG/f3m+uPz179uTjjz9myJAhvhGyz9S209v5\nwQcf4HQ6ff0xbNgwUlJScDqdvn7bsGEDd9555xkz9+/fj9Pp5Ouvv2bQoEGsW7eu2u3o2bMno0eP\nZsaMGdStW9c3/Z577mHq1Km+tkHlfepvexMSEnjwwQfp168f33zzDY0bN6Z58+Y4HA7y8/Pp0KED\nv/vd78jMzMThcGC1WmnTpo0v46677jprkbqIiIiIiIiIiIiIiIiIiIiIiIiI1CyL91yHR/2Vi42N\nZcWKFTXdjAuSk5PDjBkzmDVrVk035aL0yCOPMGHCBN9o2ibk5+ezefNmevToYSzzUlT435GUL1VD\nVn1pJGdR9PVGcgAsBi8RlrLis89UDR5bsJEcMLt9lzIPZ/+jjOqyoj7/pZnaf32XbDGSA/BOVGNj\nWWX1zV2Pj+WXGsmpG2YzkmNabdu+v23NNpIDMPymJmef6SKWv3CKkZywYdOM5Jhk6v4AwBsQZCxL\nRKov+3/jjWU1eWqBmSCL2b+tr23XUNNMbJ/JbSt94y/GsgL+9KixrNpmgr2tsazkgixjWaaYfL/u\nrcZAAyJinsnz1Nxj/zKSY/K5orW0yFhWbWSyr6R6/hxq5jUz63imkZzaymLwteethce5Pke5eOlz\nlF+eyft8k4d5icdMWJ2je4zkAJSGtzCWpWck1WNq+0w+P9e1oXpMnlvsISHGsuTSd6nXQ4k5IXZ7\nja6/dl7Ba7HqjIJbm2VlZfH0008zadKkGm3HQw89RE5ODl6vF4vFQnJyMpGRkTXappPO1raqjoGs\nrCymT5/u+327du1ITEys1jrDwsKMFRrn5OQwYcIELBYLXq+Xyy677IIKy1NSUkhPTwfKtz0+Pp4u\nXboYaauIiIiIiIiIiIiIiIiIiIiIiIiI1G4qNj5Hy5cvr+kmXJC2bdvWim2YPXt2TTehSmdr27PP\nPut3etu2bXG73T9Hk85Jw4YNjbYjPj6e+HhzI1WJiIiIiIiIiIiIiIiIiIiIiIiIyMXD7PdKioiI\niIiIiIiIiIiIiIiIiIiIiIiIyC9mypQpDBgwgBUrVvj9/ZEjRxgyZAgxMTFs3779nPNVbCwiIiIi\nIiIiIiIiIiIiIiIiIiIiInIR2rZtG2FhYbzyyiv84x//oLi4uNI8r732Gg6HgwULFvDiiy+e8zpU\nbCwiIiIiIiIiIiIiIiIiIiIiIiIiInIR+vLLL7n55psBaNeuHbt27apyngYNGlBQUHDO61CxsYiI\niIiIiIiIiIiIiIiIiIiIiIiIyEUoPz+foKAgnnvuOerUqcOxY8f8znPgwAFWrVqF1+s953XYTDRU\nROTXymuxGMta3K+9kZwSz7lfDKpibuuglEAjOUHmNo8yQ1kBVnM9VWpw/wXiMZLjMfi3SWZaBFaD\nrz2TTDXLWlZiJgjwWMzc7r01+CYjOQBlXlNHAhSZizLG1LXBdjTbSI6PtaGRGEtZ5a9bOR/xNzc1\nkgNgKSk0E2QNMJNjWNiwaUZyTO07AM7jzac/nsAQIzmmWTxlhoJMXkPNnFsCPOauMRg8n5cFBBvL\nMsXqNXMceA2eWyyGXnsAFk+pkZwmT6cYyQGwFh41klNmb2AkxzRTr+Mfjxt8HQNhBjKsBbkGUsrZ\noh4xlhW0f7uxLFN+et1tJCe5IMtIDsAEe1tjWX/d8ZqRHG9JkZEcAIvNzPOIw2tWGckBqOeaaCzL\n1PXY2D01YC0wcz73mrxXNHTdA/AGhhrJKat7mZEcgIB/rzeSc/jjDUZywOx5apyh89Tzn84ykvNr\nEHBtNyM5lsLKH2yed5ah17E3wMx1ASDh8u7Gsky9Zgw+Pq+dbObeO5Ya6iyTfV7iNXN8BtbSz4lM\nPdf3GHxvbDP0qUWAyWf6Bu+BygwdCyY/kzEVZez5HVBq8HOwYENRpQ2amwnC3PnOJJOfsQecOGws\nC+oaSbGUnPtIkf54A+1GcgACD39vLKssrJGRnICdm43kAHhadTSSUxpSO58ryqXP5HlRfr3CwsIo\nLi7mz3/+M0lJSdStW/m6FhYWRtOmTWnXrh1///vfz3kdGtlYRERERERERERERERERERERERERETk\nInTttdeydetWALKysmjdujWFhYVkZ//fIGfXXXcdW7duJTc3F7v93P+oRcXGIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiF6GbbrqJo0ePMmDAAHr16kVQUBDbt29n4sT/+5a16OhoUlNTGTlyJCNHjjzndZj5\nXm0RERERERERERERERERERERERERERH5xSUlJVX4uXPnzqSmpvp+Dg8PZ8mSJeedr5GNRURERERE\nRERERERERERERERERERExK9Lrth48+bN7Nu3z1je66+/XmnawoULOXjwoLF1nE1CQgKdO3fG4/H8\nYusEyMnJ4W9/+9t5Leuv387H5s2bmTNnjpGsS1lWVhZfffXVOS/35JNP0qVLF/bu3eubVt3j7Ysv\nviAuLo6YmBi2bNkCQHJyMg6Hg6lTpwKQlpbG6tWrAZg3bx6fffYZiYmJPPvsswA88sgjZGVl4XQ6\n6dOnDz169MDlcrFp06Zz3hYRERERERERERERERERERERERERMe+SLDY+tXDyQvkrmh02bBiXXXaZ\nsXWczQsvvEDbtm1/sfWd1LBhQ4YPH35ey5oqNgawWCzGsi5VmZmZ/Oc//znn5R5//HG6du1aYVp1\njjev18vcuXNZtGgRK1eu5JprruGHH35gz549LFu2jDp16rBt27Yql9+6davv//Xq1cPtdjN58mTu\nv/9+UlNTufXWW895W0RERERERERERERERERERERERETEvDMWGxcVFTFy5Eji4uKYPXs2AGvWrOHl\nl1+muLiYoUOHUlBQwPjx4zl8+DAADz/8MIcOHeKLL74gKiqK//3f/8XpdALlI6HGxsYSGxvL9u3b\nAejfvz9PPvkk9913H99//32VbXn88ceJiYlh/PjxABw8eJABAwbgdDqZOXMmUF4k+cYbbzBz5kzf\nfCdHUwWIjY315fXr14/x48cTExPDjz/+yPz584mNjcXpdLJz50727duH0+nk22+/xeVy8fHHHwOQ\nlJRUaSTYiRMn4nA4eOyxx4Dyguf4+HiGDx9OQkJClds0b948EhISiIuL4+WXXwYgMTGRvXv3UlZW\n5us3KC/uPFVaWhp9+/bF6XSSk5MDwLJly4iNjeXBBx/kyJEjftdZ3X2alZVF//79efTRR33L3nPP\nPfTp04fExEQGDhwIVN6nVfVbWloakydPxuVyMWXKFD788EMWLVoEwD//+U8WL15cZT8B7N27lzFj\nxlBYWMi8efNITExkwIABvn7bunUr/fv3p3///mzdupXXXnuNDRs2+JafP38+27dvr/bx9vDDDzNk\nyBCcTieff/75Be3TnTt34nK5GDBgAB988AEA+/fvZ/jw4cTHxxMdHY3X62Xnzp04nU5cLhdvv/02\nUHmf7t+/H4fDwZgxY4iLi8Pj8fDKK6+QkpLC4sWLcblclY6Vk9LT04mJiSE2NpY1a9acsb+ryjhp\nz549tG7dmpCQEADq1q1LZmYmHTp0AKBjx45nLH6+4YYb2LJlS4VC8rOtU0RERERERERERERERERE\nRERERER+eWcsNl63bh2dO3dm+fLlfPvtt/z444/cc889/Pvf/+aJJ54gPj4eu91Or169WL9+PcXF\nxRw/fpzIyEhf8WNsbKyvoHDOnDmkpKSQkpLC3/72NwDy8vJ4+OGHGTlyJB9++GGVbcnIyGDlypW+\nAtkGDRqwdOlS3P+fvTuPj6q64z7+mS3JhABJ2GSRTUBEVHCrreBCUYpVi1QxQCaACAiIaCkW0CJV\nZPERBURREJFMgmyCxYKCa0VFAcX6WEF2lYBsCQnZM5l5/qCZx5CEBPwpUb/v18uX5M6933vuuefe\nucvJid/P9gjPK74AACAASURBVO3bSU9PZ8SIEfTs2ZO//e1vTJ8+vUzG9zs2fv3110ycOJFFixZR\nv359EhMTWbhwIX/961/x+/00adIEv99PmzZtSE5O5uqrrwZg3LhxpUaC/fTTT6lZsyYpKSnExMSE\nR3ONiYnhueeeIy8vj8zMzAq369JLLyU1NZW1a9dSXFxcYXlPHN13zZo1PPPMM/j9furUqUN6ejrv\nvPMOCxcuZMCAASxZsqTc9VW2TwcNGoTX66Vt27bhui7Rpk0b7rvvPtq3b0/79u1JT08vs08rqjeA\nYDBIcnIyDz/8MJ06deKjjz4C4I033qBbt24V1tGhQ4eYOHEikydPDnduveiii0hNTeX1118Hjncm\nnj17Ns888wzPPvssF154IVu2bOHjjz9m9+7d7Nixg7Zt21apvX366afUqVOHF154gVq1aoWnn84+\nDQQCPPHEE0yaNInU1FRSUlLC8+3Zs4fZs2ezePFiHA5HeL7k5GSuu+66CvdpIBBg1qxZtGrViq1b\nt9K7d2+GDBnCwIEDSU5OrnAk6I4dO7Jo0SIWLFjAggULKiw/VD6adEZGBrGxsaWmZWdnEx0dDUB0\ndDTZ2dkVLv+HP/whvO9EREREREREREREREREREREREREpPpyn+zD/fv3c9555wHQsmVLDhw4QIMG\nDejRowdTp05l0qRJAFxzzTWMGjWKevXqcdVVVwGQm5tLbGxsuHMowK5duxg2bBihUAiPxwNAfHw8\nMTExxMXFsWvXrgrLMmTIEO677z6aNGnCqFGjOHr0KA899BA5OTns2rWLnJwc4uPjT7qx3x85tWXL\nlsTExADHO1auXLmS1157jUAgQLNmzcpdpqI6atWqVThz37591K1bN5wRFxdHTk4OtWvXLnf5li1b\nAtCgQYMKRyMurxx33303M2bMIBgMMn78ePbu3cuuXbtISkqiuLiYSy65pMLyVmWflsfr9RIdHU10\ndDRer5f8/Pxy92l55YXjo90COJ1OnE4n9erVY9++fRw8eJDGjRtXuN6PPvqIhg0b4nK5wtOaNWuG\n0+kMT8vLywvv/7y8PFq3bs3cuXMpKCggPj6eQCBAREREldrb/v37w/ulefPmpdYJp75Pv/32W8aN\nG0coFCq1j9u3b19qmzIzMzn77LOB43W9ffv2cvdp06ZNS5UDqjYq8JYtW5g1axbBYPCkba0qeXFx\ncWUyYmJiOHLkCHB8H9SsWROn01mqE73Tefz3G+rVq0dGRoZGMxYRERERERERERERERERERERERGp\n5k46snHDhg3ZuXMnALt376ZBgwYEAgGSk5Pp2bNneKRVr9eL1+tl+fLl4RFqo6OjSU9PL9Whs337\n9jz//PP4/f7wyMZV7Wx43XXX8eSTT/LFF1+QkZHBqlWruP7660lOTqZFixbh+dxuN0VFReGfo6Oj\nycvLo7CwsNRotCWdHkssXryYlJQU7r333lJlqmiE15J5vl9Hu3btolGjRlXanhK7du0iFApx4MAB\nYmNjiY6OJicnh0OHDpUqR3R0NBkZGeGf27Rpw5QpU2jRogUffPABTZo04eKLLyY5OZnU1FRGjBhR\n7vqquk9LtvFk+ycUCpW7T6H8evt+x1qAbt26MWnSJC6//PKT1tFNN93EXXfdxbRp0yqcp6S9HTly\nhOjoaFwuFw6Hg6ioKA4ePEhcXFy4zJU566yz2L17N3B89OFT9f19GhcXxznnnMPMmTPx+/0sX748\nPN+JbbB27dp88803AOTn51d5n0LZdl+eefPmMWnSJJ599tlS6/Z6vaXaFpRtbydq2rQpe/bsIS8v\nDzg+Qvl5553H559/Dhwfifz888+nTp064Q7IBw8epE6dOuGM3/zmN2zcuPGkZRYRERERERERERER\nERERERERERGRM+uknY2vv/56Pv74YxITE2ndujUNGjTg2Wef5fbbb+eOO+7g3Xff5cCBA8DxzsBZ\nWVnhzoSDBg3izjvvJCUlJdyxcfDgwQwcOJB+/foxZ84coOLOvN8XCoUYOHAgCQkJ1KtXj7i4OK64\n4grmz5/P8OHDS837u9/9jrlz5/Loo48CcO2115KcnMzs2bPxer3h+U5cb4cOHfD5fKxdu7bU9LPP\nPptRo0axceNGCgoK8Pl8rFu3jtGjR5OamsrFF19MVlYWiYmJZGdnh0fvrWg9J9q4cSN9+/bluuuu\nw+Vy0b17d6ZNm8by5ctLLfunP/2JQYMGkZqaCsBjjz1G3759WbduHZdddhnx8fF07NgRn89HUlIS\n69atK3d9Vd2nL730EqNGjWL9+vUkJSWRm5tbJsvhcJS7T0+st4r87ne/Y+PGjfzhD384aR0BXHnl\nlWRnZ7N58+ZyP7/rrrsYOnQow4cPZ+jQocDx0XdbtGhBVFQU559/frjMlbnkkks4ePAgAwYMICsr\nq8znp7pP7777bu677z6SkpJKjRx9Ys69997LuHHjwu2wsn36/eU7duzIqlWruP/++yss13XXXcfw\n4cOZPHkyNWvWDE+/4YYbGD9+PDNmzAhPO7G9lVcHI0aM4M477+S2225j27ZtnHXWWTRp0iR8LFx0\n0UX87ne/Y8uWLSQmJuJ0OsOjgMPxtniyDs0iIiIiIiIiIiIiIiIiIiIiIiK/ZKGQ/tN/VfvvTHOE\nqjq0cCXWrl3L4cOH6dOnDwCBQAC3283u3bt57rnnmDJlisVqflFmzZrFJZdcwm9/+9szXZQzorCw\nkOHDhzN37twzXZQKTZ8+nSuvvJLLLrusSvP/2vfpjy3/fyMpVyehKnRgryqH0bdCkeGXi93WQSBo\nU7AI10l/T+aUBI3q3OW0qymregLwEDTJCZz8d5POCKfhsWfJqljO4pOPVn8qihxukxy3ZZWHbNom\nQEHIrn0W5gZMcmJqekxy3Jn7TXJKHHXWNcmp5bXZf0F3pEkOgLMo3yjIVfk8Z0DIaXMcO4oLTXIA\ns7vZoCfKJMeaI1hsFGR43WJ0ZeYK2n3HWJ7Pi1125wQrzpBNOwgZnlus7hkAHEGb7z2rcxSAMz+z\n8pmqoNgba5JTIvuYzXFTI8bmGuFAjuFxDMQYNKvarmM/POR/gt44s6yIff/XLMvKoZf9Jjm17vk/\nJjkA93nbmmU9s2NJ5TNVQaiowCQHwOG2OfbSVy81yQGolfQ3syyr72OH1TU14MyzOZ+HLK8Vjb73\nAEKeaJOc4pr1TXIAXP/3DZOc9H+/ZZID1fM8NfPDiv96opyg3dUmMY58u2sEs+tXl833AsCIBteY\nZT2Zt9Us65fM8p4oYBRl+b6/qNgmzeMyfHdllmT3XN/q3Q6A2+g9isPwmb7l87Jio3dOlu9krKLM\nnt8BRYbvwTxWVWX43M3yPV9eTvV6jwLgyk03y8osrln5TFVQK9LmnBDyeCufqYrcGd+YZRXH1DPJ\nce3cYJIDEGzeofKZqiAQZfdcMdpbPd9/SPWUm2f3XEZ+2c70ucXkjdCrr77K8uXLeeqpp8LT3nvv\nvfBItxMmTLBYjfyCHDx4kFGjRnHHHXeEp/l8PhwOB6FQCIfDQXJy8o9ejkmTJrFlyxbg+Gi948aN\no23b///gsqJRjA8fPsx9990XLm/9+vWZNq16PKi0LtucOXPCoyqXjGbdqVMnq+KKiIiIiIiIiIiI\niIiIiIiIiIiISDVm0tn4pptu4qabbio1rUuXLnTp0sUi/hfr7rvvPtNFOGPq16+P3196JJcTf/4p\njBs37qSfjxw5stzpdevWLbe81WGfVlS20zV48GAGDx5sliciIiIiIiIiIiIiIiIiIiIiIiIiPx/V\n7++ii4iIiIiIiIiIiIiIiIiIiIiIiIiISLWgzsYiIiIiIiIiIiIiIiIiIiIiIiIiIiJSLnU2FhER\nERERERERERERERERERERERERkXKps7GIiIiIiIiIiIiIiIiIiIiIiIiIiIiUy32mCyAiUlWO4sIz\nXYQynMVFZlnBiBomORFBu3rKKLb7mnA5HCY5kYbfXFZRIaMcsN1/OGx+p8jlcpnkWHIGCsyy8vCY\nZbmdNu3cVXDMJAcgEBFrkuN22WwbQEHI7vfdCostj0AbB3MCJjkuTz2TnBKRVnUVLDaJcYTs9p0r\n+5BJTjA6ziQHwFGYa5ZVHGPbFiy4svbbBNVuZJMDZm0TIOTx2uQYXf8AOI2OGUdhjkkOQLHX5jsG\nwKqmXPlZRkkQctpcLQbcNu0JwG3XpCAUNAyz4co6YJITiLJrm5ZyimzqvDBofP1jcK5y5RwxKMhx\nQa/d9/GwVr3MsqwMT2hnklPLJOW4Z3YsMcuyqvN7B3YwyQGoe+E5JjmRd040yQFw7frQLMuKw1vT\nLCun4QUmOZanu4g3njXLKjxic86Luu0vJjkA6wZNMsmpd35dkxwwPk/tXGaSs+g3SSY5vwa3vjLB\nJCfzk49NcgDibulvknPslXkmOWDXNgGsnnZaPm+xuqd1FWSb5IDdexSwu786nGf3PCLC6Bmsy+g5\nNUCk4dBlRUbt04Ph/azRe5SgJ8okB2yPY6fRcWx1PwvgNTr4PIbvaHFF2mUZCRiOG1j93qLYvUcB\ncDtrm2VFWJ1fjM4tlorim5lleba8a5Kz5ub7TXIAuv3rcZugNlfZ5IiI/EJVv284ERERERERERER\nERERERERERERERERqRbU2VhERERERERERERERERERERERERERETKZfjH6EVERERERERERERERERE\nREREREREpCqCodCZLoJIlWhkYxERERERERERERERERERERERERERESlXtexsvGTJErp3786yZcvO\ndFGqrbfffpsePXowY8aMn3S9ffr0qXSeqpZtxYoVP4t9XJVt/rFNnDix1M9vvvkmWVlZPzh3//79\n+Hw++vbtG572+eefc/vtt3P//fdXuvy0adPw+XwMGDAAgIyMDAYOHEjv3r155513APD5fASDQeD/\n12Xbtm3ZsWMHxcXF+Hw+XnvtNXw+H506daJXr14MHDjwB2+biIiIiIiIiIiIiIiIiIiIiIiIiPxw\n1bKzca9evRgyZMiZLka11qVLFx544IGffL0Oh6PSec5U2X4sVdnmH9uDDz5Y6ue33nqLo0eP/uDc\nhg0b4vf7S0278MILeeKJJypd9qOPPiIQCOD3+5k+fToAixYtIikpieTkZF544YUyy5TUZb169Vi9\nenV4Wvfu3fH7/XTu3Jlp06Yxb968H7ppIiIiIiIiIiIiIiIiIiIiIiIiImLgjHc2LigoYNCgQQwc\nOJBevXqxb98+AEKhUKn51q1bR0JCAn369Al3Uty6dSs9e/bE5/Px3nvvAbB69Wpuu+02Ro8ezdix\nYwHw+/0kJCQwYMAA0tPT+etf/0p2dnY4e/jw4RWWLyUlhYSEBPr160d6ejrp6en079+fhIQEUlNT\nAUhMTKRXr16MHj2aXr16kZ+fz8svvxwu78aNGyvMX7FiBbfccgs+n4/Dhw8DsGnTJnr37o3P52P9\n+vUEAgESExPp169fqdFmT6yj3Nxc7rnnHpKSksKdP8tTMgotEB5BdtOmTfTp04c+ffrw+eefA7Bh\nwwZGjRpF//79ueuuuwBIT09n2LBhJCYmkp6eXuWyncznn3/O/fffTygUYuzYsTzyyCP07NmT1157\nDYC1a9fSq1cv+vbty+7du3nyySf56quvwss/+OCDpKenc/PNNzN69Gh69uxZ4ai/BQUFDB06lL59\n+5bqUOvz+ZgxYwaJiYm8+eab7Ny5k9tuu41Ro0ZRWFhYYdl9Ph+PP/44N910E59++ilQtr2VJy0t\njdGjRwMwffp0Nm7cyIYNGxg8eDBDhgxhxIgRABw+fLjMyMPjx49n3bp1jB49OjzicXnHQnkefvhh\nfD4fAwcO5NChQxXOVxXr16+nW7duANSuXRuALVu20LFjRzweDzVq1CAvL6/cZc8++2y+/vpr4NTa\nioiIiIiIiIiIiIiIiIiIiIiIiIj8tM54Z+M33niDTp06MW/ePIqKiiqcr2PHjixatIgFCxawYMEC\nAD744AOSkpLw+/106tQJON45eOHCheFOkIFAgFWrVrFo0SJ69+7N0qVLueCCC9iyZQtLly4lEAjg\ndJZfDUeOHOGdd95h0aJFvPDCC8TExLBkyRL69OnDokWLePXVVwkEAtStW5fJkydTr149evTowY4d\nO7j++utZtGgRM2fOZM6cORVu15o1a3jmmWfw+/3UqVMHgCeffJK5c+fi9/vp0KEDbrebZ599lgUL\nFuD1esOdgU+0ZMkSunTpQnJyMmlpaRw8eLDc+Tp06MDnn3/O119/TYsWLYDjHV7nzJnDnDlzeO65\n58LzHjp0iBdffJFnnnkGgKysLGbOnEn//v1ZsmRJlctWkZ07d/L8888zadKk8Ki311xzDXPnzmXl\nypUAvPDCC6SmpjJu3Djmz58f3n9r164lPT2dzMxM4uPjyczMZOrUqXTv3p2PP/643PWtXbuWyy+/\nnNTUVLZv386BAwfCn/32t78lJSWFa6+9lvnz5/PII4/wwAMPVNhxGY6PytuzZ08effRRVq9eXaq9\nJSQksHTp0pMue6KYmBiee+458vLyyMzMpG7dumVGHn744Yfp3Lkzjz/+eHjE4/KOhfLcd999+P1+\n/vznP/PPf/6zwvmqIiMjI9zJuER2djZerxeAGjVqcOzYsQqXP//88/niiy+qxcjRIiIiIiIiIiIi\nIiIiIiIiIiIiIlI+95kuwL59+zjvvPMAaNasWYXzbdmyhVmzZhEMBjl69CgAt9xyC7NmzeLtt99m\n2LBhtG3bFpfLhcfjCXeizcjIoFGjRgCcc845fPjhh9x888188cUXrFmzhpiYGJo0aVLuOtPS0mjb\nti0ALpcLl8vFvn37uP766wFo2LAhR48exev14vV6iY6OJjo6mvz8fNavXx/uJHqykVvvvvtuZsyY\nQTAYZPz48cTExACE/+/1esnNzWX8+PEcPnyYtLQ0unfvXm7Wnj17+PLLL3n55ZfJzs7m0KFD1K9f\nv8x8v//973nzzTepVasWv//97wHYtWsXw4YNIxQK4fF4wvN26NABINwhu0mTJrjdblq0aMH7779f\n5bJV5OOPPyYuLg6XyxWe1rx5c2JjY8nJyQHA7Xbj8Xg455xz2L9/PxdccAHz588nPT2dvLw8IiMj\nw2VzOp2llj3R/v37w+2tZcuWHDhwgAYNGpTaVpfLxf79+2nZsiURERFlOtSeqHnz5uzdu5ecnJxS\n7a1Vq1asX7/+lOqj5BiIi4sjJyen0nWX+P6xMHTo0PA2nuiFF15g48aN5OTkcO2114ann87owvHx\n8WU6YsfExJCXl4fH4yE3N5eaNWuW2rff79h/ww038OKLL57yekVERERERERERERERERERERERETk\np3PGRzZu2LAhO3fuBI53li0RFRVFRkZG+Od58+YxadIknn322XCHxZiYGMaPH0+/fv3CI8gWFxdT\nWFjIrl27gOOdNvft2wccH0W3UaNGtGvXjrVr19KzZ08WLlxI+/btyy1b48aN2bJlCwDBYJCioiIa\nN27Mzp07CYVCfPfdd8TFxZVZLhgMMnfu3PCIvcFgsMLtb9OmDVOmTKFFixZ88MEH4eklnTjz8/N5\n//33admyJcnJyVx66aXhjqEn1lHz5s0ZNmwYfr+fpUuXcv7555e7zvbt27N161Y2bdrE5ZdfHp72\n/PPP4/f7S41s/P2OogDffvsthYWF7N69m0aNGlW5bBXp06cPf/jDH5g/f36F85Ts0x07dtCwYUMa\nNGjAN998Q7t27Xj77bdp06YNULUOs99vb7t37w53NIbjnZpLNG7cmF27dpGenh7u3F6eE9dZXnsr\nT3R0NHl5ecDx0aMrc+J6PB4PhYWF4Z+/fywsW7as3IyjR4+yadMmUlJSSExMLJWZn59fal6v11vp\n/vvNb37DmjVrAMjMzATgvPPOY/PmzRQWFpKbm4vX66VOnTocOnSIgoKCUh3ZzzrrLL777rtKt11E\nREREREREREREREREREREREREzpwz3tn4uuuu4/3332fgwIG4XK5wR+IrrriCtWvXctddd4XnGz58\nOJMnT6ZmzZoA/Otf/yIxMZFHH300PKJuYmIiffv25fXXX8fpdOJ2u7nxxhtJSEjgpZde4tZbbyUq\nKors7GyuueYagsFghZ2N69Spw7XXXktCQgL9+/fn2LFj3HbbbaSmptK7d29uvPHGMp1xARwOB9de\ney0+n4+FCxficDgq3P7HHnuMvn37sm7dOi677DIARo4cyeDBg/H5fGzevJmLLrqIt99+m7vuuivc\nqROOd+zcuXMnSUlJ5OXl0atXL1asWEG/fv0YMmRIuDNreZo0aUJMTEy4/IMHD2bgwIH069ePOXPm\nVLhcbGws99xzDwsWLODWW2+tctlO5rbbbuPDDz/k22+/LffzAQMGkJiYyOTJk7njjjvC0y+++GIi\nIyPD++9k9Vzi+uuv5+OPPyYxMZFWrVqFOxufuGy/fv0YP348EydOPOnowicuV157K09cXBwej4fJ\nkyeHOyeXl/vmm2/i8/nYvn07SUlJ4Tq66qqrmDhxIrNnzwbKPxZOVLt2bWrUqMGAAQPYtGlTqc8u\nueQS+vTpw6effgocH7XY6/Xi8/kq3C+//e1vcTgcJCYmMmLECABuv/12kpOT6devH0lJSQAMGjSI\nkSNHkpSUFN5/JdtX0uZFREREREREREREREREREREREREpHpyhKoyHOyPLBAI4Ha78fl8zJs3j4iI\niB+c9f7777N58+ZwJ0gR+fkryM6sfKafmKO4yCwrGFHDJMdRXFj5TFWUUeyufKYqclXhFwKqIibC\n7vdkHEZfgSGjbQNwBgrMsnDY1FXQ5al8pp+YZT3lYbd9bqdNW4jIr/yvA1RVbkSsSU6Uy66dF1T8\nRx9OWWGx4aVsQbFJTK5ROzCscgAijeqqVqTNd1/I4zXJAXAf3WuSE4wu+1dLTpejMNcsqzimnkmO\n5TWCK7PsL8ydjuLa5f8lkNMStDmGwa59Wl4jWF23OPPtrqmLvTbfMZZc+VlmWSGnzbVwkdvwfGf4\n3WB1Tgi5Tv8Zzok8B7eZ5BTUP9ckp0ROttF9X2TZX1g/Hen5AZOcEvEG56r4/D0/vCD/U1S3lVnW\nvdHnmWVZGZ7QziSn1fzlJjkAkWmfm2UNa9XLJOfegR1McgDqXniOSU7knRNNcgCid31olmXF4a1p\nlpXT8AKTnKDh7V7EG8+aZRUeOWKSE3XbX0xyAD7o9AeTnHrn1zXJAePz1L4vTHIW/SbJJOfX4NZX\nJpjkZH3ysUkOQNwt/U1ysv6VapIDULtb+QPOnI6CRuUPjHSqrO4dwe6e1lWQbZIDdu9RLB3Os3se\nEWH0QDDSbfceJdJw6LIio+bpwfABs9F7lOr4DAggiE25cors6txr9HDDU2z3nqjQFWmW5TFqCgHD\na2HLDkH5OTbPJKzeo4DduzmAiIBNW68VZfPdEHLbtU3L85Rny7smOWtuvt8kB6Dbvx43ySlsc5VJ\nDkC0N8osS375snNPPpCnSImYaLt3TqfDrhfZaQqFQvTu3RuPx8M111zzgzoaAyxbtox//vOfuN1u\nHn/c5stEfpjDhw9z33334XA4CIVC1K9fn2nTpv3o6/3LX/7C4cOHCYVCOBwOnnzySerUqXNaWevW\nrWPOnDnhEXk7d+7MoEGDqrTspEmT2LJlC3B8RN9x48bRtm3b0ypHVa1YsYLly5eHy9uzZ0969Ohx\n2nk+ny+8/xwOB8nJyVZFFREREREREREREREREREREREREZFq7Ix3NnY4HCxdutQsLyEhgYSEBLM8\n+eHq1q2L3+//ydf7xBNPmGV17tyZzp07n9ay48aNMytHVd1yyy3ccsstZnlnYv+JiIiIiIiIiIiI\niIiIiIiIiIj8klmOQi/yYzL8wyciIiIiIiIiIiIiIiIiIiIiIiIiIiLyS6LOxiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIlIudTYWERERERERERERERERERERERERERGRcrnPdAFERKoq5IowywqEbHKKHXZl\ninA4bIKcdqd2V9CoTMDBnIBJTu1QoUkOQCAixibIqD0BFLsizbLcBVkmOQGHXZuyalEOw3buNiuV\nnVBEDbOsYqP2GbI6RwFRoQKzrMyAyyzLa5RTx2tTJrdx0zyWbXMedoSCJjlBwzZF0GbbnLkZJjkA\nQY9Vi7LjKMqzywrYfB87sw+b5AA4AvlmWcW1G5vkFDjtvtedRodMdNYBmyDAmX/MLKu41lkmOZb3\nDFiep4w48zPNskLV8DwVOmrTPvPjW5vkWKvpNrowizJ+nFdQ/IMjQun7DQryP3VbmUXdO7CDWZaV\nQF6RSY4jZHcjGiqyuz63qvPp8z4zyQFIuirdJOfyzv82yQHAa3fPh9F1WcGWjSY5AJ6vPjHJCRXa\nXd8VHjlilhVRr75JjuX1a2GO0bnF6qIT2/MUAZvzVLNz65jk/Bq4GzQ1yanR/DuTHACKf/g1C4C3\nWTOTHMCsbYLdMWP17gMgUGzzDMjlsfve85glQdDoubDD8N7xcJ5NO29Z+5c93ljAcDw1j9FxnG/5\nvtBlt33FRueWCJddO7c6TRUZvk8LGp47rV45eQJ2z3KziDLLshIbZfduJ9Jh830FcMzmVYPZtX7I\nbfje+D+vm2U56zYyyTmnW0uTHEtW79cB8Fa/Y09E5If6Zd9piIiIiIiIiIiIiIiIiIiIiIiIiIiI\nyGlTZ2MREREREREREREREREREREREREREREplzobi4iIiIiIiIiIiIiIiIiIiIiIiIiISLnU2VhE\nRERERERERERERERERERERERERETKpc7GAsCGDRuYPn36j5JdVFSEz+ejW7duJ50vLS2N0aNHl/vZ\nxIkTT3m9s2bNYv369ae8XHW0cuVKXn755VLTli5dyiuvvAJAnz59Tiv36aefpkuXLqXq6R//+Aed\nOnXi65NaBQAAIABJREFU22+/PemyO3fuJCkpiYSEBF577TUAUlNT6dOnDyNHjqSoqKhUu1qxYgVL\nly5l1qxZ3HPPPQBMnz6dDRs2MGjQIG6//XauvPJKkpKSWLVq1Wltj4iIiIiIiIiIiIiIiIiIiIiI\niIjYcp/pAkj14XA4fpRcj8eD3++nb9++p12GBx980LpYPyurVq1i5syZFX5+uvtu+PDhhEKhUtMe\neugh8vPzK1126tSpTJ8+nfj4eDIzMyksLOSNN95g4cKFpKSksHbtWurVq1eqbCX/3rp1K7m5ueFp\nc+fOJS0tjRkzZvDYY4+d1raIiIiIiIiIiIiIiIiIiIiIiIiIiD11Npaw//73vwwZMoTIyEimTJnC\nmDFjOHr0KBdffDH33nsviYmJFBYW0qxZM77++muSk5P58ssvmTp1KgBjxoyhY8eOrF69mvnz59O8\neXPcbjeTJ08ud33Tpk3jk08+ITY2Njz67e7du7nzzjtxOBzMmjWLyMhIfD4fBw8eZM2aNcDxEXLf\nffddsrKyaNWqFQ888MBJt+utt95i48aNjBkzBp/Px0UXXcS///1v/vGPf3DxxRfj9/tZtWoVXq+X\nadOmMWnSJCZMmEBMTAxwvEPumDFjGDt2LLGxsWRkZOD3+3E6yw4MfuTIEUaOHEnNmjXZs2cPr732\nGrNmzSItLY09e/bQrVs3+vfvX245K6q3r776iubNmxMZGQnAlClT2LJlCxEREfzxj38EKNNhuDxb\nt25lwoQJuN1uunbtWmE5qqKoqIhgMEh8fDwAtWvXZtu2bbRu3RqADh06sHr1aq655ppSy5WU85pr\nruHNN9/80Tq4i4iIiIiIiIiIiIiIiIiIiIiIVHfByrt9iVQLZXtLyq9WTEwMzz33HLm5uSxevJgu\nXbqQnJxMWloaBw4coG7dukyePJl69erRo0cPtm/fzuzZs5k9ezZPP/00s2fPBiAlJYWFCxfSrVu3\nCtd14MABdu7cycKFC7nssst44403AAgEAjz//PNceeWV4Wl+v5+6deuWWr5p06bMnz+fzZs3n3Sb\nNm3axFtvvcWYMWOA46Po9uzZk0cffZTVq1cTCARYtWoVixYtonfv3ixdupQLLriALVu2sHTpUgKB\nAE6nE6fTSSAQYNasWbRu3ZqtW7eWu76lS5cyYMAAZsyYQVZWVnj6RRddRGpqKq+//nqFZa2o3hYv\nXkxCQgIA3333HXv37mXBggU0b978pNt+oqZNm/LSSy+RkpLCypUrT2nZEx09epTatWuXmpadnU10\ndDQA0dHRZGdnV7h8p06d+OCDD35QGURERERERERERERERERERERERETkx6eRjSWsWbNmAMTFxfHh\nhx+SmZnJyy+/THZ2NocPH8br9eL1eomOjiY6Opr8/Hzy8/PDo9vm5eUB4HQ68Xg8tGjRolT+90ff\n3b9/P+eccw4ALVu2ZNu2bXTo0CG8TIsWLdi2bVulZS0Z7bciGzZsKNNRuXnz5uzdu5ecnBwyMjJo\n1KgRAOeccw4ffvghN998M1988QVr1qwhJiaGJk2aAMc76wLExsaSk5NT7vr27dvH9ddfT0REBI0b\nNy5VXqfTicvlqrCsLperTL3l5uZy8ODB8LTvvvuuVB2VqMoIwWlpaUyZMoXCwkL27t1LKBQ67ZGF\nY2NjyczMLDUtJiYmXC95eXnUrFmzzOjPJdvv8Xjwer2lOmSLiIiIiIiIiIiIiIiIiIiIiIiISPWj\nkY2lXFdeeSXDhg3D7/ezbNky2rVrV2aeUCiE1+slPT2dI0eOhEe1DQaDFBYWsnv37lLzFxUVEQwG\nAWjYsCG7du0CYNeuXeEOvyXT9uzZE55Wsq7yVDS9xLBhw2jatClr1qwpd/64uDj27dsHwM6dO2nU\nqBHt2rVj7dq19OzZk4ULF9K+ffuTruP7GjVqxK5duygsLCQtLe2UyltcXFym3l599VVuuumm8M8N\nGzZkz549AKXmq6we4PgIyUOGDOHFF1+kVq1a4WWioqLIyMgoNa/X6y0z7fs8Hg9Op5MjR44AkJmZ\nSfPmzdm5cycAmzdv5vzzz6dOnTrheQ4dOkSdOnXCGddff3149GoRERERERERERERERERERERERER\nqZ7U2VjKcDgcdOrUiRUrVtCvXz8GDx4cHrX4xPmGDh3K0KFDGT58OHfddRcAiYmJ9O3bl9dee63U\nyLbdu3cnISGBtWvX0qBBA1q2bEnfvn3ZuHEj1113HQAREREMHDiQDz74gOuuu47PPvsMn8/H9u3b\nSUpK4tNPPy1ThsqUdJrOysoqM7/b7ebGG28kISGBl156iVtvvZWoqCiys7O55pprCAaDZTobn2yd\nf/7zn3nhhRe45557qF27drl1VpHy6u3NN9+ka9eu4XkaNGhA48aNSUpKKtXZeMeOHdxxxx3ccccd\npKamlpt/9dVX88gjj3D//fcTExMTnt6lSxfmzp3L3//+9/C0G264gfHjxzNjxowKyzt69Gjuu+8+\nbr/9dj744AMiIiLo2rUrffr0YcOGDXTt2pUWLVrgdrvp27cvX3zxBZ07dw4vf8UVV4Q7n4uIiIiI\niIiIiIiIiIiIiIiIiIhI9eQIVWVIVJFTEAgEcLvdvP/++2zevJkRI0ac6SKdEX369GHhwoVVnv/E\nehswYAAbNmygS5cuP2Ipf17yy+n0froCRme+YsMzaISr8s7zVeEIFpvkABwL2JQJ4GBOwCSndXSh\nSQ5AICKm8pl+xtwFWSY5BRE1TXIArFqUG7tfVghUw9+98gTt2nl2yGOSE+2xqydnoMAs60ChyyzL\na3RS99Zwm+S47U7BABzLtjkP146w2X/FkXbnYM+R3ZXPVBVOm30HEPR47bJq1Kl8pipw5mea5AC4\nsg6Y5AQN24EjkG+WVVy7sUlOvjPSJAfAaXROiD60zSYICEVEm2UV1zrLJsjwWpgq/HJrVRQ5I0xy\nACIK7I7jkNF5KuSy2z73tnUmOVktO5nklCjOt2lXNWvYXE9Z3qcBUPDDty9u33qDghwXaNO58pmq\naM+I3mZZVgJ5RSY5rZ5fZpID4Pl6k1nW9senmeRMn/eZSQ5A0lVNTXIunz7OJAfA4a1hlkXA5v6x\ncM9WkxwAh9PmfBcqtLu+K/zfX1+zEFGvvkmOq9OtJjkAb1/2R5OcJlc0qnymKrI8T0V8+2nlM1XB\n+jvGmOT8Gvz2xf9jklPw5QaTHICIC68yySn60u66JaLVhWZZhWdfbJJj9e4DIBC0CXNZ3dACHsNL\n4aDR0+oMo/sFgEyDa3OAlrVtnglbKzJqn5Z3RJ5im2edeQ7De3+X3bP4YqOuIEanA8DuGZdlO7B8\n3xtptPscRXbvxbOIMsuyeIYAEBFt9yw+0mH3zvBYjk1WbXeOSU4wquwAd6fL9fkau6y6NvcN2yZP\nMskBaDVimElOsFkHkxyAiFibe0f5dcjMsTvvyy9b7Rp276BPh903uMj/LFu2jH/+85+43W4ef/zx\nH319W7du5dFHHw2PGnzeeecxduzYH329Pp8Ph8NBKBTC4XCQnJxc6vOKRjFet24dc+bMCX/euXNn\nBg0aVKbeYmJiTrujcWVlOxUrVqxg+fLl4fL27NmTHj16nHaeiIiIiIiIiIiIiIiIiIiIiIiIiPx8\nqLOxmEtISCAhIeEnW1/btm3x+/0/2fpKVLbO1NTUcqd37tyZzp3LjtJjWW+W9XHLLbdwyy23mOWJ\niIiIiIiIiIiIiIiIiIiIiIiIyM9H9fu74SIiIiIiIiIiIiIiIiIiIiIiIiIiIlItqLOxiIiIiIiI\niIiIiIiIiIiIiIiIiIiIlEudjUVERERERERERERERERERERERERERKRc7jNdABERERERERERERER\nERERERERERGRX5tQKHSmiyBSJepsLCI/GzmBX/aXa4TLYZITdLhMcgCOFRaZZcVE2Aym78zNMMkB\nCHpqmOS4nDb7DiCvKGiWFRMoNMnJcdiVKcKorlweu3buroYX7iGn3SWao9gsyowjUGCWVVjsNcuy\nSrJqUY5gwCjJlqMw1yYoMsYmBwi5o2yCHHbn8+rIUZRvllVco45JjrMozyQHwJl/zCwrGGPzHRrp\n8pjkAOQHbdpnyGN0vADFNevbZTlt6sruCgEceZkmOc4adU1yABwFOWZZoQiba+HqqDBoe31n1a6s\nroGKQ5EmOSUsts/hiTBIsVf3wnPOdBHKyNjytUlOyPC6xeG2+76yqvOkq9JNcgCS3/vGJOfiQ2km\nOWBb56F8m++G/G+/NckBcEXZnBOObrMrU3GR3f1Vg1q1THLM7mOA+NZxJjmRtezusS3PUxhdV9c6\nu6ZJzq9BILaJSU7RkdUmOQDV8mrD8J7P6pixfL5s1eHBbXh57nHbnVuKjbYvu8juAWwNj9F7lEK7\ne8diw2d4GNV5YbFdo4oosnnWWeS2O0sVBe2OY6MmhdvwPZjlOzUrgYDhudNhdBwbvh8oNHwPZtXS\niw2f3TicdvuvurG8pg4es3vH7oiwuZepc34LkxyAom+3m+S4zm5vkiMi8ktldHkpIiIiIiIiIiIi\nIiIiIiIiIiIiIiIivzTqbCwiIiIiIiIiIiIiIiIiIiIiIiIiIiLlUmdjERERERERERERERERERER\nERERERERKZc6G4uIiIiIiIiIiIiIiIiIiIiIiIiIiEi51NlYKvT222/To0cPZsyYccrLrlixokrz\nvfzyy6ecnZaWxujRo095uZ+jESNGcPnllxMMBst8tnLlynD99enT57TylyxZQvfu3Vm2bFl42tNP\nP02XLl1Yv379SZc9ePAggwYNom/fvixYsACAN998k4SEBO68806ysrJK7asNGzYwffp0VqxYwZ//\n/GcAli5dyooVKxg7diw+n49LL72UpKQkXnzxxdPaHhERERERERERERERERERERERERGx5T7TBZDq\nq0uXLtSsWZMPP/zwlJddvnw5N998My6X66Tzvfzyy+GOp6fC4XCc8jI/R0899RRJSUnlfrZq1Spm\nzpwJnH599OrVi4iICAKBQHja8OHDCYVClS77xBNPcP/999O6dWsyMzMBWLBgAX6/n/fff59Fixbx\nxz/+sVTZSv59+PBhvv322/C0yZMnA9C3b1+Sk5NPa1tERERERERERERERERERERERERExJ46G8tJ\nfb/T6datW5kwYQJut5uuXbvSv39/gsEgDzzwAHv37qVBgwY8/vjjDBs2jK+++or+/fvTqVMnhgwZ\nwuzZs1m3bh0ul4sJEyYQGRnJ2LFj2b59O0lJSQwcOJCrr76alJQUVq9eTXR0NI8//jixsbEVli0j\nI4OxY8cyadIk/v3vf/Puu++SlZVFq1ateOCBB9i9ezcPPPAAxcXF3HnnnURHR7Nz585w592VK1fi\n8XhYuHAhF110Ee+99x4TJkzg4osvLnd9U6ZMYcuWLXg8Hm688UYuu+wy/va3vxEbG0tGRgZ+vx+n\ns+xg4XfffTeZmZnUqVOHvXv3MnPmTO6//34KCwtp1qwZX3/9NcnJyXz55ZdMnToVgDFjxtCxY8cy\n+6DEV199RfPmzYmMjKzyvjx48CAjR47E7XbTvn17/va3v1WYXxX79++ndevWANSuXZucnBxq1qyJ\nx+OhQ4cOvPLKK/zxj38stUzJurp168a//vUv6tWrd1rrFhEREREREREREREREREREREREZGfRtme\nkSIVaNq0KS+99BIpKSmsXLkSgLfeeovGjRvj9/t55JFHAHjmmWdo27YtycnJDBkyBIDExEQWLlzI\nX//6V/x+P02aNMHv99OmTRuSk5O5+uqrSU9P55133mHhwoUMGDCAJUuWVFiW3Nxcxo0bx/jx44mP\njw+Xb/78+Xz22WcAvPDCCzz44IP4/X7mzZvHBRdcwNatW9m6dSufffYZW7Zs4YILLsDhcNCzZ08m\nTpzI6tWry13fgQMH2Lt3LwsWLKBFixbh6YFAgFmzZtG6dWu2bt1a7rJut5u5c+cSCoUYMWIEn3/+\nOXXr1mXy5MnUq1ePHj16sH37dmbPns3s2bN5+umnmT17dnj58kYtXrx4MQkJCRXWT3liY2PDIw9v\n376d9PT0U1r+RMFgsNTP2dnZeL1eAGrUqEF2dna5ZXc4HLRu3Zrt27f/oPWLiIiIiIiIiIiIiIiI\niIiIiIiIyI9PIxtLlaWlpTFlyhQKCwvZu3cvoVCIPXv2cMEFFwCEO5rC8RFsQ6FQuLPpypUree21\n1wgEAjRr1qzUfCX27t3Lrl27SEpKori4mEsuuaTCsmzcuJE2bdrgcrnC00pyIyIiANi3bx+tWrUi\nIiICj8dDrVq1yMnJ4d133yUQCLB//36aNGlCKBSiefPm7N27l5ycnHLXt3///nAn4+93Nm7atClw\nvCNvRct6vV6ioqKIjo4mOjqajIwMvF4vXq83PC0/P5/8/Pxwx+nc3Nxy66jks4MHD5YqR1UcPXqU\nhx56iJycHHbt2kVOTk54fafjxFGcY2JiwuXOzc2lZs2auFyuUuX//v5q3bo127Zto127dqddBhER\nERERERERERERERERERERkZ+r4On9UXqRn5xGNpaTioqK4ujRo8Dx0XSHDBnCiy++SK1atQiFQjRr\n1oz//Oc/AOTn54eXi4iIoKioKPzz4sWLSUlJ4d577y3TebZEkyZNuPjii0lOTiY1NZURI0ZUWK6r\nr76ahx56iIkTJ5b5rCS/cePG7Nixg8LCQgKBAADR0dEUFBTgdDpLdXytzFlnncWePXsAwv8/XeVt\nfygUwuv1kp6ezpEjR6hRo0b4s5IOyiVeffVVbrrppkozT7Rq1Squv/56kpOTS3VUjoqKKpVf0bQT\nNWrUKDw6cWZmJjVq1CAnJ4eioiI2b95Mu3btqFWrFpmZmQAcOnSI+Pj4cCf0G264gddff/2Ut0NE\nREREREREREREREREREREREREfjrqbCwndd5557Fjxw6SkpLo3LkzjzzyCPfffz8xMTEAdO3albS0\nNHw+Hw8++GB4uS5dujBy5EgWLVoEQIcOHfD5fKxdu7ZUftOmTRk1ahQbN24kPj6ejh074vP5SEpK\nYt26dSctW6tWrTjnnHNYvXp1eARlIPzvAQMGMHHiRHw+HwMHDgTg3HPPpUaNGtSvX58mTZqUmv9k\nzjrrLM466yySkpLYtWtXmc+rknEyDoeDoUOHMnToUIYPH85dd90V/uxPf/oTgwYNIjU1FYC33nqL\nrl27llr+6NGj3HHHHdxxxx3MmDGj3HVcccUVzJ8/n+HDh5eZvnbt2lLr7NKlC3PnzuXvf/97hWW+\n9957mTp1Kr1792bFihUA+Hw+fD4fKSkp9OrVC6/XyyWXXELv3r1Zvnw5f/rTn8LLN2vWjPr165ep\nBxERERERERERERERERERERERERGpPhwhDSUqckqWLl2Kx+OhR48eP/m6s7Oz2bBhA126dPnJ110d\nHDmWe6aL8KOK9tj8/oflWf27nKLKZ6oil1Fn8saF+01yAPJrNzHJcTntOsrnFQXNsmIK0k1y0j1x\nJjkAEUZ15TU6XgAc1fFSKGTXDnKLq1+du/KzzLK+KfKaZdU2yomq4TbJiQgFTHJKZBl9jcZy8r9+\nUFWBmvUrn6mK3JlG3w2Gv/gUctq0A4BgjTomOa5jB0xywG77nEV5JjkAzpwjZlmBui1NcoIRNSqf\nqYrygzbtMybrW5McgOJaZ9lluSJNclxBu+tXR16mSU6gRl2THABPZppZVtDoPGx5vnNvO/kvHVfV\n4eZXmuSUcBXaXJvVirRpnxkhm+OlhMX2xR/6xKAkxxW1+I1ZVvbcByuf6SeWseVrk5wmT6aY5ABE\n7v3MLCt99VKTnG0vbzTJAUh+7xuTnOlrKv6l/FPlcHvMskL5OSY5eV/btE0AV1SESc7RbYbXLUV2\n91cNfnOBSY6r250mOQD/6XWrSU5ci3iTHDA+T6V9bpLz3wcnmOT8Gpz71ByTnPxXbXIAalzb0ySn\n6Mv1JjkAEedeYpZV0PhCk5xso2tXsPtrlG7D5+fRbrusIqPHwvuy7e5Do1w2z2AbuvMrn6mKiiNj\nzLICRn8fvKjY7pl+TNFRk5xMd6xJjjWrx/qWx7HlOzUrBQG7c2ek26bSLd+jHArZPaOMMKorV1TV\n/wp1ZWo4i82yrN6j1Hbb3KcVe+3OLc73XzLLctVpaJKT8e4akxyAmNatTHJcv7vFJAcgIr6RWZb8\n8qX/wvtDiZ34mtFndP12b4REfgR/+ctfOHz4MKFQCIfDwZNPPkmdOjadLSoyZ86c8KjKDoeDwYMH\n06lTpyot6/P5cDgc4fImJyebli0mJqZKHY0t623dunXMmTMnPOpw586dGTRo0GlliYiIiIiIiIiI\niIiIiIiIiIiIiMjPizobS7X2xBNP/OTrHDx4MIMHD67w89tuu63Cz/x+/49RpFNmWW+dO3emc+fO\nZnkiIiIiIiIiIiIiIiIiIiIiIiIi8vNh9/ewRURERERERERERERERERERERERERE5BdFnY1FRERE\nRERERERERERERERERERERESkXOpsLCIiIiIiIiIiIiIiIiIiIiIiIiIiIuVyhEKh0JkuhIhIVeTl\n55tlOYxOfUEcJjkADqOo4qDdad1tt3kcK7IpVw1P9fs9Gat9B3AkN2CWVc9jk1XoijTJsVRUbNfO\nvdWxTRlenoWMGmh1LBNAXlHQLKs4v9gkp7Y7xySHL961yfmfzLZ/NMmpFVlkkhOMiDbJqa6cxTb1\nBBByuk1yHMWFJjkAQbfNd4MjaHPcWXMW5ZnkFEfGmOQAFBp990Vhd61ByO4cjNH3TDYRJjkA0UbX\nCJbfoQ6jtgkQMjqOcdhdS7ky95nk5NdqZJITzsuxOW5qeW2OmS8ybB/lNY1y/eCM2NARg5IcF6h1\nll2W4f2xlY1XXG2S89sN75nkAOTMecAsK/LOiSY53q/+bZIDEDiUZpJzb7dHTHIAnsjdapblDNlc\nT7n+7xsmOQBF32wzyUn/YrtJDkDDAcPNsvLqn2uS43La3Rt7vrI5J7zne9AkB2zPU9mzx5rkxHXp\nbpLza1DY5iqTHFfA7pm+a8dHJjn559p8FwPkP293zNQY/KhJjuX9hxXLZ4GW2xcwirJ8j5JVaHPP\nEOm2u0+LcBluoJFjBXbPk2q7beq8yGHz/A7AaXjM5Adsts/yPUp1PE9Zvu91YrN9jkCBSQ5AkeF7\nvjyjZyRm71EAV9p/zbLSG1xukmO1fcGo2iY5AK7P15hl5bbvZpITk77DJAeguEYdk5yAN94kByDa\nG2WWJb986cdyz3QR5GcivuaZfcde/XrXiIiIiIiIiIiIiIiIiIiIiIiIiIiISLVg9yt2IiIiIiIi\nIiIiIiIiIiIiIiIiIiJSJdVv3H+R8mlkYxERERERERERERERERERERERERERESmXOhuLiIiIiIiI\niIiIiIiIiIiIiIiIiIhIudTZ+EewYcMGpk+fXmrakiVL6N69O8uWLTvt3G+++YaxY8f+0OL9aowd\nO5Zvv/32TBfD1IoVK8JtaOnSpbzyyis/KO8f//gHnTp1KlVPI0aM4PLLLycYDJ502U2bNtG3b18S\nEhL45JNPAHjyySdJTExk/PjxZco7a9Ys1q9fz9ixY3nssccAGD16NFu3bsXn89GjRw+6dOlCUlIS\nH3/88Q/aLhERERERERERERERERERERERERGx4T7TBfilcjgcpX7u1asXERERBAKBM1QikbIeeugh\n8vPzS0176qmnSEpKOulyoVCIGTNmMG/ePKKiojh27Bjfffcd33zzDSkpKUydOpXPPvuswuU//fTT\n8L9r1aqF3+9n48aNfPjhh4wcOfKHbZSIiIiIiIiIiIiIiIiIiIiIiIiImFFn4x/Jpk2bGDhwILGx\nsUybNg043kHz+3bv3s0DDzxAcXExgwYNomvXrnz66adMnToVgDFjxtCxY0dWr17Niy++SLNmzXC7\nK95l3bt3p0WLFmRlZTFz5kzi4+OZNWsWGRkZbNu2jUsvvZR77rmHcePGsW/fPs4++2wmTpxIXl4e\nQ4YMIRgMctVVVzF48GAOHDjAiBEjiIyM5JZbbqFnz56MHTuWYcOG0ahRI/r374/f7yctLY2HH36Y\nUCjE0aNHWbx4MWvXruXFF1/E7XYzadIkzj777DJlnTVrFv/5z38AyM3NpV+/flx33XVlyrZ161Ym\nTJiA2+2ma9eu9O/fn1mzZpGWlsaePXvo1q0b/fv3P+m+SE1NpaioiP79+3P77bfTrl07Nm3axKxZ\ns2jWrBnTpk3jk08+ITY2lieffJKRI0fy7LPPhpcfOnQoAwYM4Pnnn8fhcBAREcFTTz1V7rp27tzJ\nmDFjaNq0KV9//TXLli1j7NixREdHs3nzZgYNGkT37t3LLLdhwwZmzpxJQUEBDRs2pFGjRpx77rm8\n+uqrBAIBPB4PnTt3pnbt2mXaUUFBAXfffTfBYJBjx44xffp0GjVqVGYd69at4+mnn8bpdJKYmMgN\nN9xQYZ2duI4TffPNN7Ro0YKoqCgAatasyaZNm7jooosA6NChA//973+Jjo4ud/kLL7yQTz75pFSn\n/MrWKSIiIiIiIiIiIiIiIiIiIiIiIiI/PeeZLsAvVa1atZg3bx7x8fFs3ry53HleeOEFHnzwQfx+\nP88//zwAs2fPZvbs2Tz99NPMnj0bgOTkZFJTU+nWrdtJ11nSybh///4sW7YsPD0uLg6/38+IESN4\n6623aNy4MQsWLKBOnTr85z//YceOHTRp0oSUlBTuvPNOADZv3szVV1+N3++nR48eZdb1/U6ie/bs\nYfbs2SxevJhQKMS8efNISUnhkUceYe7cuRWWd8yYMTgcDubNm8dHH31UbtmaNm3KSy+9REpKCitX\nrgwv+//Yu/Pwqqp7/+Ofc04SkpCEJCBzmURlCAJ1qG1FEEHEOgBVgYQTsAwhIiDyq4BjKw6lCkhw\nlqgBAAAgAElEQVRFgQBKRhAVaqvUQp9LLV6RSSyXCogJVCCRAAmETCQn5/z+4HKuIaP61aT6fj0P\nz0N29v7stdbeZ4/rrPTu3Vvp6el69913a22Td955R7m5uf4OyQUFBZo5c6YSExO1efNmHT9+XJmZ\nmcrIyNA111yjTZs2qUOHDsrOztbq1atVWFioyMhISVJYWJiWLVumkpISnTlzptr1rVq1SnPnztUj\njzyis2fP+qcPGDBAy5cv11tvvVVjWW+99VZde+21mj59uk6fPi2Hw6GxY8cqOjpaL730kvbv3y9J\nWrlypdxut1555RVJ0qZNm3T99ddr5cqVKi8vrzG/b9++WrNmjZKTk5WcnFxru108MvfF8vPz/e1y\nQWFhob9zcWhoqAoLC2tc/pZbbqlz2wEAAAAAAAAAAAAAAAAAgIbHyMbfki5dukiSOnfurJycHPXt\n27fKPNnZ2eratauCgoIUGBgoSSopKVF0dLT//5IUEBCgwMBAde7cudZ1tm/fXgEBAercubPef/99\n//Q+ffpIkpxOpw4dOqRNmzZp+/btKi4u1pVXXqmBAweqbdu2mjZtmm6++Wbddttt6t+/v/75z39q\n2rRpGj16tH7605/WuN6YmBi5XC5JUl5eno4ePap7771XktS6desalwsODlbz5s0VHByskpISHTp0\nSBs3bqxUttDQUP3ud79TWVmZjh496h/9tmPHjnI6nf711mTbtm264oor/D9HR0crLCxMUVFRysrK\nUk5Oji699FJJ57fZgQMH1KtXL+3atUtpaWmKjIxUz549/euUznfeLioqUrNmzaqsLzs7W126dFFQ\nUFCl33fq1EmRkZEqLi6usawhISEKCQlRcHCwv7PvxdMcDocmTJigu+66S2+88YZ8Pp+ys7PVvXv3\nSmWszr59+7R48WJ5vV6dPn261nara5ThqKioKhlhYWE6deqUpPP7bnh4uJxOpyoqKvzzOJ3nv99w\nySWXKD8/n9GMAQAAAAAAAAAAAAAAAABo5BjZ+FuSlZUl6fyov23btpV0vnNtfn6+f5527drps88+\nU1lZmTwej6TzI8Lm5eXp1KlT/lFivV6vysvL/Zk1OXLkiMrKynTo0CG1adPGP/3LHXI7deqke+65\nRykpKXrjjTc0YMAAlZeX6/7779f8+fO1atUq/zKzZs3SI4884h8FNzQ0VEVFRTpx4kSlTqIXOpBK\n5zuhdu/eXSkpKUpJSdHTTz9d7zbr3LmzRo4c6S9b//799dprrykhIUGrVq1Ss2bNqnROrauz6pNP\nPqn8/Hzt2bOn2vnbtGnjb9esrCy1a9dOMTExysjI0KRJk5SSkqKYmJh616Ft27bKyspSXl5etaMf\nW3au9fl8cjgcatu2rTIzMyWd399qsnLlSj3zzDNaunRppW0WEhJSab+Uzm/ri6d9WYcOHXT48GF/\nh/iCggJ1797d3867d+9Wz5491bx5c38H5NzcXDVv3tyf8ZOf/EQ7duz4apUGAAAAAAAAAAAAAAAA\nAADfKTobf0sKCgp077336tSpU/6Rha+77jpt3LhRkydPliTde++9euqpp+R2uzV+/HhJ0uTJk5WY\nmKgpU6b45xszZozi4uL017/+tdZ1NmvWTNOmTdOrr76qX/7yl9XOM2jQIH3yyScaO3asxo0bpy++\n+EJZWVmKjY3VyJEjNWzYMEnnRwSOi4tTYmKiRowYIUkaOnSo5s+frzfffNM/8q6kSv93Op0aOXKk\nxowZo7Fjx2r9+vX1brOLy3b8+HH1799fc+fO1UMPPaSwsLAqy3x53TWZNWuWnnvuOXk8nirzt2rV\nSl26dFFcXJx27NihwYMH+0ejvv3225Wbm6sePXrUe51jx47VY489prlz5yoiIuIrlbc+danOoEGD\n9P7772v8+PFyuVyVOhJ/2eDBgzVlyhQ9++yzCg8P90+/9dZb9fjjj2vRokX+aXfeeacmTpyo9PT0\nGss6depUTZgwQXfffbc+/fRTtW7dWu3bt9eYMWNUWFio3r1762c/+5n27dunMWPGyOl0qmvXrv6M\nm2++udYOzQAAAAAAAAAAAAAAAAAAoOE5fJZDraJBxcbGKiMjo6GLgf/1XW4Pj8ejgIAAud1urVy5\nUkFBQd/Jer9rJaWlZlkOo0OfV1+vk3h1vmZ/8yoqvHaH9QC76ulsuU25mgY2vu/JWG07STpV7DHL\nuiTQJqvM1cQkx1J5hd1+HtIY9ynLkfCNdtDGWCZJKin3mmVVlFaY5DQLKDLJ0d6/2+T8rzPdfmGS\nE9Gk3CTHGxRqktNYOSts2kmSfM4AkxxHRZlJjiR5A2zODQ6vzefOmrO8xCSnoknVL0x+XWVG575g\n2V1ryGd3DJbReaZQdvdCoUbXCJbnUIfRvilJPqPPsRx211KuM9kmOaURbU1y/HlFNp+biBCbz8ze\nfNtHeR2CXXXPVIdI3ymDkpzniWhtl2V4f2xlx3X9TXJ+uv0fJjmSVJT0iFlWkwlPmeSEHHjPJEeS\nPCeOmeQ8MGSuSY4kLSjeb5bl9NlcT7n+Z5NJjiSVf/6pSU7e3oMmOZLU5t4pZlklLa8wyXE57e6N\nAw/YHBP+4X7UJEeyPU4VLpljkhM1cKhJzg9B2eU3mOS4PHbP9F2ffWiSU3qFzblYkkpX2H1mmk6q\n/18KrY3l/YcVy2eBlvXzGEVZvkcpKLO5Z2gSYHefFuQyrKCRs+fsnic1C7Bp83KHzfM7SXIafmZK\nPTb1s3yP0hiPU5bve52yqZ/Dc84kR5LKDd/zlRg9IzF7jyLJdexfZll5ra41ybGqnze4mUmOJLn2\n1D644VdRHDPEJCcs7zOTHEmqaNq87pnqwRMSbZIjSaEhwWZZ+P47dba4oYuA/xDNwxv2HbvdVS8a\n3NcdGfc/3ZYtW5SUlOSvf79+/TRx4sRvdZ0nT57UjBkz5HA45PP51LJlS82fP7/SPDVtj/Xr12vd\nunX+348YMcI/ovTX4fP5NHr0aAUGBmrAgAEqKCios2xfRVJSkrZs2SLpfJ0mTZqk66+//mvnAQAA\nAAAAAAAAAAAAAACkRjhmAlAtOht/j6Snpzd0ERpEv3791K9fv+90nS1atFBqamqt89S0PYYPH67h\nw4eblcXhcOj111+vNK2usn0VkyZN0qRJk8zyAAAAAAAAAAAAAAAAAADAf47G93fDAQAAAAAAAAAA\nAAAAAAAAADQKdDYGAAAAAAAAAAAAAAAAAAAAUC06GwMAAAAAAAAAAAAAAAAAAACoFp2NAQAAAAAA\nAAAAAAAAAAAAAFTL4fP5fA1dCACoj9wzRWZZFUZHviYuh02QpNAAmyyfw65MZ85VmGU1DbT5fkuT\n0nyTHEnyhkTZ5MiuzYNz9ppllbe6wiTH5wwwybHkPHfWLMsXGGKXZdRWDq/HJEeSCr0uk5ymRsco\na+e8dlllxTbtHhhi0+YBTts2LymyqV+zwBKTHG+TcJMcSXKWnjHLsuINbtbQRajC4TnX0EWoyvC6\nxXU21yzLE9neJKegzO4gFRFkcy1leY6xvEawuoYNKPjCJMeSJ6K1WZbD8BGOxyjK8hLBWXTKJOdc\naHOTnAtKjc6hQaE2n5kmxkMHnC385vVr5rA7F3ub2m2/wMwPzLKsOEJsroHOtbvSJEeSXKUFdllH\n/8cmKCDIJkeSJ/uQSU7FT+8xyZGkB0O7mWUFGd03PJ+3wyRHkjxBYWZZVj6fOsosqzTf5p7oivS3\nTHIkyfGPdJOcoEt7meRIjfM4FXAyyyTnh6Csrc2+ELDv7yY5kuTpPsAkJzDrQ5McSapob/eZqQiO\nMMkpNLwPLTN6kRJseNNg+YzS6j40r8TuPUqE0cV+k3OG1+eWz7h8Nvuny/Dev8Lont3ntHkmLNne\n+1s9B2qM74ks34cWl9sdO82OU0afF0k657N7kGD1HiW4qd0+Zfkmxeo9SkSTcpMcy3eYlrISbO6P\nL3/mdyY5kuH5ymW3bwZF2T0XxvffiYLihi4C/kNcEhHaoOtnZGMAAAAAAAAAAAAAAAAAAAAA1aKz\nMQAAAAAAAAAAAAAAAAAAAIBq0dkYAAAAAAAAAAAAAAAAAAAAQLXobAwAAAAAAAAAAAAAAAAAAACg\nWnQ2RqPz1FNPfeVl5syZoyNHjnwLpWl4zz77rHw+n//n/fv365NPPjHJnjp1qq699lp5vV5JUnl5\nudxut4YMGVLnsn/5y18UFxenUaNG6fPPP5ckPfbYY3K73frDH/4gSVq8eLG2bt0q6fw2+vzzz+V2\nu5Weni5Jio2N1eHDh+V2uzV06FDdcsstio+PV2Zmpkn9AAAAAAAAAAAAAAAAAKCx8vl8/ONfvf41\nNDobo9F59NFHG7oIjcqcOXPkcDj8P+/bt0//+te/TLJffPFFdevWzf9zYGCgUlNT1aJFi1qXKyws\n1Ouvv660tDSlp6erRYsW2rVrlyIiIpSamqrMzEzl5uZWWe5CPXbu3On/uVOnTkpNTVVCQoImTJig\nlJQUXXrppSb1AwAAAAAAAAAAAAAAAAAA30xAQxcA365XXnlFXbt21Q033KDly5fL5XJp48aNCggI\n0KBBgzRu3DgdP35cU6dOVZMmTTR8+HCNGDFCH330kebNmydJmj17tvr27Su3261OnTpp//79mjVr\nlq6++mpt375dr732mk6dOqXg4GAtXbpUaWlp2rBhg0JDQ/X8888rMjJSTzzxhA4cOKDWrVvrhRde\nkM/n09SpU5WXl6cePXro0Ucf1cmTJzVjxgx5vV7/yLeLFy/WsWPHdPjwYQ0ZMkTjxo2rtb7p6ekq\nLy/XuHHjNHLkSPXo0UM7d+7U4sWL1bFjR82fP1+7du1SZGSkFi5cqOnTp2vp0qX+5RMTE3Xvvfdq\nxYoVcjgcCgoK0osvvljtujIzMzV79mx16NBB//73v/XGG29ozpw5Cg0N1e7duzVx4kQNHTq02mVj\nY2OVkZGhrVu3ateuXbr//vt1xx136IorrlBmZqZWrVqliIgIPfjgg9qyZYu2bdsmp9Op1atXKyUl\nRZL05z//WcnJySotLVVCQoK8Xq9uuOEGTZo0qdp1vvnmm3r99dfldDo1Y8YMXXPNNZL0tb71sGfP\nHl133XVyOBxyuVwKDQ3Vvn371LdvX0lSnz59tG/fvirLXVhXq1at9MUXX1T7OwAAAAAAAAAAAAAA\nAAAA0HgwsvH33KBBg7R582ZJ50eTHTVqlFavXq20tDT96U9/kiTt3r1b/fv3V2pqqoYNGyZJWrJk\niZYsWaKXXnpJS5Ys8efFxcUpKSlJSUlJ/mknTpzQqlWr9PLLLysvL0+bN29WRkaG7r33Xq1du9a/\njjVr1mjBggWSpPz8fBUWFiojI0MPP/ywJKlFixZKTU2tUofevXsrPT1d7777bq11feedd5Sbm+vv\nkFxQUKCZM2cqMTFRmzdv1vHjx5WZmamMjAxdc8012rRpkzp06KDs7GytXr1ahYWFioyMlCSFhYVp\n2bJlKikp0ZkzZ6pd36pVqzR37lw98sgjOnv2rH/6gAEDtHz5cr311ls1lvXLIxVfcObMGc2bN09D\nhw7Vtm3bJEkLFixQ9+7d/fOMHj1aCQkJGj9+vFJSUuRwOPTZZ5+pffv2SktL04QJE2pc580336w1\na9boD3/4Q6XtV11Z6pKfn69mzZpVmlZYWKiQkBBJUkhISKU2udjQoUO1YcOGr7xeAAAAAAAAAAAA\nAAAAAADw3aKz8fdchw4ddOzYMZ06dUqRkZE6duyYJkyYILfbraNHj8rn86l///4qLCzUtGnT/J1c\nS0pKFB0drRYtWqikpMSf16VLF0VFRVWa1qdPH0mS0+nU0aNHlZWVpfj4eL388ssqLCyUJCUkJGjG\njBlauHChJCk6Olo33XSTpk+fXm0H4y/r2LGjnE6nXC5XrfNt27ZN586d8/8cHR2tsLAwRUVFqbCw\nUDk5Obr00kv99cjOzlavXr20a9cupaWlacuWLerZs6d/nZIUFRWloqKiateXnZ2tLl26KDo6ulLH\n206dOikyMlLFxcW1lvdi7du3l9PpVGRkZI3rlKqOANyzZ0+1bdtW06ZNq7UD7wcffCC3260ZM2ZU\n2n7VjShc1yjDUVFRVTphh4WF+XNLSkoUHh4up7PyIcbpdMrhcKhXr17au3dvresAAAAAAAAAAAAA\nAAAAAAANj87GPwA9evTQkiVLdOONN+q1115TQkKCVq1apYiICPl8PrlcLs2aNUuPPPKIkpOTJUmh\noaHKy8vTqVOnFBoa6s/KyspSXl6efwRbSZU6Abdv314//vGPlZKSovT0dE2dOlWSNHjwYC1cuFB7\n9+5Vfn6+PB6P4uLitGjRIq1bt65SeWvq6FpXB9gnn3xS+fn52rNnT7Xzt2nTRllZWf56tGvXTjEx\nMcrIyNCkSZOUkpKimJiYWtfxZW3btvW3R3WjH9dW3gudcHNzc+uc3+fzVfpdQECAysvL/T97PB7d\nf//9mj9/vlatWlXjOlesWKEVK1bomWeekdfr9U8PDQ1Vfn5+pXnLy8srzXOxK6+8Uh9++KG8Xq88\nHo+KiorUrVs3ffzxx5Kkjz/+WN27d1fz5s116tQpSVJeXp4iIyP9denQoYOOHDlS4zoAAAAAAAAA\nAAAAAAAAAEDDo7PxD8CgQYP05ptvql+/furfv7/mzp2rhx56SGFhYZLOjwgcFxenxMREjRgxQpI0\nefJkJSYmasqUKUpMTPRnpaWladKkSZo4cWK164qOjlbfvn3ldrsVHx+vLVu2yOfzafz48Ro1apRa\ntGihqKgonT59WvHx8brnnnvUr18/SdLf/vY3ud1uHTx4UPHx8VU6ojocjjrrOmvWLD333HPyeDxV\n5m/VqpW6dOmiuLg47dixQ4MHD1bnzp2Vk5Oj22+/Xbm5uerRo0e91zl27Fg99thjmjt3riIiIqr8\nvrZlb7zxRs2ePVvbt2+vcf6jR4/K7XbrwIEDGjdunDZu3ChJ6tu3r9555x099NBDks53nI6NjdXI\nkSM1bNiwWtfpdruVkZFRaV133nmnJk6cqPT0dP+0oUOHatSoUf51XiwsLEx33XWX3G63Ro0apZMn\nT+qqq65Sfn6+3G63unTpopYtW+oXv/iF/vjHPyo2NlZ9+vRRWFiYf92/+MUvdOLEiRrLCwAAAAAA\nAAAAAAAAAAAAGp7DV9dwscD/crvdSk5O9o/Ki/8TGxurjIyMhi7G917umSKzrAqjI18TV92d4Osr\nNMAmy1ePjvn1deZchVlW00CbY0eT0vy6Z6onb0iUTY7s2jw4Z69ZVnmrK0xyfM4AkxxLznNnzbJ8\ngSF1z1TfLKO2cng9JjmSVOh11T1TPTQ1OkZZO1fzQPxfWVmxTbsHhti0eYDTts1Limzq1yywxCTH\n2yTcJEeSnKVV/8pEQ/MGN2voIlTh8Jxr6CJUZXjd4jqbW/dM9eSJbG+SU1Bmd5CKCLK5lrI8x1he\nI1hdwwYUfGGSY8kT0dosy2H4CMdjFGV5ieAsOmWScy60uUnOBaVG59CgUJvPTBPjxzJnC795/Zo5\n7M7F3qZ22y8w8wOzLCuOEJtroHPtrjTJkSRXaYFd1tH/sQkKCLLJkeTJPmSSU/HTe0xyJOnB0G5m\nWUFG9w3P5+0wyZEkT1CYWZaVz6eOMssqzbe5J7oi/S2THEly/CO97pnqIejSXiY5UuM8TgWczDLJ\n+SEoa2uzLwTs+7tJjiR5ug8wyQnM+tAkR5Iq2tt9ZiqCqw5q83UUGt6Hlhm9SAk2vGmwfEZpdR+a\nV2L3HiXC6GK/yTnD63PLZ1w+m/3TZXjvX2F0z+5z2jwTlmzv/a2eAzXG90SW70OLy+2OnWbHKaPP\niySd89k9SLB6jxLc1G6fsnyTYvUeJaJJed0z1YPlO0xLWQk298eXP/M7kxzJ8Hzlsts3g6Lsngvj\n+8+yPxS+31o2a9qg6298V4VotOozsvC3bcuWLUpKSvKXpV+/fjWOsmzl5MmTmjFjhhwOh3w+n1q2\nbKn58+dXmqemtlm/fr3WrVvn//2IESNqHX3Ywv79+/X000/719m9e3fNmTPna+c988wz2rdvn6Tz\n9Xz44YfVrZvdCxEAAAAAAAAAAAAAAAAAANB40dkY9ZaSktLQRVC/fv3Ur1+/73SdLVq0UGpqaq3z\npKdXP3LE8OHDNXz48G+jWDXq1q1bneX9Kh5++GGzLAAAAAAAAAAAAAAAAAAA8J/F+A8vAgAAAAAA\nAAAAAAAAAAAAAPi+YGRjAAAAAAAAAAAAAAAAAACA75i3oQsA1BMjGwMAAAAAAAAAAAAAAAAAAACo\nFp2NAQAAAAAAAAAAAAAAAAAAAFQroKELAAD1VeEzzPLahFU4HSY5lqzqdj7LLEpWxXJ4ymyCJPkc\nRtvPcN9sjMzayZLXY5dVUW4W5fAZfWgcdt8Hs/rsWe4HTs85syyfAs2yrDiM2srVCM8xkiSr/bwx\nsqybZZbRMcFheOz0OY1uJX2GJ1HLc0MjZHUctjyyNMZrBIfhed1n9dkz3M8tP8dyNL5HQpbbrzGy\nOrU3ys/e9/wYbKox7ueN8frO8t6/tMgkx+mrMMmRpCDDa/0yq5u+Crs2t2ors3tsSd4yu+1XUWZT\nLqfldYvVZ6YxHqMsee32A3z3LI8J32cew/cDVlleX+O7fpUM3xMZ3vN9r9+jSHJW2Nw3fN+PB5Zt\nbnWf7bA8hxrVzxfQxCSnsTJ9ltsY36MYZjXGdylW28/0FbThsdPhMnpWbVkmq6zyUpscAPieYmRj\nAAAAAAAAAAAAAAAAAAAAANWiszEAAAAAAAAAAAAAAAAAAACAatHZGAAAAAAAAAAAAAAAAAAAAEC1\n6GwMAAAAAAAAAAAAAAAAAAAAoFp0NsY39tRTT33lZebMmaMjR458C6VpeM8++6x8Pp//5/379+uT\nTz6p17IlJSWaPHlyrfNs2bJF77333jcqoyT913/9l4YNG6ZFixb5p61du1ZDhw7VG2+8UeuyhYWF\nmj59usaMGaPnnntOkvTPf/5To0aNktvt1tGjRyVJsbGxkqRjx47p17/+tbZv367rr79ePp9PW7du\n1eLFi7VgwQK53W5dffXVio+P1/PPP/+N6wYAAAAAAAAAAAAAAAAAAGwENHQB8J/v0UcfbegiNCpz\n5syp9PO+ffvk8XjUo0ePOpd9++23dccdd9Q6T79+/b5R+S4YOHCgwsPD9cEHH/in3XPPPQoKCpLH\n46l12VdeeUXDhw/XgAEDdObMGUnSyy+/rOXLlysnJ0dJSUl68skn5XA4/Mtc+L/T6dSHH37on/7g\ngw9KkuLi4pSSkmJSNwAAAAAAAAAAAAAAAAAAYIPOxo3MK6+8oq5du+qGG27Q8uXL5XK5tHHjRgUE\nBGjQoEEaN26cjh8/rqlTp6pJkyYaPny4RowYoY8++kjz5s2TJM2ePVt9+/aV2+1Wp06dtH//fs2a\nNUtXX321tm/frtdee02nTp1ScHCwli5dqrS0NG3YsEGhoaF6/vnnFRkZqSeeeEIHDhxQ69at9cIL\nL8jn82nq1KnKy8tTjx499Oijj+rkyZOaMWOGvF6v0tPTJUmLFy/WsWPHdPjwYQ0ZMkTjxo2rtb7p\n6ekqLy/XuHHjNHLkSPXo0UM7d+7U4sWL1bFjR82fP1+7du1SZGSkFi5cqOnTp2vp0qX+5RMTE3Xv\nvfdqxYoVcjgcCgoK0osvvljtujIzMzV79mx16NBB//73v/XGG29ozpw5Cg0N1e7duzVx4kQNHTq0\n2mVjY2OVkZGhrVu3ateuXbr//vt1xx136IorrlBmZqZWrVqliIgIPfjgg9qyZYu2bdsmp9Op1atX\n+zvQ/vnPf1ZycrJKS0uVkJAgr9erG264QZMmTfKvZ+PGjVqyZIkk6dZbb1VQUJC6d++u7OxsJScn\na/369UpKStL48eN11113SVK17XYxj8ejcePGyeVyqVWrVvr9738vSZVGYL6gumkX++ijjzRt2jRJ\nUrNmzSRJpaWlCg8PV3h4uD7//PNqsxwOh2666SZt2rRJgwcPrnM9AAAAAAAAAAAAAAAAAACgYTkb\nugCobNCgQdq8ebMkaefOnRo1apRWr16ttLQ0/elPf5Ik7d69W/3791dqaqqGDRsmSVqyZImWLFmi\nl156yd9ZVTo/WmxSUpKSkpL8006cOKFVq1bp5ZdfVl5enjZv3qyMjAzde++9Wrt2rX8da9as0YIF\nCyRJ+fn5KiwsVEZGhh5++GFJUosWLZSamlqlDr1791Z6errefffdWuv6zjvvKDc3198huaCgQDNn\nzlRiYqI2b96s48ePKzMzUxkZGbrmmmu0adMmdejQQdnZ2Vq9erUKCwsVGRkpSQoLC9OyZctUUlLi\nH2n3YqtWrdLcuXP1yCOP6OzZs/7pAwYM0PLly/XWW2/VWNYvj9B7wZkzZzRv3jwNHTpU27ZtkyQt\nWLBA3bt3988zevRoJSQkaPz48UpJSZHD4dBnn32m9u3bKy0tTRMmTPDPu2fPHvXo0UMBAee/A3D5\n5ZdrxowZiomJUUxMjPLz8zV8+HAlJCRUKsfF7VYdl8ulpUuXKjk5WSEhIdqzZ0+Nda2PioqKKtO8\nXm+tv7+gWbNmKioqUnl5+TcqAwAAAAAAAAAAAAAAAAD8J/P5+Me/+v1raHQ2bmQ6dOigY8eO6dSp\nU4qMjNSxY8c0YcIEud1uHT16VD6fT/3791dhYaGmTZvm7+RaUlKi6OhotWjRQiUlJf68Ll26KCoq\nqtK0Pn36SJKcTqeOHj2qrKwsxcfH6+WXX1ZhYaEkKSEhQTNmzNDChQslSdHR0brppps0ffr0ajsY\nf1nHjh3ldDrlcrlqnW/btm06d+6c/+fo6GiFhYUpKipKhYWFysnJ0aWXXuqvR3Z2tnr16qVdu3Yp\nLS1NW7ZsUc+ePf3rlKSoqCgVFRVVu77s7Gx16dJF0dHR/tF4JalTp06KjIxUcXFxreW9WLsxqyMA\nACAASURBVPv27eV0OhUZGVnjOiXp4tF9e/bsqbZt22ratGnasGGDf/ratWs1cuRI/88hISEKDQ1V\naGioQkJCVFpaWm3exe1WnZKSEj3++OOKj4/X+++//5XrerELHaK/7Msdsi9s+y/vA07n/x1ufv7z\nn+v999//RmUAAAAAAAAAAAAAAAAAAADfPjobN0I9evTQkiVLdOONN+q1115TQkKCVq1apYiICPl8\nPrlcLs2aNUuPPPKIkpOTJUmhoaHKy8vTqVOnFBoa6s/KyspSXl6eQkJC/NO+3AG0ffv2+vGPf6yU\nlBSlp6dr6tSpkqTBgwdr4cKF2rt3r/Lz8+XxeBQXF6dFixZp3bp1lcp7cefXuqZf8OSTTyo/P98/\nyu7F87dp00ZZWVn+erRr104xMTHKyMjQpEmTlJKSopiYmFrX8WVt27b1t0d1ox/XVt4LHWVzc3Pr\nnN/n81X6XUBAQKVRfD0ej+6//37Nnz9fq1atknR+dOLCwkK1bdu2xjJ8ObOm/9fk/fffV5cuXZSS\nkqKrr77av0xwcLDy8/MrzVvdtIv17dtX7733niT52zI0NFQFBQU6cOCAv/O3w+GQz+dTbm6uoqOj\n5fP55HA4dNNNN1UZhbk+9QAAAAAAAAAAAAAAAAAAAN+tqsOTosENGjRIbrdbM2bMUNOmTTV37lxd\nfvnlCgsLk3R+ROClS5eqpKREkydPliRNnjxZiYmJcjgcmj17tj8rLS1N+/fv16xZs6pdV3R0tPr2\n7Su32y2Hw6Fx48bpxhtv1Pjx41VeXq4f/ehHioqK0smTJ/XAAw+orKxM/fr1kyT97W9/U3Jysg4e\nPKj4+Hg9/fTTlbK/PNJtTWbNmqXp06fr1VdfrTJ/q1at1KVLF8XFxalZs2Z64YUXFBQUpJycHN1+\n++36wx/+oB49eujjjz+u1zrHjh2rOXPmqH379oqIiKjy+9qWvfHGGzV79my5XC61adOm2vmPHj2q\nOXPm6MCBAxo3bpzcbrduvvlm9e3bV7Nnz9bu3bv1+9//XllZWXryySdVWlqqESNGSJLWr1+v4cOH\n19lejz/+uHbu3Cmfz6c9e/Zo7ty59Wrn3r17a+nSpdq7d2+l6d27d1dmZqbi4+O1bNkyhYSE6Lrr\nrtOkSZO0a9cuLV26tNq8X/3qV3r44YeVlJSkK6+8UrNmzVJCQoImTZqkwMBAPfPMM5KkESNGaPTo\n0QoMDNS8efN09OhRSVLTpk3Vo0ePSpn1qQcAAAAAAAAAAAAAAAAAAPhuOXwMJ/q95Xa7lZyc7B+V\nF/8nNjZWGRkZDV0Mv7ffflu33XZbQxej0cs5XWSWVeG1OfQ1CbD7fIUH2nS49hge1c+c85plhQXZ\ntFVo0XGTHEnyRLQ2ybE8kwbn7K17pnoqb3WFSY7XFWiSY8lVnGeW5QsINsuS01X3PPXhsDu2FFTY\nlMnqMyxJTs85s6wS2e2f5SUVJjlBoTbf5wty2X4Rp/Bsed0z1UOzAJvzsTe4mUmOJDlLq/7Viq/F\nZ3fes6yf1THBWWZ3LeVzNr7vrboKcsyyPNGdTHIKyuz2qfAmNsdzZ4XNsUBqnNcIgflHzLJ8Rp+9\nimY1/wWbr8rh9ZhllTtsPscBhqcrV8EXJjml4TbX+f68Ipt2D25q1ObOxneNEOk7ZVCS8yrCW5ll\nBWZ+YJZlxRFkc/9xrsNVJjmS5Co5bZd17F9mWVbKP//UJmhAvE2OpIfC6//X2upSZvSM6w+n7D4v\nVtfCDsPr88zEWLOskvxSk5yYNevqnqmefO+lmeQEdb3SJEcyPk6VFpjkBOQeNMn5IShr38ckJ2Df\n301yJKmi2w0mOQGHtpvkSFJF+152WcFVB8n5Ok6X2jzfkqSyCptzTGhg43uPItm9S8kzbPNmRvf+\nocUnTHIkyRPe0izL6rmw62xu3TPVk8font1n9W7AmLOs2CbI8J2FjAag8gY0McmRpOJyu+vOpkYP\nShwVZSY5UuN8jxJi9IxEklyGz0nM3qMElpjkeJuEm+RIMn3/cWjKaJOcy598uu6Z6snsnYxhOwW2\n7GSWhe8/y/5Q+H5rE9m0Qdff+N4Qw0xjGCl2y5YtSkpK8pelX79+mjhx4re6zpMnT2rGjBlyOBzy\n+Xxq2bKl5s+fX2memtpm/fr1Wrdunf/3I0aM0LBhw77V8koy7Wj8zDPPaN++fZLO1/Phhx9Wt27d\nvlbW/v379fTTT/vbo3v37pozZ45ZWQEAAAAAAAAAAAAAAAAAQONGZ+PvsZSUlIYugvr166d+/fp9\np+ts0aKFUlNTa50nPT292unDhw/X8OHDv41ifWcefvhhs6xu3brV2ZYAAAAAAAAAAAAAAAAAAOD7\ny/DvXQAAAAAAAAAAAAAAAAAAAAD4PqGzMQAAAAAAAAAAAAAAAAAAAIBq0dkYAAAAAAAAAAAAAAAA\nAAAAQLUCGroAAFBfUUGGYQ6XSYzHZxJjKsBhl9Wsid13UsoqbBrLGxJpkiPZlcmwmZTbvLtZVpS3\n3CQnp8QkRpLUPMTm0sMZHGWSI0kuh92HxirKWWGz7SQpyGVTKIfP7oDnc9kd0MvKvGZZVntCoNOo\nzb0VJjnWLLefFV9AsE2Q0+b6QJIchp9jX0ATmxxXoEnO+bDGdxHkDWlmluWoKDPJiQgy/LwYtbmz\n6JRJjiRVhLc2y/Ia1c8X+SOTHEly+myOwz7Law3Dc0Og0TWsz2H3aMnh9ZjklBtd51sL8thcWJ+s\nsDkvXND4zux2HCHhDV2EKsoO7LIJ6nCVTY4kR3mpXZZRm5/bt8MkR5JKjxwxyQn7n00mOZL0fJ5d\n/WR03TKt+c9MciTpgfF9THKaRNp9hrvE3m6W5brqFpOcCqfdObTijM01Xtlne0xyJNkep8qKTXLK\nP//UJOeHwNnyMpugNl1tciS5Th81yfG2vNQkR7LbNyVJwREmMVGGD6ut7mWsnsNbC5DNc8XoYLvn\nSVZtVR7W0iRHkso8ds9fg1w29zKFYe1MciQp1GnzmckrsbtfDwsy/Bw7bZ6bBhg985YkVyN8fh7k\nanxj9PkMrxUb46uGQJ/NMyBJ8nkb4fYzeqZvqXDF42ZZly5cYZLjyD1okiNJDqPPjCe6k0mOJBm+\nkQGARoPOxgAAAAAAAAAAAAAAAAAAAN8xb+P8fh5QReP7ig8AAAAAAAAAAAAAAAAAAACARoHOxgAA\nAAAAAAAAAAAAAAAAAACqRWdjAAAAAAAAAAAAAAAAAAAAANWiszG+sZMnT2rZsmW1zuN2u+X1eqtM\nf/PNN2td7tixY/r1r3/9lcoTGxv7leafM2eOjhw58pWWaUg1teXXsXbtWg0dOlRvvPGGf9pLL72k\ngQMHauvWrbUum5ubq4kTJyouLk7JycmSpL/97W8aNWqUJkyYoIKCgkrbb/v27XrhhRe0fv16/fKX\nv5Qkvf7661q/fr3mzJkjt9utq6++WvHx8Vq1apVJ/QAAAAAAAAAAAAAAAAAAwDcT0NAFwH++Fi1a\nKCEhodZ5HA5HtdPffPNNf8fTr7qs1fz/aSzrd8899ygoKEgej8c/bcqUKfL5fHUuu2DBAj300EO6\n7LLLdObMGUlScnKyUlNT9f7772vNmjX6xS9+Uam8F/5/8uRJfwdvh8OhZ599VpIUFxenlJQUs/oB\nAAAAAAAAAAAAAAAAAIBvhpGNUa0vdx6uqKjQtGnTVFxcrGnTpik+Pl4vvPCCJGn//v0aOXKkHnro\nIf/8O3fu1IgRI/TYY48pPj5ekuTz+bRgwQLdcccd+uijj3T06FG53W4dPHhQ8fHxeu+992osy6FD\nhzRhwgRNnDhR586d07lz55SYmKi4uDgtWLBA0vnOq2PGjFFiYqLy8/MlSQ888IDy8vIkSTNnztSp\nU6dqrXN6erp/RN2RI0fqt7/9rW6//Xb9+9//liTNnz9fsbGxuu+++3Tu3DlNnjy50vKJiYnavn27\nJk2apISEBE2dOrXGdWVmZuruu+/WzJkzddddd0k6P8Ly3LlzNWLECP3lL3+ptaw+n0/PP/+8/vrX\nv0qS5s2bJ7fbrQkTJuiPf/xjtcvk5uZq9OjRcrvdmjdvXqWsryMnJ0eXXXaZJKlZs2YqKipSeHi4\nAgMD1adPH/3rX/+qttySNGTIEL399tvf+47hAAAAAAAAAAAAAAAAAAD8p6OzMaoVGhoqj8ej1atX\nKzMzU5dddpnWrl2rgQMHKiUlRceOHVNubq66devm7/B7QVJSkl555RXFxsZWmj5ixAg99dRT2rBh\ng9q3b6/U1FRdfvnlSklJUf/+/Wssi8fj0YoVK3T99ddr48aN2rhxo6699lqlp6frs88+0/Hjx/X6\n669r3LhxWrRokX+U3SFDhmjTpk0qKytTUVGRmjdvXuM63nnnHeXm5mrcuHGSpIKCAs2cOVOJiYna\nvHmzjh8/rszMTGVkZOiaa67Rpk2b1KFDB2VnZ2v16tUqLCxUZGSkJCksLEzLli1TSUmJvywXW7Vq\nlebOnatHHnlEZ8+e9U8fMGCAli9frrfeeqvGsvp8Pq1cuVLt2rXTkCFDdPz4cR05ckSpqanq3Llz\njctFRkb6Rx4+ePCgvyP21+X1eiv9XFhYqJCQEElS06ZNVVhYWG1nYofDocsuu0wHDx78RusHAAAA\nAAAAAAAAAAAAAADfPjobo1pXXHGFNm7cqLVr12rv3r2KiYnR4cOHlZGRIbfbrc8++0wnTpyodtni\n4mJFRkZW6fjaqVMnRUZGqqioyD+tPqPqXsjp1KmTcnJylJOTo65du/p/98UXXygnJ0ddunRRUFCQ\n2rVrJ+l8x9333ntP77//vm644YZa17Ft2zadO3fO/3N0dLTCwsIUFRWlwsJC5eTk6NJLL5UkdenS\nRdnZ2erVq5d27dqltLQ0bdmyRT179pQkdezYUZIUFRVVqa5flp2drS5duig6OlrNmjWr0kbFxcW1\nlnfr1q0qLy+XdH6E4QttVFtn49OnT2v69OmKj4/X/v37ayxbfTmdlQ8fYWFh/nIXFxcrPDxcLper\n0jZ2uVz+/1922WX69NNPv1EZAAAAAAAAAAAAAAAAAADAt4vOxqhWTEyMUlNTNXbsWL3++uuKiYlR\np06ddN999yk1NVWvv/66v3Otz+er1KE0NDRUeXl5ysrKqnM91Y18e7ELOYcPH1a7du3Utm1bZWZm\nSpIOHTqk1q1bq127dsrKylJZWZmOHj0qSQoJCVFISIjWrVunIUOG1LqOJ598Uvn5+dqzZ4+/Tl/W\npk0bfzmysrLUrl07xcTEKCMjQ5MmTVJKSopiYmLqrMsFbdu2VVZWlvLy8qod/bi2TtgOh0MrVqzQ\nP/7xD+Xk5KhNmzY6dOiQvz1q8s477+jmm29WSkpKpU7JwcHBys/PrzRvddOqq8OF0YnPnDmjpk2b\nqqioSOXl5dq9e7d69OihiIgIf/1OnDih6Oho+Xw+ORwO3XrrrXr33XfrXW8AAAAAAAAAAAAAAAAA\nAPDdo7MxqhUTE6OCggINHTpUubm5uuSSS3TPPfdo/fr1Gjt2rBISElRSUqLVq1dr5syZ2rp1q+Lj\n41VSUqKJEydqwoQJSktL849+W1On4h/96EeaOXOmduzYUWNZgoKCNH78eP33f/+3Bg8erMGDB2vb\ntm0aM2aMunbtqlatWumuu+7Sq6++qmnTpikqKsq/7ODBg1VQUKDmzZvXWedZs2bpueeek8fjqVLe\nVq1aqUuXLoqLi9OOHTs0ePBgde7cWTk5Obr99tuVm5urHj16VFqmto7UY8eO1WOPPaa5c+cqIiKi\nyu/r6oTtcDg0e/ZszZ07V61atVL79u0VHx+vzMzMGpe97rrr9Oqrr2rKlClVpm/cuFGTJ0/2Txs4\ncKCWL1+uxx57rMYyPPDAA5o3b55Gjx6t9evXS5LcbrfcbrfS0tJ0zz33KCQkRFdddZVGjx6tdevW\n6c477/Qv37FjR7Vs2fIr1RsAAAAAAAAAAAAAAAAAAHy3HD6GEoUxj8ejgIAAHTp0SMuWLdPvfve7\nBivLxo0bdfLkScXGxjZYGeoSGxurjIyMb5Rxoc0XLFign//85/rJT35iVLrGpbS4yC7MYfNdC4/h\nETSgEfa1tqxfWYVNWFOVmeRIUqmziUlOE8Ov7pwu85plRTnLTXKOnXOZ5EhS85AAkxyn4efFZfhF\nB6soZ4XNtpOkUtm0ueV+bqnA8DPjMMpqGhZokuP0VZjkXHC2yKZ+EU1s9k9fYIhJjiQ5POdsgpx2\nxzt57bafL8DmfOWosDuHqhHeRjrKi82yfEFNbXJcQSY5llxnj5tllYe3NsvyGu1TTsPzutVx2Gd4\nbHGWl5plWR3zfE6baw1JCjh91CSnIKydSc4FFaU2+4LVOfRkhc154YIgzze/Roj0nTIoyXkV4a3M\nsoKy/8csy0rZgV0mOb6B95rkSFJAwRdmWa6zuSY55/bVPDDBV1V65IhJTtiPrzPJkSRft+vNsmR0\njTet+c9MciTpgfF9THKaRIab5EhSm0H9zLJcV91iklMRdolJjiRV/HG+SY6rWd2DdtRXYzxOefds\nNsn5IXBc/QuTHGdx7X9B8Svx2TzXsHweYckTYXN/5TC8X/cZ3V9ZvRuQjJ9RGu1THsOxvazaKjjA\nskx2z1+DXDblKjG4h7kgNNCmTHklds8Cw4Lstp9VV5AAw5cyLqMsh+Hz13LDz3GgVVMZHaMkqbjC\nbvuZPSMJNYmRJPmM3vtLhu9RQoyuWwyfLxcuf9QsKyJ+lklOQO5BkxxJ8jaNNsnxRHcyyZGk4JDG\ned2JxuloXmFDFwH/IdpHhzXo+u3eCAH/6x//+IeSkpIkSb/5zW8arBx//vOftW7dOr344ouSpC1b\ntigpKck/em6/fv00ceLEb7UMJ0+e1IwZM+RwOOTz+dSyZUvNn1/5wW9No/muX79e69at8/9+xIgR\nGjZsWLXz/va3v9WhQ4fUvHlzzZgxQw8++KBOnjwpn88nh8OhhQsX1mt05+o0RLsBAAAAAAAAAAAA\nAAAAAIDGgc7GMDdw4EANHDiwoYuh22+/Xbfffrv/5379+qlfP7sRLOqjRYsWSk1NrXWe9PT0aqcP\nHz5cw4cPr9d65s6dW+nnBQsW1K+A9dAQ7QYAAAAAAAAAAAAAAAAAABqHRvoHsQEAAAAAAAAAAAAA\nAAAAAAA0NDobAwAAAAAAAAAAAAAAAAAAAKgWnY0BAAAAAAAAAAAAAAAAAAAAVIvOxgAAAAAAAAAA\nAAAAAAAAAACqFdDQBQCA+vI5XQ1dhCpKyr1mWWFBNt//cPh8JjmS5HI6zLJ8FUblMtwPPF6bMgW5\n7L67U2bVTpLkstl+5UbtJElWu5RlO4UG2u3nVryuQLOsQKOm8hk2k+tcoVmWVyFmWVZHF1d5sU2Q\nw/p7gTY1dFSUmeT4Au22nS+giVmWGfPt17h4A4NNcpzlpSY5kuQLsCmTJDk850xyfK4gkxxLvqBQ\nsyynr8IuyyinyGN3wgoNNDpuGl6fy2d3/2F35rPjMzp2Gra4KYfH5pgXbHQMvsDrMQhppOe9oja9\nGroIVQSfzDbJsdhsFzhLzphlWbV54IFdJjmS5Aq2OR+Xf/6pSY4k6cpbzKKszscPjO9jkiNJL6z8\n2CRnyqgeJjmSFNj+UrOskqaXmOS4HHbXLYHtu5rkOILszjGN8Tjl6tTdJOeHoLRJhEmOy2n3GtJ1\ncKtJzrnuA01yJCnkhOG5IaK1XZYRq3sZy2e5ls/iHUbFsnyPUuFpfHczhq8HZHXqqzAslNV+brhr\nymf4HMGqqSz3czOG96EuGb4PNYpynSuyCZLkc4WZZVmxev4q2b2zOC/cJKUxPl/etXizWdbPJjxl\nE9TyMpscSY7SszZBps9fAeD7p3G+CQAAAAAAAAAAAAAAAAAAAADQ4OhsDAAAAAAAAAAAAAAAAAAA\nAKBadDYGAAAAAAAAAAAAAAAAAAAAUK2Ahi4AAAAAAAAAAAAAAAAAAADAD423oQsA1BMjG8NUeXm5\n3G63hgwZYpK3du1aDR06VG+88Ual6SdPntSyZctM1hEbG2uS01COHTumX//6119r2d/+9re6/vrr\ndeTIEf+0qVOn6tprr5XXW/upbOfOnYqLi9OoUaO0a9cuSdLChQs1ZswYPf7445Kk9evX+7fd4sWL\ntXXrVs2ZM0e///3vJUm//vWvtX//frndbg0bNkwDBw5UfHy8tm3b9rXqAwAAAAAAAAAAAAAAAAAA\nbDGyMUwFBgYqNTVVcXFxJnn33HOPgoKC5PF4Kk1v0aKFEhISTNbhcDhMchrS163DE088odLS0krT\nXnzxRcXHx9e6nM/n06JFi7Ry5UoFBwfr7Nmz+uKLL/T5558rLS1N8+bN08cff1zj8h999JH//xER\nEUpNTdWOHTv0wQcfaPr06V+rLgAAAAAAAAAAAAAAAAAAwB6djX9gtm/frhUrVsjhcCgoKEgvvvii\n8vLy9OCDD6q0tFS33XabxowZI+n8iL+XX365Pv30U82aNUtz5sxRUFCQunfvruzsbCUnJ2vJkiXa\nsmWLXC6XfvOb3+jSSy+td1meeOIJHThwQK1bt9YLL7yg3NxcTZ8+XQEBAYqJidGsWbMkne/Y+mX7\n9+/XE088oY4dO/pHyJ0zZ45CQ0O1e/duTZw4UUOHDtWuXbs0f/58SdLs2bN15ZVX1lgWn8+nhx9+\nWHfffbdatWqlWbNmKTIyUvn5+UpNTVV5ebkeeOABFRQU6KqrrtKUKVP00EMPadGiRZKk48ePa+nS\npWrevLmOHTumw4cPa8iQIRo3bly169uwYYNWrVqljh07KiAgQM8++6xGjhypHj16aOfOnVq8eLE6\nduxYZbnFixfrn//8pySpuLhYY8eOVc+ePevV3lu2bNFLL70kp9OpMWPG6NZbb621PWrz+eefq3Pn\nzgoODpYkhYeHa+fOnerdu7ckqU+fPvrXv/6l0NDQape/8sortWvXrkqdpOtaJwAAAAAAAAAAAAAA\nAAAA+O45G7oA+O6FhYVp2bJlKi0t1ZkzZ7R27VrFxsZqzZo1evvtt1VRUSFJOnHihMaPH6+MjAzF\nxMTo8ssv14wZMxQTE6OYmBjl5+drzJgxysjI0P/7f/9PqampX6kcu3fv1po1a7RgwQJJUmRkpJKT\nk5WamqqDBw8qLy+v2uW6devmX+bLBgwYoOXLl+utt96SJC1cuFBJSUlKSkrSsmXLaiyHz+fT008/\nrVtuuUU//vGPJUkej0eLFy/WZZddpv3792vjxo269tprlZ6ers8++0ynT59WRUWFiouL9ac//Umf\nfPKJevXqJUnq3bu30tPT9e6779a4ztTUVKWnp2vIkCH+aQUFBZo5c6YSExO1efPmGpedPXu2HA6H\nVq5cqQ8//LDG+S7Wt29frVmzRsnJyUpOTq513rpGSs7Pz1dkZGSlaYWFhf7OxaGhoSosLKxx+Vtu\nuaXW9gEAAAAAAAAAAAAAAAAAAI0DIxv/AF0YMTcqKkpFRUXKzs7WzTffLElq3bq1Tp8+rebNm6t5\n8+b60Y9+JElyuVwKCQlRaGioQkNDFRISotLSUm3evFkbNmyQx+OpNBJvfUapTUhI0IwZM9S+fXvN\nnDlTp0+f1hNPPKGioiJlZWWpqKhI0dHR9a5Xp06dFBkZqeLiYklSVlaW7rvvPvl8PgUGBta43IkT\nJ3Tw4EH97Gc/80/r0KGDpPMdoIuKipSTk6Pu3btLkjp37qwvvvhC0dHR+vvf/64NGzboyiuv1KBB\ng5Sdna2OHTvK6XTK5XLVuM6AgAAFBgaqc+fO/mnR0dEKCwtTVFSUsrKyalw2ODhYzZs3V3BwsEpK\nSurXOJL27dunxYsXy+v16vTp07XOW9f2i4qKqpIRFhamU6dOSZJKSkoUHh4up9Pp77wuSU7n+e83\nXHLJJcrPz2c0YwAAAAAAAAAAAAAAAAAAGjlGNv4Bu9DRs127dsrMzJTP59Px48f9I9Ze6BhaE6/X\nqzVr1igtLU0PPPBApY6j5eXl8nq9tS4/ePBgLVy4UHv37lV+fr7eeecd3XzzzUpJSanUCTc4OFj5\n+flVyl5XR9WYmBitWLFCqamptY5s3LJlSy1fvlyvvPJKjaPxtm3bVpmZmZKkQ4cOqXXr1urZs6fe\nfPNN9e/fXzt37tRll11WpYw18Xg8Ki8v16FDh+o1f13qs+zKlSv1zDPPaOnSpZW2bUhISJX2DQ0N\nrTLtyzp06KDDhw/7OzsXFBSoe/fu2rNnj6Tzo1b37NlTzZs393dAzs3NVfPmzf0ZP/nJT7Rjx476\nVxIAAAAAAAAAAAAAAAAAAHzn6Gz8A+ZwOCRJd999t9LT0zV69Gjddttt/hF5L/y+tuX79Okjt9ut\njRs3Vvrd0KFDNWrUqCrTL/D5fBo/frxGjRqlSy65RFFRUbruuuv06quvasqUKZXmve6667Rx40ZN\nnjxZkrR69WrNnDlTW7duVXx8vH8k44tNmjRJ48eP19ixY5WUlFRrXYKCgnTffffpueeeq1JH6XzH\n6G3btmnMmDHq2rWrWrVqpV69esnlcunnP/+5SktLq7RXbe03ZswYxcbG6t13363X/HX58MMP9atf\n/Uq/+tWv9Ne//rXaeQYPHqwpU6bo2WefVXh4uH/6rbfeqscff1yLFi3yT7vzzjs1ceJEpaenV5vl\ncDg0depUTZgwQXfffbc+/fRTtW7dWu3bt9eYMWNUWFio3r17/3/27j2+qurO//97n1uuhIRwVYGA\noty9oFYc+FaZEU2lirQihJwgMqRWUUStClqVKjBMf0ERHccAggnBiApolda008owv6LIzdovQRFU\nkIsQCQm551x+f/DjjCEnEOGjifT1fDx4ACd7v9faa++zz9p7r7OiK6+8UsXFxcrMzJTL5dJ5550X\nyRg+fPgJBzQDAAAAAAAAAAAAAAAAAICW54RPZzpVAKdl165dev755zV79uyWrsoPRnbriwAAIABJ\nREFUQnVNTUtXoZGKuhPP4P1tJPpsvv/hGJ7Ww6cxCP54VfU2bZXoCprkSFJFyG2SE++1++7OwaqA\nWVYnn01bfV5ldxycleg1yakL2h3nlvuvNbI6JRieDuSujf6bBE7FIcWZZbmNzulJMfUmOXJsj83y\nGptzXltPpUlOKLatSU6rFbbrI1gdC06wziRHkkKeGJMcV71h/86wzZ2QzedxKKbNyRf6nrlqj5hl\nhXwJZllWKoN2H1hWfQTL/rlTX22WJbdNvyzs8pjkSJK7bK9JTnlCF5OcY0I1Nv3qtm6b998Rb7JJ\nzjEW25csuy8TBxM7mGXVt8K7nrEfRf+S+LcVuPA6kxxJ8n31sVlWVYfzTXK87y4xyZGkuq/2meR4\nEhNNciRJI+42i3KFja797x5nkiNJTy/aYpJz55i+JjmS1Pfh+8yyqnteaZLjdtn1W9wfrDLJcXyx\nJjlS6zxPmfalznA1Z19kkuOujz5ZzCllbV9nklPTZ5hJjiTFHfzELKuu0wUmOZbXH1aOGHbKrJ6j\nSJITsvkMDbts7rlJds+cEgzvedcE7O63xBnV60it3XOiJKNj6rDh88JYt10fIWT09rPad5Ysz3ch\n2bW51bMUd025TZCkI267axmzeyS+WpMcSZLhfe+yoM393LZem36n5f3lNRf+k1nWlVv+X5OcmDq7\ne9VOjU1WMKmzSY4kxca3vvvnaL12HbJ7fo4zW7d2hvcoT4HdEyGglcvNzdXatWslHZ2ZNzs7W0OG\nDPlOy1y7dq1yc3MjsxYPHTpUkyZNata6s2bNUnFxsaSj9Z0+fbp69+590vVKSko0depUOY6jcDis\njh07Kicn55S3oSXaDQAAAAAAAAAAAAAAAAAAtA4MNsY/jOzsbGVnZ3+vZQ4dOlRDhw5t8ufdunVr\nclbj6dOnn1KZ7du3V35+/imtG01LtBsAAAAAAAAAAAAAAAAAAGgdGGwMAAAAAAAAAAAAAAAAAADw\nPQuHW7oGQPO4WroCAAAAAAAAAAAAAAAAAAAAAFonBhsDAAAAAAAAAAAAAAAAAAAAiMrT0hUAgB8y\nbyv8ykbA8NcruB27rPqQUcUM29xy+6wcqQ2ZZXWpKzHJifN1MsmRpBqjAzRgdTxJiveaRclphb/f\nJGhUJctOY9gTY5dVbxZlxqmrsskJ1JrkRLg72ubhhJxQwCwrZPSecUJBkxxLTrDOLCvsMjxTBWzq\nFY6162xU1dv0EZLqa0xyJMlx+8yyQt5Yk5zqGrv3Xnwr7Oy7asrNskIJqWZZVlz1Rp+hJin2nHqj\nz3bD/qsVy35L2LHbgyHD6wYrgX2f2QRdaBMjSWGjc7AkWTV5uM7u8+rwJ7tNclw+u75GuxFmUXLC\nNn2EmOQ2JjmSdOeYviY5zxVuNcmRpKfH7zDLCve80izLSqjSpo8Q/nqfSY6kVnmeqv94g0nOP4LQ\nWTY70GN4bexK7mCSY9k7sPwMPZNZXlpZ3n8NOW6THMvrj6DR9oUM28nXCh+kVBjdI5GklLqvTXJq\nXe1MciTJbXhNZHVMxZmkGDPqB0tSyPDho9VVg+VzFKf1XRpLhveFXbWVZlnyGF0XGfWBLO+RXHr3\nP5tl1Rk9fEwo2WmSI0kyej4QSD7bJAcAzlSt78kZAAAAAAAAAAAAAAAAAAAAgFaBwcYAAAAAAAAA\nAAAAAAAAAAAAomKwMQAAAAAAAAAAAAAAAAAAAICoGGwMAAAAAAAAAAAAAAAAAAAAICoGGyOq+vp6\n+f1+XXvttSZ5y5cvV3p6ul577bUGr5eUlOiFF14wKSMjI8Mkp6Xs2bNHv/rVr5r8+W233SZJevbZ\nZ7Vu3TqTMvft2ye/369x48ZFXvvb3/6mW265RQ888MBJ18/JyZHf79eECRMkSaWlpZo4caLGjh2r\nv/zlL5Ikv9+vUCgk6X/3Ue/evfXpp58qGAzK7/fr97//vfx+v4YMGaLRo0dr4sSJJtsHAAAAAAAA\nAAAAAAAAAABOD4ONEZXX61V+fr7at29vkjd69Gj94he/aPR6+/bto75+KhzHMclpSU1tw1//+ldd\nccUV5uV16dJF+fn5DV4bOHCg5s6de9J133vvPQUCAeXn5+vpp5+WJBUWFiorK0t5eXl68cUXG61z\nbPs6dOig1atXR15LT09Xfn6+hg4dqpycHC1atOh0Nw0AAAAAAAAAAAAAAAAAABjwtHQFcGrWr1+v\nhQsXynEc+Xw+zZ8/X4cOHdK9996rmpoajRgxQpmZmZKOziZ7/vnn65NPPtGDDz6oadOmyefzqU+f\nPtq7d69eeuklPf/881q7dq3cbrcef/xxnXvuuc2uy2OPPaaPP/5YnTt31tNPP60DBw5oypQp8ng8\n6t+/vx588EFJUjgcbrDetm3b9Nhjj6l79+7693//d0nStGnTFB8fr82bN2vSpElKT0/Xxo0blZOT\nI0l66KGHNHDgwCbrEg6HNX36dN18883q1KmTHnzwQSUnJ6u0tFT5+fmqr6/XPffco/Lycg0aNEh3\n3nmnHnjgAc2bN0+S9NVXX+k///M/lZqaqj179ujzzz/Xtddeq1tvvTVqeatXr9aSJUvUvXt3eTwe\nzZ49W7fccov69u2rDRs26Nlnn1X37t0brffss8/qww8/lCRVVVVp/Pjx6tevX5Pb9frrr+vhhx+O\n/P/NN9/UM888o+HDh0dmFb755pt19tlna//+/Zo3b546derUKOc3v/mNtm/fLp/Pp3/7t39Thw4d\nmizzZNatWxeZ+bpt27aSpOLiYo0bN05er1cJCQmqrq6Oum7Xrl31xRdfSGp8XAAAAAAAAAAAAAAA\nAADAP4IQY6fwA8HMxj9giYmJeuGFF1RTU6OysjItX75cGRkZKiws1FtvvaVgMChJOnjwoCZOnKhl\ny5apf//+Ov/88zV16lT1799f/fv3V2lpqTIzM7Vs2TLdf//9jWa6PZnNmzersLAwMhtucnKyXnrp\nJeXn52v79u06dOhQ1PV69+4ddQbdq666SgsWLNAbb7whSXrqqaeUm5ur3NxcvfDCC03WIxwOa+bM\nmbruuut0ySWXSJICgYCeffZZ9erVS9u2bVNRUZEuv/xyFRQU6NNPP9Xhw4cVDAZVVVWlN998U1u3\nbtWAAQMkSRdeeKEKCgr0hz/8ocky8/PzVVBQEBl0K0nl5eW677779Mtf/lJ/+ctfmlz3oYcekuM4\nWrRokd57770mlztw4IA8Ho/atWsXee1Y3d55553Ia1988YWefPJJFRYWqmPHjlGzpk6dqvz8fP3s\nZz+LtO+pKi0tjQwyPqaiokJxcXGSpISEBB05cqTJ9fv166e///3vZ8SM1AAAAAAAAAAAAAAAAAAA\nnKmY2fgH7NiMuSkpKaqsrNTevXs1fPhwSVLnzp11+PBhpaamKjU1VV27dpUkud1uxcXFKT4+XvHx\n8YqLi1NNTY3+8pe/aPXq1QoEAg1m4m3OrLO/+MUvNHXqVJ1zzjm67777dPjwYT322GOqrKzUzp07\nVVlZ2WCg7MmkpaUpOTlZVVVVkqSdO3fqjjvuUDgcltfrbXK9gwcPavv27bryyisjr3Xr1k3S0QHQ\nlZWV2rdvn/r06SNJ6tGjh/bv36927drp3Xff1erVqzVw4ED9y7/8i/bu3avu3bvL5XLJ7XY3WabH\n45HX61WPHj0ir7Vr106JiYlKSUnRzp07m1w3NjZWqampio2NbXIGYElavny5br755gavRatbz549\nlZiYKElNDuB98cUX9cEHH6iyslJXX3115PVTmV24Xbt2Ki8vb/BaYmKiqqur5fV6VVVVpTZt2jSo\no8v1v99v+MlPfqIlS5Z863IBAAAAAAAAAAAAAAAAAMD3h5mNzwDHBoqeffbZ2rFjh8LhsL766isl\nJydLajjAM5pQKKTCwkItXbpU99xzT4OBp/X19QqFQidc/5prrtFTTz2lv//97yotLdXbb7+t4cOH\nKy8vr8Eg3NjYWJWWljaq+8kGuvbv318LFy5Ufn7+CWc27tixoxYsWKAXX3xRFRUVUZc566yztGPH\nDknSZ599ps6dO6tfv356/fXX9eMf/1gbNmxQr169GtWxKYFAQPX19frss8+atfzJHL9uKBTShx9+\nqEsvvfSky59sPx8+fFgbNmzQ0qVLlZmZ2WDdmpqaBsvGxcU12lfH+9GPfhSZWbmsrEyS1KdPH23e\nvFl1dXWqqqpSXFycUlNTdfDgQdXW1jYYLN65c2ft37//hGUAAAAAAAAAAAAAAAAAAICWxWDjM8Cx\nWWxvvvlmFRQUaOzYsRoxYkRkRtmmZrn95voXXXSR/H6/ioqKGvwsPT1dY8aMafT6MeFwWBMnTtSY\nMWPUoUMHpaSk6IorrtDixYt15513Nlj2iiuuUFFRkW6//XZJ0ssvv6z77rtP69atU1ZWVmQm4+Nl\nZ2dr4sSJGj9+vHJzc0+4LT6fT3fccYd++9vfNtpG6ejA6Pfff1+ZmZk677zz1KlTJw0YMEBut1v/\n9E//pJqamkbtdaL2y8zMVEZGhv7whz80a/mTee+993Tbbbfptttu0zvvvKM///nPuuqqq5pc/ptl\nnazctm3bKiEhQRMmTNCGDRsa/GzQoEHKyMjQpk2bJB2dtTguLk5+v1+7d++Omjd48GA5jqPMzEzd\nddddkqRbbrlFeXl5Gj9+vLKysiRJkyZN0pQpU5SVlaXbbrutQV0vu+yyE9YZAAAAAAAAAAAAAAAA\nAAC0LCd8OtOwApAk7dq1S88//7xmz55tmvvnP/9Zl19+uRITE01zf6iqj5uBuTWoDZx45u9vI8Zj\n8/2PYMjutO52nfrg+eOV1QZNclI8dm1eHXab5FjtO0naWVpnlnW+c9AkZ5+vk0mOJMUZtVXA8DhP\njrU5DiTJaYXdqoBRlTx2pwM5oYBZ1qF6u/efp97m/NLWKTPJcQK1JjnHHHZ3NMlp66k0yQnFtjXJ\naa2coN35POSJMclx1UX/ct+pCPniTXLcNeUmOZIUdnnMshyjtgomtjfJkaQqo3NUUk2JSY4khWKT\n7LK8sSY5X1fZfcakxtscU5b9A/eRr8yyQgmpJjmW7z1vyacmOWXJ55rkHBOssbmWSQ7ZvP/K4+36\n55IUMti+lIDdby6qT+lqllUXbH39c98f/9Mm6Lpf2uRI8h76wiyrsm03kxyzdpJ08P2/meS4fHbn\nu3YPzTfLcofqTXL2PnaHSY4kVez52iTnucKtJjmS9PTvp5tl1f8fv0mOx/C+m/NunklOuMbmek9S\nqzxPBf7+PyY5/wgCQzJMcnx1R0xyJMnz9ecmOZVdBpjkSFLc4V1mWfXtupvktMb7kzWGfbJYt925\nMySbrNOYg6gRq+coid7WOd+Y1TOnfRU2/R9J6ho+8W96ba69rnYmOZIUb7j/gkbnhLYxds9RrDgh\nm/eLJAUM5+izepZieX+5Muw9+ULNZHWPpK3bro/gqrXrw5Z6OpvkWG1fMN7u3FK18NdmWRo/wyQm\n5Sub63VJktE9ytqz+pvkSFJcrM09b/xj+KzE7ryIM1uP9m1atHy7O6TA9yQ3N1dr166VdHSG3Ozs\nbA0ZMuQ7LXPt2rXKzc2NzMg7dOhQTZo0qVnrzpo1S8XFxZKO1nf69Onq3bt3s9YdNmzYKdV35cqV\nWrFiRaS+o0aN0siRI08pS5L8fr8cx1E4HJbjOMrLs7l5DQAAAAAAAAAAAAAAAAAAWjcGG+MHJzs7\nW9nZ2d9rmUOHDtXQoUOb/Hm3bt2anNV4+nS7WTOa66abbtJNN91klpefn2+WBQAAAAAAAAAAAAAA\nAAAAfjha5+9QAQAAAAAAAAAAAAAAAAAAANDiGGwMAAAAAAAAAAAAAAAAAAAAICoGGwMAAAAAAAAA\nAAAAAAAAAACIytPSFQAAAAAAAAAAAAAAAAAAAPhHE27pCgDNxGBjAD8YVfWhlq5CI9WGdYp1OyY5\nLscmR5IOVgXMsnxG2+dUl5nkSFIopp1JjhO26/qd29ZtlqUKm6xEr90vQnC7bI6DJKfOJEeSgmG7\nNg/LZvvcwVqTHEk6VGezfR3iDbuNjt0xFWqFV16BhPYmOYan86OO1NvkBO0+G6y4y/eb5ITdXpMc\nSQrHJJplWX3OOEG7c6e7osomyOOzyZHkqik3ywrFJZtlWYm3+jyuNDoXSAp7YuyyjM7nHWV3HMjo\nMK+LTbEJkuTyxZtlBV025zyX5W3QkM31VSvsHkiSgkmdbXLqbK+NLbocTp3RG8aY74//2dJVaKT2\nwEGTHLszsKSQ4bW/UZvXff21SY4kBetttu/sX0wxyZGk7XeNMcsK1QVNcnpm/NQkR5K855xrkvP0\n+B0mOZJ0T/oss6wL2841yZn4+X+b5EjSl++8a5LTrk+aSY5kfJ4K23z21e/fbZLzjyCm7ohN0P99\n1yZHUvC8y0xyYja+YZIjSep5oV2WkZqgXW/Y6vFHwPAGntVzFEkKGV2IHqy060vFemyu/X31lSY5\nklTnTTDLsrr2PyvB8F51hU1Mcqzhsx1DbqObzLUBu+tQj9FzIo/hc4ayGrvtaxdndCy47I7zQL3d\nedjqLGx6vyzO5nmvJKnC6N6p2+a+t+Uz6JT0m82y3r8x3STnkkezTXIkydu1l0mO2/A5g2Jj7bIA\noJWw64EBAAAAAAAAAAAAAAAAAAAAOKMw2BgAAAAAAAAAAAAAAAAAAABAVAw2BgAAAAAAAAAAAAAA\nAAAAABAVg40BAAAAAAAAAAAAAAAAAAAARMVgY3wrq1at0tatW087Z+XKlXrttdeatey2bdv0+uuv\nn3aZkpSRkWGScyaor6+X3+/XtddeG3lt37598vv9Gjdu3EnXz8vLU2ZmpsaOHauKigrV1tbq7rvv\n1rhx4/TKK69IkqZNm6bdu3dLkvx+v4LBoIYNG6Y1a9ZIOro/NmzYIL/fr2HDhunGG29UVlaWysvL\nv4MtBgAAAAAAAAAAAAAAAAAA3xaDjfGtjBw5Un379v1ey+zdu7d+9rOfmWQ5jmOScybwer3Kz89X\n+/btI6916dJF+fn5J1139+7d2rRpk5YuXaoXX3xRMTExeuedd3TFFVeooKBAq1evVl1dXYN1HMeR\n4zhq27at/uu//ivy2qWXXqr8/HyNGjVKDz30kPLy8pSUlGS7sQAAAAAAAAAAAAAAAAAA4JR4WroC\nsLN+/XotXLhQjuMoJiZGjz/+uO69917V1NRoxIgRyszMlHR0Ntnzzz9fn3zyiR566CElJCRoxowZ\nqq+v16RJkzRs2DD5/X6lpaVp27ZtevDBB3XppZcqNzdXhYWFmjlzpgYPHixJuuGGG3TBBRdox44d\nWrJkiZKSkpSTk6MtW7YoJSVFOTk52rx5s+bPny+fz6fk5GTl5ORIktauXau3335b5513nh5++OGo\ndSsrK1NOTo6uvvpqTZkyRdLRGXIvvPBCrVmzRjNmzNAll1yioqIiLV68WB6PR7NmzVLXrl2bbKfa\n2lrdf//9uu+++3TgwIFIm/l8Ps2fP1+HDh1q0G5DhgzRyy+/rGnTpkmSNm7cqM2bN2vHjh2Kj4/X\n5s2bNWnSJKWnp0ctb8mSJSoqKlJqaqouuOACTZ48OWq7HW/atGkqLS2Vy+VSSUmJHnnkEQ0cOFA5\nOTnatGmTYmNjtWjRIu3cuVMPPPCAunfvrl27dunVV1+NWo/nn39ea9euldvt1uOPP65zzz23OYdV\nVO+9956uueYaSVJcXJwkqbi4WDfccIMkqVevXtq1a1fUdePi4hQIBFRbW6twOHzKdQAAAAAAAAAA\nAAAAAAAAAN89ZjY+wyQmJuqFF15QVVWVli9froyMDBUWFuqtt95SMBiUJB08eFATJ07UsmXL1K9f\nP82dO1ezZs1SQUGBli5dGskaN26ccnNzlZubK0nKzs7WqFGjGpRXVlamOXPmKD09Xe+//76Ki4tV\nUlKi/Px8DRkyREVFRZKkpKQkLVq0SKmpqdqyZYskqVu3blq8eLE2b94cyftm3fr376+hQ4dGBiIf\n4ziORo0apZkzZ2r16tUKhUJauHChli5dqieeeEILFixosn2CwaCmT5+u22+/XWlpaQ3arKamRmVl\nZY3arWvXrtqzZ4/27dunNWvWqLi4WAMGDJAkXXXVVVqwYIHeeOONqOUFAgEVFRVp2bJlGjRoUJPt\n1pSnn35agUBAs2fP1gcffKCtW7eqpKREBQUFeu655yQdHcz85JNP6uGHH1Z5eXmTWZmZmVq2bJnu\nv//+Zs1efCKlpaVq27Ztg9cqKioiA4/j4uJ05MiRRusdG1z84x//WO+++y4zTQMAAAAAAAAAAAAA\nAAAA0Moxs/EZpnv37pKklJQUbdiwQcOHD5ckde7cWYcPH1ZqaqpSU1MjM/+63W7t3r1b06dPVzgc\n1uHDhyNZPXv2lM/nU1VVVZPlnXPOOXK5XEpOTlZlZaU+++wzbdq0SVlZWaqrq9NPf/pTdejQQT17\n9pQkpaWlae/evQ3qGhMTE8n7Zt1crqNj4aPNfpuWlqYvv/xSlZWVKi0t1ZdffqkJEyZEtrUpxcXF\n8nq9DQa5frPNKisrtXfv3ki7denSRaWlpfJ4PFqzZo22b9+uuro6jRw5UqtWrVJaWpqSk5ObbKPS\n0tJIfXr06KGPPvooars1JTY2VqmpqYqLi1N1dbW++OKLyEDn2NhYSdKePXsi++r4AcDf9Oabb+r3\nv/+9AoFAZJul6O17shmHU1JSGg1sTkxMVHV1tSSpurpaSUlJkX0oHR0k7na75TiOrr76aj322GMn\nLAMAAAAAAAAAAAAAAAAAALQ8ZjY+g1122WXasWOHwuGwvvrqKyUnJ0tSgwGgknTuuefqmWeeUX5+\nvlasWBF5fefOnTp06JDi4+ObLOP4Qak9evTQsGHDlJeXp8LCQo0ePTqSJUmff/65unTp0mTG8XWL\ntszxZaakpKhPnz7Ky8tTXl6eZs6c2WR9+/fvr3nz5mnOnDkKhUJRyzj77LMj7bZ//36lpKSoW7du\n+uijj9SpUyeVl5crMTHxhO1wTHJysvbt2xfZ9pMtfzLdu3fXhx9+KEmqra2N1PfTTz/VoUOHVFZW\n1uS6r7zyipYuXap77rmnQfn19fWN2qKmpuaE9fjRj36kP/3pT5KODiyur69X7969I7NWf/rpp+rW\nrZvat2+vkpIShUKhyMza4XBYPp9PHo8nMjgZAAAAAAAAAAAAAAAAAP7RhML84U/z/rQ0BhufoRzH\n0ZVXXqmCggKNHTtWI0aMkNvtjvzsmyZPnqypU6cqKytLs2bNiry+dOlSZWdnKzs7W5J0xx13aOXK\nlZozZ47mzZsXNatPnz7yer3KysrS+PHjVVxcLEkqKyvThAkTVFJSoosvvrhRXaP9W5Lmz5+v2bNn\n680339Ttt98edRmXy6VbbrlFmZmZGj9+vFauXHnCtmnXrp1GjBihhQsXRi375ptvbtRuAwYMkM/n\ni/x9vOPrdIzX69U111yjsWPHasOGDSdd/mT69u2r1NRUZWRkRNpj/PjxevTRR/XEE09EBpRHc9FF\nF8nv96uoqKjB6+np6RozZkyD1wcNGqSMjAxt2rQpala3bt00cOBAZWZm6tZbb1Vtba2uu+46/fWv\nf9W4ceN07bXXyuv1asyYMZo7d64yMjI0atSoBtv+z//8zyccHA0AAAAAAAAAAAAAAAAAAFqeEz7V\nKVZxRvP7/XrppZeanGn421i/fr3WrVunKVOmGNTsh2vdunXauHGjJk+ebJobCATk8XhUWVmpu+66\nSy+++KJpfmvy9ZGqlq5CI9X1oZMv1Ezt49wmOSGd2mD2aEqqA2ZZPrdNvdrVl5rkSFJFTDuTnHiP\nXZsrbHdMuSsOmuQcietokiNJbpdNW8WGak1yJCnoiTXLsuIO2m3fV3U255YO8R6THElyQkGzrK/t\nmkq+gM37LyHRa5Jzit9NalLFkXqTnLaOzZeFQgmpJjmS5C7fb5ITdtvsO0kKxySefKHmZnliTHJc\nNYZf9Aoa9RE8jb/Id6qcOru+Yiiu6S/xfascb+v7jPEc3mOWFWx7llmWVR/WU33IJMdSXWyKWZav\n7ohZViAmySTHJbvbSt4Dn5jkHG7XyyTnmFCNTd+lTaJNf6q8zu6aQZIcg7x2VTsNanJUXacLzLL0\nh+ftsozUHrC5TovJetQkR5K8JTvMsuo3FJ18oWao+/prkxxJOlT8hUlOt8n3meRI0vYnHzfLCtXZ\nnKN6ZvzUJEeSvOeca5JT/6XdsXlP+qyTL9RMF7a16eNN/Py/TXIk6csZ95jktOuTZpIjGZ+nvv7M\nJKf6v14xyflHEHPDHTZB//ddmxxJznmXmeSEP3nfJEeSXD0vNMuqT+1hklNrdH9LkqwefwQMp99K\nibGbRytgVK2DVXbPUWI9NtuX6tj9ZtE6b4JZlsvohqfldajVc5Sq+A4mOdaMHs2Zvo89Rs+JLB/N\nfV1jd+5sZ/S81/I5SrnNowFJNvcQJCkuwe6Zk9W5RZIqK4yeo/hsHl6FfHbnYN/ej8yy3p/0K5Oc\nSx7NNsmRJG9Xm/uBgdQ0kxxJ8iXbPWPHme/Tg3b3/nFmO69DmxYt3+4THGeUU515t7WYNWtWZFZl\nx3E0ffp09e7d+zstc+XKlVqxYkWk7UaNGqWRI0c2a917771XJSUlCofDchxHTz31lFJTmzcA5+OP\nP9aMGTPkOI6mTJmitWvXKjc3N1KPoUOHatKkSae2UadZNwAAAAAAAAAAAAAAAAAA8MPGYGNElZeX\nZ5Z1+eWX6/LLLzfLa47p06d/r+VJ0k033aSbbrqpyZ8PHjxYgwcPjvqzuXPnnnK5/fr10/Llyxu8\nNnTo0FPOO97p1A0AAAAAAAAAAAAAAAAAAPyw2f2uGQAAAAAAAAAAAAAAAAAAAABnFAYbAwAAAAAA\nAAAAAAAAAAAAAIiKwcYAAAAAAAAAAAAAAAAAAAAAomKwMQAAAAAAAAAAAADhvbK6AAAgAElEQVQA\nAAAAAICoPC1dAQBorvpQuKWr0Ijb5bR0FRpxDKsUNGxzr9fo+y1uu4+ueE/r23/u8v1mWeHYNiY5\ncVb7zpCrotQsK5zU2SxL4ZBRjt17z210UnAM6yTH7pjyuoza3FBNoPXVyZTH19I1aMQJBVq6Co20\nvl6LLcfofBdyGV6SGmaFvLEmOU4oaJIjSWGX2ybHE2OSI0lhw46nVZK7zK4vFUpoZ5Jjec0Q9saZ\nZYWMPtstL4nCRp8xHuPrtDqjnFqjLoJ1/7ym7vQrZrXvrNV9/XVLV6GR2G5pJjmWfY2wN94sy6rN\nfR06muRIUqekJJOc6o4XmORIUk1ptVlW0OA9LEnuQdeZ5EhSdUIHk5xwzytNciTpwrZzzbI+LKsx\nybH8XI9JtrkHZHWOkqzPUzZt5Ulqa5LzD8HoOjtca/N+kSQZ3esMlh4wyZEkx/B9bKXe8LZU0Oia\nwbp/3tpY3go0ayvDk7DlYxSrpnJV2vXzw0b3gHxuw3skhvfinXqjfqfH7nznsToSDI9zt+Flttn+\nM3yO4nbZNZbV+7g6YPkcrPXdjQ+7vS1dhUZqzx5ollX2RblJjuO1a6eQUV8RAHBirW/0EAAAAAAA\nAAAAAAAAAAAAAIBWgZmNAQAAAAAAAAAAAAAAAAAAvmeWv2QY+C4xszEAAAAAAAAAAAAAAAAAAACA\nqBhsDAAAAAAAAAAAAAAAAAAAACAqBhv/QKxatUpbt2497ZyVK1fqtddea9ay27Zt0+uvv37aZUpS\nRkaGSc4Pxd69ezVt2jRJ0rRp07R79+5mr/v888/rvffeO+EyTz755GnV75i77rpLl19+uUKhkCSp\nvr5efr9f11577UnX/f3vf69x48ZpzJgx2rVrlyTp17/+tfx+v5555hlJ0rPPPqt169ZJOtoOu3bt\nkt/vV0FBgaSjx8Xnn38uv9+v9PR0XXfddcrKytKOHTtMtg8AAAAAAAAAAAAAAAAAAJweT0tXAM0z\ncuTI773M3r17q3fv3iZZjuOY5PxQvPLKKxozZsy3Xi8UCmnDhg365S9/ecLlHnnkkVOtWgPz589X\nVlZW5P9er1f5+fkaN27cCderqKjQq6++qqVLlyoUCqm2tlYbN25UUlKS8vPzNWXKFB04cKDReseO\ngw0bNmjcuHFyHEdpaWnKz8/XqlWrFAgE9POf/9xk2wAAAAAAAAAAAAAAAAAAwOljsLGB9evXa+HC\nhXIcRzExMXr88cd17733qqamRiNGjFBmZqako7O4nn/++frkk0/00EMPKSEhQTNmzFB9fb0mTZqk\nYcOGye/3Ky0tTdu2bdODDz6oSy+9VLm5uSosLNTMmTM1ePBgSdINN9ygCy64QDt27NCSJUuUlJSk\nnJwcbdmyRSkpKcrJydHmzZs1f/58+Xw+JScnKycnR5K0du1avf322zrvvPP08MMPR61bWVmZcnJy\ndPXVV2vKlCmSJL/frwsvvFBr1qzRjBkzdMkll6ioqEiLFy+Wx+PRrFmz1LVr1ybbqba2Vvfff7/u\nu+8+HThwINJmPp9P8+fP16FDhxq025AhQ/Tyyy9HZgjeuHGjNm/erB07dig+Pl6bN2/WpEmTlJ6e\nHrW8JUuWqKioSKmpqbrgggs0efLkqO12vGnTpqm0tFQul0slJSV65JFHNHDgQOXk5GjTpk2KjY3V\nokWLtHPnTj3wwAPq3r27du3apVdffVWSFAgEtHXrVk2dOrVBbkFBgerr63XrrbdqyZIleuedd9S+\nfftI3STp3Xff1Y9//GNJR2cF/vDDDyVJVVVVGj9+vIYPHy6/368DBw7onXfekXR0tup3331X5eXl\nDfbp8V5//XW9+uqrcrlcmjp1qi677DJJUjgcbnKfNeVvf/ubrrjiCjmOI7fbrfj4eBUXF+viiy+W\nJF100UUqLi5utN6xsjp16qT9+/dH/RkAAAAAAAAAAAAAAAAAAGg9XC1dgTNFYmKiXnjhBVVVVWn5\n8uXKyMhQYWGh3nrrLQWDQUnSwYMHNXHiRC1btkz9+vXT3LlzNWvWLBUUFGjp0qWRrHHjxik3N1e5\nubmSpOzsbI0aNapBeWVlZZozZ47S09P1/vvvq7i4WCUlJcrPz9eQIUNUVFQkSUpKStKiRYuUmpqq\nLVu2SJK6deumxYsXa/PmzZG8b9atf//+Gjp0aKNBq47jaNSoUZo5c6ZWr16tUCikhQsXaunSpXri\niSe0YMGCJtsnGAxq+vTpuv3225WWltagzWpqalRWVtao3bp27ao9e/Zo3759WrNmjYqLizVgwABJ\n0lVXXaUFCxbojTfeiFpeIBBQUVGRli1bpkGDBjXZbk15+umnFQgENHv2bH3wwQfaunWrSkpKVFBQ\noOeee07S0cHMTz75pB5++GGVl5dH1v3jH/+oa665pkHe22+/rQMHDujWW2+N1O3ll19uUDdJWrVq\nlW666abI/x966CE5jqNFixbpvffekyTl5+erffv2DdaLtk+PN3z4cBUWFuqZZ56JHFvSqc06XVpa\nqrZt2zZ4raKiQnFxcZKkuLg4HTlypMn109PTtXr16m9dLgAAAAAAAAAAAAAAAAAA+H4x2NhI9+7d\nJUkpKSnasGGDzjvvPElS586ddfjwYUlSampqZOZft9ut3bt3a/r06Ro/frwOHjwYyerZs6dSUlJU\nVVXVZHnnnHOOXC6XkpOTVVlZqc8++0ybNm1SVlaWVqxYESmzZ8+ekqS0tDTt3bu3QV1jYmIied+s\nm8t19LCINtNsWlpapMzS0lJ9+eWXmjBhgh599FHV1NQ0Wd/i4mIdOHCgwcDWb7ZZZWWl9u7dG2m3\nLl26qLS0VB6PR2vWrNF///d/6+OPP1a/fv0a1KOpNiotLVXnzp0lST169Giy3ZoSGxur1NRUxcXF\nqbq6Wl988UVkoHNsbKwkac+ePerZs6fatWvXYIbk3/3ud/rpT3/aIO/9999XbW3tCev25Zdfqm3b\ntmrTpk2jesTGxqq6urrJ+kbbp8f761//Kr/fr6lTpzbIirafTzbLcEpKisrKyhq8lpiYGMmtrq5W\nmzZtIsfSMS6XS47jaMCAAfr73/9+wjIAAAAAAAAAAAAAAAAAAEDLY7Dxd+Cyyy7Tjh07FA6H9dVX\nXyk5OVmSGg28PPfcc/XMM88oPz9fK1asiLy+c+dOHTp0SPHx8U2Wcfxg0B49emjYsGHKy8tTYWGh\nRo8eHcmSpM8//1xdunRpMuP4ukVb5vgyU1JS1KdPH+Xl5SkvL08zZ85ssr79+/fXvHnzNGfOHIVC\noahlnH322ZF2279/v1JSUtStWzd99NFH6tSpk8rLy5WYmHjCdjgmOTlZ+/bti2z7yZY/me7du+vD\nDz+UpMig4bPPPluffvqpDh06FJnZeOfOnTrrrLMiM/we85vf/EalpaX629/+ppSUlEjdPvvss8gy\ny5cv1y233NKs+jS1HSfavoULF2rhwoWaNWtWg30QHx+v0tLSBsvW19c32k/fNHDgQL333nsKhUIK\nBAKqrKxU7969I7Nnb9myRX369FFqaqq+/vprSdKhQ4eUnJwcqWO3bt20e/fuZm0vAAAAAAAAAAAA\nAAAAAABoGQw2NuY4jq688koVFBRo7NixGjFihNxud+Rn3zR58mRNnTpVWVlZmjVrVuT1pUuXKjs7\nW9nZ2ZKkO+64QytXrtScOXM0b968qFl9+vSR1+tVVlaWxo8fr+LiYklSWVmZJkyYoJKSEl188cWN\n6hrt35I0f/58zZ49W2+++aZuv/32qMu4XC7dcsstyszM1Pjx47Vy5coTtk27du00YsQILVy4MGrZ\nN998c6N2GzBggHw+X+Tv4x1fp2O8Xq+uueYajR07Vhs2bDjp8ifTt29fpaamKiMjI9Ie48eP16OP\nPqonnngiMqD8lVde0ZgxY6JmPPjgg/rtb38rx3F07bXXauzYsVq/fr1cLpfq6+v18ccfq3///ies\nx4cffii/36/t27crKytLmzZtavDzE23f1VdfLb/fr2XLljVY7sYbb9SkSZNUUFAQeS09PV1jxoxR\nUVFR1KzExET9/Oc/l9/v15gxY1RSUqJBgwaptLRUfr9fPXv2VMeOHXX99ddr1apVysjI0EUXXaTE\nxMRI2ddff32DGb0BAAAAAAAAAAAAAAAAAEDr44RPdapXfCf8fr9eeumlJmca/jbWr1+vdevWacqU\nKQY1++Fat26dNm7cqMmTJ5vmBgIBeTweVVZW6q677tKLL76oN954QzfeeGOz133llVfk9Xo1ePBg\n7dmzR5deeqlpHc80+8sqW7oKjVieQVNibL7/ET7FQfXR7K+oN8tKinGb5LQJlJvkSFIotq1ZlhV3\n2V6zrHBsG5OcYGySSY4lT9k+s6xgUmezLIWbnhX+23CCdu+9koDXJCc1tnV+R628zqbNJckxynLH\n2pzvrAVrgiY5bb3VJjmhGJtzlCR5Dn9pkhN2eUxyJCkUn2KWFfbEmOS4aspMciTJCdSZ5IRiEk++\nUDM5dVVmWcHE9iY5TsjmfSdJYZfNucVdUWKSI9m1kyXfvq1mWaGEdiY5AcO+hsuwj1Dv2JzzPHaX\nH/Ic+twkpzI5zSTnmLqqgEmOL96mzV2GbS5JNZWnv30pdTafxZJUn9rDLKuu4EmzLCsxZ3czyQlf\nlWWSI9leX1W9tcgkx9eho0mOJIVra0xyQtffZZIjSZ/6R5plBY2uYwa+aLPvJKk2oYNJjuWDi6Vn\nXXzyhZrpwzKbY2pexUcmOZJU8v/cb5KT+qNBJjmS8XmqfL9JTuCvJ54wBf/L/X+a91sYTya85U8m\nOZLkDPqJSU5wzTKTHEnyXHGDWZbVdUOF4b2yoNEDELfhM4s2XrusgNEHzb4Km+sFSUo2uq/YNmx3\njyTkS7DLks3+81Ta3duQp/FkV6fC8jmKY/jw0am3uZdb74k7+ULN5JHdecrKYbvbLUr2tb5nKZVW\nJzxJIaPnDDJ6bixJbsP7JFbPUZLibI7zsNvmHCXZjiFY02+wSc6wvGkmOZLkShtgkhNKSDXJkSRf\nst29DZz5th840tJVwA9Er452z9hPhd3TdJg41Zl3W4tZs2ZFZlV2HEfTp09X7969v9MyV65cqRUr\nVkTabtSoURo5snk37O+9916VlJQoHA7LcRw99dRTSk1tXufh448/1owZM+Q4TmRAd3MGGkvSf/zH\nf+j9999XXFyc5s2bp4SEBHXp0qVZ657Mtm3bNHPmzEh79OnTR9OmnXonrSX2KQAAAAAAAAAAAAAA\nAACc6UKmX7kGvjsMNm5l8vLyzLIuv/xyXX755WZ5zTF9+vTvtTxJuummm3TTTTc1+fPBgwdr8ODo\n36yaO3fuKZfbr18/LV++/JTWvfvuu0+53JPp3bu38vPzzfJaYp8CAAAAAAAAAAAAAAAAAIDWofX9\nDgcAAAAAAAAAAAAAAAAAAAAArQKDjQEAAAAAAAAAAAAAAAAAAABExWBjAAAAAAAAAAAAAAAAAAAA\nAFE54XA43NKVAIDm+PpIVUtXoZF4r913Nhyj03HYcUxyJKk2EDLL8rlt2spTW26SI0mhmDYmOZZt\nHgjZfSz7wgGTnLDLY5JjyQnZbJskOYFas6xVX9SZ5NzYM8EkR5KC7hiTHJfsjk3L/Rdye82yKo7U\nm+TEJdi8Z9wuu3OLZLd9SfEmMabnFido894zZXiZFfbYvI8Vtvtct+JY1iloc4xLUtgbZ5JTa7h5\nXqNzgmG3xaz/aslVU2aWFfbZfB5/XmnXTt3b2H3uWZ07w26fSY4kuWqPmORY9fOPOVJh03dJSLTZ\nf5b9Mslm+9p6qw1qcpTl/nPq7erV2oR8Rp0ySU4oaJdldH3lBGpMciQp7Ik1ybFsc0suoz6QZf/c\n8j6JFXeN3f0kq77ilMQBJjmS9MzB/zHJCRse5631PIXmCbvcJjmW1wxW5xaX4b1A03OnUZsfqbV7\nv1hd0raNsdk2yfaYsrpmD1re03fbHOe+OptrK8n++sqC5f2W2HDruza25KoutQly7J6H5m6zuU77\n14s6m+RIUr3hZbbXqCtsec/b6jmRJFVWtK7nKJLtsxSz5yixNp/HZs8GjFld+4cNn/GFHJv+huVY\nBF9yR7MsnPk+PmB37OHMdkHHpBYtn5mNAQAAAAAAAAAAAAAAAAAAAETFYGMAAAAAAAAAAAAAAAAA\nAAAAUTHYGAAAAAAAAAAAAAAAAAAAAEBUDDYGAAAAAAAAAAAAAAAAAAAAEBWDjf8BrFq1Slu3bj3t\nnJUrV+q1115r1rLbtm3T66+/ftplSlJGRoZJzg/F3r17NW3atBMuY7VPly9frvT09Ab79bnnntOw\nYcO0bt26E6574MABTZo0SePGjdNLL70kSfrTn/6kMWPG6F//9V9VXl6uPXv26Fe/+pUkaf369Xr6\n6ae1cuVK/exnP5Mkvfrqq1q5cqWmTZsmv9+vSy+9VFlZWVqyZMlpbxsAAAAAAAAAAAAAAAAAADh9\nnpauAL57I0eO/N7L7N27t3r37m2S5TiOSc4PxSuvvKIxY8accBmrfTp69Gj5fD4FAoHIa3feeafC\n4fBJ1507d64eeOAB9erVS2VlZZKkl156Sfn5+fqf//kfFRYW6vrrr2+w/479u6SkRLt37468Nnv2\nbEnSuHHjlJeXZ7JtAAAAAAAAAAAAAAAAANCaNWOYFtAqMNi4ha1fv14LFy6U4ziKiYnR448/rnvv\nvVc1NTUaMWKEMjMzJR2d3ff888/XJ598ooceekgJCQmaMWOG6uvrNWnSJA0bNkx+v19paWnatm2b\nHnzwQV166aXKzc1VYWGhZs6cqcGDB0uSbrjhBl1wwQXasWOHlixZoqSkJOXk5GjLli1KSUlRTk6O\nNm/erPnz58vn8yk5OVk5OTmSpLVr1+rtt9/Weeedp4cffjhq3crKypSTk6Orr75aU6ZMkST5/X5d\neOGFWrNmjWbMmKFLLrlERUVFWrx4sTwej2bNmqWuXbs22U61tbW6//77dd999+nAgQORNvP5fJo/\nf74OHTrUoN2GDBmil19+OTJD8MaNG7V582bt2LFD8fHx2rx5syZNmqT09PSo5S1ZskRFRUVKTU3V\nBRdcoMmTJ0dtt+NNmzZNpaWlcrlcKikp0SOPPKKBAwcqJydHmzZtUmxsrBYtWqSdO3fqgQceUPfu\n3bVr1y69+uqrkqRAIKCtW7dq6tSp2rNnj+6++24Fg0Gdf/75CgaDysnJafY+Pd6BAwc0ZcoUeTwe\n9e/fXw8++KAkNWtgcTT79u1Tr169JElt27ZVZWWl2rRpI6/Xq4suukirVq3S9ddf32CdY2Vde+21\neuutt9ShQ4dTKhsAAAAAAAAAAAAAAAAAAHw/XC1dAUiJiYl64YUXVFVVpeXLlysjI0OFhYV66623\nFAwGJUkHDx7UxIkTtWzZMvXr109z587VrFmzVFBQoKVLl0ayxo0bp9zcXOXm5kqSsrOzNWrUqAbl\nlZWVac6cOUpPT9f777+v4uJilZSUKD8/X0OGDFFRUZEkKSkpSYsWLVJqaqq2bNkiSerWrZsWL16s\nzZs3R/K+Wbf+/ftr6NChkYHIxziOo1GjRmnmzJlavXq1QqGQFi5cqKVLl+qJJ57QggULmmyfYDCo\n6dOn6/bbb1daWlqDNqupqVFZWVmjduvatav27Nmjffv2ac2aNSouLtaAAQMkSVdddZUWLFigN954\nI2p5gUBARUVFWrZsmQYNGtRkuzXl6aefViAQ0OzZs/XBBx9o69atKikpUUFBgZ577jlJRwczP/nk\nk3r44YdVXl4eWfePf/yjrrnmmsj/r7jiCo0ePVrXX3+9fD6fpObt02iSk5MjMw9v375dhw4danIb\nmiMUCjX4f0VFheLi4iRJCQkJqqioiDorteM46tWrl7Zv335a5QMAAAAAAAAAAAAAAAAAgO8eMxu3\nAt27d5ckpaSkaMOGDRo+fLgkqXPnzjp8+LBSU1OVmpoamfnX7XZr9+7dmj59usLhsA4fPhzJ6tmz\np3w+n6qqqpos75xzzpHL5VJycrIqKyv12WefadOmTcrKylJdXZ1++tOfqkOHDurZs6ckKS0tTXv3\n7m1Q15iYmEjeN+vmch0dvx5ttty0tDR9+eWXqqysVGlpqb788ktNmDAhsq1NKS4ultfrbTBw9Ztt\nVllZqb1790barUuXLiotLZXH49GaNWu0fft21dXVaeTIkVq1apXS0tKUnJzcZBuVlpZG6tOjRw99\n9NFHUdutKbGxsUpNTVVcXJyqq6v1xRdfRAY6x8bGSpL27NkT2VffnIX4d7/7XWQWaUmKi4tTfHx8\nZBBvU5pTt8OHD+uxxx5TZWWldu7cqcrKSrVr1+6EuSdybF8fk5iYGGnTqqoqtWnTRm63u8Gx4Ha7\nI//u1auXPvnkE/Xt2/eU6wAAAAAAAAAAAAAAAAAAAL5bzGzcylx22WXasWOHwuGwvvrqKyUnJ0tq\nPLDz3HPP1TPPPKP8/HytWLEi8vrOnTt16NAhxcfHN1nG8QOBe/TooWHDhikvL0+FhYUaPXp0JEuS\nPv/8c3Xp0qXJjOPrFm2Z48tMSUlRnz59lJeXp7y8PM2cObPJ+vbv31/z5s3TnDlzGs2meyz37LPP\njrTb/v37lZKSom7duumjjz5Sp06dVF5ersTExBO2wzHJycnat29fZNtPtvzJdO/eXR9++KEkqba2\nNlLfTz/9VIcOHYrMbLxz506dddZZJx1YHE1z6vb2229r+PDhysvLU48ePSKvx8bGqrS0tMGy0V47\n3llnnRWZnbisrEwJCQmqrKxUfX29Nm/erL59+yopKUllZWWSjs6A3a5dO4XDYTmOo5/85Cf6wx/+\n8K23AwAAAAAAAAAAAAAAAAAAfH8YbNyKOI6jK6+8UgUFBRo7dqxGjBgRmQn2m7P6StLkyZM1depU\nZWVladasWZHXly5dquzsbGVnZ0uS7rjjDq1cuVJz5szRvHnzomb16dNHXq9XWVlZGj9+vIqLiyUd\nHUA6YcIElZSU6OKLL25U12j/lqT58+dr9uzZevPNN3X77bdHXcblcumWW25RZmamxo8fr5UrV56w\nbdq1a6cRI0Zo4cKFUcu++eabG7XbgAED5PP5In8f7/g6HeP1enXNNddo7Nix2rBhw0mXP5m+ffsq\nNTVVGRkZkfYYP368Hn30UT3xxBORAeWvvPKKxowZc9K85uzTaK644gotXrxYd955Z6PXi4qKInWT\npGHDhmnBggX69a9/3WTePffcozlz5mjs2LGR/ef3++X3+7V06VKNHj1acXFxGjRokMaOHasVK1bo\nxhtvjKzfvXt3dezYsUHmqbYxAAAAAAAAAAAAAAAAAAD4bjhhphI9Y/j9fr300ktNzjT8baxfv17r\n1q3TlClTDGr2w7Vu3Tpt3LhRkydPNs0NBALyeDyqrKzUXXfdpRdffFFvvPFGg8G4aOzrI1UtXYVG\n4r1239lwjE7HYcNB27WB0MkXaiaf26atPLXlJjmSFIppY5Jj2eaBkN3Hsi8cMMkJuzwmOZackM22\nSZITqDXLWvVFnUnOjT0TTHIkKeiOMclxye7YtNx/IbfXLKviSL1JTlyCzXvG7bL9Eo7V9iU1/Qs0\nvhXLc4sTtHnvmTK8zAp7bN7HCtt9rltxLOsUtDnGJSns/fa/bSSaWsPN8xqdEyy/32fVf7Xkqikz\nywr7bD6PP6+0a6fubew+96zOnWF34y/3nipX7RGTHKt+/jFHKmz6LgmJNvvPsl8m2WxfW2+1QU2O\nstx/Tr1dvVqbkM+oUybJCQXtsoyur5xAjUmOJIU9sSY5lm1uyWXUB7Lsn1veJ7HirrG7n2TVV5yS\nOMAkR5KeOfg/Jjlhw+O8tZ6n0Dxhl9skx/Kawerc4jK8F2h67jRq8yO1du8Xq0vatjE22ybZHlNW\n1+xBy3v6bpvj3Fdnc20l2V9fWbC83xIbbn3XxpZc1Sf+TbbN5tg9D83dZnOd9q8XdTbJkaR6w8ts\nr1FX2PKet9VzIkmqrGhdz1Ek22cpZs9RYm0+j82eDRizuvYPGz7jCzk2/Q3LsQi+5I4nXwj4/237\nyu7Yw5mtd6ekFi2/9Y0ewin7oc8KO2vWrMisyo7jaPr06erdu/d3WubKlSu1YsWKSNuNGjVKI0eO\nbNa69957r0pKShQOh+U4jp566imlpqY2a92PP/5YM2bMkOM4kQHdlgONT6dux1u7dq1yc3MjbTR0\n6FBNmjTJrK4AAAAAAAAAAAAAAAAAAKD1YmZjAD8YzGzcPMxs3HzMbNw8zGzcfMxs3DzMbNw8zGzc\nfMxs3NwgZjZuLmY2bmZWK7ydwMzGzcfMxs3HzMYnx8zG37/WOmMoMxt//5jZuHmY2bh5mNkYxzCz\ncfMws3HzMLNx8zGzcfMws3HzMbNx8zCzcfMxs3HzMLNx8zCzMfC/mNkYzdXSMxvb9QoBAAAAAAAA\nAAAAAAAAAAAAnFEYbAwAAAAAAAAAAAAAAAAAAAAgqtb3e9EBAAAAAAAAAAAAAAAAAADOcKFwS9cA\naB5mNgYAAAAAAAAAAAAAAAAAAAAQFTMbA/jBiHE7ZlmBVvi1oLBjs31OKGiSI0nldXbtFDSq11mx\nMSY5kl2bt1ZO7RGTnEpvskmOJMV6bL7n5HLsvi9V40kwy/rJeTZZrsqDJjmSVB7T3iQn0Wf4HTWX\nXRf0YFXALCvOKKc2aHPudIxyrDn11SY54Zg2JjmS5P3qY5OcsMfuMyYU19YsK9imk0mOq67SJEeS\nPId2meQEkjqb5EiSE6w3ywoZfc74vLEmOZIU/v/Yu/fAKMp7/+PvvSQkMSEkIJaL3NQjUAQF9PAr\nckC8UI5VES0EyIYECQGUoLUCQatWIdZKLCgCAiIkRFRQrD1agaq1Um4iiq1Aa7gIBDBcAiEhIdns\n/v7gZA8hG4jwxQT8vP6BnZ35zDPP7M7sznz3idEhwX041yYI8EXEmGM5/mwAACAASURBVGXhCrHJ\nMTzHYPT5tVmk3bHF6hgM2PW5Iee3X5rkHLviRpMca05s3sgHS3wmORVCDTKs9h2A7z96mGX9/caf\nm+Q4DK9HOFw255j/XPmxSQ6A6x8rzLI+TU43ySktsjuvx15lc77q/OwEkxwA73e7zLL83lKTnPIj\nB01yAEKaX2mS4ysqMMkB2L3sr2ZZ9RrYfJd5Yf9KkxyA1Ettzn1xXZqY5IDxcerrD01y3r7d7n18\nsfvl6vkmOYV/+x+THIDI7n1Mco58+CeTHIDIrj8zy/Jec5tJTj2j668ApXX02pSVUKPPePuP292T\n8duc1okNN7zuZpYEJVbXTQ3v7VhdTyo27Cm30277yuvZfBa2PB4M7WRz3dThPW6SA1Bq8s34BHeI\n0XHY8BpXsdf2OoKFwjK7NoUbnvusOLwlJjmW9yzc//7ULKt8v8015i/S55vkAFz/3DiTHG+7XiY5\nIiIXq7p31hUREREREREREREREREREREREREREZE6QcXGIiIiIiIiIiIiIiIiIiIiIiIiIiIiEpSK\njUVERERERERERERERERERERERERERCQoFRuLiIiIiIiIiIiIiIiIiIiIiIiIiIhIUCo2roO2bNnC\npk2barsZ5ObmsmbNmvOW7/F48Pl8NZ5/8eLFvPPOOzWef926dUydOvVsmlbrBg8e/L3m93g8eDwe\nEhISmDFjRo2X++ijj+jXrx/Tpk0LTHvzzTfp27cvS5YsOe2yhYWFjB07lvj4eJ577jkANm7cSFxc\nHB6Ph927d1faltzcXB555BHWrVvHjTfeiN/vZ/Xq1UyfPp3nn38ej8dD165dSUhIYMqUKd9r+0VE\nRERERERERERERERERERERETk/HDXdgOkqs2bN+P1emnfvn2ttqOi2Lhbt27nJd/hcJyX3B96HefD\n9223w+FgwYIF33u53r17ExUVxapVqwLTBgwYQGhoKF6v97TLzps3j7vvvptevXpx5MgRAGbMmMGc\nOXPYu3cvs2fP5qmnnqrUpor/O53OSoXsv/rVrwAYMmQImZmZ32sbRERERERERERERERERERERERE\nROT8UbFxHbNo0aJAseWf/vQnFixYQHFxMRMmTODw4cN07tyZBx98kPj4eEpLS2nZsiXffvstCxYs\n4KmnnsLr9bJz504SExPp27cvn3/+ORkZGQBMmDCBjh07sm7dOt544w0OHjxIWFgYs2bNYsyYMRw+\nfJj69evz3HPPsWrVKqZPn05BQQEbNmxgypQp7Nixg1WrVvHggw/yyCOP8NBDD9G0adPAiLSfffYZ\niYmJdOrUibS0NEpKSvjFL35BXFxc0G31+/08+eSTbNq0iQkTJtC1a1eysrJ47733CA8PJyMjg9jY\nWH73u9+xefNmQkNDuf322/n444/Ztm0b9913H3/729/Iyclh2LBh1fbprl27ePbZZ5kyZQpz584l\nNzeXHTt20KdPHxITE9mwYQPPPvssAOPHjycnJ4eGDRty8803AzBz5ky6d+/O5MmTad++PevXr2f6\n9Om0bNky6Poefvhh8vPzKSsrIzU1Fb/fz9y5c3E4HISGhvLiiy8GXW7r1q1MmDCBFi1aUFpaGpj2\n29/+lrKyMpKTk+nduzfvv/8+r776Kq1atcLtdvPMM8/g9/vx+Xy4XK5q+8Hr9ZKYmIjL5eKyyy7j\n97//fWA/BNs3Z7JhwwZSU1MBiI6OBqCkpISoqCiioqLYuXNn0CyHw8HNN9/MihUruPXWW8+4HhER\nERERERERERERERERERERERGpPc7aboBUNmjQIFJSUrjvvvvIzMzE4XDw5ptv0rt3bzIzM8nNzeW7\n776jUaNGPPPMM1x66aX069ePnJwcAPr06UN2dnagYPkPf/gDs2fPZvbs2bz88suB9ezfv5/58+cz\nY8YMANLT08nKyqJTp0588skn3HLLLUycOJG77rqLzMxMGjduDFQ/4u7/+3//j4ULF3LTTTcxe/Zs\nUlJSWLhwIStWrMDn81W7vYMHD2bOnDm8/PLLeL1e3nvvPV5//XXi4uJYvHgx+/btY/fu3SxYsIBW\nrVoBcOONNwZGxV2xYgV9+vSpNn///v1MmjSJZ555hrCwMAA6depEdnY2H3zwAXCimHjmzJnMmDGD\nWbNm0bFjRzZv3szatWvZvn07OTk5tG3bloKCAh5++GFGjRrFxx9/HHR9GzZsoGHDhsybN4/69esH\npkdGRvLyyy9TXFwcGAX4VK+++ipPP/00jz76KAUFBQA8//zzpKenk52dzcKFCwFYuHAhr732WpXt\nTkxMJCEhodq2uVwuZs2axYIFCwgPD+err76qtt9qory8vMq0k/d1sOcrREdHU1RURFlZ2Tm1QURE\nRERERERERERERERERERERETOL41sXAedOhLsjh072LRpE2+99RaFhYUcOHCA8PBwwsPDiYiIICIi\ngpKSEgDatGmD2+3G7T6xa7dt28bo0aPx+/2EhIQEMq+99loAnE4nPp+PKVOmsG3bNg4ePMh99933\nvdrrcDgCeS6Xix07dvDCCy8AcOTIEfLz82nYsGHQZdu0aUNoaCglJSUcPnyYpk2bAnDllVeyevVq\n9u3bR+vWrQEC/4aEhHDppZeyZ88e8vLyaNasWbVtW7NmDU2aNKk04m/Lli1xOp2BacXFxcTGxgb+\nf9VVVzFnzhyOHz9ObGwsXq+X0NBQYmNjiYyMJCYmhm3btgVd3969e2nTpg1AoDi6Yp0AMTExFBUV\nBUYCDrZsaGho4Pldu3YxceJE/H4/hw8fBk7ss5CQkEB/VKgoTq9OcXExjz/+OAcOHCA3N5e+fftW\nO29NVLzGTnby+iv69+S+dzr/7/cN3bt3Z+XKlZWKskVERERERERERERERERERERERH4savAH6EXq\nBBUb10FutztQPAwnilZ79epFr169KC8vr1SwWaGiQHnbtm00b94cr9cLQIcOHZg+fTqhoaGVRpE9\nuQB08+bNlJaWkpWVxQsvvBDIcrvdlZaJiIiguLgYODFi8MnrPrnwtFWrVgwYMICrrrqK0tJSQkND\nq93Wbdu20bhxYyIiImjQoAF79uwBYOvWrTRt2pQmTZqwY8cOALZv385Pf/pT4MQIzunp6dxwww2n\n60ruuOMOunbtSkZGBr/5zW+CzhMREcGhQ4fw+/1ERETgcrlwOByEhYWRl5dHTExMYDvP5Cc/+Ulg\nxOCKdtdUs2bNAv1RMfrxFVdcwRNPPEGDBg0C+8Ln81FaWlql4Nnv95+22HjlypW0adOG559/nvHj\nxwe2JywsjPz8/ErzhoWFsXv37tO297rrruOTTz6hZ8+eHDlyhOjoaCIiIigoKGDv3r2BAmuHw4Hf\n7ycvL4/Y2NhAO2+++WZefPFF7rrrrkrbICIiIiIiIiIiIiIiIiIiIiIiIiJ1R9WqVal11113He+9\n9x7jxo0DYMCAASxdupShQ4cyYsSIQMFvMB988AEejwePxwPAiBEjuO+++xg6dCizZ88Oukzr1q3Z\nuXMnycnJlQpYr776ajZu3Mi4ceM4dOgQbdu2JScnh+eee46ioqLAfKcWuCYnJzNlyhQSEhJ4+OGH\nq22rw+Fg4cKFpKSkMGLECNxuN3fccQdxcXEsWrSIe++9l8suu4xmzZqRkJDA9u3bA8v+7Gc/47PP\nPuPnP//5aXryhO7du1NYWMgXX3wR9PmRI0cyatQo7r//fkaNGgWcGIG4devWhIWFBQqcT1fIW6FL\nly7k5eWRlJREQUFB0G2uztChQ3n88ceZNGlSYLTfBx54gIceeoiEhATS09MBiI+PZ8iQIXzwwQeB\nwvOatK1Tp0589NFHjBw5MlDMDNCuXTu2bt1KQkJC4LXVrVs3li9fzsiRI6vNGzZsGG+99RZDhgxh\n1qxZAIF9OWnSJIYPHw5A//79GTRoEM8//zzx8fGB5S+55BLat29f4/4RERERERERERERERERERER\nERERkR+ew6+hRC8aaWlpjB49mssvv7y2m3LelZaWcv/99zNnzpzabkq1pk6dSvfu3bn++utNc71e\nL263m5UrV/LFF18wZswY0/y6rPBY9YX235fXZ3Poq+eue7/ZcPjKzbLySuxOEeVGfd40zGeSA+Bz\n1zPLsmL12gSoV5J/5plqoDCkgUkOQJjRe8bpt3udH/fbvY9dRr+ZqFe0/8wz1dDheo1MciJD7frJ\nYfjxM6/Y7rUQXm7TLmeY68wz1YD1T3DKS2z6KjrE5nzsqxdlkgMQuucfJjl+w/OCLzzaLKs86jKT\nHOfxoyY5AO5DO01yvPV/YpID4CgvO/NMNeSLiLHJCQkzyQG7P6EVciTXJgi7fgLAFWIS4/AeN8kB\n8Dtt/hhUmcvu2BLitftOZNXnVv0E4P73pyY5hVfcaJJToczo80ZUpE1fHSyx+04EEOo997yYPasN\nWnKC9z96mGWt+s+eJjkOqw/6gMNl87n6P1d+bJID4N74gVnWp8npJjmlRXbn9dirbM5XnZ+dYJID\n4P1ul1kW3lKTmPIjB01yAEKaX2mS4yuqOpjD2dqz7K9mWfUa2HyXufT+4H+J72ykXmpz7ovr0sQk\nB4yPU/9YbpLz9u127+OL3S9XzzfJKfzb/5jkAER272OSc+TDP5nkAER2/ZlZlvea20xySo2ub1lm\n1dXrin6jAXD2H/Oa5IDdd//YcJvrkwAhhhcpS4xeU5aDF4V7i848Uw0cc0WY5AC4nXbbZ3VIsDy2\nhLltti+03O4aUCHV/6Xm7ysixOaYZ3m/t6jc7jXlM7rPUG54bgg3vF9fanRMj3bbHFt8YXb3Gayu\nuwGU77e5xrwhfb5JDsD1z40zyfG262WSAxAWcYlZllz8vt5rdw1ELm4/bVK/Vtdvd0dI5AeSl5fH\nww8/zLBhwwLTPB4PDocDv9+Pw+EgMzPzvLcjPT2dzZs3Aye+1E6cOJG2bdsGnq/ui+6BAwd46KGH\nAu1t3LgxGRkZNV7vkiVL+OMf/4jb7WbKlCln1bbvY8uWLUyePDmwPe3atSMtLe2sskRERERERERE\nRERERERERERERETkwqJi44vIM888U9tN+EE0btyYrKysStNOffxDmDhx4mmfHzt2bNDpjRo1Oqf2\nxsXFERcXd05t+z7atm1bK/0rIiIiIiIiIiIiIiIiIiIiIiIiIrXP7u8JiIiIiIiIiIiIiIiIiIiI\niIiIiIiIyEVFxcYiIiIiIiIiIiIiIiIiIiIiIiIiIiISlIqNRURERERERERERERERERERERERERE\nJCh3bTdARKSm3Pjssqx+auH3GwWB3+GwyXG6THIALgmx6/OiMpssvyvUJAfsdp/RrgOgrNzuNRXq\nDjPJCXHZbaDPrNPtXudO7Prcij80wizLavc5DI93PuxeUy7LN6DRayHUqNMjDuaY5FQ4FNbKJshv\nd26wUh55qUmOPzTcJAeAcq9dlhWH3W9NfeHRJjmWx7u6+Nq0ZHUONX2du0Lssoz4Quy2z1FeZpLj\ntDxXGb6P6+J7xlHPZv85TD8f2PEafZzKOVRsE/S/2tevd84ZzvBLDFpi79KfNqrtJlTx0uubTHL+\n0yTlhEOffGiWZdXnDqfd+7hefZtjy988j5nkAPRaOt0sC6PzVWnOVyY5AI5Qm+sR/oN7TXIAYtu1\nMssKa2GTZflZOK5LE5Oc1z+363PT49THK0xyLv1JpEnOj4HfaXP7MOTSy0xyALz7c01yIq5ub5ID\ndq9NgPrX3GaSY3VdCgyvK/rKbYKwvf9R7qtb1wIBSo3uD1htG4Db7IYauIyiLLfPb3Rtw234+dVl\nmOX12nz3N3yZ290dMDweOOreJRIchtdtXIb31KxaFW54bIko3GeWVeo0uo5QB6+7WV67cba5xiQn\nopHddyKH0fZZftYQEbkYaWRjERERERERERERERERERERERERERERCUojG4uIiIiIiIiIiIiIiIiI\niIiIiIiI/MB8dfCvMYsEo5GNRUREREREREREREREREREREREREREJCgVG4uIiIiIiIiIiIiIiIiI\niIiIiIiIiEhQP8pi43Xr1jF16tRK095880369u3LkiVLzjp3586dpKWlnWvz6pypU6fy2WefBR5P\nmjTprHKWLl162ufLysrweDz06dOnynNz5swhLy/ve60v2H6+GAwePBiA8vJyPB7POWV99NFH9OvX\nj2nTpgWm1fS9UFhYyNixY4mPj+e5554DYOPGjcTFxeHxeNi9e3el9ubm5vLII4+wbt06brzxRvx+\nP6tXr2b69Ok8//zzeDweunbtSkJCAlOmTDmn7RIRERERERERERERERERERERERERG+7abkBtcTgc\nlR4PGDCA0NBQvF5vLbXowvHYY4+d1XJvv/02d955Jy6XK+jzISEhZGVlMWTIkCrPJScnn9U6T93P\nF4OTt+lct693795ERUWxatWqwLSavhfmzZvH3XffTa9evThy5AgAM2bMYM6cOezdu5fZs2fz1FNP\nBW2v0+lkzZo1gem/+tWvABgyZAiZmZnntE0iIiIiIiIiIiIiIiIiIiIiIiIiYudHW2y8fv167rvv\nPho0aEBGRgYAfr+/0jzbt2/n0Ucfpby8nOTkZG655RY2bNjAs88+C8CECRO47rrreP/995k/fz4t\nW7bE7a6+S/v27Uvr1q0pKCjghRdeIDY2lunTp5Ofn8+///1vunbtSmpqKhMnTmTPnj1cfvnlTJo0\nieLiYlJSUvD5fPzXf/0XI0aM4LvvvmPMmDHUq1ePu+++m/79+5OWlsbo0aNp2rQpiYmJZGVlkZub\ny1NPPYXf7+fw4cO88cYbLF++nPnz5+N2u0lPT+fyyy8P2t6HH36Y/Px8ysrK6N69OwAej4e8vDyW\nLVsGwJYtW3jyySdxu93ccsstJCYmBm3b6NGj+de//kViYiI33ngjKSkpLF++nLlz5xISEsLkyZNp\n1apV0Hakp6fz/vvvs2jRokBbly1bxquvvkpISAhPPPEEV155ZbX9vmvXLp599lmmTJnC3Llzyc3N\nZceOHfTp04fExMRK+3T8+PHk5OTQsGFDbr75ZgBmzpxJ9+7dmTx5Mu3bt2f9+vVMnz6dli1bnrHf\nUlNT8fv9zJ07F4fDQWhoKC+++GLQ5eLj4yktLaVly5Z8++23LFiwgP79+1OvXj3atWvHnj17WLBg\nQeB1evLrdf78+SxbtoxGjRpx9dVX88ADD1TJ93q9JCYm4nK5uOyyy/j9739fJadCsGmn2rBhA6mp\nqQBER0cDUFJSQlRUFFFRUezcuTNolsPh4Oabb2bFihXceuutZ1yPiIiIiIiIiIiIiIiIiIiIiIiI\niNQeZ203oLbUr1+fV155hdjYWL744oug88ybN4/HHnuMrKws5s6dC5woPJ05cyYvvfQSM2fOBCAz\nM5Ps7Gz69Olz2nVWFBknJiayZMmSwPSYmBiysrIYM2YMH374Ic2aNWPBggU0bNiQjRs3kpOTQ/Pm\nzVm4cCHDhw8H4IsvvqBnz55kZWXRr1+/Kus6eTTZHTt2MHPmTN544w38fj+vvPIKCxcu5Omnn2bO\nnDlB2/r555/TsGFD5s2bR1RUVGB6VlYWjRo1Cjxu0aIFixYtYuHChbz77rvVtm3GjBm0bduWzMxM\nUlJSAv2bnZ1NWloa8+bNq7bfJk6cSI8ePQKPfT4fc+fOJTs7m6ysLJo3b17tsvv372fSpEk888wz\nhIWFAdCpUyeys7P54IMPgP/bpzNmzGDWrFl07NiRzZs3s3btWrZv305OTg5t27aloKCAhx9+mFGj\nRvHxxx8HXd+GDRsC/Va/fv3A9MjISF5++WWKi4sDowCfqlGjRjzzzDNceuml9OvXj5ycHK6++moe\neughOnToQIcOHTh06BD//ve/SUhIICkpCThRRLxs2TIWLVpEly5dqu0Ll8vFrFmzWLBgAeHh4Xz1\n1VfVzlsT5eXlVab5fL7TPl8hOjqaoqIiysrKzqkNIiIiIiIiIiIiIiIiIiIiIiIiInJ+/WiLjdu0\naQNA69at2bt3b9B59uzZw5VXXkloaCghISEAFBcXExsbS6NGjSguLgbA7XYTEhJC69atT7vO5s2b\n43a7ad26NXv27AlMv/baawFwOp1s376dFStWkJCQwN///ncOHDhAhw4daNq0Kampqbz//vsA9OzZ\nk8LCQlJTU1m7du1p19uhQwdcLhcOh4P8/Hx2795NUlISjz/+OCUlJUGX2bdvX6U+qk5ubi7Dhw/H\n4/Gwe/du/H5/tW3z+/2VRrmt6Lcrr7yy0j4406i6+fn5NGvWDJfLBRAoIg5mzZo1HDt2LDAvQMuW\nLXE6nYFpFfu0YcOGFBcXc9VVV7F9+3ZWrlzJX//6V7xeL6GhocTGxhIZGUlMTAyFhYVB17d3795A\nv508UnPFKMgxMTEUFRUFXTY8PJzw8HAiIiKIiIigpKSk0uPw8HBKSkq4+uqryczMZP78+QAcPnyY\nJk2aAKffV8XFxTz++OMkJCSwcuVKjh07Vu28NRFsFO+Ti9wr+vfkvnc6/++Q0717d1auXHlObRAR\nERERERERERERERERERERERGR8+tHW2y8bds24MSov02bNgVOFK3m5+cH5mnWrBk5OTmUlpbi9XoB\niIiI4NChQxw8eJCIiAjgxGiuZWVlgczq7Nq1i9LSUrZv3x4oDoXKxZitWrViwIABZGZmsmTJEnr1\n6kVZWRkPPPAAGRkZgQJTl8vF+PHjefTRR1mwYEGgbUVFRezfv79Swe7JBZ4xMTG0a9eOzMxMMjMz\nmTx5ctC2NmnShO3btwME/q1wcvYbb7xBSkoK8+fPp379+vj9/qBtAwgNDa00km15eTmlpaXk5ORU\n6o+ysrJKI+Seut6YmBhyc3MDWcePHw+6DQB33HEHI0eOJCMjo9p5Tt2nFYXZYWFh5OXlERMTU2W7\nq/OTn/wk0F87duw44/ynE2x9pxZsAzRo0CBQrH3qvjrZypUradOmDZmZmXTt2jWQc+rrvrppp7ru\nuuv45JNPAAKjNUdERFBQUMC//vWvQIG1w+HA7/eTl5dHbGwsfr8fh8PBzTffXGWE6Jr0sYiIiIiI\niIiIiIiIiIiIiIiIiIj8cKoOTfojUVBQQFJSErGxsYGRhbt168aIESP4/PPPmTVrFklJSTz66KOU\nl5eTnJwMwMiRIxk1ahQOh4Px48cDEB8fz5AhQ2jRokVgBORgoqOjSU1N5ejRo0ybNi3oPLfccguP\nPfYYQ4cOxeFwMHnyZI4ePcpTTz1FSUkJ/fv3B2Dt2rXMmjWL4uJiRo4cCUDfvn3JyMjg2muvrTTC\n7Mn/dzqdDBw4kPj4eFwuF7fffjsDBgyo0o7OnTuTnZ1NYmIi5eXlAHz55ZdkZGTwzTffkJCQwIMP\nPkjPnj15+umn+Y//+A8iIyOrtC0lJSWQ2bt3b8aOHUuvXr2Ii4sjKSmJ+Ph4QkJCKhU99+3bl7i4\nOIYPH07Pnj0ZPnw427dvZ9u2bdx5550MGTKEYcOGER8fT2hoKI8//jhXXXVVtf3evXt33n33Xb74\n4ougz5+8TydMmACcKGhu3bo133zzTWCk4pP7sTpdunRh4cKFJCUlBQrUT1aTjDM5NcPtdtOnTx8G\nDRpETEwMHTp0CLpcp06dmDVrFv/85z8rTW/Xrh1bt24lISGBl19+mfDw8CrvhWCGDRvGxIkTmT17\nNh07dmT8+PGkpKQwYsQIQkJCSE9PB6B///4MGjSIkJAQnn32WXbv3g3AJZdcQvv27U+7bSIiIiIi\nIiIiIiIiIiIiIiIiIiJSuxx+DSX6gxk8eDCvvfZabTdDfiBTp06le/fuXH/99ed9XV6vF7fbzRtv\nvEFISEigKP1iU3KsqLabUJXDboB4fx0stj5WVnWU8bNVZJTVONx15plqyIdNn1vuumLDPr/EX2KS\nU+oON8kBjHocnIadXm74UciqVaFldse7QmeESU6E267Prd57APkl5WZZoV6b91/YJTa/54s4mGOS\nU+FQWCuTnGi3zevTFxZtkgPgKthnkuMPtTveUV71h2dny3dJQ5McZ6ndscV57PR/BaOmyo22DcDh\ntzuH+p0272NfSJhJDkC5z+Z8FVpis+8A/PWizLKs+A0/nzvKy848Uw2Uu+1eBy6vzec7wOxDrN8V\napIDEPLtepOcwsu7muRUKD1mc0wPN/qM8Ple2+/G7evXO+eMhvlfGbTkhNLLO5tlfTPsHrMsKy+9\nvskk5w/FW0xyAApeeMQsK++LrSY5Dqfdd4Z69W0+4+36+06THIBeS6ebZWF0virNsXsfuxo2OfNM\nNeDdW/1fcfu+juftN8sKa9HKJMfxs3tNcgBW977dJOf1z/ea5EDdPE59vXCtSc6PQc8/Bh+E5Psq\n/Xq1SQ6AK+ZSkxz/cbvP1IfXf2aWVT/1ObMsK1bfQ91Yfl+3uz9gtX2Fhtf0S8tt2lQ/1O67cT23\nXZbXqM+t9h1AODafpcqcdt+NXYafhY8bXfM27HJCXTbbF+K3u/5a5LM7toSH2LxnnEaf8wGK/Xbb\nV1Zsc08mNMJuXMSIQpv7AwCHnY1McqJdR01yfOExJjkAobs2mGXhPvdrSQD/mPAbkxyADk+ON8kp\nbdPNJAcgPMzuurBc/P6x90htN0EuENc0sbvHfjZ+tCMb1waN2nr+eDweHA4Hfr8fh8NBZmbmeV9n\neno6mzdvBk7s24kTJ9K2bdvA89Xt7wMHDvDQQw8F2tu4cWMyMjLOqS0zZsxg7dq1hIeHM23atDO2\n7fvYsmULkydPDmxPu3btSEtLO6f2ioiIiIiIiIiIiIiIiIiIiIiI/NhpqFi5UKjY+AeUnZ1d2024\naGVlZf3g65w4ceJpnx87dmzQ6Y0aNTJvb2pqaqXHZ2rb99G2bdta6V8RERERERERERERERERERER\nERERqX12f/dERERERERERERERERERERERERERERELioqNhYRSR56GgAAIABJREFUERERERERERER\nEREREREREREREZGgVGwsIiIiIiIiIiIiIiIiIiIiIiIiIiIiQanYWERERERERERERERERERERERE\nRERERIJy+P1+f203QkSkJkqKi2u7CefVsMX/NMl5ZcA1JjkADsNThKO81CTH565nkgO223cx8+Ew\ny3KiPv+hWe2/u1/93CQH4H/6/8Qsqzy6qVnW0UKvSU5UpNskx1pd276XN+w1yQFI6dzELKsuKpzz\nmElOZPIkkxxLVp8PAPyuULMsEam5vb8ZYZbV5KlZNkEO29/W17VzqDWL7bPcNu/bz5llue4ZZ5ZV\n1zwU3tYs6w/FW8yyrFh+X/c77L7TikjNWR6nph3daJJjeV3R6T1ullUXWfaV1MyvI2zeMxlFm01y\n6iqH4XvPXwdf57qPcuHSfZQfnuXnfMuXeZnPJuySIztNcgC8MS3MsnSNpGasts/y+rnODTVjeWwJ\nDwszy5KL31d7jtR2E+QC0bFpdK2uXyMbi4iIiIiIiIiIiIiIiIiIiIiIiIiISFAqNhYRERERERER\nEREREREREREREREREZGgVGwsIiIiIiIiIiIiIiIiIiIiIiIiIiIiQblruwEiIiIiIiIiIiIiIiIi\nIiIiIiIiIj82Pr+/tpsgUiMXxMjG69atY+rUqZWmvfnmm/Tt25clS5acde7OnTtJS0s71+bVOVOn\nTuWzzz4LPJ40adJZ5SxduvS0z5eVleHxeOjTp0+V5+bMmUNeXt5ZrfdMpk+fzurVq89Ldl0wc+ZM\n1qxZc9p5znafnmrMmDHccMMN+Hw+4PT79FR//vOfGTJkCHFxcezcuROA3/zmN3g8Hl544QWg8r5K\nS0tj586deDwesrOzARg8eDA7duzA4/HQt29ffv7zn5OQkMDWrVtNtk9ERERERERERERERERERERE\nREREzs0FUWwM4HA4Kj0eMGAAKSkptdSaC8tjjz12Vsu9/fbblJeXV/t8SEgIWVlZNGrUqMpzycnJ\nNG7c+KzW+2Pm8/lYv3493bp1O+18Z7tPT/Xiiy/Stm3bwOPT7dOTFRYWsnjxYhYuXEh2djaNGjXi\n888/p379+mRlZbF169agxeYV7+P169cHHrdq1YqsrCxSUlIYPnw4mZmZXHHFFSbbJyIiIiIiIiIi\nIiIiIiIiIiIiIiLn5oIpNl6/fj333XcfDz/8cGCa/5QhxLdv387gwYMZOHAgf/nLXwDYsGEDAwcO\nZODAgXzxxRcAvP/++wwYMIAXX3zxtOvs27cvo0ePJj4+nkOHDgEnRmp9+umn8Xg8TJs2Db/fT1pa\nGkOHDg0UgBYXF5OQkEB8fDyzZ88G4LvvvmPAgAF4PB7efvtt4MRIr7t27aK8vByPxwNAbm4uKSkp\njBgxggEDBuD3+1m2bBmDBg3C4/Gwa9euatv78MMPM2zYMD7//PPAtFNHqd2yZQtxcXHEx8czf/78\nats2evRo/vWvf5GYmMjLL78MwPLlyxkwYABDhgxhx44d1bYjPT2dG2+8sVJbly1bRlxcHB6Ph5yc\nnKDLLV26NDBS9eDBgwP9nZaWxqBBgwLtrfDhhx/yu9/9LrCdU6ZM4Y477mDDhg0AZGVlERcXR1JS\nEocOHeLXv/41hYWFgeXvv/9+du3aRXx8PA888ABDhgwJjPB7qoMHDxIfH8+oUaPo27fvGdt2sry8\nPIYPH05CQgLz5s0DYOvWrXg8HhISEnj33XcD8/71r3+lZ8+egfzk5GSSk5MZMmQIy5cvD2zryft0\n6dKljB07lqSkJCZPnlxtO9566y3i4uIYPHhwpZGvT30f1cRXX31Ft27dcDgcuFwuIiIi2Lx5M9dd\ndx0A1157LZs3b66yXMW6LrvsMvbt2xf0ORERERERERERERERERERERERERGpOy6YYuP69evzyiuv\nEBsbGygaPtW8efN47LHHyMrKYu7cuQDMnDmTmTNn8tJLLzFz5kwAMjMzyc7OrlSwGUxBQQEvvPAC\niYmJgSJYgJiYGLKyshgzZgwffvghzZo1Y8GCBTRs2JCNGzeSk5ND8+bNWbhwIcOHDwfgiy++oGfP\nnmRlZdGvX78q6zp55OYdO3Ywc+ZM3njjDfx+P6+88goLFy7k6aefZs6cOUHb+vnnn9OwYUPmzZtH\nVFRUYPqpo9S2aNGCRYsWsXDhwkCRa7C2zZgxg7Zt25KZmRkYQXrevHlkZ2eTlpYWKJoNZuLEifTo\n0SPw2OfzMXfuXLKzs8nKyqJ58+bVd3qQ/ujUqRPZ2dl88MEHgWnr16/nww8/ZMKECYH5+/fvz+TJ\nk3n//ffxer289957vP766wwaNIjFixdzzTXXsHnzZhYvXozX68XpdOJ0OvF6vUyfPp2rrrqKLVu2\nBG3P4sWLSUpKYtq0aRQUFJy2baeaPXs2I0aMIDMzk0GDBgHw/PPPk56eTmZmJrfeemtg3nfeeYe7\n77478HjChAk4HA5eeeUV1qxZA1Tdp3Biv7766qvVvjcAbrvtNl5//XVeeOGFQBH8qX1dU/n5+URH\nR1eaVlhYSHh4OADh4eEcPXq02uX79u3L+++//73XKyIiIiIiIiIiIiIiIiIiIiIiIiI/rAum2LhN\nmzYAtG7dmr179wadZ8+ePVx55ZWEhoYSEhICnBhlODY2lkaNGlFcXAyA2+0mJCSE1q1bn3adzZs3\nx+1207p1a/bs2ROYfu211wLgdDrZvn07K1asICEhgb///e8cOHCADh060LRpU1JTUwMFlT179qSw\nsJDU1FTWrl172vV26NABl8uFw+EgPz+f3bt3k5SUxOOPP05JSUnQZfbt21epj6qTm5vL8OHD8Xg8\n7N69G7/fX23b/H5/pdFmK/rtyiuvrLQPzjQibX5+Ps2aNcPlcgEQFhZ22vlP1bJlS5xOZ2B5gHXr\n1gX2Z4VWrVrRoEEDioqKyM/Pp2nTpgBcccUV7N27N1Bs/M4777BixYpA0XOLFi0AAssGs2fPHlq3\nbk1oaCjNmjU7bdtO9e2339KxY0eAQDHukSNHuPzyyytN2717N9HR0ZWKxcPCwmjYsCFhYWFVtvfU\nPgKoV69etfOsWrUKj8fDQw89VCkr2P470z6NiYnhyJEjlaZFRkYGcouLi4mKisLprHyIcTqdOBwO\nrrnmGv75z3+edh0iIiIiIiIiIiIiIiIiIiIiIiIiUvsumGLjbdu2ASdG/a0oIg0LCyM/Pz8wT7Nm\nzcjJyaG0tBSv1wtAREQEhw4d4uDBg0RERAAnRtotKysLZFZn165dlJaWsn37dpo0aRKYfnJhaatW\nrRgwYACZmZksWbKEXr16UVZWxgMPPEBGRgbz588PLDN+/HgeffRRFixYEGhbUVER+/fvr1TceXKB\nZkxMDO3atSMzM5PMzEwmT54ctK1NmjRh+/btAIF/K5yc/cYbb5CSksL8+fOpX78+fr8/aNsAQkND\nKSsrCzwuLy+ntLSUnJycSv1RVlaGz+er0qaK9cbExJCbmxvIOn78eNBtiIiICBSr5uXlVZsHMHr0\naFq0aMGyZcuqPFexzooC8a1bt9K0aVPat2/P8uXL6d+/P6+99hodOnQI2o5gmjZtyrZt2ygtLSU3\nN/e0bTtVy5Yt+fLLLwECxeLR0dHs3Lmz0rQ333yTgQMH1qg91a3vdO2YO3cuc+fOJT09vdL+ioiI\nqPQ+gur3aYWOHTuyZs0afD4fXq+XoqIi2rZtG9jOL7/8knbt2tGwYUMOHjwIwKFDh2jQoEGgjS1a\ntGDXrl012l4RERERERERERERERERERERERERqR0XTLFxQUEBSUlJHDx4MDCycLdu3Vi+fDkjR44E\nICkpiUmTJuHxeLjvvvsAGDlyJKNGjeL+++8PzBcfH8+QIUMCharViY6OJjU1lVdffZV77rkn6Dy3\n3HILmzZtYujQoSQmJrJv3z62bdvG4MGDGThwIP369QNg7dq1DBkyhFGjRtG/f38A+vbtS0ZGBm+9\n9RYOhyOQefL/nU4nAwcOJD4+nqFDh7J06dKg7ejcuTMHDhwgMTGRo0ePAicKPj0eD9988w0JCQls\n2LCBnj178vTTTzNu3DgiIyOrtO3uu+8OZPbu3ZuxY8fy+uuvB/o3Pj6eZ555hmHDhgXm69u3L3Fx\ncSxfvpzjx4/j8Xj49NNPeeSRR8jOzsbpdDJs2DDi4+PxeDyBIttT3XDDDfzlL38hIyMj6EjBJ/cL\nnCg4zsrKoqCgoMpzbrebX/ziF8TFxbFo0SLuvfdewsLCKCwspFevXvh8virFxqdmnOyee+5h3rx5\npKamEh0dfca2nSw5OZnZs2fj8XjIzs4G4MEHH2TixIl4PB6WL19OWVkZ//rXv85YAL1x48Yq+7Sm\n7bjpppvweDy89tprlea76667SE5ODrQNKu/TYCIjI7n33nvxeDzExcVx4MABunTpQn5+Ph6PhzZt\n2tC4cWNuv/123nnnHQYPHsy1115LZGRkYN233347+/fvP+32ioiIiIiIiIiIiIiIiIiIiIiIiEjt\ncvhPNxTqj9zgwYN57bXXarsZUsecj9fFnj172LNnD127djXNvdiU/O/I1xerYYv/aZLzyoBrTHIA\nHIanCEd5qUmOz13PJAdst+9i5qP6HzJ8X07U5z80q/1396ufm+QA/E//n5hllUc3Ncs6Wug1yYmK\ndJvkWKtr2/fyhr0mOQApnZuceaYLWOGcx0xyIpMnmeRYsvp8AOB3hZpliUjN7f3NCLOsJk/Nsgly\n2P62vq6dQ61ZbJ/ltnnffs4sy3XPOLOsuuah8LZmWX8o3mKWZcXy+7r/ND/OF5Hzx/I4Ne3oRpMc\ny+uKTm/wv+B4sbDsK6mZX0fYvGcyijab5NRVDsP3nr8Ovs51H+XCpfsoPzzLz/mWL/Myn03YJUeC\nD+B2NrwxLcyydI2kZqy2z/L6uc4NNWN5bAkPCzPLkovfl7mHa7sJcoG4tlmDWl1/3TyD1xGnGyVW\nzo3H48HhcOD3+3E4HGRmZtZ2kwLO1LbqXheffvops2fPDjzfo0cPkpOTa7TOpk2b0rSpTbHUli1b\nmDx5cqAd7dq1Iy0t7azz0tPT2bz5xMUph8PBxIkTadvW7kKxiIiIiIiIiIiIiIiIiIiIiIiIiNRd\nKjY+jezs7NpuwkUrKyurtptQrTO1rbrXRY8ePejRo8f5aNL30rZtW9P+nThxolmWiIiIiIiIiIiI\niIiIiIiIiIiIiFxYVGwsIiIiIiIiIiIiIiIiIiIiIiIiIvIDK/fVdgtEasZZ2w0QERERERERERER\nERERERERERERERGRuknFxiIiIiIiIiIiIiIiIiIiIiIiIiIiIhKUio1FRERERERERERERERERERE\nREREREQkKIff7/fXdiNERGqipLi4tptQhQ+HXZbR4djyoG63deD12bQs1GX3OxmrPnc57XrKqp8A\nQvCZ5JQZ/jbJqqecDstXpx2rZjnLy2yCgDKH2yzLSojfa5ZVgt32lR6zaVdUpE2bXAX7THIqHHY2\nMsmpH25zbCl31TPJAXB5S2yCnC6bnLrKb7PvTmTZnK98IWEmOdasjsN+p90xyupzp8tnd46xfE1Z\nHhOsOP3lJjl+w2OLw2fTJgCH5THBiKO0yCSnPLyBSU6FwqM275tLIkNMcr4rMnwfA5EGh/Ro19Fz\nD/lfvrBos6zQfZvNsqzsX7LAJKfB6EkmOQBjozqZZc3YusQmyHvcJgfAZfPeO/juIpMcgOikNLMs\nK47SY2ZZzuIjJjl+y8+Khuc9f0i4SU555KUmOQCurz80yTn08QqTHKibx6kX10w1yfkx8Le90STH\nUWL3GcHhs7lu43fbffcY0/i/zLKmHd1okuMz3L66yGF4W9trFGV5T6as3CYtxFU3r5+7jC6gW93b\nAXAb3UdxGF7Tt7xeVm50z8nynoxVlOU1Esv7YG6je4Z19T5RcZHN+TgyyuZ7GoDr2CGzrCPlUSY5\n9evZ7D9faIRJDkDIoW/Nsqy+y7i2rzfJAfC16GiS4w2zu64YEV43739I3fT5rsO13QS5QHS53Pb+\nx/elkY1FREREREREREREREREREREREREREQkKBUbi4iIiIiIiIiIiIiIiIiIiIiIiIiISFAqNhYR\nEREREREREREREREREREREREREZGgVGwsIiIiIiIiIiIiIiIiIiIiIiIiIiIiQanY+AKwbt06pk6d\napr51ltvmWVt2bKFTZs2fe/lpk+fzurVq83acb55PB58Pt9ZLZubm8uaNWtqPP+wYcNO+/yWLVtM\n9uFXX33FwIEDGTduXGDaRx99RL9+/Zg2bdppl/V6vTz22GN4PJ7A8jt37iQ+Pp5Bgwbxj3/8A4DB\ngwcHlhk8eDC5ubl06NCBo0ePsnPnTtLS0sjKysLj8XD99dfj8XiYMGHCOW+biIiIiIiIiIiIiIiI\niIiIiIiIiJw7FRtfIBwOh2meZbHx5s2b+frrr83y6qpz2Qffp9h41apVdOvW7bTztG3blnvuuees\n21OhY8eOPP/885Wm9e7dm0cfffSMy/7xj3+kXbt2ZGVlBeafPXs2v/3tb5k5cyYvvfQSULnfKv4f\nGxvLsmXLAtM9Hg9ZWVm0a9eOzMxMfve7353ztomIiIiIiIiIiIiIiIiIiIiIiIjIuXPXdgOkZr7+\n+mtSUlIIDQ3lxRdf5NixY0yYMIHDhw/TuXNnHnzwQT799FNeeuklnE4n8fHx/Pd//zcAv/zlL2nW\nrBn79u1j2rRp/PrXv+abb74hISGBu+66q9qi1aVLl7J+/Xp27dpFixYtePLJJ0lMTMTlcnHZZZfx\n+9//nkWLFpGZmQnAn/70JxYsWEBxcXGVtp3Ohx9+yGeffcaECRPweDx06tSJTz75hN/+9rd07tyZ\nrKws3nvvPcLDw8nIyCA9PZ0nn3ySyMhIAO6//34mTJhAWloaDRo0ID8/n6ysLJzOqrX0Bw8eZOzY\nsURFRbFjxw7+/Oc/M336dHJzc9mxYwd9+vQhMTExaDv9fj9PPvkkmzZtYsKECXTt2pXly5fz6quv\n4na7SU9P5/LLL2fMmDEcPnyY+vXr89xzz7Fq1SqmT59OQUEBGzZsYMqUKVx66aWMGTOGQ4cO0b59\nex577LHAet56661A8W58fDylpaW0bNmSb7/9lszMTD777DMyMjK46aabGDt2LECg3/72t7/x5JNP\n0rlz56DbcGrbIiIiqt3WM1m9ejXjx48HIDo6GjgxsvEVV1wBQHFxcdAsh8PB9ddfz9q1a7nhhhuq\nrNfv95sX14uIiIiIiIiIiIiIiIiIiIiIiNQ1vhrUaYnUBSo2vkBERkby/PPPk5yczJEjR1i6dCm9\ne/emX79+PPLII+Tl5XHdddfx+uuvU1ZWVqnY+Ntvv+XVV18lMjISv99PVlYWQ4YMCRQJn47P5yMz\nMxOfz4fD4WDWrFlERkbyxBNP8NVXXzFo0CDCw8Pxer3ce++9ALz55ptV2ta4ceOg+evXr2fv3r2k\np6cDJwpR+/fvz2233ca7775Lx44dee+993j99ddZvnw5ixcv5pprrmHz5s3s2LGDu+++G6fTidPp\nxOv1Mn36dJ588km2bNlC+/btq6xv8eLFJCUl0aNHD2666abA9E6dOjF58mQGDx5cbbExwODBg7ns\nsssYN24cnTt3Zu7cuSxatIhdu3YxZ84cnnrqKdLT04mKimL27Nl88skn9O3bl/r167N69epAcfCh\nQ4coLCzktddew+fzBfLz8vJwu93ExsYC0KhRI8aMGcNbb73FddddR05ODj169KBevXqsXr06sNyp\n/VZdsXGwtp2t/Pz8QJFxhZMLi0/erlM5nU5iYmI4cOBApekqMhYRERERERERERERERERERERERGp\nW1RsfIFo2bIlADExMRQVFbFjxw42bdrEW2+9RWFhIfv37+fYsWNMnz4dn8/H4cOHA8u2adMmMApw\nRTFnTUauBbj22muBE8Whx44d4/HHH+fAgQPk5uYGClVPzQrWtuqKjdetW0ejRo0qTWvVqhW7d++m\nqKiI/Px8mjZtCsAVV1zBqlWruPPOO/nnP//JsmXLiIyMpHnz5gC0aNECgAYNGlBUVBR0fXv27OG2\n224jNDSUZs2aBaa3bNkSp9OJy+U6bX+0adOG0NBQSkpKyM/PZ/fu3SQlJQHQpEkTfD4fU6ZMYdu2\nbRw8eJD77rsvaE5sbCw333wzY8eOpXPnzgwdOhQ4Uaj9y1/+MjBfeHg44eHhREREEBERQUlJSbVt\nO7nfgqlp22oqNjaWgoKCSvvv5NGkK/ry5D49+fk+ffrwwQcfnFMbRERERERERERERERERERERERE\nROT8cp55FqlLKgp7W7VqxejRo8nKymLJkiW0b9+eV155hfT0dGbNmlWpqPPk/1eo6QiyJxeKrly5\nkjZt2pCZmUnXrl0DbXG73ZSVlQXmO7ltixcv5qc//Wm1+aNHj6ZFixYsW7as0vZViImJYc+ePQBs\n3bqVpk2b0r59e5YvX07//v157bXX6NChQ422BaBp06Zs27aN0tJScnNzqzx/piLsbdu2cejQISIi\nIoiJiaFdu3ZkZmaSmZnJpEmT2Lx5M6WlpWRlZfHzn/+82j7yer0MGTKEadOm8fbbbwMnioE3btxI\n165dq13/ye2r7v/Vqa5t4eHh5OfnV5o3LCysyrRTdevWLbDfjhw5AsDll1/O1q1byc/PJzw8HIB6\n9epx/Phx8vLyiI2Nxe/343A46NKlC19++WW12yciIiIiIiIiIiIiIiIiIiIiIiIitU/FxheYiiLh\nAQMGsHTpUoYOHcqIESMoKSnh1ltv5f777+eZZ54hKiqqyjIn69KlC6mpqSxfvrzG6+7UqRMfffQR\nI0eODBSXAlx33XW89957jBs3rkrbUlJSKC4uPm1uRWFyQUFBlba63W5+8YtfEBcXx6JFi7j33nsJ\nCwujsLCQXr164fP5qhQbn66Q+p577mHevHmkpqYSHR1d5fnTLetwOFi4cCEpKSkkJyfjdDoZOHAg\n8fHxDB06lKVLl9K6dWu+/fZbkpOT2bZtW2DZq6++mo0bNzJu3DgOHTrE4cOHSUhIYMCAAfTo0QOA\njz76iF69ep22rwBefPFF0tPTeffddxk5cuQZ212hdevW7Ny5s0rbYmNjCQ8Px+PxsGvXLgDatWvH\n1q1bSUhIqHb/3XnnnWzatIn4+HieeuopAJKTk3niiScYPXo0o0aNAiApKYmEhARSU1NJSUmplNGl\nS5dKj2taBC8iIiIiIiIiIiIiIiIiIiIiIiIiPwyHX0OJyo/U4MGDee2112q7GQEfffQRN9xwA5GR\nkbXdlDqr5AyF67XBh12BtM/ocGx5ULcs//b6bFoW6rL7nYxVn7ucdj1l1U8AIfhMcsoMf5tk1VPO\nOvrjBKtmOcvLzjxTDZU53GZZVkL8XrOsEuy2r/SYTbuiIm3a5CrYZ5JT4bCzkUlO/XCbY0u5q55J\nDoDLW2IT5HSdeZ4Lmd9m353Isjlf+ULCTHKsWR2H/U67Y5TV506Xz+4cY/masjwmWHH6y01y/IbH\nFofPpk0ADstjghFHaZFJTnl4A5OcCoVHbd43l0SGmOR8V2T4PgYiDQ7p0a6j5x7yv3xhVX8cfrZC\n9202y7Kyf8kCk5wGoyeZ5ACMjepkljVj6xKbIO9xmxwAl8177+C7i0xyAKKT0syyrDhKj5llOYuP\nnHmmGvBbflY0PO/5Q8JNcsojLzXJAXB9/aFJzqGPV5jkQN08Tr24ZqpJzo+Bv+2NJjmOErvPCA6f\nzXUbv9vuu8eYxv9lljXt6EaTHJ/h9tVFDsPb2l6jKMt7MmXlNmkhrrp5/dxldAHd6t4OgNvoPorD\n8Jq+5fWycqN7Tpb3ZKyiLK+RWN4HcxvdM6yr94mKi2zOx5FRNt/TAFzHDpllHSmPOvNMNVC/ns3+\n84VGmOQAhBz61izL6ruMa/t6kxwAX4uOJjneMLvrihHhdfP+h9RNn+08/V+fF6lwfYuYWl1/3as+\nkYvOli1bmDx5cmDU2nbt2pGWdv4vqHs8HhwOB36/H4fDQWZmZqXnqxtF99NPP2X27NmB53v06EFy\ncvJ5b2/v3r3NsmbPns2nn34KnNjOESNGcOONZ3dx8MCBAzz00EOBvmzcuDEZGRlmbRURERERERER\nERERERERERERERGRukvFxnLetW3blqysrB98vWdaZ3Z2dtDpPXr0oEePHuejST+YESNGMGLECJOs\nRo0a1cr+ExEREREREREREREREREREREREZHaZ/f3IEREREREREREREREREREREREREREROSiomJj\nERERERERERERERERERERERERERERCUrFxiIiIiIiIiIiIiIiIiIiIiIiIiIiIhKUw+/3+2u7ESIi\nNXG86GhtN+G88jvdRkE+mxzgcJlZFN5ym9NNdJjLJAcgxGGT43cYBQGlRv0EEO4tMsk55oowyQFw\nO+36yophl+My2rzQknybIOBYaAOTnDCrjQN82GXll5SbZYV6bY6f3hCb3/NFhdr+LrC4yGuSE+22\nObaUh9u8NgHch3NNcvxhUSY5AI7SY2ZZ5VGXmeQ4yopNcgBcR78zyfFFXmqSA+B3hZhlYfQ12e+u\nZ5ID4DU6X4UeP2ITBPhDLzHLsmL2mRq790x5iN1nKZe3xCzLiuXrPGT7WpOcY63+0ySnQonROfSS\nSJvj1K6jpSY5FWINvs80PPK1QUtOKG3WySzr7RZd/j979x5XVZ3vf/y1YUMIqIAmMob3NEvTKXWa\nk1TazZmTjuKYwGZvvEFqqTkOHSFrjqWYHnWgcabyksXNplKrRyfN0H7mTOa1JmvUFDUNSbQQROS+\nf3/wYI/o3oDO17DO+/l48FD2/q7P+qzvWnux91ofPhiLZUr7sEAjcX654yMjcQC8P/1fY7HeHP6U\nkTiderYxEgegVbiZ93i9Zj1uJA6AV0ArY7GoMfOZqPKgydvdAAAgAElEQVTYV0biAPh07mUkTsVh\nc+eWym+PG4tlbdXaSBzLAwlG4gC83XmAkTjXtzdzjgKz5ynrPzYYiTP1DnOv45+6vxx8zUick29k\nGIkDcP3QYUbinN/7iZE4AH49+xmLVdV3qJE4FkM/FwCcXmauxXtVlRuJA+D09jUWy9S9lO/MbR7V\nhq5HtLCau67YytvcMVVpMfOZ3eQ1fb8aMzvwvMXcsenrbW7/lRm65m1yzgMMXT83eY2kwtvgtY1r\n8N5jaaW5e8c1hu7JmLqPAhBk8N5xyVkzN8dN3Uep8TPz2QPA5/QhY7EslWbOnal9Y4zEAXh0XZKR\nOGW/jDISB6B1QAtjseSn75Ovv2/uFORH4o5OIc26fnU2FhEREREREREREREREREREREREREREbdU\nbCwiIiIiIiIiIiIiIiIiIiIiIiIiIiJuqdhYRERERERERERERERERERERERERERE3FKxsYiIiIiI\niIiIiIiIiIiIiIiIiIiIiLilYmO5LDk5ORQXF1/RsmvWrDGay9y5c43Esdvt1NTUGInVXGJiYq5o\nuT//+c8MGTKEbdu2uR6bM2cOgwYN4vjx4w0um5ubi8PhICoqivXr1wOQlZVFTEwM06dPp7Kykh07\ndpCamgrAunXreOONN1i6dCnTpk0DIDU1lR07dhAfH8+YMWO48847cTgc/O///u8VbY+IiIiIiIiI\niIiIiIiIiIiIiIiImGVt7gTkx2XTpk306NGDVq1aXfaya9asYdSoUcZymT17tpE4FovFSJzmdKXb\n8Oijj+J0Ous99oc//IGysrJGl12wYAGpqamEhIRQVFRERUUFH3zwAdnZ2WRmZrJx40auv/76ernV\n/X///v2Ulpa6Hlu+fDl5eXmkpaWxcOHCK9oWERERERERERERERERERERERERETFPnY2F8vJyJk+e\njM1mY8mSJUBtF9o333wT+FfX3KeffpqtW7eSmJjo6iqclJREYmIiY8aMcXW3resUfOzYMZKSksjL\ny8Nut3Pw4EEcDgdbtmxxm0deXh6JiYlAbcfbnTt3utaxcOFC7HY72dnZnD59Grvdjs1mcy27dOlS\nkpKSiI6O5pVXXgH+1Xk3OjqazZs3NzgHTqeTRYsW8f777wMwfPhwEhMTiYyMdHVy/q//+i9iY2OZ\nNWsWAI888ohr+erqaqZNm8a6deuYPn0648aNY968eR7Xt2vXLkaNGsVTTz2Fw+FwzduiRYsYPnw4\ne/bscbvcunXrGD9+PA6HgwkTJvDqq6+68m/M/v37iYqKIjY21jVHV6qyspKamhpCQkIAaN26NUeP\nHuXGG28EoF+/fnz55ZeXLFeX5z333ENOTs5PotBbRERERERERERERERERERERERE5KdMxcbCxo0b\nGThwIFlZWRw6dIiTJ0/We76uIPSZZ54hIiKCRYsW1esqPHToULKyskhPT683vk6HDh3IyMigR48e\npKenc/fdd3vMxVPx6Y033khGRgZRUVG0bduWjIyMS8b07duXrKwsNmzYAMCSJUtISUkhKyuLzMxM\nj+t0Op2sXLmSDh068OCDDwJQVFTEggUL+NWvfsX27dvZs2cPLVu2JDMzk8DAQD799FP8/f2pqqpi\n9erV5ObmugptO3bsyKpVq/j00089rnPZsmWsXLnSVchdJzIykrlz5/Lee+95XDYuLo6QkBD+/Oc/\ns3//fo/jLtaxY0dWr15NZmYm77zzTpOXc+fMmTO0bt263mMlJSX4+/sD4O/vT0lJicflBw0axN//\n/vd/KwcRERERERERERERERERERERERERufqszZ2ANL/8/Hx69eoFQJcuXS4pNm6sa26XLl2wWq1Y\nrdYGxzel+64n/fr1A8DLy3N9fKdOnfDy8sLb2xuA48ePk5ycjNPp5MyZMw3G37ZtG4MHD3Z9f8MN\nN+Dl5UVQUBDnzp2joqKC7t27A9C1a1fy8/Pp2bMnGzdu5PXXX+e6666jd+/enDlzhk6dOgFw3XXX\neVxfaWkpQUFB+Pn51Xu8c+fOfPPNN5w7d87jsi1atKBFixb1lm1Kh+C8vDyee+45Kioq+Oabb3A6\nnVfcWTgoKIiioqJ6jwUGBrryPn/+PC1btrxkf9XtGx8fH1q0aOHqGi0iIiIiIiIiIiIiIiIiIiIi\nIiIi1yZ1NhbCwsLIzc0F4MiRI4SGhuLv78/58+cBOHXqlGusj48PFRUV9ZY/fPgwFRUVVFVVARAQ\nEEBpaSkFBQX1xjVW2OppnYCrkPlCjRU1d+vWjeeff56MjAzWrl3rcb0Wi4UVK1awZcsW8vPz3cYO\nCwvj0KFDQO32/uxnP6N3795kZGQQFxfHG2+8Qe/evZuUH9QWDBcWFnLkyBGPYy5HUwq5//rXv/LI\nI4/wyiuv0KpVK9cyfn5+FBYWus3PEx8fH7y8vPjuu++A2k7QnTt3dh1Hn376Kbfccgtt2rRxjTl1\n6hRt2rRxxXjggQf44IMPLm9DRUREREREREREREREREREREREROQHpWJj4YEHHmD79u3ExsbSvXt3\nQkNDGThwIDk5OSxevNjVjRbgrrvuYu7cubzwwguuxzZs2IDdbsdutwMwbNgwkpOT2bRpU731hIeH\nM3PmTHbu3Ok2j+DgYHx8fJg/fz4nTpzwmG9OTg52u52DBw/icDg4fvx4vefripofe+wxZsyYgcPh\nICUlpcE5sFgsJCUl8eyzz9aLUee2227j7NmzxMbGUlJSQr9+/ejduzfFxcX86le/oqCggOuvv95t\nHu7Ex8czceJEsrOzmzS+sTEHDx5k/PjxjB8/nqysLLdj7r77bp599lmeeOIJAgMDXY8PGTKE5cuX\n89RTT7ke+/Wvf83TTz9NWlqax1wSExOZMWMGY8aM4e9//zu+vr7cd999xMTEsGPHDu677z5X12ub\nzcYXX3xBRESEa/k77riDmpqaRrdZRERERERERERERERERERERETkp6jG6dSXvpr01dwszqa0RBXx\nICkpiSlTphAeHt7cqfwoVVdXM3bsWDIyMpo7lR+F8nNnmzuFq8rpdWkH7ysLZK6I+0ylsVBUVZv5\ncdPaz7vxQU3k03iNf5M4m/DLAk1VYWieAFpUnTMSp9Tb30gcAKuXubkyxeCU421o83zLPHeXv1yl\nvkFG4viZ2jigBnOxCsuqjcXyrTJz/qzyMfP7fC19zf5e4PlzVUbitLaaObdUtzBzbAJYz+QZieP0\na2kkDoClotRYrOqWoUbiWCrPG4kD4H32pJE4NYHXNz6oiZzePsZiYehjstN6nZE4AFWGfl75lheZ\nCQQ4fQOMxTLF2HtqzL1mqn3MvZfyriozFssUk8e5z5HtRuKUdv6FkTh1ygz9DA0INHOeOn62ovFB\nlyHEwOeZNkVfGsikVkWHvsZire14u7FYprQPC2x8UBP8csdHRuIAeH/6v8ZivTn8qcYHNUGnnm0a\nH9RErcLNvMfrNetxI3EAvAJaGYtFjZnPRJXHvjISB8Cncy8jcSoOmzu3VH57vPFBTWRt1dpIHMsD\nCUbiALzdeYCRONe3N3OOArPnKes/NhiJM/UOc6/jn7q/HHzNSJyTb5i793H90GFG4pzf+4mROAB+\nPfsZi1XVd6iROBZDPxcAnF5mrsV7VZUbiQPg9PY1FsvUvZTvzG0e1YauR7Swmruu2Mrb3DFVaTHz\nmd3kNX2/GjM78LzF3LHp621u/5UZuuZtcs4DDF0/N3mNpMLb4LWNa/DeY2mluXvHNYbuyZi6jwIQ\nZPDecclZMzfHTd1HqfEz89kDwOf0IWOxLJVmzp2pfWOMxAF4dF2SkThlv4wyEgegdUALY7Hkp+/j\no981dwryI/Efnc1dN70S5u7CiVzj1q1bx9q1a13dgSMjIxkxYsRVXef+/fuZN2+ea529evUiKan+\nmxxP3YqXLVvG1q1bXWMSEhIYNGhQk9Zrt9uxWCw4nU4sFgvp6elXvA3NMW8iIiIiIiIiIiIiIiIi\nIiIiIiIicm1QsbH8W+bPn9/cKTTZyJEjGTly5A+6zptuuqnBrsXe3t4eC4ETEhJISLiy7hYmOyU3\nx7yJiIiIiIiIiIiIiIiIiIiIiIiIyLXB7N9mFhERERERERERERERERERERERERERkZ8MFRuLiIiI\niIiIiIiIiIiIiIiIiIiIiIiIWyo2FhEREREREREREREREREREREREREREbdUbCwiIiIiIiIiIiIi\nIiIiIiIiIiIiIiJuWZs7ARERqVXlNBNHJ3YRuRpMnaMAvCzmYsmPl9PgMfWT56xp7gxERDzTOUpM\n0zHVJF5V5c2dgohIg3SeEgAvb/U8aipTrxmnl+4QiIg0J6fFzA0Qiy6gC+aOJxEREVP0KV9ERERE\nRERERERERERERERERERERETcUrGxiIiIiIiIiIiIiIiIiIiIiIiIiIiIuKW/pSMiIiIiIiIiIiIi\nIiIiIiIiIiIi8gOrrmnuDESaRp2NRURERERERERERERERERERERERERExK1rotg4JyeH4uLiK1p2\nzZo1RnOZO3eu0XiNiYmJ+UHX92O1fPlyCgoKXN/n5eXxySefXHacVatWYbPZiI6O5rPPPgOgsLCQ\nSZMmERcXx3vvvQfAu+++y+jRo4mNjeXo0aMA7N27l5iYGMaOHUtubq4r5t69e0lPT/e4zs2bNzNi\nxAjS0tLqPb548WJOnjzZYL5Dhgxhy5YtwOUdK6tXryY7OxuA7777jvj4+AbHezruG1pnSUkJ06dP\nJzY2lv/5n/8B4B//+AdRUVHY7Xa++eabejHy8vJITExkx44dDBo0CKfTybZt21i6dClLlizBbrfT\nv39/HA4HixYtavK2ioiIiIiIiIiIiIiIiIiIiIiIiMjVc00UG2/atIkzZ85c0bKmi41nz55tNF5j\nLBbLD7q+H6v4+HjatWvn+v5Ki41tNhtZWVk8//zzvPjii0BtIfPEiRN59dVX+fWvfw1AZmYmq1ev\n5oknniAzMxOAtLQ0XnrpJV555RW6devmipmdnc3IkSM9rnPIkCE8+eSTlzw+fPhwV0GwJ61bt2bT\npk3A5R0rAwcOZPfu3QDs2rWLAQMGNDje03Hf0DpffvllRo4cSWZmJgkJCQD85S9/Yfny5Tz11FMs\nW7bskhh1//fy8qq3/373u9+RkZFBz549SU9P5/e//30TtlJERERERERERERERERERERERERErrar\nVmxcXl7O5MmTsdlsLFmyBIB169bx5ptvAv/qdvr000+zdetWEhMTXd1Vk5KSSExMZMyYMaxfvx4A\nu91OTU0Nx44dIykpiby8POx2OwcPHsThcLi6v16srpsqQGpqKjt37nStY+HChdjtdrKzszl9+jR2\nux2bzeZadunSpSQlJREdHc0rr7wCQG5uLg6Hg+joaDZv3uxx++u2r65zK9QWlyYmJhIZGVmvk3N5\neTlTp07l6NGj7Nixg4SEBB555BGmTp0KwPfff8/YsWOJiooiMzOTo0ePMn/+fNfyu3fvZsWKFSQl\nJfHss88SGRnpmjd3xowZw5w5cxg2bBhff/01UNtlNyYmhilTplBeXs7SpUuJj48nPj4em83Gxo0b\n3cZat24d06dPZ9y4ccybNw+AI0eOEBMTw5gxY8jJyfGYx8X71FNuKSkpDBo0iOPHjwO1nbBTUlJ4\n5513cDgcFBQU4HQ6eeyxx4iJiWmwO7Wvr69rTsPDwwE4cOAAGzZsIC4ujn379gHQuXNnzp8/z9mz\nZwkKCqKiooLy8nISExOZNm1avf1XUFBAy5YtATzOm9PpvCSXG2+8kc8//9xjrgAtWrSgqqqK8vJy\n12MbN27k4YcfxmazubouX6xbt26u53bt2kX//v0B+K//+i9iY2OZNWuWa6zdbufBBx90fX/69Gli\nY2OZPHkyhYWFHnPbs2cP99xzD1BbFA1QVlZGy5Yt6dGjB8eOHXO77RaLhXvvvZcPPvigwW0XERER\nERERERERERERERERERERkeZ31YqNN27cyMCBA8nKyuLQoUOcPHmy3vN1HU6feeYZIiIiWLRoUb3u\nqkOHDiUrK4v09PR64+t06NCBjIwMevToQXp6OnfffbfHXDx1Z73xxhvJyMggKiqKtm3bkpGRccmY\nvn37kpWVxYYNGwBYsmQJKSkpZGVluTreNnWdRUVFLFiwgKFDh7J9+3YAqqurSU5OZtKkSXTu3BmA\nwMBAXnrpJcrKyigqKuL1118nJiaG1157jXfffZfw8HDy8vLIz89ny5Yt7Nu3jz59+gBwzz33sHz5\nct5++22PuRUXFzNz5kwmT57Mhx9+yMmTJ8nNzSU7O5sBAwa4ikBnzZqFxWJh5cqVDXYR7tixI6tW\nreKzzz4Dajvezp49m4yMDFasWHFZc3RxbgDJyclERES4xtx33308+eST/OY3vyE9PZ127dpRWFhI\nSUkJ2dnZJCcne1wn1BYvT5gwgfvvvx+oLUgfMmQICxcuJDU1FYDBgwczYsQI5syZw+jRozlz5gz7\n9u3jueeeY+jQobz22mtAbdFyXaFxnabOG0BVVVWDzwPcfffd/L//9/9c37/88stkZWWRlJTEyy+/\n7HG5G264gRMnTvDFF19w6623smfPHlq2bElmZiaBgYGu/ZWRkUHbtm1dy73xxhuMGzeOtLQ0ioqK\nPMavrq6+5LGampoGn6/TunVrzp07R2VlpccxIiIiIiIiIiIiIiIiIiIiIiIiItL8rlqxcX5+Pt27\ndwegS5culxQbu+v0eqEuXbpgtVqxWq0Njm8sTkP69esHgJeX52no1KkTXl5eeHt7A3D8+HGSk5OJ\ni4vj1KlTl7W+G264AS8vL4KDgzl37hwA+/bto6CgoF7hbadOnQBc406cOOGay7CwMAoLC7FarWzZ\nsoWPPvqIAwcOcMsttwC1HXmDgoIoLS31mEdISAiBgYEEBwdTUlJCfn4+3bp1A6Br166cOHECAD8/\nP9q0aYOfnx/nz59vcI7gX12D6/L19fXFx8fH43Lu9t3FuTV12ZCQEO69916mT5/utmj8QsnJyaxd\nu9ZVWOzv70/fvn0JDQ11zduyZctYv349L7zwAqmpqQQEBNCxY0eCgoK4+eabXV2W3blw3srKyhrM\npTEWi4XBgwfXKza2Wq34+PjQvXt38vPzPS47cOBAtmzZQosWLbBarfVekxfu54vl5+fTpUsXfH19\n6dChg8f4da/Ni/OtU/eaqfsX6r/W7rzzTv72t795jC8iIiIiIiIiIiIiIiIiIiIiIiIize+qFRuH\nhYWRm5sLwJEjRwgNDcXf399VtHphoa6Pjw8VFRX1lj98+DAVFRWuzq8BAQGUlpZSUFBQb5ynrsV1\nPK0T3BdLNlbU3K1bN55//nkyMjJYu3atx/XWFVVemK+72L179yYtLY0FCxbU6wp74fgOHTqQm5uL\n0+nk22+/JTg4mI4dO7J3715CQ0MpLi4mMDCwSdvh7rmwsDAOHz4M1M57QwWmDbkw30OHDtXbf+64\n26dNzdtqtdbriltVVYXNZiMtLa3B/VJX/Ovv7+8qgu3Vqxe5ubkUFxdz3XXXAbX7z8fHh8DAQAoL\nCwkICMDLy4vy8nK+/vpr2rdvD9QWORcXFzeas5+fH4WFhZc87+4YvHh5X19frFar6ziurq6moqKC\nQ4cOERYW5nHZ/v37s2rVKm677Tag/mvy8OHD/OxnP7skT6jdf3Wvv2+++cZj/J///Ods2bIFwNUB\n2d/fn+LiYg4cOOAqQrdYLDidTgoKCggJCcHpdGKxWLj33ntd3avd5SEiIiIiIiIiIiIiIiIiIiIi\nIiIize+qFRs/8MADbN++ndjYWLp3705oaCgDBw4kJyeHxYsX1+t2etdddzF37lxeeOEF12MbNmzA\nbrdjt9sBGDZsGMnJyWzatKneesLDw5k5cyY7d+50m0dwcDA+Pj7Mnz/fYydXgJycHOx2OwcPHsTh\ncFzSubauqPmxxx5jxowZOBwOUlJSPMYbPHgws2bNYseOHZfEuFhISAgPPfQQK1asqDem7v+jR48m\nKyuL6OhoHnroIby9venTpw++vr6ufy/WUBH2xc+FhobStWtXbDYbO3fu5P777/e4bEPq4o4bN465\nc+dit9uZMGGCx/Hu9unFuZWXl2O329m6dSuJiYlkZWUB0LNnT/7xj3/wxBNP8P3333PmzBkcDgcP\nP/wwERERHte5cOFCYmNjmTBhApMmTQJg4sSJpKSkkJCQ4Hps1KhRjBkzhunTpzNx4kQA4uPjcTgc\nrFq1iqioKFfMuoLvhtQVNDscDlfR8FdffcWtt97a4HJ183Hvvfe6CnrHjRtHbGws8+fPZ/z48R6X\n7dmzJ8XFxfTv3x+A2267jeLiYmJjYykpKaFfv3589tln9Y77PXv28Nvf/pZVq1Yxbdo0goODPcYf\nP348a9aswWaz8eKLLwLwyCOPkJCQwNy5c13zFhkZSXR0NEuWLCE2Nta1fEBAADfffLPb7RURERER\nERERERERERERERERERGRa4PFeQ22Ek1KSmLKlCmEh4c3dyoijfriiy/YvXs3cXFxl7Xc4sWLsdls\nri7J0rjyc2ebO4WrqtLScKfrprJS0/igJjpT2fiYpqqqNvPjprWfd+ODmsjHUH2702ChfIWheQJo\nUXXOSJxSb38jcQCsXtfeLxUYnHK8DW2eb9ml3fCvVKlvkJE4Jvedl8HXTGFZtbFYvlVmzp9VPmZ+\nn6+lr9nfCzx/zvNfnLgcra1mzi1VfmaOTQCfojwjcZx+LY3EAbBUlBqLVR14vZE4lqpyI3EAvM+e\nNBKnxtC2ATi9fYzFwtDHZKf1OiNxAKoM/bzyLS8yEwhw+gYYi2WK08vMe2oAS+V5I3Gqfcy9l/Ku\nKjMWyxSTrz2fo+5/kfxylXb+hZE4dcoM/QwNCDQzV8fPVjQ+6DKEGHhv1qboSwOZ1Kr4WR9jsdZ2\nGmAslintwwIbH9QEd378gZE4AJa9OcZivTn8KSNxOvVsYyQOQKtwM+/xes163EgcAK+AVsZiUWPm\nM1Hlsa+MxAHw6dzLSJyKw+bOLZXfHm98UBNZW7U2EsfyQIKROABvdzZzvru+vZlzFJg9T3l9+WHj\ng5pg6h3mXsc/dX85+JqROKfWZhmJA9Dm/v80Euf83k+MxAHw69nPWKyaWwYbiWPyM5HTy8y1eC+D\n1yOc3pc2YLryYGauBX5nbvOoNnQ9ooXV3HXFVt7mrr+aug9m8pq+X42ZHXjeYu7Y9PU2t//KDF3z\nNjnnAYaun5u8RlLhbe4anql7KRaDZTznTF1YBGoM3ZMxdR8FIMjgveOSs2Zujpu6j1Ldwtx9FN9T\nB43FslSaOXem9o0xEgfg0XVJRuKU/TKq8UFN1DqghbFY8tO39fB3zZ2C/EhEdDV33fRKmPvE+X/U\nunXrWLt2rasja2RkJCNGjGjmrGqZzs1ut2OxWHA6nVgsFtLT05u03NatW1m2bJkrj4iICOLj4684\nj6Y4ffo0M2bMcOXbrl07Fi9efFXW1bt3b3r37n3Zy82cOdP1//379zNv3jzXHPXq1YukJDNvhv5d\n13JuIiIiIiIiIiIiIiIiIiIiIiIiInJ1XZPFxvPnz2/uFJps5MiRjBw5srnTcMt0bhkZGVe0XERE\nBBEREcbyaIq2bdtecb7N4aabbrpm872WcxMREREREREREREREREREREREfmxqjHY0V7kajL7t5lF\nRERERERERERERERERERERERERETkJ0PFxiIiIiIiIiIiIiIiIiIiIiIiIiIiIuKWio1FRERERERE\nRERERERERERERERERETELRUbi4iIiIiIiIiIiIiIiIiIiIiIiIiIiFsqNhYRERERERERERERERER\nERERERERERG3VGwsIiIiIiIiIiIiIiIiIiIiIiIiIiIibqnYWERERERERERERERERERERERERERE\nRNxSsbGIiIiIiIiIiIiIiIiIiIiIiIiIiIi4ZazYOCcnh+Li4itads2aNabSAGDu3LlG4zUmJibm\nB13fj9Xy5cspKChwfZ+Xl8cnn3xy2XFWrVqFzWYjOjqazz77DIDCwkImTZpEXFwc7733HgDvvvsu\no0ePJjY2lqNHjwKwd+9eYmJiGDt2LLm5ua6Ye/fuJT093eM6N2/ezIgRI0hLS6v3+OLFizl58qTH\n5UpLS4mKinJ9n5CQwHfffedx/FtvvcU///nPSx5/4403eOutt1zfz58/H6fT6THOD2HXrl3YbDai\noqLYvXs3AH/84x+JjY3l6aefBmDdunW8+eabACxdupRt27aRlJTEwoULAUhMTGT//v3Y7XZGjBjB\nkCFDcDgcbN++vXk2SkRERERERERERERERERERERERETqsZoKtGnTJnr06EGrVq0ue9k1a9YwatQo\nU6kwe/ZsY7GawmKx/KDr+7GKj4+v931dsfEdd9xxWXFsNhvjxo3j1KlTPPXUU7z44ossX76ciRMn\n0r9/f9e4zMxMVq9ezT//+U8yMzOZPXs2aWlpvPTSS7Rs2bJezOzsbJKTkz2uc8iQIbRs2ZKPP/64\n3uPDhw8nOzubGTNmuF3O398fLy8vysvL8fX1pbCwkDZt2nhcz4gRI5oyBSQlJTVp3NXidDpJS0tj\n5cqV+Pn5cfbsWb799luOHTtGZmYmCxYscBWCu7Nnzx7X/1u1akVGRgY7d+7k448/Zvr06T/EJoiI\niIiIiIiIiIiIiIiIiIiIiIhIEzTY2bi8vJzJkydjs9lYsmQJUL9TaV1H36effpqtW7eSmJjo6iqc\nlJREYmIiY8aMYf369QDY7XZqamo4duwYSUlJ5OXlYbfbOXjwIA6Hgy1btrjNIy8vj8TERABSU1PZ\nuXOnax0LFy7EbreTnZ3N6dOnsdvt2Gw217JLly4lKSmJ6OhoXnnlFQByc3NxOBxER0ezefNmj9tf\nt33btm1j6dKlQG1xaWJiIpGRkfU6OZeXlzN16mLvQrwAACAASURBVFSOHj3Kjh07SEhI4JFHHmHq\n1KkAfP/994wdO5aoqCgyMzM5evQo8+fPdy2/e/duVqxYQVJSEs8++yyRkZGueXNnzJgxzJkzh2HD\nhvH1118DtV12Y2JimDJlCuXl5SxdupT4+Hji4+Ox2Wxs3LjRbax169Yxffp0xo0bx7x58wA4cuQI\nMTExjBkzhpycHI95XLxPPeWWkpLCoEGDOH78OFDbCTslJYV33nkHh8NBQUEBTqeTxx57jJiYmAa7\nU/v6+rrmNDw8HIADBw6wYcMG4uLi2LdvHwCdO3fm/PnznD17lqCgICoqKigvLycxMZFp06bV238F\nBQWuAmRP8+auk/CNN97I559/7jFXgJ///Od89tln7N+/n5tuugmAjRs38vDDD2Oz2Vxdl5ctW8aQ\nIUPYtm2ba9nnnnuOuLi4evvud7/7HQMGDKCmpgbA4/Fms9mYNGkSv/71rz3mtmvXLkaNGsVTTz2F\n3W4H4G9/+xsjRozAbrezf/9+t8sdO3aMLl264OfnB0DLli3Zt28fffv2BaBfv358+eWXHtd76623\nsnv37nqF+s3dqVlEREREREREREREREREREREROSHVO106ktfTfpqbg0WG2/cuJGBAweSlZXFoUOH\nOHnyZL3n6woFn3nmGSIiIli0aFG9rsJDhw4lKyuL9PT0euPrdOjQgYyMDHr06EF6ejp33323x1w8\ndQ++8cYbycjIICoqirZt25KRkXHJmL59+5KVlcWGDRsAWLJkCSkpKWRlZZGZmXlZ6ywqKmLBggUM\nHTqU7du3A1BdXU1ycjKTJk2ic+fOAAQGBvLSSy9RVlZGUVERr7/+OjExMbz22mu8++67hIeHk5eX\nR35+Plu2bGHfvn306dMHgHvuuYfly5fz9ttve8ytuLiYmTNnMnnyZD788ENOnjxJbm4u2dnZDBgw\ngA8++ACAWbNmYbFYWLlyJZ988onHeB07dmTVqlWubrQvv/wys2fPJiMjgxUrVlzWHF2cG0BycjIR\nERGuMffddx9PPvkkv/nNb0hPT6ddu3YUFhZSUlLSaJdhqC1enjBhAvfffz9QW5A+ZMgQFi5cSGpq\nKgCDBw9mxIgRzJkzh9GjR3PmzBn27dvHc889x9ChQ3nttdeA2sLcizsdN3XeAKqqqhp8fsCAAezc\nuZNdu3YxYMAAoHZ+s7KySEpK4uWXXwYgISGByMhI13Lffvst33zzDa+++qrruILa47dXr1711nHx\n8fbGG28wbtw4/vSnP1FUVOQxt2XLlrFy5UpiYmJc+3Lz5s2ufd+jRw+3yxUWFhIUFFTvsZKSEvz9\n/YHajs4lJSUe1zt06FDX61FERERERERERERERERERERERERErl0NFhvn5+fTvXt3ALp06XJJsXFj\nnUi7dOmC1WrFarU2OP7f6Wjar18/ALy8PG9Kp06d8PLywtvbG4Djx4+TnJxMXFwcp06duqz13XDD\nDXh5eREcHMy5c+cA2LdvHwUFBfUKbzt16gTgGnfixAnXXIaFhVFYWIjVamXLli189NFHHDhwgFtu\nuQWo7cgbFBREaWmpxzxCQkIIDAwkODiYkpIS8vPz6datGwBdu3blxIkTAPj5+dGmTRv8/Pw4f/58\ng3ME/+oaXJevr68vPj4+Hpdzt+8uzq2py4aEhHDvvfcyffp0t0XjF0pOTmbt2rWuwmJ/f3/69u1L\naGioa96WLVvG+vXreeGFF0hNTSUgIICOHTsSFBTEzTff7Oqy7M6F81ZWVtZgLo25/fbb+eyzz9i9\ne7er2NhqteLj40P37t3Jz893u9y3335Lly5dAFz/enLx8ZaXl0fXrl3x8fGhQ4cOHpcrLS0lKCio\nXvyxY8fy1ltv8fjjj1/ymq8THBzMmTNn6j0WGBjomvvz58/TsmXLS16Xdd9ff/31FBYWUl1d3eB2\niYiIiIiIiIiIiIiIiIiIiIiIiEjzarDYOCwsjNzcXACOHDlCaGgo/v7+rqLVCwt1fXx8qKioqLf8\n4cOHqaiocHV+DQgIoLS0lIKCgnrjPHUtruNpnYCrkPlCjRU1d+vWjeeff56MjAzWrl3rcb11hZEX\n5usudu/evUlLS2PBggXU1NS4XWeHDh3Izc3F6XTy7bffEhwcTMeOHdm7dy+hoaEUFxcTGBjYpO1w\n91xYWBiHDx8Gaue9oQLThlyY76FDh+rtP3fc7dOm5m21WqmsrHR9X1VVhc1mIy0trcH9Ulf86+/v\n7yog79WrF7m5uRQXF3PdddcBtfvPx8eHwMBACgsLCQgIwMvLi/Lycr7++mvat28P1BY5FxcXN5qz\nn58fhYWFlzzv7hi8UMuWLSkrKyM/P5+wsDCgtht2RUUFhw4dcj12sbCwMI4ePQrUvv4uzsndPF98\nvFVUVPDNN994zK1FixYUFhbWi9++fXvmzp3LkCFDWL9+vdvlOnbsyNGjR12vy+LiYnr16sXnn38O\nwKeffsott9xCmzZt+O6774Da11GbNm1cMX7xi1+wc+dOj7mJiIiIiIiIiIiIiIiIiIiIiIiISPNr\nsNj4gQceYPv27cTGxtK9e3dCQ0MZOHAgOTk5LF682FXoCXDXXXcxd+5cXnjhBddjGzZswG63Y7fb\nARg2bBjJycls2rSp3nrCw8OZOXOmx8LD4OBgfHx8mD9/vqtjrzs5OTnY7XYOHjyIw+G4pHNtXVHz\nY489xowZM3A4HKSkpHiMN3jwYGbNmsWOHTsuiXGxkJAQHnroIVasWFFvTN3/R48eTVZWFtHR0Tz0\n0EN4e3vTp08ffH19Xf9erKEi7IufCw0NpWvXrthsNnbu3Mn999/vcdmG1MUdN24cc+fOxW63M2HC\nBI/j3e3Ti3MrLy/HbrezdetWEhMTycrKAqBnz5784x//4IknnuD777/nzJkzOBwOHn74YSIiIjyu\nc+HChcTGxjJhwgQmTZoEwMSJE0lJSSEhIcH12KhRoxgzZgzTp09n4sSJAMTHx+NwOFi1ahVRUVGu\nmHUF3w2pK2h2OByuItuvvvqKW2+9tcHlAG655RY6d+7s+n78+PHExsYyf/58xo8fD8CUKVNYt24d\nCxYsIC0tjdDQUDp06IDD4XAVA3/zzTfY7XYOHDjA2LFj2bhxY7311M39b3/7W1atWsW0adMICgry\nmFd8fDwTJ04kOzvb9diqVauIjY0lIyODwYMHu13OYrEwdepUJk6cyOjRo/nqq69o3749N9xwA7Gx\nsZSUlNC3b1/+4z/+g3379hEbG4uXl5eruzfUnl/cFW+LiIiIiIiIiIiIiIiIiIiIiIiIyLXD4myo\nDe2/ISkpiSlTphAeHn41wosY9cUXX7B7927i4uIua7nFixdjs9lcXZKvFTU1NXh5eVFTU4PNZmP1\n6tUNjq+urmbs2LFkZGT8QBlemfJzZ5s7hauq0tJwl+ymslLT+KAmOlPZ+Jimqqo28+OmtZ9344Oa\nyKfhxvpN5mykQ//lqDA0TwAtqs4ZiVPq7W8kDoDVy9xcmWJwyvE2tHm+ZeZ+GaPU1/MvnVwOk/vO\ny+BrprCs2lgs3yoz588qnwZ/n6/JWvqaiVPn/DnPf63icrS2mjm3VPmZOTYBfIryjMRx+rU0EgfA\nUlFqLFZ14PVG4liqyo3EAfA+e9JInBpD2wbg9PYxFgtDH5Od1uuMxAGoMvTzyre8yEwgwOkbYCyW\nKU4vM++pASyV543EqfYx917Ku6rMWCxTTL72fI6a+es3pZ1/YSROnTJDP0MDAs3M1fGzFY0Pugwh\nBt6btSn60kAmtSp+1sdYrLWdBhiLZUr7sMDGBzXBnR9/YCQOgGVvjrFYbw5/ykicTj3bND6oiVqF\nm3mP12vW40biAHgFtDIWixozn4kqj31lJA6AT+deRuJUHDZ3bqn89njjg5rI2qq1kTiWBxKMxAF4\nu7OZ89317c2co8Dsecrryw+NxJl6h7nX8U/dXw6+ZiTOqbVZRuIAtLn/P43EOb/3EyNxAPx69jMW\nq+YW981fLpfJz0ROLzPX4r0MXo9wel/avOnKg5m5Fviduc2j2tD1iBZWc9cVW3mbu/5q6j6YyWv6\nfjVmduB5i7lj09fb3P4rM3TN2+ScBxi6fm7yGkmFt7lreKbupVgMlvGcM3VhEagxdE/G1H0UgCCD\n945Lzpq5OW7qPkp1C3P3UXxPHTQWy1Jp5tyZ2jfGSByAR9clGYlT9suoxgc1UeuAFsZiyU/f5kOn\nmjsF+ZEY0t3cvdUrYe4T54/YunXrWLt2rasrbGRkJCNGjGjmrGqZzs1ut2OxWHA6nVgsFtLT05u0\n3NatW1m2bJkrj4iICOLj4684j6Y4ffo0M2bMcOXbrl07Fi9efFXW1bt3b3r37n3Zy82cOdP1//37\n9zNv3jzXHPXq1YukJDNvaC7X6dOnefTRR/H29q7XwbkhnjppL1u2jK1bt7rGJCQkMGjQIGO5ioiI\niIiIiIiIiIiIiIiIiIiIiMi166oVG8+fP/9qhTZu5MiRjBw5srnTcMt0blfauTYiIoKIiAhjeTRF\n27Ztr/lOuxe66aabrpl827VrxxtvvNHk8d7e3h4LzxMSEkhIMNdlQ0RERERERERERERERERERERE\nRER+PMz+bWYRERERERERERERERERERERERERERH5yVCxsYiIiIiIiIiIiIiIiIiIiIiIiIiIiLil\nYmMRERERERERERERERERERERERERERFxy9rcCYiIiIiIiIiIiIiIiIiIiIiIiIiI/F9T42zuDESa\nRp2NRURERERERERERERERERERERERERExC0VG4uIiIiIiIiIiIiIiIiIiIiIiIiIiIhbKjYWERER\nERERERERERERERERERERERERt1RsLCIiIiIiIiIiIiIiIiIiIiIiIiIiIm6p2FhERERERERERERE\nRERERERERERERETcumaLjXNyciguLr6iZdesWWM0l7lz5xqN15iYmJgfdH0/VsuXL6egoMD1fV5e\nHp988sllx1m1ahU2m43o6Gg+++wzAAoLC5k0aRJxcXG89957ALz77ruMHj2a2NhYjh49CsDevXuJ\niYlh7Nix5Obmuo2/aNEiPvroIwA+//xz/vCHPzSYj6fj7cLjYv/+/caP88tVVVXF7NmzsdvtPPHE\nEwAcO3aM2NhYoqOj2bt3L1A/75iYGPLy8ujduzdnz57l2LFjJCUlkZGRgd1uZ8CAAdjtdmbNmtUs\n2yQiIiIiIiIiIiIiIiIiIiIiIiIi9VmbOwFPNm3aRI8ePWjVqtVlL7tmzRpGjRplLJfZs2cbi9UU\nFovlB13fj1V8fHy97+uKje+4447LimOz2Rg3bhynTp3iqaee4sUXX2T58uVMnDiR/v37u8ZlZmay\nevVq/vnPf5KZmcns2bNJS0vjpZdeomXLlh7jDxgwgN27d3PXXXexa9cuBg4c2GA+no63C4+Lm266\niZtuuumyttO0t99+m169ejF37lyKiooAWLZsGXPmzKFNmzbMmjWLF198sV7edf8PCQnh/fffd82F\n3W7HbrfjcDh49dVX9RoQERERERERERERERERERERERERuUb8oJ2Ny8vLmTx5MjabjSVLlgCwbt06\n3nzzTeBfHVCffvpptm7dSmJioqvLa1JSEomJiYwZM4b169cDtQWKNTU1ru6oeXl52O12Dh48iMPh\nYMuWLW7zyMvLIzExEYDU1FR27tzpWsfChQux2+1kZ2dz+vRp7HY7NpvNtezSpUtJSkoiOjqaV155\nBYDc3FwcDgfR0dFs3rzZ4/bXbd+2bdtYunQpAMOHDycxMZHIyMh6nZzLy8uZOnUqR48eZceOHSQk\nJPDII48wdepUAL7//nvGjh1LVFQUmZmZHD16lPnz57uW3717NytWrCApKYlnn32WyMhI17y5M2bM\nGObMmcOwYcP4+uuvAVi8eDExMTFMmTKF8vJyli5dSnx8PPHx8dhsNjZu3Og21rp165g+fTrjxo1j\n3rx5ABw5coSYmBjGjBlDTk6Oxzwu3qeecktJSWHQoEEcP34cqO2EnZKSwjvvvIPD4aCgoACn08lj\njz1GTExMg92pfX19XXMaHh4OwIEDB9iwYQNxcXHs27cPgM6dO3P+/HnOnj1LUFAQFRUVlJeXk5iY\nyLRp0zx24r799ttdHZN37dpF//793b4W3B1vubm5jB49mpkzZ1JRUQHA1q1bGTFiBGlpafXmbdGi\nRQwbNow9e/YA8MorrxAdHc3UqVNdx5s7M2fOZPz48djtdnbu3InT6eTRRx9tdN62bdvGAw88AEDr\n1q2B2s7G3bp1IygoiPPnzwPgdDrrLWexWBgwYADbt2+/JKbT6bxkvIiIiIiIiIiIiIiIiIiIiIiI\niIg0nx+02Hjjxo0MHDiQrKwsDh06xMmTJ+s9X9fN9JlnniEiIoJFixbV6/I6dOhQsrKySE9Prze+\nTocOHcjIyKBHjx6kp6dz9913e8zFU+fUG2+8kYyMDKKiomjbti0ZGRmXjOnbty9ZWVls2LABgCVL\nlpCSkkJWVhaZmZmXtc6ioiIWLFjA0KFDXcWX1dXVJCcnM2nSJDp37gxAYGAgL730EmVlZRQVFfH6\n668TExPDa6+9xrvvvkt4eDh5eXnk5+ezZcsW9u3bR58+fQC45557WL58OW+//bbH3IqLi5k5cyaT\nJ0/mww8/5OTJk+Tm5pKdnc2AAQP44IMPAJg1axYWi4WVK1fyySefeIzXsWNHVq1a5Sqyffnll5k9\nezYZGRmsWLHisubo4twAkpOTiYiIcI257777ePLJJ/nNb35Deno67dq1o7CwkJKSErKzs0lOTva4\nTqgtXp4wYQL3338/UFuQPmTIEBYuXEhqaioAgwcPZsSIEcyZM4fRo0dz5swZ9u3bx3PPPcfQoUN5\n7bXX3MYODAykqqqKiooKTp8+TWhoaL3XwsGDBzl58qTb423VqlU8++yzPPnkk65i5oiICJ588slL\n5i0yMpJ58+bx3nvvUVVVxfvvv8/q1au5/fbbPW73nj17aNOmDS+//LKrO3NhYSHnzp1rdN4KCwtd\nRcZ1LiwUrqmp8bisl5cXwcHBnD59+pLtEBEREREREREREREREREREREREZFrxw9abJyfn0/37t0B\n6NKlyyXFxo11NO3SpQtWqxWr1drg+H+nM2q/fv2A2mJITzp16oSXlxfe3t4AHD9+nOTkZOLi4jh1\n6tRlre+GG25wFV6eO3cOgH379lFQUFCv8LJTp04ArnEnTpxwzWVYWBiFhYVYrVa2bNnCRx99xIED\nB7jllluA2o68QUFBlJaWeswjJCSEwMBAgoODKSkpIT8/n27dugHQtWtXTpw4AYCfnx9t2rTBz8/P\n1bnW0xzBv7oG1+Xr6+uLj4+Px+Xc7buLc2vqsiEhIdx7771Mnz7dbdH4hZKTk1m7dq2rsNjf35++\nffsSGhrqmrdly5axfv16XnjhBVJTUwkICKBjx44EBQVx8803u7osu3Prrbfy1ltvufbZha+Frl27\nXvJaqJOfn0/Xrl0JCQmpV9jrbp7q9vO5c+coLCwkLCwMqH3deFIX/8JxTZ23kJCQS7o5X/i6qXt9\n1P178fMPPvigq2BfRERERERERERERERERERERERERK5NP2ixcVhYGLm5uQAcOXKE0NBQ/P39XUWr\nFxbq+vj4UFFRUW/5w4cPU1FRQVVVFQABAQGUlpZSUFBQb1xj3VE9rRNwFTJfqLGi5m7duvH888+T\nkZHB2rVrPa63rtDywnzdxe7duzdpaWksWLDgku6wdeM7dOhAbm4uTqeTb7/9luDgYDp27MjevXsJ\nDQ2luLiYwMDAJm2Hu+fCwsI4fPgwUDvvHTp08LhsQy7M99ChQ/X2nzvu9mlT87ZarVRWVrq+r6qq\nwmazkZaW1uB+KSsrA2qPi7rC2F69epGbm0txcTHXXXcdULv/fHx8CAwMpLCwkICAALy8vCgvL+fr\nr7+mffv2HtcxYMAAVqxYwYABAwD3rwV329ShQwcOHz7M999/z5kzZzxu+8VzFBwcTH5+viu+J+3b\nt3c9f/ToUaDp83bHHXfw/vvvA7UdugHCw8PJzc2lsLCQFi1aAHDddddRXl5OQUEBISEhOJ1OLBYL\nt99+u6vztaftEBERERERERERERERERERERER+amqrnHqS19N+mpul1bWXkUPPPAAjz/+ODk5Odx2\n222EhoYycOBAHn/8cQoKCup1QL3rrruYO3cuAwcOZPLkyQBs2LCB5cuXExcXB8CwYcNITk6+pBA2\nPDycmTNnEhUV5SruvFBwcDA+Pj7Mnz/f1bHXnZycHF599VUOHjyIw+Fg3rx59Z6vK2p+7LHHmDFj\nBtXV1XTr1o0//OEPbuMNHjyYWbNm4e3t7eo666kwOiQkhIceeogVK1bw85///JJ1jh49mt/97nes\nXLmSYcOG4e3tTZ8+ffj444/p06cPBw8evCRmQ0XYFz8XGhpK165dsdlstG7dmtTUVJYtW+Zx+cbi\njhs3jieffJLq6mri4+M9jne3Ty/Orby8nIkTJ3LkyBEOHz7M8OHDsdls9OzZkz/+8Y888cQTzJo1\ni5qaGh5//HEqKiqIiIjwuM6FCxfy1VdfUVlZybRp0wCYOHEiSUlJAPz+978HYNSoUYwZMwYvLy/X\nY/Hx8TgcDlq0aMHixYs9rqN///7k5eXRv39/wP1rwd3xFhcXR1JSEh06dCAoKAiAP/3pT2zevJmi\noiL279/Piy++eMkcWa1WHnzwQaKjowkODqZ3795u87r99tvJzMxk3LhxriLwM2fONGnehg8fzn//\n938TGxtLaGgoixcvJj4+3rWf6+Zv3LhxOBwOLBYLTz/99CXrv7CIurFfFBARERERERERERERERER\nERERERGRH5bF+SNpJZqUlMSUKVMIDw9v7lREfhSqqqqwWq389a9/xcfHh8jIyAbHp6amcuedd7ot\n0L9WlJ8729wpXFWVFjO//2GlpvFBTXSmsvExTVVVbebHTWs/78YHNZGPofp2p8FC+QpD8wTQouqc\nkTil3v5G4gBYva69XyowOOV4G9o837JCM4GAUt8gI3FM7jsvg6+ZwrJqY7F8q8ycP6t8zPzxkJa+\nZv8Iyflznv+6xOVobTVzbqnyM3NsAvgU5RmJ4/RraSQOgKWi1Fis6sDrjcSxVJUbiQPgffakkTg1\nhrYNwOntYywWhj4mO63XGYkDUGXo55VveZGZQIDTN8BYLFOcXuZ+p9pSed5InGofc++lvKvKjMUy\nxeRrz+foTiNxSjv/wkicOmWGfoYGBJqZq+NnKxofdBlCDLw3a1P0pYFMalX8rI+xWGs7XXvXONqH\nBTY+qAnu/PgDI3EALHtzjMV6c/hTRuJ06tnGSByAVuFm3uP1mvW4kTgAXgGtjMWixsxnospjXxmJ\nA+DTuZeROBWHzZ1bKr89biyWtVVrI3EsDyQYiQPwdmcz57vr25s5R4HZ85TXlx8aiTP1DnOv45+6\nvxx8zUicU2uzjMQBaHP/fxqJc37vJ0biAPj17GcsVs0tg43EMfmZyOll5lq8l8HrEU5vX2OxcJq5\nFviduc2j2tD1iBZWc9cVW3mbu/5q6j6YyWv6fjVmduB5i7lj09fb3P4rM3TN2+ScBxi6fm7yGkmF\nt7lreKbupVgMlvGcM3VhEagxdE/G1H0UgCCD945Lzpq5OW7qPkp1C3P3UXxPXdqw8EpZKs2cO1P7\nxhiJA/DouiQjccp+GWUkDkDrgBbGYslP3/sHCpo7BfmReLBnu2Zd/w/a2fj/inXr1rF27VpXl9bI\nyEhGjBjRzFnVMp2b3W7HYrHgdDqxWCykp6c3abmtW7eybNkyVx4RERENdjw24fTp08yYMcOVb7t2\n7RrsRnwlUlJS2LdvH1DbpTc5OZmbbrrJ6Dqa6i9/+Qvbt2+nRYsWpKWlNTreU1fhH2LeRERERERE\nREREREREREREREREROTa9KMpNp4/f35zp9BkI0eOZOTIkc2dhlumc8vIyLii5SIiIoiIiDCWR1O0\nbdv2ivNtquTk5Ksa/3JMmzbtssZPnz7d7eM/xLyJiIiIiIiIiIiIiIiIiIiIiIiIyLXJ7N9mFhER\nERERERERERERERERERERERERkZ8MFRuLiIiIiIiIiIiIiIiIiIiIiIiIiIiIWyo2FhERERERERER\nEREREREREREREREREbdUbCwiIiIiIiIiIiIiIiIiIiIiIiIiIiJuWZxOp7O5kxARaYqK70+YC2Yx\n87sWNde1NBIHwOnlbSSOxeBp3bvklLFYZ/3aGonTwsfc78mYmqsaLEbiAHhXlxuL5fSymglk6PVi\nlLPGWKgai5nXHoDF0KFg8nVs6vg0tW0AJt99VhsMVnauykicwJY+RuJU15h9m37e0Pa18jcShhpv\nM/ME4F1eYiROjU8LI3EALCbPU4bmyqvK3M8Yr5LTRuJU/3/27jw+yuru//97loSsQEIQUCBYxQas\nK62tN1IsVRGr3oitBMgMiUgjWgSMWINWLKCIDQhKpYhSOhMWN1K9KyCifi1WlLW2tGARRCGCbCGQ\njWSW3x/8MjUwIQE+mqiv5+PBQ3PlOu/rnDPXXHMtZ05atjfJkSRHyGYfl6SwK9YkpzmeI5idH0im\n5whhow8ay/3citX+JNn1k2TXV5btc1aWmOQEE1JNcmqVHa4xyUlOtHnPVIUMT8wk1VQGTzujleuw\nQU2OCsWnmGU51/+fWZYV15nnmuRUd+hukiPZnUtJkja+aRLjbtfZJEeSAq072uQk2tzXkCRn+PTf\nd9ac1eVmWYEWLU1yQobXe7HVdscpGZ13Wn5etSj+h0mO5bliczxOufd+ZJLzbXBH10yTnBml601y\nJElG98+d5QdMciQpHGf3fCDYIskkxxFqfp8xpprhdahln1cEberUHJ+jSHb3SZxqfsMbLK/XLfvc\nSsCwSm6jrrLsc0tWr59l+6qDdi9gdUXzEM78EAAAIABJREFUeo4i2T5LsXqOkphk075mupvLWVNl\nkuPet80kR5ICbc8xybG8JopLSDTLwjffax/uaeoq4Gui73fPaNLtGz5lBAAAAAAAAAAAAAAAAAAA\nQGNYfuEa+DI1w6kKAQAAAAAAAAAAAAAAAAAAADQHDDYGAAAAAAAAAAAAAAAAAAAAEBWDjQEAAAAA\nAAAAAAAAAAAAAABExWDjZmjFihU6dOjQKZV96aWXTOsyadIk07yGDB48+Cvd3tfBn//8Z/373/+O\n/Hz48GG9/vrrJtm///3v1adPH61atSqy7Le//a2uuOIK7dix44Rlt27dKq/Xq8zMTC1dulSSNH/+\nfA0ePFijRo1STU2NVq9erenTp0uSioqK9MILL2jmzJm66667JEnTp0/X6tWrNXz4cA0cOFA9e/aU\n1+vVq6++atI+AAAAAAAAAAAAAAAAAABwetxNXQEc74033tB5552nli1bnnTZl156STfffLNZXR54\n4AGzrMZwOBxf6fa+Dvr371/n59LSUi1fvlxXX331aWffeeedCofDdZaNHz9eVVVVDZadMmWKpk+f\nrtTUVJWWlqq6ulqvv/66FixYoMLCQi1fvlxt27at85rW/v/mzZtVUVERWTZnzhwVFxdrxowZeuyx\nx067XQAAAAAAAAAAAAAAAAAAwAYzG39Fjhw5ohEjRmjIkCGaNm2apKMzvb744ouS/juj74MPPqiV\nK1dq7NixkVmF8/PzNXbsWA0cODAyg6zH41EoFNKnn36q/Px8FRcXy+PxaMuWLfJ6vXr77bej1qO4\nuFhjx46VdHRW2TVr1kS28dhjj8nj8WjBggXat2+fPB6PhgwZEik7c+ZM5efna9CgQZo3b56k/85u\nO2jQIL355pv1tr+2fatWrdLMmTMlSTfeeKPGjh2rAQMG1JnJ+ciRIxo5cqS2b9+u1atX65e//KVy\nc3M1cuRISdKBAweUnZ2tzMxMFRYWavv27Zo8eXKk/Lp16/TMM88oPz9fEydO1IABAyL9Fs28efM0\nePBgjRw5ssG6fVFj6laf/Px87dixQ8FgUB6PR9LR17SgoEA33HCD1q9fL0l6+umn68w8/Pe//115\neXlatWqVvF5vZMbj8ePHKzMzU6NHj653m5s3b1ZmZqaysrIir9+pqqmpUSgUUmpqqiSpVatW2r59\nu7p27SpJuvjii/Wvf/3ruHK1A5uvvPJKrVixgsHlAAAAAAAAAAAAAAAAAAA0cww2/oosX75cl112\nmebPn6+PPvpIn3/+eZ3f1w66nDBhgnr16qWCgoI6swpfe+21mj9/vnw+X531a5111lny+/0677zz\n5PP51Lt373rrUt8Az65du8rv9yszM1NpaWny+/3HrXPRRRdp/vz5WrZsmSRp2rRpeuSRRzR//vwT\nDq6Nts3S0lJNmTJF1157rd5//31JUjAY1Lhx43T77berS5cukqSkpCTNnj1bVVVVKi0t1fPPP6/B\ngwdr0aJF+stf/qJOnTqpuLhYu3bt0ttvv61NmzbpggsukHR0UOucOXP08ssvR61XIBDQ8uXLtWDB\nAvXo0eO4uvXr1y9St2gaqlswGKy3bLS+GTBggB5++GEtWbJEkvTLX/5SAwYMiPz+4osv1rRp0/Q/\n//M/8vl86t69uyRpw4YNWrRoUWQgezSdO3fWwoULVVhYqFdeeaXBep3IwYMH1apVqzrLysrKlJCQ\nIElKSEhQWVlZveWvuOIK/e1vfzutOgAAAAAAAAAAAAAAAAAAgC8fg42/Irt27dK5554rSTr77LOP\nG2xcO+Nrfc4++2y53W653e4Trt9QzolcfPHFkiSns/7dIj09XU6nUy6XS5K0Y8cOjRs3TkOHDtXe\nvXtPansdO3aU0+lUSkqKysvLJUmbNm3Snj176gzATU9Pl6TIep999lmkLzt06KCSkhK53W69/fbb\n+utf/6oPP/xQ559/viSpS5cuat26tSoqKqLWoaSkRO3bt5d0tI+PrVvr1q0jdauvP+qrW/v27XXw\n4MGT6pPa+p5om9Hk5uZqzJgxevzxx+tdp7i4WLfddps8Ho927tx5WvtK69atVVpaWmdZUlJSpN6V\nlZVKTk4+bl+q3W9iYmIUHx9f76zRAAAAAAAAAAAAAAAAAACgeWCw8VekQ4cO2rp1qyTp448/Vrt2\n7ZSQkKDKykpJqjNQNyYmRtXV1XXKb9u2TdXV1QoEApKkxMREVVRUaM+ePXXWq2/W4lr1bVNSZCDz\nFzU0qPmcc87RE088Ib/fr8WLF9e73dpBp1+sb7Ts733ve5oxY4amTJmiUCgUdZtnnXWWtm7dqnA4\nrN27dyslJUWdO3fWP//5T7Vr106HDh1SUlJSo9rRunVr7dq1S5K0ffv2BtevT7S6ff7552rdunXU\n9RMTE1VeXn7SA7Slo69TTU1NnWVXX321Hn/8cW3cuFElJSVRyz333HPKzc3VvHnz1LJly0id4+Li\njisTHx9fb450dB91Op3av3+/pKMzQXfp0iWyj2/YsEHnn3++2rRpE1ln7969atOmTSTjmmuu0euv\nv36SrQcAAAAAAAAAAAAAAAAAAF8lBht/Ra655hq9//77ysrK0rnnnqt27drpsssu04oVKzR16tTI\njK+S9OMf/1iTJk3SrFmzIsuWLVsmj8cjj8cjSbrhhhs0btw4vfHGG3W206lTJ+Xl5WnNmjVR65GS\nkqKYmBhNnjxZn332Wb31XbFihTwej7Zs2SKv16sdO3bU+X3toOZf/epXGjNmjLxerx555JF6837y\nk5/ovvvu0+rVq4/LOFZqaqquv/56PfPMM3XWqf3/X/ziF5o/f74GDRqk66+/Xi6XSxdccIFiY2Mj\n/z1WfduKiYnR1VdfrUGDBmnt2rUNrl+fE9UtmmuvvVZTp07VSy+9dMJt3nHHHSoqKtKUKVM0Y8YM\nSdIZZ5yh8vJyjR07NjKwediwYcrMzFRaWppSUlKibrN3796aOHGi7r333jqDsfv06aM5c+boN7/5\nTWTZddddpwcffDCyzWjGjh2rMWPGaODAgfrb3/6m2NhYXXXVVRo8eLBWr16tq666KjIj95AhQ7Rx\n40b16tUrUv5HP/rRcQPKAQAAAAAAAAAAAAAAAABA8+IIn+wUrvjK5efn64477lCnTp2auirfaKtW\nrdK6dev0q1/9qqmrgnpUH6h/gPxJc9h81yLUItkkR5LCzuiD00+Ww/Cw7io7+dm363M4Ls0kJz7G\n7nsyVn0V0sl9QeFEXMEjZllh5/Ez1p8So/eLqbDdlxVCDpv3niSd5HdV6s8xfB9b7Z9WbZMky7PP\noGFYVXnAJCcpOcYkJxiyPU2vNGpfywSTGIVcNv0kSa4jZSY5oZh4kxxJclgep4z6yhmw+4xxlu0z\nyQm2bG+SI0mOkM0+Lklh1/FfYDwVzfEcwez8QDI9RwgbfdBY7udWrPYnya6fJLu+smyfs7L+v7Bz\nMoIJqSY5tcoO1zS8UiMkJ9q8Z6pChidmkmoqg6ed0cp12KAmR4Xio3+J+lQ41/+fWZYV15nnmuRU\nd+hukiPZnUtJkja+aRLjbtfZJEeSAq072uQk2tzXkCRn+PTfd9ac1eVmWYEWLU1yQobXe7HVdscp\nGZ13Wn5etSj+h0mO5bliczxOufd+ZJLzbXBH10yTnBml601yJElG98+d5QdMciQpHGf3fCDYIqnh\nlRrBEWp+nzGmmuF1qGWfVwRt6tQcn6NIdvdJnGp+wxssr9ct+9xKwLBKbqOusuxzS1avn2X7qoN2\nL2B1RfN6jiLZPkuxeo6SmGTTvma6m8tZU2WS4963zSRHkgJtzzHJsbwmiktINMvCN99fNn3e1FXA\n18T13do16fYNnzICUlFRkRYvXhyZpXfAgAHq379/E9fqqNOp29133619+/YpHA7L4XDo8ccfV5s2\nbRost3nzZj388MORbXbr1k35+fmn3ohG8ng8cjgckfr6fL5TzmrOrykAAAAAAAAAAAAAAAAAAPhy\nMbMxgK8NZjZuHGY2bjxmNm4kZjZuNGY2bhxmNm4cZjZuPGY2bhxmNm48ZjZupGY4oxQzGzceMxs3\nHjMbN4yZjRuPmY0bh5mNv3rMbHwSmNm4UZrjcYqZjRuPmY0bh5mNm0AzvA5lZuPGY2bjxmFm48Zh\nZuPGY2bjxmNm48ZhZuPGYWZjnAxmNkZjNfXMxs1w9BAAAAAAAAAAAAAAAAAAAACA5oDBxgAAAAAA\nAAAAAAAAAAAAAACiYrAxAAAAAAAAAAAAAAAAAAAAgKjcTV0BAGisYEKqWZYjFDTJCRh+Z8NllOMI\nVhslSXvcbcyy4syS7IQdDpMcV+CISY4khV2xZlnOqlKTnEBca5McS5Z97nS3MMsKO2zeyc7y/SY5\nklQVZ3PsjHPZvF8kyVVdbpZV7kgwy7Kyaudhk5yL2yWa5DRXjnDYLqvKps+doYBJjjVHXCubIMM+\nD8clm+RYfVZJUsiqnwy5Kw+YZVmdC7sqD5rkSM2zzx3BGruwmiqTmFBSmkmOZHvsDDub3y0hZ6XN\nMaE6LsUkx9p+o1PYxBibHEtWr50kheLtXr9D6943y7KSWLLXJqhDd5sc2Z1LSVKpUZ8ndtltkiNJ\nNfuXmOS0+PndJjmS5PrP38yyzHQ41yzKZfQZ47Y8P//X/zOLCh+xOUdwXP4LkxxJKvvrX0xyYtq2\nM8mR1CyPU5+/4DfJkSSn65s9l8+M0vUmOaNaXWqSI0kzd7xqkvP5s0+Y5EjSGbffZ5alFkkmMY5w\nyCTHUshldwJreU0UDNlkHaiyq1O82+YebMCobZIUY3dbWE7Z1MtheI7gMLpXbfkcJSy7Trfqc5fT\nrk5We6ezusIoSap2x5tlWb1nXEfKbIIkBZ3N7znK2s/snhNd2K75tc/qvWd6PDB8z7g+XmuSU/HB\nuyY5kvT56n+b5JxV4DPJAYBvqm/23RAAAAAAAAAAAAAAAAAAAAAAp4zBxgAAAAAAAAAAAAAAAAAA\nAACiYrAxAAAAAAAAAAAAAAAAAAAAgKgYbAwAAAAAAAAAAAAAAAAAAAAgKgYbf029+eab6t+/v2bM\nmHFK5YuKihq13ksvvdTozOnTp2vNmjUnVY99+/Zp9uzZJ1XG2urVqzV9+vQmrcPpmjlzplatWnXS\n5Xbt2iWPx6MhQ4ZElv3jH//QwIEDde+99zZYfurUqfJ4PMrJyZEklZSUaNiwYRo0aJDeeustSZLH\n41EoFJIkDR48WJKUkZGhjz76SMFgUB6PR0uXLpXH49EVV1yhW265RcOGDTvptgAAAAAAAAAAAAAA\nAADA10koHOYf/xr1r6kx2Phrqk+fPrr//vtPufzixYsVDAYbXO9kBhufirS0NOXm5n6p22gMh8PR\n1FVoEh06dJDf76+z7MILL9S0adMaLPvee+8pEAjI7/dHBmsvWrRIXq9XPp9Pc+fOPa5MbT+3bdtW\nS5YsiSzr16+f/H6/evXqpalTp+rZZ5893aYBAAAAAAAAAAAAAAAAAAAD7qauAE5d+JjR6ps3b9ZD\nDz0kt9utq666StnZ2QqFQrr//vu1c+dOtWvXTgUFBbrjjjv04YcfKjs7W1dccYVyc3M1a9YsrVy5\nUi6XSw899JBatGih/Px8bdmyRV6vV8OGDVPv3r1VWFioJUuWKCEhQQUFBWrdurXy8vJUUlKimpoa\n9ezZs976ejweff/739eaNWuUnZ2tjh07avz48UpPT9djjz0mScrPz1dCQoI2bNig4cOHq1+/flqy\nZIn++Mc/qkuXLnK73Zo8ebJee+01zZs3T263W4888og6deqkoqIirV27Vjt27FDnzp01adIkjR8/\nXh9++KHat2/f4OzFO3bs0JQpU1RQUKBnnnlGxcXF2r59u/r27avs7GytX79eU6ZMkST9+te/1kcf\nfaQ2bdropz/9qSRp1qxZ6tmzpx5++GF1795da9eu1cyZM5Wenh51e1/st7vuukvhcFjPPPOMHA6H\nYmNj9eSTT0Ytl5WVperqaqWnp+uTTz6Rz+c7Ybu+aMKECdqyZYtiY2P16KOPqm3bto0ue6xVq1ap\nb9++kqRWrVpJkjZt2qQhQ4YoJiZGiYmJqqysjFq2U6dO+uSTTyQdvx8DAAAAAAAAAAAAAAAAAIDm\ng5mNv0E6d+6shQsXqrCwUK+88ook6Y033tBZZ50lv9+viRMnSpKeeuopZWRkyOfzRWYVzsrK0oIF\nC3TPPffI7/erY8eO8vv9Ou+88+Tz+dS7d28dOHBAb731lhYsWKCcnBw9//zzWrdundq0aaO5c+cq\nOTm5wTpefvnlKiwsVJ8+fZSRkRF1Bt0rr7xSc+bMibShsLBQCxYsiAxsDYVCevbZZ1VYWKiJEydq\nzpw5kbKhUEg+n08TJkyQJG3YsEGLFi1qcKbevXv3atKkSZo8ebLi4uIkSRdddJHmz5+vZcuWSTo6\nmHjWrFl66qmn9Ic//EEXXnihNm3apPfff18ff/yxPvroI2VkZOjQoUPKy8vTiBEj9NZbb0Xd3vr1\n6yP91rJly8jypKQkzZ49W5WVlSotLY1aNi0tTZMnT1bbtm3Vv39/bdmy5YRt+6IxY8bI7/fr5ptv\n1ssvv9zoctGUlJREBhnXKisrU3x8vCQpMTFRhw8frrf8+eefr40bN35rZ5UGAAAAAAAAAAAAAAAA\nAODrgJmNv0GKi4v16KOPqrq6Wjt37lQ4HNb27dt1wQUXSFJkEKh0dDbZcDgcGej5yiuvaOnSpQoE\nAnVm4v3irLM7d+7Utm3b5PV6FQwG1aNHD+3evVvf+c53JElnn332CevncDh08cUXS5KczvrHuXfp\n0kWtW7dWeXl5ZN2YmJhIfklJiXbu3KmcnBxJUocOHSJlj83Pzc3VmDFj1LFjR+Xl5dW7zffee08d\nOnSQy+WKLEtPT5fT6Ywsq6ysVGpqauT/u3btqjlz5ujIkSNKTU1VIBBQbGysUlNTlZSUpJSUFG3b\nti3q9nbt2hXpty5dutTZpiSlpKSovLz8uMG80tHXMT4+XgkJCUpISFBVVVW97TrW3LlztWbNGpWX\nl+snP/lJZPmpzC6cmpqqQ4cO1VmWlJSkyspKxcTEqKKiQsnJyXX69Iuv+3XXXad58+ad9HYBAAAA\nAAAAAAAAAAAAAMBXh5mNv8bi4uJUUlIS+fm5555Tbm6u5s2bp5YtWyocDis9PV0ffPCBJNUZlBob\nG6uampo6ZQsLCzV69Oh6B5527NhRl156qXw+n+bPn6+RI0eqQ4cO+vjjjyUp8t/6hMNhud3u45Y1\nNNA1FAqpuro6MnA3JSVF3bp1k8/nk8/n06RJkyLrfnFgqyRdffXVevzxx7Vx48Y6fXWsG264Qbff\nfrumTp1a7zoJCQk6cOCA9u/fr4SEBLlcLjkcDsXFxWnPnj1KSUmJtKkh7du3j/TX9u3bG1z/RBo7\nUPjgwYNau3atCgsLlZWVVafcsQOW4+PjT9hfkvTDH/5Qr732miRFZmHu1q2bNmzYoOrqalVUVCg+\nPl5t2rTR3r17deTIEcXExETKt2/fXrt3725U3QEAAAAAAAAAAAAAAAAAQNNgsPHXWLdu3bR161Z5\nvV5VVlaqd+/emjhxou69914lJSVJkq666ioVFxfL4/HogQceiJTt06ePRo0apUWLFkk6OiOwx+PR\n8uXL62yjc+fOysvL05o1a5SamqpLLrlEHo9HXq9XK1eu1KWXXqp9+/YpOztbhw8fPmF9a2dRrrVw\n4ULl5eVp1apV8nq9qqioiFouKytLQ4YM0bJly+R0OuV0OjVw4EBlZWVp6NChKioqilouHA5r2LBh\nyszMVFpaWmQwcH169uypsrIybdiwIervb7/9do0YMUJ33nmnRowYIenowOezzz5bcXFxOv/886O2\nM5oePXpoz549ysnJOW524MZmHLvu7373O+Xk5OjWW2+NzAr9Ra1atVJiYqJycnK0du3a4+ozePBg\nrV+/XtLRWYvj4+Pl8Xi0Y8eOqNu9/PLL5XA4lJWVpZEjR0qSBg4cKJ/Pp6FDh8rr9UqShg8frlGj\nRsnr9erWW2+tU+cf/OAHjW4nAAAAAAAAAAAAAAAAAAD46jnCjZ0WFWgigUBAbrdb77zzjjZs2BAZ\n2PpNMX36dPXs2ZOBt41QecwMzKfDEQqa5AQMv7PhcjZ+kPmJOANHTHIkaV+Nu+GVGinObdO+hJjm\n9z0Zyz4Pu2LNspxVpSY5gbjWJjmWXDXRv6ByKsLuFnZZTlfDKzWCq2yfSY4kVcSlmuTEuWzew5Lk\nrD7+SzGnqtSRYJalIzafDf8stfm8urhdoklOrWCVTftaGnV52Gn3GeM6ZPPXEsKx8SY51kJxrUxy\nHIafV45gtU1QKGCTI7t+kiQ5bM43nJUn/mshJyOYYHM8d1UeNMmRbPs8fBJfuDwR15EykxxJUo3N\n8TyYlGaSI0kOy1s44ZBNjtH7RZLcB7ab5FSldDHJqVVZbnOsqnbb9FVijN15mSTVVJ7+OUJK9U6D\nmhwVSO1illU254GGV/qKJX7nOzZBVw2zyZHkLt1lllX63EyTnMQu6SY5klSz3+b6qsXP7zbJkSTX\nf/5mlmWmw7lmUcGktiY5DsNzRf3r/5lFhY/YnCOEL/+FSY4kVS+abJIT07adSY6kZnmc2je3wCRH\nkpyu5neP0lLr239rkjOq1aUmOZI0c8erJjmfP/uESY4knXH7fWZZgVYdTHKcwZqGV/qKhVwxDa/U\nSJbXRAGjqANG99wkKd7omsHqeYwkGV9+mLA8R3AY3atujs9RJMkpmx3d6r6NJWe13XOiarfdfWGr\n94zlc5Qyp91zFKvnDJsPG91flnRhO7v2VVfYHF+Sk2yef1i+9yzfM66P1za8UiNUfvCuSY4kfb76\n3yY5ZxX4THIkKT4uziwL33yv/Ju/DI/GubF7+ybdvt0TfuBL8uKLL+rll1+W2+1WQcHp3Qz0eDxy\nOBwKh8NyOBzy+exOFOrzyCOPaNOmTZKOzug7btw4ZWRkRH5f3yzG+/bt05gxYyL1PeOMMzR16tRG\nbbOoqEiLFy+OZA8YMED9+/c/5TY0Rb8BAAAAAAAAAAAAAAAAAICmx2BjNHuZmZnKzMw0yfL7/SY5\nJ2PcuHEn/P2oUaOiLk9LSzvl+t5000266aabTqlsNE3RbwAAAAAAAAAAAAAAAAAAoOl9s//OEwAA\nAAAAAAAAAAAAAAAAAIBTxszGAAAAAAAAAAAAAAAAAAAAX7FgKNzUVQAahZmNAQAAAAAAAAAAAAAA\nAAAAAETFYGMAAAAAAAAAAAAAAAAAAAAAUTnC4TDzcAP4WqiqKG/qKhwn5HCZZTllczh2hAImOZIU\ncsWYZVUHbdoX43SY5EiSwyjKEQraBEk6Erb7HlBc6IhJTo2rhUmOJZfhfmDJ0QxPq8JGO7pp28Ih\ns6iqkN2+UFNp815OTrR5H8dsX2OSU+tA2x4mOYlJNp8NVp97kuQIVhsF2R2Dw063WVZz5Ky2OS8L\nW/Z5TLxZltVxymF4vKtx2OxTbtnVyfI9Y8XyXNgRsDmXCsUmmuSYs9o/DfcD55HDJjlHYpNNcmpV\nldvsV63cNsfOUFwrk5xah8tOv30tW9QY1OQoy+O5e/82sywroU/+ZZIT7HGjSY4kxZTsMMtyBKps\ngoJ219lWwiW7zbIC3+1llmV1vuE6uNMkR5K02+a952zd1iRHkoJJdlnhOJvPmWCLJJMcSWrx6TqT\nnMDeYpMcqZkep3Zvtcn5Fgh2vdwkx/LY8qtOPzPJmXH4A5McSXId3mOWVZPSySSnOd7DCzvtnqNY\nts/q+tHyOcqRgNH9CKuHH7J9JmOlxvDPjMeFbe4rWt4LDDTD+eKchvuU5X1hK1bPUaTm+ZyoxrBK\nVvdIWsbb3aN0bX3fLKvkTJtzoKRkm88Gy/3JtfF1s6xQxo9Nctz7t5vkSFK4hc092MpWHU1yJCk5\nwfCZBb7xijbuauoq4Gvipu91aNLtN78zVQAAAAAAAAAAAAAAAAAAAADNAoONAQAAAAAAAAAAAAAA\nAAAAAETFYGMAAAAAAAAAAAAAAAAAAAAAUTHYGAAAAAAAAAAAAAAAAAAAAEBUDDZuQm+++ab69++v\nGTNmnFL5oqKiRq330ksvNTpz+vTpWrNmzUnVY9++fZo9e/ZJlbG2evVqTZ8+vUnrcLpmzpypVatW\nRf3dunXr9MQTT0iSBg8ebLbN559/Xv369dOLL74YWfb73/9effr0qbcutfbs2aPhw4dryJAh+tOf\n/iRJWrFihTIzM3Xbbbfp0KFDKi4u1tixYyX99zUqKirSzTffLEl64YUXVFRUpPz8fHk8Hn3/+9+X\n1+vVvHnzzNoIAAAAAAAAAAAAAAAAAABOnbupK/Bt1qdPHyUnJ+vdd989pfKLFy/WjTfeKJfLdcL1\nXnrppcjgzi9DWlqacnNzv7T8xnI4HE1dhS/N888/r7vvvluSbTtvueUWxcbGKhAIRJbdeeedCofD\nDZadNm2a7r33XnXt2lWlpaWSpD/96U/y+/165513tGjRIv3sZz+rU9/a/9+3b5927NgRWTZ58mRJ\n0pAhQ+Tz+czaBwAAAAAAAAAAAAAAAAAATg+DjZvYsYM6N2/erIceekhut1tXXXWVsrOzFQqFdP/9\n92vnzp1q166dCgoKdMcdd+jDDz9Udna2rrjiCuXm5mrWrFlauXKlXC6XHnroIbVo0UL5+fnasmWL\nvF6vhg0bpt69e6uwsFBLlixRQkKCCgoK1Lp1a+Xl5amkpEQ1NTXq2bNnvfWtnX12zZo1ys7OVseO\nHTV+/Hilp6frsccekyTl5+crISFBGzZs0PDhw9WvXz8tWbJEf/zjH9WlSxe53W5NnjxZr732mubN\nmye3261HHnlEnTp1UlFRkdauXasdO3aoc+fOmjRpksaPH68PP/xQ7du3b3D24h07dmjKlCkqKCjQ\nM888o+LiYm3fvl19+/ZVdna21q8mmqh2AAAgAElEQVRfrylTpkiSfv3rX+ujjz5SmzZt9NOf/lSS\nNGvWLPXs2VMPP/ywunfvrrVr12rmzJlKT0+Pur0v9ttdd92lcDisZ555Rg6HQ7GxsXryySejlsvK\nylJ1dbXS09P1ySefnHCAbW1+u3btJEmBQEC//e1v69QtWr8da8+ePRo1apTcbre+973v6de//rWk\n4/fBxtq1a5e6du0qSWrVqpXKy8uVnJysmJgYXXzxxfrzn/+sn/3sZ3XK1G6rb9+++stf/qK2bdue\n0rYBAAAAAAAAAAAAAAAAAMBXw9nUFUBdnTt31sKFC1VYWKhXXnlFkvTGG2/orLPOkt/v18SJEyVJ\nTz31lDIyMuTz+SKzCmdlZWnBggW655575Pf71bFjR/n9fp133nny+Xzq3bu3Dhw4oLfeeksLFixQ\nTk6Onn/+ea1bt05t2rTR3LlzlZyc3GAdL7/8chUWFqpPnz7KyMjQtGnTjlvnyiuv1Jw5cyJtKCws\n1IIFC9S3b19JUigU0rPPPqvCwkJNnDhRc+bMiZQNhULy+XyaMGGCJGnDhg1atGhR1O180d69ezVp\n0iRNnjxZcXFxkqSLLrpI8+fP17JlyyQdHUw8a9YsPfXUU/rDH/6gCy+8UJs2bdL777+vjz/+WB99\n9JEyMjJ06NAh5eXlacSIEXrrrbeibm/9+vWRfmvZsmVkeVJSkmbPnq3KysrIjL/HSktL0+TJk9W2\nbVv1799fW7Zsqbddx85MXV/dju23Y7Vu3Toy8/CWLVt04MCBerfZGKFQqM7PZWVlio+PlyQlJiaq\nrKws6izMDodDXbt2PWGbAQAAAAAAAAAAAAAAAOCbLhQO849/jfrX1JjZuJkpLi7Wo48+qurqau3c\nuVPhcFjbt2/XBRdcIEmRwZzS0Vliw+FwZEDnK6+8oqVLlyoQCNSZifeLM9fu3LlT27Ztk9frVTAY\nVI8ePbR792595zvfkSSdffbZJ6yfw+HQxRdfLElyOusfq96lSxe1bt1a5eXlkXVjYmIi+SUlJdq5\nc6dycnIkSR06dIiUPTY/NzdXY8aMUceOHZWXl1fvNt977z116NBBLpcrsiw9PV1OpzOyrLKyUqmp\nqZH/79q1q+bMmaMjR44oNTVVgUBAsbGxSk1NVVJSklJSUrRt27ao29u1a1ek37p06VJnm5KUkpKi\n8vJytWrV6riy8fHxio+PV0JCghISElRVVVVvu1atWqXbbrst8nN9dWvodTl48KDGjx+v8vJybdu2\nTeXl5ZG+OBXHbicpKUkVFRWSpIqKCiUnJ8vlctXZ/7742nTt2lX/+c9/1L1791OuAwAAAAAAAAAA\nAAAAAAAA+HIxs3ETi4uLU0lJSeTn5557Trm5uZo3b55atmypcDis9PR0ffDBB5JUZ1BqbGysampq\n6pQtLCzU6NGj6wzw/KKOHTvq0ksvlc/n0/z58zVy5Eh16NBBH3/8sSRF/lufcDgst9t93LL6tlcr\nFAqpuro6Mjg2JSVF3bp1k8/nk8/n06RJkyLrfnFAqiRdffXVevzxx7Vx48Y6fXWsG264Qbfffrum\nTp1a7zoJCQk6cOCA9u/fr4SEBLlcLjkcDsXFxWnPnj1KSUmJtKkh7du3j/TX9u3bG1z/ROrb3jvv\nvKOePXs2at1j++1Yr776qq655hr5fL46g8qP3QfrW3asM888MzI7cWlpqRITE1VeXq6amhpt2LBB\n3bt3V8uWLSOzO+/du1epqamRAfLXXXddZMbphtoGAAAAAAAAAAAAAAAAAACaBoONm1i3bt20detW\neb1eVVZWqnfv3po4caLuvfdeJSUlSZKuuuoqFRcXy+Px6IEHHoiU7dOnj0aNGqVFixZJOjqzrcfj\n0fLly+tso3PnzsrLy9OaNWuUmpqqSy65RB6PR16vVytXrtSll16qffv2KTs7W4cPHz5hfWtnUa61\ncOFC5eXladWqVfJ6vZGZbY+VlZWlIUOGaNmyZXI6nXI6nRo4cKCysrI0dOhQFRUVRS0XDoc1bNgw\nZWZmKi0tLTIYuD49e/ZUWVmZNmzYEPX3t99+u0aMGKE777xTI0aMkHR04PPZZ5+tuLg4nX/++VHb\nGU2PHj20Z88e5eTk6NChQ8f9vjEZx677u9/9Tjk5Obr11ltVVlamxYsXa8CAAaec+0U/+tGP9Mc/\n/lF33nnnccuXL1+u22+/PbKsT58+mjNnjn7zm9/Umzd69GhNmTJFgwYNirx+Ho9HHo9HhYWFuuWW\nWxQfH68ePXpo0KBBWrx4sf73f/83Uj49PV1nnHGGSdsAAAAAAAAAAAAAAAAAAMCXwxFmKlF8BQKB\ngNxut9555x1t2LBBI0eObOoqmZo+fbp69uypH/zgB2aZ4XBYr776qq6//nqzzK+7qorypq7CcUKO\nE88ofTKcsjkcO0IBkxxJCrlizLKqgzbti3HaDUq3Gt/uCAVtgiQdCdt9DygudMQkp8bVwiTHkstw\nP7DkaIanVWGjHd20beGQWVRVyG5fqKm0eS8nJ9q8j2O2rzHJqXWgbQ+TnMQkm88Gq889SXIEq42C\n7I7BYae74ZW+xpzVNudlYcs+j4k3y7I6TjkMj3c1Dpt9yi27Olm+Z6xYngs7AjbnUqHYRJMcc1b7\np+F+4Dxy4i9AN9aR2GSTnFpV5Tb7VSu3zbEzFNfKJKfW4bLTb1/LFjUNr9RIlsdz9/5tZllWQp/8\nyyQn2ONGkxxJiinZYZblCFQ1vFJjBO2us62ES3abZQW+28ssy+p8w3Vwp0mOJGm3zXvP2bqtSY4k\nBZPsssJxNp8zwRZJJjmS1OLTdSY5gb3FJjlSMz1O7d5qk/MtEOx6uUmO5bHlV51+ZpIz4/AHJjmS\n5Dq8xyyrJqWTSU5zvIcXdto9R7Fsn9X1o+VzlCMBo/sRhpP7WD6TsVITstsP4sI29xUt7wUGmuF8\ncU7DfcryvrAVq+coUvN8TlRjWCWreyQt4+3uUbq2vm+WVXKmzTlQUrLNZ4Pl/uTa+LpZVijjxyY5\n7v3bTXIkKdzC5h5sZauOJjmSlJxg+MwC33gv/fOzpq4CviZuvuDMJt3+N/sJOJqNF198US+//LLc\nbrcKCgpOK8vj8cjhcCgcDsvhcMjn8xnVsn6PPPKINm3aJOnoBfq4ceOUkZER+X19F+379u3TmDFj\nIvU944wzNHXq1EZt0+FwnPJA47vvvlv79u2L9NHjjz+uNm3anFLWypUr9fTTT0fa2KtXLw0fPvyU\nsgAAAAAAAAAAAAAAAAAAwNcLg43xlcjMzFRmZqZJlt/vN8k5GePGjTvh70eNGhV1eVpaWpPUd9q0\naWZZvXr1Uq9edrOtAAAAAAAAAAAAAAAAAACAr4/m9zc4AAAAAAAAAAAAAAAAAAAAADQLDDYGAAAA\nAAAAAAAAAAAAAAAAEBWDjQEAAAAAAAAAAAAAAAAAAABE5W7qCgBAYwUMvx8RNsqJMUuSwg6HSY5N\nylGlR4JmWTFOm5rFhatNciQp7Iq1yXG6THIkKb7igFmWjNrniokzyZEkR9joPROy2zdrDI8tbqP9\n3HWkzCRHkg47E0xyEmLs+skZCpllBcN27z8rO8tt2te+yw9NciLKAyYxruARkxyrY7AkuUo/swly\n2O3nofhWdllxNlmOkM0+IEnO8v0mOaHENiY5kuQs22uWFUxqa5Jj+RkTW1NukhOKiTfJsWZ2Lhy2\n+4yx6iurtkmSw/AcyOoc1uz8TnbHFsUm2+QYK3W1NMlxBez63IrL8BgcSOlslnX4//wmOQ6X3fE8\n/twMsywrYVeMWdbhPz9rkhOfnm6SYylwZbZZVvy2d82yrITOOMcs60i3PiY5lke7FuteNssKluwx\nyXH2GWqSI0mlb/yfSU7Cd7ub5FgLu1uY5FT98z2TnG+DuDO/a5Lz+bNPmORI0ozDH5jkjEq+yCRH\nkp7c81ezLDOG10RW1wzOgM29JMn2flLYafOY3PI5isvo+jEp1vA61PCarypokxUfqjLJkezuI4SM\nPqskyW3Y5yGjp4bVQbtjS6zR9ZUrVGOSI0lVhs8Z4lxG97gM7+XWhJrfc5TPq+3qlNq1l1mW1XMU\nq2On5X3F4PeuNsuK/eyfJjnVH64zyZEkV5sOJjkxF5xpkgMA31QMNgYAAAAAAAAAAAAAAAAAAPiK\nGX0nC/jS2U3LAQAAAAAAAAAAAAAAAAAAAOAbhcHGAAAAAAAAAAAAAAAAAAAAAKJisDEAAAAAAAAA\nAAAAAAAAAACAqBhsfAJvvvmm+vfvrxkzZpxS+aKiokat99JLLzU6c/r06VqzZs1J1WPfvn2aPXv2\nSZVpKjNnztSqVauauhrNzqRJk+r8vGLFCh06dOi0c3ft2iWPx6MhQ4ZElv3jH//QwIEDde+99zZY\nfurUqfJ4PMrJyZEklZSUaNiwYRo0aJDeeustSZLH41EoFJIkDR48WJKUkZGhjz76SMFgUB6PR0uX\nLpXH49EVV1yhW265RcOGDTvttgEAAAAAAAAAAAAAAAAAgNPHYOMT6NOnj+6///5TLr948WIFg8EG\n1zuZwcanIi0tTbm5uV/qNvDleuCBB+r8/MYbb+jgwYOnnduhQwf5/f46yy688EJNmzatwbLvvfee\nAoGA/H6/pk+fLklatGiRvF6vfD6f5s6de1wZh8MhSWrbtq2WLFkSWdavXz/5/X716tVLU6dO1bPP\nPnu6TQMAAAAAAAAAAAAAAAAAAAYYbNyAcDhc5+fNmzcrMzNTWVlZmjdvniQpFAopPz9fHo9H99xz\njyTpjjvu0Icffqjs7OzIrMKzZs3S4MGD5fF4tHXrVu3cuVMej0dbtmyR1+vV22+/LUkqLCzU4MGD\nddttt0UGlObl5enWW2/VunXrTlhfj8ejGTNmKCsrSytWrNDmzZuPm6U2Pz9fEydO1IABA7R06VJJ\n0pIlS/SLX/xCY8eOVX5+viTptdde06BBg+TxeLRjxw5JR2drvv/+++X1eiMDYMePH6/MzEyNHj26\n3noVFRXpxRdflPTf2W1nzpyp/Px8DRo0KNKXtd544w09+uijkTYVFBTohhtu0Pr16yVJfr9fmZmZ\nysnJ0YEDB3TPPfeorKwsUv7OO+/Ujh07lJWVpV/96lcaMmRIZHbdY+3fv19ZWVkaMWKE+vXr12Dd\nju3vhuoWTXFxscaOHSvpv7NVr169Wr/85S+Vm5urkSNHSjo6K/WxMw8/+OCDWrlypcaOHRuZ8Xjz\n5s0aMGCAPB6P/vrXv9Zb3wkTJsjj8WjYsGHau3dvves1xqpVq9S3b19JUqtWrSRJmzZt0iWXXKKY\nmBglJiaqsrIyatlOnTrpk08+kXT8ewwAAAAAAAAAAAAAAAAAADQfDDY+SZ07d9bChQtVWFioV155\nRdLRgbFnnXWW/H6/Jk6cKEl66qmnlJGRIZ/PF5lVOCsrSwsWLNA999wjv9+vjh07yu/367zzzpPP\n51Pv3r114MABvfXWW1qwYIFycnL0/PPPa926dWrTpo3mzp2r5OTkBut4+eWXq7CwUH369FFGRkbU\nWWqvvPJKzZkzJ9KGwsJCLViwIDJ4NBQK6dlnn1VhYaEmTpyoOXPmRMqGQiH5fD5NmDBBkrRhwwYt\nWrSoUbPhSv+d3VaSLrroIs2fP1/Lli2LLFu7dq3eeOMN3XfffZH1BwwYoIcfflhLlixRIBDQq6++\nqkWLFmnQoEF64YUXdMEFF2jTpk164YUXFAgE5HQ65XQ6FQgENHPmTHXt2lWbN2+OWp8XXnhBOTk5\nmjFjhg4dOnTCukVrS311y8zM1AsvvNCofqiVlJSk2bNnq7KyUqWlpUpLSztu5uEJEyaoV69eKigo\niAz4/tvf/iav1yu/368rrrii3m2OGTNGfr9fN998s15++eV612uMkpKSyCDjWmVlZYqPj5ckJSYm\n6vDhw/WWP//887Vx48ao/QAAAAAAAAAAAAAAAAAAAJoHd1NX4OumuLhYjz76qKqrq7Vz506Fw2Ft\n375dF1xwgSRFBlpKR2dsDYfDkcGUr7zyipYuXapAIKD09PQ669XauXOntm3bJq/Xq2AwqB49emj3\n7t36zne+I0k6++yzT1g/h8Ohiy++WJLkdNY/lrxLly5q3bq1ysvLI+vGxMRE8ktKSrRz507l5ORI\nkjp06BApe2x+bm6uxowZo44dOyovL++E9TtWenq6nE6nXC5XZNnq1auVlpZ2XH137typ8vJylZSU\n6Mwzz5QknXPOOXr33Xd14403auPGjXrttdeUlJSkjh07Sjo6OFxSnbYe67PPPtM111yj2NhYnXXW\nWSesWzT11e3cc8/VqlWrTro/JCklJUXl5eXHDeatz0033aSZM2fqzTff1IgRI9StW7eo682dO1dr\n1qxReXm5fvKTn0SWn8rswqmpqXUGZ0tHB0tXVlYqJiZGFRUVSk5OrtN/X9wnr7vuuhPOGg0AAAAA\nAAAAAAAAAAAAAJoeMxs3IC4uTiUlJZGfn3vuOeXm5mrevHlq2bKlwuGw0tPT9cEHH0iSqqqqIuvG\nxsaqpqamTtnCwkKNHj263sGdHTt21KWXXiqfz6f58+dr5MiR6tChgz7++GNJivy3PuFwWG63+7hl\nDQ0mDYVCqq6u1rZt2yQdHezarVs3+Xw++Xw+TZo0KbLusYNvr776aj3++OPauHFjnb76ooSEBFVW\nVkqS9uzZE7Xete644w517txZr7322nG/q63bZ599JknaunWrzjzzTHXv3l3Lly/XgAEDtGDBAn3v\ne987YXu/6Mwzz9S2bdtUXV2t4uLiE9atod9Fq1s0X+yPvXv3NljHY7cTExOj6urqyM9JSUl68MEH\nNXToUL344otRMw4ePKi1a9eqsLBQWVlZdTK/uN9KRwfN1/da1vrhD38YeY1KS0slSd26ddOGDRtU\nXV2tiooKxcfHq02bNtq7d6+OHDmimJiYSPn27dtr9+7dDbYdAAAAAAAAAAAAAAAAAAA0HQYbN6Bb\nt27aunWrvF6vKisr1bt3b02cOFH33nuvkpKSJElXXXWViouL5fF49MADD0TK9unTR6NGjdKiRYsk\nHZ0R2OPxaPny5XW20blzZ+Xl5WnNmjVKTU3VJZdcIo/HI6/Xq5UrV+rSSy/Vvn37lJ2drcOHD5+w\nvrWzKNdauHCh8vLytGrVKnm9XlVUVEQtl5WVpSFDhmjZsmVyOp1yOp0aOHCgsrKyNHToUBUVFUUt\nFw6HNWzYMGVmZiotLU0pKSlR17vsssu0YsUKTZ06NepMwcfW+4477pDf79ehQ4eO+53b7db111+v\nzMxMLVy4UD//+c8VFxensrIyXXnllQqFQscNNj4244tuvvlmzZ07V3fddVfUmYRPVLYxdYsmJSVF\nMTExmjx5cmRwcrTcFStWyOPxaMuWLfJ6vdqxY4ck6cc//rEmTZqkWbNmSZL+8pe/KCsrSw8//LD6\n9esXdZutWrVSYmKicnJytHbt2jq/69GjhwYPHqz169dLOjprcXx8vDweT2Sbx7r88svlcDiUlZWl\nkSNHSpIGDhwon8+noUOHyuv1SpKGDx+uUaNGyev16tZbb63Tvh/84AdRswEAAAAAAAAAAAAAAAAA\nQPPgCDc05S2+FQKBgNxut9555x1t2LAhMnj022bw4MFasGBBU1cD9SirqDTLsjrwxdQ/Fv2khU8w\nsP1kOIM1Da/USCUBu++kxDht2pfksGtf2BVrk2P02kmSq+KAWZaM2hdskWSSI0kOq9OOcMgmR1KN\n4Xev3Eb7uetImUmOJB12JpjkJMTY9ZPlcaosdPyXmE5VqCpoklNqkiK1T3Q3vNJJqCwPmOS0jLd5\n/1kdgyXJfWC7TZDDbj8PxR//JbZTzoqzyXKEbPYBSXKVHv+FuVMRSmxjkiNJjuroX6w8FcGktiY5\nAcOr7diacpOcUEy8SY4k0/eM2blw4IhJjiSFnTbH4bDT7rPKEbL5rJLs6mV2fie743llSheTnFpV\nRp+hamHT5y7D61BJChqcA6XU2HwuSFIgpbNZVuW835rkOFx2x7v4czNMckL/c4tJjiS5D9n95amy\nl/5gkhOfnm6SYylwZbZZVvy2d82yrITOOMcs60hSO5McywcXLda9bJYVLDn+L/edCmefoSY5klTh\nn2ySk/Dd7iY5kvFx6rBNn1ctnWuS820Q19dm/9zzh0dNciQpLe8xk5xRyReZ5EjSk3v+apYVSD7D\nJKc5XjOYXqcZ3k+ycrDa7l61y+jaOCnW7vzV8pqvKmiTFR+qanilRnIYPWtols9RJIVks09VB+32\n81ij6ytXyO45Q2XY7t5NnNFFu+W93HLD5ygW9xAkqdLw5kZqnF37rJ6jJCcZ3Vc0fAZteWyJ/eyf\nJjnVH64zyZEkV5sOJjnBC642yZGkuIREsyx88y36oLipq4CvicyLzmrS7duOYMDX1osvvqiXX35Z\nbrdbBQUFp5Xl8XjkcDgUDoflcDjk8/mMann6GqpbfbMYr1y5Uk8//XTk97169dLw4cMbtc1HHnlE\nmzZtiuSPGzdOGRk2D5bqU1RUpMWLF0fqO2DAAPXv3/+U85rzawoAAAAAAAAAAAAAAAAAAL48DDaG\nJCkzM1OZmZkmWX6/3yTny9BQ3ebPnx91ea9evdSrV69T2ua4ceNOqdzpuOmmm3TTTTeZ5TXn1xQA\nAAAAAAAAAAAAAAAAAHx57P6GCgAAAAAAAAAAAAAAAAAAAIBvFAYbAwAAAAAAAAAAAAAAAAAAAIiK\nwcYAAAAAAAAAAAAAAAAAAAAAomKwMQAAAAAAAAAAAAAAAAAAAICoHOFwONzUlQCAxqiqrGzqKhwn\nJIdZllM2h+Maw6O6XeukQMimYrEuu+/JhIw+Al1Ou56y6idJilHIJCfQDL+b5HRY7p12rKrlDNbY\nBEmqcbhNctyWXR622TclqcZw/6wqD5jkJCfZ9Lnr0G6TnFoHnWkmOS3jbV6/sCvWJEeSHIEjNkFO\nl02OsbDTZp9yBKtNciRJRp+hoZg4kxxrVsdhq9dOsjvvdIXsPmMsj+dBVwuzLCvOcNAkJ2x4bHGE\nbOokSQ6j189yP3dWlZrkBONbm+TUKjts875JTIoxyfm83PB9LCnJ4JDeynX49EP+f6H4FLOs2F3/\nMsuysvfFP5nktLzrdyY5kjQmPsMs66mtL9oEWZ3fSZLL5r134NXnTHIkqaX312ZZVhzVFWZZzkqb\n43nY8lzR8LwlHBNvkhNMamuSI0muf71hknPgrddNcqTmeZx68r3pJjnfBuGMK0xyHFV25wiOkM19\nm7Db7tpj5Bk/Nst6vHKzWdY3mcPwsXbAKMryQXtN0CYtxtU875+7jG6gWz3bkSS30XMUh+E9fcv7\nZUGjZ06Wz2SsoizvkVg+Z4ix6irD81fL53yVRs9RkpJtrtMkyVVxwCyrNJhsktOyhc0xIRSbYJIj\nSTEHPjHLsrqWcX281iRHkkKdLzTJCcTZ3VdMiG+ezz/QPC36oLipq4CvicyLzmrS7Te/0UMAAAAA\nAAAAAAAAAAAAAAAAmgUGGwMAAAAAAAAAAAAAAAAAAACIisHGAAAAAAAAAAAAAAAAAAAAAKJyN3UF\nAAAAAAAAAAAAAAAAAAAAvm1CoXBTVwFoFGY2boZWrlypt99++6TLFRcX67333vsSanRyDh8+rNdf\nf/2ky61evVrTp0//Emr05dm3b59mz55tmjlr1qwGX8dJkyaZbGvkyJG67LLLFAqFJEk1NTXyeDzq\n27dvg2WXLl2qIUOGKDMzU59++qkk6Te/+Y08Ho+eeOIJSdLMmTO1atUqSVJ+fr4+/fRTeTwezZ8/\nX5I0ePBgbd++XR6PR/369dO1114rr9errVu3mrQPAAAAAAAAAAAAAAAAAACcHgYbN0O9evVS7969\nT7pccxlsXFpaquXLl59SWYfDYVybL1daWppyc3PN8kKhkNauXasf/ehHJ1zvgQceMNnek08+qYyM\njMjPMTEx8vv9SktLO2G5srIyvfDCCyosLNT8+fOVlpamdevWqWXLlvL7/dq6dav27NlzXLna13ft\n2rWRn7t06SK/36/c3Fzddttt8vl8Ouecc0zaBwAAAAAAAAAAAAAAAAAATo+7qSvwTZCfn6+UlBT9\n85//VL9+/dS/f3/dd999OnjwoC699FKNHj1an3/+uUaOHKkWLVropptu0oABA5Sfn69AIKBPP/1U\n2dnZ6tevn4qKivT0009r2LBh+vnPfy7p6Iy/zz33nPbv36+4uDj94Q9/0MiRI3Xw4EG1bNlSv/vd\n7/Tuu+9q5syZOnTokNavX6+CggK1atVKo0eP1qFDh9SjRw/dfffdkiSPx6Pvf//7WrNmjYYOHapX\nX31VDz74oFJTU5WXl6dx48apTZs2x7WzuLhYEyZMUDgc1sGDB/Xcc89p4sSJ2rJli2JjY/Xoo4+q\nuLhYkydPVnFxsbxer+677z51795dU6dO1d///nelpKRo6tSpiomJqbc/d+zYoSlTpqigoEDPPPOM\niouLtX37dvXt21fZ2dlav369pkyZIkn6/9i797iqqsT//69zATkIKmI2qCleKjTNa/1q0vHSpFFZ\naqaIHMxKS8vUrBQsqymxTEuLKfNWcoRUUrtpaU1NH8tbXrKa8DOJMiVYiqLITTic8/vDr+cjelC0\nZZDzfj4ePorD3u+91tr3vddZTJw4kV27dhEeHs6NN94IHB8Z+IYbbmDq1Km0adOGLVu2kJycTLNm\nzfwub8KECeTl5VFWVsbDDz+M1+tl/vz5WCwWAgMDefXVV/3Ot3PnTp566imaNWvG9OnTfdtCcHAw\n27dvZ8SIEURHR/PVV1/x4osvEhoayuTJk4mKimLgwIE0a9aMn3/+meeff54WLVoA8M9//tPX0Tw5\nOZkdO3YAUFRUxLBhw+jduzdOp5P9+/ezZs0aAFauXMk///lP8vPzadWqFZMnT/Zb3uXLl5Oeno7V\namX8+PFcc801AHi95z4U/8JevKoAACAASURBVLfffst1112HxWLBZrMRHBxMRkYGHTt2BKBDhw5k\nZGScNt+JZV166aX88ssvfn8nIiIiIiIiIiIiIiIiIiIiIiIiIjWHRjY25PLLL8flcjF48GCWLVtG\nr169SElJITs7m/3797N9+3a6d++Oy+WiX79+vvluvvlmUlNTSUlJAaB///5+R8o9cOAAb731Fq+9\n9hoASUlJuFwu2rdvzxdffMFf//pXEhMTueOOO0hJSaFhw4asXbuWa6+9ltTUVH788Ud+/fVXX971\n11/P4sWLufHGG+nTpw+ffPIJpaWlFBYW+u1ofEJWVhavv/46S5cuxWKxMH78eFwuF3feeSfvvfce\nHTp04KWXXuLPf/4zKSkptGnThoyMDHJzc3G5XHTt2vWMox4fOHCA5557jmnTphEUFARA+/btSU1N\n5eOPPwaOdyZ+/fXXee2115gzZw5XX301GRkZbNq0iT179rBr1y6ioqLIz89nwoQJjBo1is8//9zv\n8rZt20Z4eDgLFy6kTp06vs9DQkJ44403KC4u5siRI37njYqK4qWXXjrt8x49ejBv3jzee+89AP7x\nj3/wxBNP4HK5uOKKKwA4evQoTz75JH/729946623fPO+++679O/f3/fzpEmTsFgsLFiwwDdqtb+R\nh5s2bcqbb77J9u3bK23b3r17s2TJEl555RXmzp3r+/x8RpPOy8ujbt26FT4rKCjA4XAA4HA4OHr0\naKXzR0dHs3r16nNeroiIiIiIiIiIiIiIiIiIiIiIiIj8vtTZ2JAOHToAYLPZyMrKIi0tDafTya5d\nuzhw4ADdu3enoKCAhx9+mE2bNvnma968OXa7HZvN5vvM3wivJ/KtVisej4cZM2bgdDp59913KSoq\n8lumffv20apVKwBatGhRobPxyXk9evTgiy++4Msvv+Qvf/nLGevZtm1bbDabr4PqwoULiYuLY968\neZWWY8+ePWzbto34+HhWrFjB4cOHK83fuHEjRUVFFdqjWbNmWK1W32fFxcXUr1+f8PBwiouLufzy\ny9mzZw9ffvkl//znP3G73QQGBlK/fn1CQkIICwujoKCg0jY6MapwZGRkhWUChIWFUVhYeMY2OVVk\nZCT16tXztcfdd9/Nu+++6xvhGqBu3brUq1ePyMhI9u3bB8DevXupW7cuoaGhvqygoCDCw8MJCgqi\nuLi40mWeKG+tWrUqnWb9+vU4nU7Gjx9fIcvf9na2UYbDwsJO64QdEhLiyy0uLiY0NBSrteIhxmq1\nYrFYaNeuHd9///0ZlyEiIiIiIiIiIiIiIiIiIiIiIiIi1U+djQ2x2+2+/4+MjGT06NG4XC7S09O5\n6qqrsNlsTJw4kcmTJ7No0SLftLt376a0tJTy8vIKead29jy5821GRgalpaW4XC5uvvlm37R2u52y\nsjLfdBEREWRmZgLHO/xeeumlfsvrcDhwOBysWLGCPn36nLGeJ3cePXz4MFu2bGHx4sXExcVVWo7I\nyEjfSM9Llixh0KBBleb37duXBx54gJkzZ1Y6TXBwMIcOHeLgwYMEBwf7Oj8HBQWxf/9+wsLCgLN3\nmAX405/+xJ49e4DjozafK6/XW+lyTnz+pz/9ieeee45evXrx0UcfAXDkyBHy8vLYs2cPERERACxb\ntozBgwdXebnn8jnA/PnzmT9/PklJSXg8Ht/nwcHB5OXlVZi2rKyswjSnuvrqq9m4cSMejwe3201h\nYSFRUVF88803AHzzzTe0bt2a8PBwDh48CMChQ4eoV6+er4xNmzbl559/rlJ9RURERERERERERERE\nRERERERERKR6qLPxBTBo0CBWrlzJsGHDuP/++ykuLmbTpk0MHTqUUaNGMWDAAN+0H3/8MU6nE6fT\nCcCUKVOYN28eCxcu5Mknn/Sb37x5c3766SdGjBjB7t27fZ9feeWV7Nixg8cff5xDhw7Ru3dvNm3a\nRFxcHK1atfJ1Nj4xKvHJbrrpJvLz8wkPDz9j3U6et27dutSuXZvhw4ezZcsW3+cNGzaksLCQxx57\njMzMTNq0aUNAQADx8fEMGzaMjIyMMy7jhhtuoKCggO3bt/v9/QMPPMCoUaN48MEHGTVqFHB8pN3m\nzZsTFBTEVVddVWk9T9W5c2f279/P8OHDyc/PP2N9T/X2228zYcIENmzYQHx8/GkjO5+Y98033yQu\nLg6Xy0XPnj0BCA0N5dlnn+Wpp55i2LBhlJWV8b//+7+0bdv2jOXdsWMHTqeTH3/8kfj4eLZt21bl\n8vbs2ROn00laWlqF6e644w5GjBhBamqq77Po6GhiYmJYu3at36yQkBAGDhyI0+kkJiaG3NxcOnfu\nTF5eHk6nkxYtWtCwYUNuvfVW3n33XWJjY+nQoQMhISG+Zd96660cOHDgjPUVERERERERERERERER\nERERERERkepl8VZl+Fe5IBISEhg9ejSXXXZZdReFtWvXkpubS2xsbHUXpdrMmjWLG264gWuuueaC\nLys2Npa0tDTfzzk5OeTk5NClS5cLvuw/spLi4uouwmk8nL1Te1VZMXM4LjN4VDdXO3B7zBQs0Gbu\nezIeQ6dAm9VcS5lqJ4AAKh+h/Fy4a+B3k6xV+EJJdTBVLGt52dknqqIyi/3sE1WB3WSTe81smwBl\nBrfPkkK3kZzQEDNtbsv/xUjOCYetDYzk1HGYWX9eW6CRHACL+5iZIKvt7NNUA6/VzDZlKS81kgOA\noXOoJyDISI5ppo7DptYdmLvutHnMnWNMHs/LbbWMZZli9ZaffaIq8Bo8tlg8ZsoEYDG0/kxu59aS\nI0Zyyh31jOScUHDUzH5TOyTASM6vhQb3YyDEwCG9ru3obw/5fzyOMGNZgfv+ZSzLlAPvLDr7RFVQ\n5+EXjeQAjHdEGct6LfMdM0Gmru8AbGb2vUOrlhrJAagTP9FYlimW0qKzT1RF1mIzx3OvyWtFg9ct\n3gCHkZzykEuM5ADY/vUPIzmHPv/ESA7UzOPUqxtnGcn5b+CN6mokx1Ji7hrB4jHz3MZrN3fvMabh\nX4xlvVy801jWxcxi8LW221CUyRftZeVm0gJsNfP5uc3QA3RT73YA7Ibeo1gMPtM3+bys3NA7J5Pv\nZExFmXxGYvI9Q4CppjJ4/WryPV+xofcoIaFm7tMAbEWHjGUdKQ81klOnlpljgicw2EgOQMCh/xjL\nMnUvY9uz5ewTVZGn6dVGctxB5p4rBjtq5vsPqZnStu+t7iLIH0RsxybVunxzb4TkD+uDDz5gxYoV\nvPrqq7/bMp1OJxaLBa/Xi8ViISUl5YIvMykpyTeqssViITExkaio/3tIWdmowLm5uYwfP95X3oYN\nGzJz5szfVJZTl9WoUSMaNWr0mzJP2LlzJ1OnTvUto3Xr1iQkJJx33tnaTURERERERERERERERERE\nREREREQuXupsXI2mTZtW3UUAoG/fvvTt2/d3XabL5fpdlweQmJh4xt+PHTvW7+cNGjQwXt7U1FSj\neSeLiooyWt6ztZuIiIiIiIiIiIiIiIiIiIiIiIiIXLzU2VhERERERERERERERERERERERERE5HdW\n7q3uEohUjbW6CyAiIiIiIiIiIiIiIiIiIiIiIiIiIiI1kzobi4iIiIiIiIiIiIiIiIiIiIiIiIiI\niF/qbCwiIiIiIiIiIiIiIiIiIiIiIiIiIiJ+Wbxer7e6CyEiUhUlxcXVXYQLasTyfxnJmTuwrZEc\nAIvBU4TFfcxIjicgyEgOmK3fxcyDxViWFbX5783U+hu+9FsjOQCpvesay3KHNTWWdbTAbSQnNMRu\nJMe0mla/pT/kGskBGNymgbGsmuhY2lQjObViJxvJMclSXmosy2sLNJYlIlV3dE6isaw6I/9mJMdr\nNXsurmnnUNNM1M9k3dwrXjSWZbvzcWNZNc2jwVHGsmYU7TSWZYrJ+3Wvxdw9rYhUncnj1Ev5O4zk\neOy1jOQAWA0966ypTLaVVM14h5l9ZlZRhpGcmsriMXNtDubvG0zQe5Q/Lr1H+f2ZvM43uZmXecyE\n1T6cZSQHwF0/0liWnpFUjan6mXx+bvL67mI+N5g8tjiCzJ2P5eLn2ra3uosgfxDOTk2qdfka2VhE\nRERERERERERERERERERERERERET8UmdjERERERERERERERERERERERERERER8UudjUVERERERERE\nRERERERERERERERERMQvdTYWERERERERERERERERERERERERERERv9TZuAZat24dX3zxxTnPl52d\nzcaNGy9Aic7N0aNH+eSTTy5YfnJyMhs2bLhg+abdfPPNDBs2jKFDh7Jjx47fnLdz505++OEH388r\nV67knXfeOa+sMWPGcO211+LxeAAoKyvD6XTSp0+fs8770UcfMXToUGJiYvjpp58AePLJJ3E6nbzy\nyitAxXWVkJDATz/9hNPpJDU1FYDY2FiysrJwOp1ER0dz8803Ex8fT2Zm5nnVR0RERERERERERERE\nRERERERERETMUmfjGqhbt2507979nOerKZ2Njxw5wtq1a6u7GDVGeHg4ixYtYvbs2cybN+8352Vk\nZPCvf/3LQMng1VdfJSoqyvdzQEAALpeLBg0anHG+goIC0tPTWbx4MampqTRo0ICtW7dSp04dXC4X\nmZmZ7N+//7T5LBYLAFu2bPH9HBkZicvl4v777+e+++4jJSWFli1bGqmfiIiIiIiIiIiIiIiIiIiI\niIiIiPw29uouwMUgISGBsLAwvvvuO6Kjo+nXrx+TJk3i8OHDdOrUiXHjxvHrr78yZswYatWqRf/+\n/RkwYAAJCQm43W5++ukn7r77bqKjo1m5ciVz587l3nvvZeDAgQBs3ryZpUuXcvDgQYKCgpgzZw5j\nxozh8OHD1KlThxdffJH169eTnJxMfn4+27ZtY8aMGdStW5dx48aRn59P586deeSRRwBwOp106dKF\nr7/+mmHDhrFq1SqmTJlC/fr1mTBhAomJiYSHh59Wz+zsbP72t7/h9Xo5fPgwS5cu5dlnn+XHH38k\nMDCQ559/nuzsbKZNm0Z2djbx8fFMmjSJNm3aMHPmTL755hvCwsKYOXMmAQEBp+WvXLmS8vJyBg4c\nSGxsLGlpaSQnJ5OdnU1WVhZ9+vTh7rvv9k3/j3/8g6+//ppJkybhdDpp3749X3zxBc888wydOnXC\n5XKxatUqHA4HM2fOJCkpiaeffpqQkBAAHnzwQSZNmkRCQgL16tUjLy8Pl8uF1Xp6H/yDBw8yduxY\nQkNDycrK4qOPPjpj2U7m9XoByMvLo1atWpWu08WLF7N69WqCg4OZMWMGISEh3H333dhsNi699FKm\nT5/O22+/TUpKCgAffPABixYtAo6Phr1q1SpatWrF5MmT/ZZj+fLlpKenY7VaGT9+PNdcc02F8p2L\nb7/9luuuuw6LxYLNZiM4OJiMjAw6duwIQIcOHcjIyKi0LS699FJ++eUXv78TERERERERERERERER\nERERERH5b+BRnyn5g1BnY0Muv/xyHn/8ccrLy3G5XPTq1Yt+/frx2GOPsX//frZv30737t158MEH\n8Xg8vvluvvlmunfvjtPpJDo6mv79+2OxWHC73RXyDxw4QEpKim/epKQkQkNDmTt3Ll988QXR0dHU\nqVOHDRs2MHbsWOB4Z9Rrr72W4cOHM2rUKH799VcuvfRSAK6//nrGjh2Lx+PB7XbzySef0L9/fwoL\nC/12ND4hKyuL1atXY7VasVgsjB8/ntDQUFavXs17773Hfffdx0svvcTs2bOZPn06cHwk3tzcXFwu\nF8uWLWPt2rXceuutZ2zPEyPgArRv356pU6cSGxvr69C7ZcsW9u3bR1JSkm/6AQMG0Lt3b95//32u\nvvpqVq1axZIlS1i7di3p6em0a9eOjIwMsrKy6N+/P1arFavVitvtJjk5maeffpqdO3fSpk2b08qT\nnp7O8OHD6datGz179jxj2U516NAhnE4ne/bsYdasWX7X6aFDh/j8889JS0vjq6++YtmyZYwcOZI5\nc+YQEhLCU089xbfffsuQIUNwOBy43W5fZ3SApk2bMmHChAqfnap3797ceeed5ObmkpCQ4OtsfHJb\nV1VeXh5169at8FlBQQEOhwMAh8PB0aNHK50/Ojqa1atXn/NyRUREREREREREREREREREREREROT3\npc7GhnTo0AEAm81GVlYWP/zwA8uXL6egoIADBw7QvXt3duzYwcMPP8yQIUO4/vrrAWjevDl2ux2b\nzebL8jfC64l8q9WKx+NhxowZ7N69m4MHD3Lvvff6LdO+ffto3bo1AC1atKjQ2fjkvB49ejBhwgQu\nueQS/vKXv5yxnm3btq1Q1oULF/L1119TWFhYoRPuyfbs2cO2bduIj4+ntLSUvn37nnEZp2rWrBlW\nq7XCcjdv3kyDBg0qTBcZGcnevXspLCwkLy+PRo0aAdCyZUvWr1/P7bffzvfff8+aNWsICQmhSZMm\nwPGOugD16tWjsLDQbxlycnLo3bs3gYGBNG7c+IxlO1V4eDgul4tDhw4xadIkunTpAlRcB3v37mX3\n7t3Ex8dTXl5O586dKSoqYsqUKeTm5pKdnU10dDTgf/to1qwZgG/kZH/Wr1/P4sWLT8vwl3e2UYbD\nwsLIzs6u8FlISAjFxcUAFBcXExERcdoo0Sc6qbdr1843KrOIiIiIiIiIiIiIiIiIiIiIiIiI1FzW\ns08iVWG3/1+/7cjISEaPHo3L5SI9PZ2rrroKm83GxIkTmTx5coVOlrt376a0tJTy8vIKead29jy5\nM2tGRgalpaW4XC5uvvlm37R2u52ysjLfdBEREWRmZgLHO/ye6Gh8ankdDgcOh4MVK1bQp0+fM9bz\n5M6jhw8fZsuWLSxevJi4uLhKyxEZGUmvXr1ISUlhyZIlDBo0yG92cHCwr7Pq/v37T/v9yW0yevRo\nmjZtypo1a077HRzvDJuTkwNAZmYmjRo1ok2bNqxdu5YBAwaQlpZG27Ztz1jXkzVq1Mi3rk7tZOtv\n+f5+FxISUmG035PXaZMmTejUqRMpKSmkpqby0EMP8eWXX9KiRQtSUlLo0qVLpe1b1XLMnz+f+fPn\nk5SUVGF07eDgYPLy8ipMW1ZWVmGaU1199dVs3LjRNzJ2YWEhUVFRfPPNNwB88803tG7dmvDwcA4e\nPAgcH+G5Xr16vjI2bdqUn3/+udJliIiIiIiIiIiIiIiIiIiIiIiIiEj1U2fjC2DQoEGsXLmSYcOG\ncf/991NcXMymTZsYOnQoo0aNYsCAAb5pP/74Y5xOJ06nE4ApU6Ywb948Fi5cyJNPPuk3v3nz5vz0\n00+MGDGC3bt3+z6/8sor2bFjB48//jiHDh2id+/ebNq0ibi4OFq1auXrbGyxWE7LvOmmm8jPzyc8\nPPyMdTt53rp161K7dm2GDx/Oli1bfJ83bNiQwsJCHnvsMTIzM2nTpg0BAQHEx8czbNgwMjIy/GZf\ne+21fPrpp8ycOdPvSMGnlvtEh+78/PzTfme327ntttuIiYnh7bffZuDAgQQFBVFQUECPHj3weDyn\ndTb21y4n3HnnnSxcuJCHH36YunXrnrVsJ8vLy2PYsGG++vtTv359OnbsiNPpJD4+ni+//JL27dvz\n2Wef8cADD3DkyBHftB07dmTVqlU8/vjj51SOnj174nQ6SUtLqzDdHXfcwYgRI0hNTfV9Fh0dTUxM\nDGvXrvWbFRISwsCBA3E6ncTExJCbm0vnzp3Jy8vD6XTSokULGjZsyK233sq7775LbGwsHTp0ICQk\nxLfsW2+9lQMHDlRaXhERERERERERERERERERERERERGpfhbvmYZClQsqISGB0aNHc9lll1V3UVi7\ndi25ubnExsZWd1FqvNjYWNLS0qq7GP+VSv7fyNcXqxHL/2UkZ+7Aqo/afTYWg6cIi/uYkRxPQJCR\nHDBbv4uZh8q/yHCurKjNf2+m1t/wpd8ayQFI7X36F3fOlzusqbGsowVuIzmhIfazT1QNalr9lv6Q\nayQHYHCbBsayaqJjaVON5NSKnWwkxyRLeamxLK8t0FiWiFTd0TmJxrLqjPybkRyv1ey5uKadQ00z\nUT+TdXOveNFYlu3O07+ofbF4NDjKWNaMop3Gskwxeb/uPcOX80XkwjF5nHopf4eRHI+9lpEcAKuh\nZ501lcm2kqoZ7zCzz8wq8j/gz8XC4jFzbQ7m7xtM0HuUPy69R/n9mbzON7mZl3nMhNU+nGUkB8Bd\nP9JYlp6RVI2p+pl8fm7y+u5iPjeYPLY4gsydj+Xit2ir/jK8VM2wztXbz7RmnsHld/XBBx+wYsUK\nXn311d9tmU6nE4vFgtfrxWKxkJKS8rst+2zOVrbKRg9et24dc+fO9f2+W7dujBgx4oKX91Q7d+5k\n6tSpvnK0bt2ahISE885LSkryjUZtsVhITEwkKsrcg2IRERERERERERERERERERERERERqbnU2bga\nTZs2rbqLAEDfvn3p27fv77pMl8v1uy7vXJytbKmpqX4/79atG926dbsQRTonUVFRRts3MdHcKFUi\nIiIiIiIiIiIiIiIiIiIiIiIi8sdire4CiIiIiIiIiIiIiIiIiIiIiIiIiIiISM2kzsYiIiIiIiIi\nIiIiIiIiIiIiIiIiIiLil726CyAiIiIiIiIiIiIiIiIiIiIiIiIi8t+m3Out7iKIVInF69XWKiJ/\nDGmXtDGWFdmmgZGczh++byQHwGuvZSTnmMdIDAD7xg4xltXklbeN5BwochvJAYiobeY7N16LxUgO\nQFGZuRVot5opV6DNXP1MMbkdBBmsX50AMzleq81MEFBsaJsKtptrp5Jyc5efNkPbOUBJoZntyhZk\nZv05Asz+EZKCo2VGcurajhrJ8TjCjOQA7DO07o4cKzeSA3BJsKEDAhAeZGZbMHm+spXkG8k5Fhhq\nJAegoNTcOTSslpk2L3KbO97VptRITrk9yEgOgBVz9TO1ff5SYOZYBxASaOZ4XsdiZt0BlNnM3DMA\nHDN0Pq5t8Bqh0NA+47CbPYcWGtquQkLNnBsshh/lHS347efR0NoG29xycf8hNlPHO5PbgclrBFPl\nMngKpdhQWGiAuXY6Wmaugm6PmSxT1z81lcn7UFOPbky+mqll6Nxn8hlQTTxOWTzm7vmkaixec/dp\nXquh8ZOMlsncMzxT+8y44NZGcgD6tTDz7KbX1jVGcgA8tcw9RzBlx+23GMu66r3VRnJq4nsUMHeN\nV2DwPYqp+8ea+B4FzG4LpjR0mDl2GrykxuTaM/WYxGT9bAbv+Uw9IwkwtB2AuWthMPgexXLESI6n\ndriRHDB772/s3aOt5nVXyykyd45p0aDmXbdIzbVwy0/VXQT5g7inS9NqXf7F/QRRRERERERERERE\nREREREREREREREREzps6G4uIiIiIiIiIiIiIiIiIiIiIiIiIiIhf6mwsIiIiIiIiIiIiIiIiIiIi\nIiIiIiIifqmzsYiIiIiIiIiIiIiIiIiIiIiIiIiIiPhlpLPxsmXLiI6O5p133jERd1H67LPP6Nev\nH7Nnz67uohi3c+dOli9fbiQrNjbWSM6FNGvWLL7++utqLcO8efPYv3+/7+fs7Gw2btxoJPuZZ56h\na9eu/Pzzz77PxowZw7XXXovH4znjvP7W35EjR2jbtq0vr6CggPvvvx+n08mYMWMAGDFiBIMHD+aG\nG24gPj6eVatWGamLiIiIiIiIiIiIiIiIiIiIiIiIiPw2dhMhgwYNIjAwELfbbSLuotSrVy9CQ0NZ\nv359dRfFuKioKKKiooxkWSwWIzkXuxEjRlT4+URn4+uuu+43Zz/11FOUlJRU+OzVV18lPj7+rPP6\nW3+bNm2id+/ebNy4kcsuu4z333+f6Oho+vXrR35+PnC883R2djazZ89m+vTpv7kOIiIiIiIiIiIi\nIiIiIiIiIiIiImLGOY9sfOzYMUaMGMG9997LoEGDyMnJAcDr9VaYbt26dcTExBAbG8vq1auB4yPg\nDhgwAKfTyf/8z/8AsHr1au666y4ee+wxEhISAHC5XMTExDB8+HAOHTrEo48+SkFBgS/7wQcfrLR8\nixcvJiYmhmHDhnHo0CEOHTrE3XffTUxMDKmpqQDExcUxaNAgHnvsMQYNGkRJSQnLly/3lfdMo9au\nXLmS/v3743Q6yc3NBWDLli0MGTIEp9PJhg0bcLvdxMXFMWzYMB5//HHfvKe2UVFREQ8//DDx8fHM\nmjWr0mVmZmYSHx/PkCFD+Oyzz/B4PL6On16vl+HDhwOwZs0aXzlOHpX2VBMnTiQuLo5JkyYBsHnz\nZpxOJ/feey8TJkyotGzJyckkJCQwZMgQ3nrrLeD4ej51xGan08mMGTPo27cv27ZtA+Ctt95iyJAh\njBkzhuTk5ErLBse3sTFjxpCVlcXmzZsZOXIk999/v28U3JPX6eLFi8nKymLatGm++bdu3cr8+fNJ\nSEjg2WefZcCAAXz00UeVLu/ENnNie4Pj63ny5MnEx8fzxBNPADBhwgTuuecetm7dWmnWypUrGTt2\nLMOHD2fq1KkA7Nmzh9jYWAYPHsynn35a6bxOpxOPx8NPP/3k2xcGDx7MM888Q9++ffnPf/4DQFJS\nUoWRhz/99FOSkpJ4//33iY+PZ//+/Xi9Xh566CFiY2N57rnnKl2mv/20Mqduv1W1adMmHnzwQbZs\n2QKA1WrlX//6F8eOHaNOnTrnlSkiIiIiIiIiIiIiIiIiIiIiIiIiv49z7mz8ySef0LVrVxYsWEBZ\nWVml03Xs2JElS5awaNEiFi1aBMBXX31FfHw8LpeLrl27Asc7eqalpdGnTx8A3G43q1atYsmSJQwZ\nMoT09HTatWtHRkYG6enpuN1urFb/xT548CCff/45S5YsYeHChYSEhLBs2TJiY2NZsmQJH3zwAW63\nmwYNGjBt2jQuueQS+vXrx65du+jduzdLlizhlVdeYe7cuZXWa82aNbz22mu4XC7Cw8MBePnll5k3\nbx4ul4sOHTpgt9uZj0nlXAAAIABJREFUM2cOixYtwuFw8O233/rNWrZsGb169SIlJYXs7Gz279/v\nd7qXXnqJpKQkUlNTWbx4MVarlVatWrFnzx62bdtG586d8Xg8LFiwgMWLF/Pss88yb948v1nbtm0j\nNDSUxYsXExISwjfffANAnTp1WLBgAeHh4Wzfvv20sv36668AtG/fntTUVD7++GMAunXrxuTJkyss\nw2KxMGDAAKZOncrq1atxu92sWbOGt99+m86dO1fatgDl5eUkJibywAMPEBkZCUBISAhvvPEGJSUl\nHDlypMI6/fDDD7nsssvIzs5m3759fPHFF2RkZNCuXTsAevTowbx583jvvff8Ls/tdvPhhx+yZMkS\nYmJieOedd3y/83g8pKSk8Le//Y2tW7cSHh7OwoULCQ0NPWMdmjZtyptvvulr24ULF/LEE0/gcrmY\nP39+pfP5GxU4Pz+fCRMmMGrUKD7//HMAEhMT6datm2+av/71r0yePJk77riDlJQUGjZsSF5eHgUF\nBaSlpZGYmFjpMv3tp+dSvqrIycmhZcuWHDlyBID+/ftjtVq59dZbefnll88rU0RERERERERERERE\nRERERERERER+H/ZznSEnJ4fWrVsD0KxZs0qny8jIIDk5GY/Hw+HDh4HjnQyTk5P57LPPGD16NFFR\nUdhsNgICAmjevDkAeXl5NGrUCICWLVuyfv16br/9dr7//nvWrFlDSEgITZo08bvM7OxsoqKiALDZ\nbNhsNnJycujduzcAERERHD58GIfDgcPhIDg4mODgYEpKStiwYQMulws48wiuDz30ELNnz8bj8TBl\nyhRCQkIAfP91OBwUFRUxZcoUcnNzyc7OJjo62m9WVlYWP/zwA8uXL6egoIADBw7QsGHD06b7+eef\nSUxMxOv1+tqyT58+rFmzhsOHD3PXXXeRl5fH3r17faMc/+lPf/K7zH379tGqVSsAWrRoQU5ODg0a\nNKBFixYAREZGsm/fvtPKdmIU52bNmmG1WrHZbL5Mf+0VGRnJ3r17KSwsJC8vj4iICACaN2/Od999\nV2n7ZmRkEBAQUKFj64ntLCwsjMLCwtPWaV5eHna7nS+++IIff/yR0tJS+vXrx7vvvktkZCT16tWj\nqKjI7/JO3t5atWrFhg0bfL/r0KEDcHwk3l9++cXXRie21cqcKG9gYCBwfJ9p1aoVgYGBBAQEVDqf\nv3asX78+ISEhhIWFsXv37irPW79+fW688UbGjh1Lp06dGDZsmN/5/O2n51K+s8nNzSUjI4P77ruP\nrKws9uzZQ/PmzUlISGDSpEnce++97N6929e2IiIiIiIiIiIiIiIiIiIiIiIiIlKznPPIxhEREWRm\nZgLHO8ueEBQURF5enu/nBQsWkJSUxJw5c3wjEYeEhDBlyhSGDRtGeno6cHwk29LSUl9HyrCwMHJy\ncgDIzMykUaNGtGnThrVr1zJgwADS0tJo27at37I1btyYjIwM4PiotGVlZTRu3JjMzEy8Xi+//PIL\nYWFhp83n8XiYN28e8+fPJykpCY/HU2n9r7jiCp5//nmaN2/OV1995fs8Pz8fgJKSEr788ktatGhB\nSkoKXbp08XXSPLWNIiMjGT16NC6Xi/T0dK666iq/y2zZsiWvvPIKLpeLFStWAHDttdeydetWsrKy\naNmyJWFhYbRu3ZqUlBRSUlKYOnWq36yT19/u3bt9HW1PtH9WVhYRERGnla1NmzYVck7teHryz6f+\nLiwsjH379gGwZ88ev+U6oW3btsyePZsXXnjhtPVwItffOm3atCnfffcdl156Kfn5+b7O35WV6eSy\nnbq9nXByh+qIiAhf2c9WB3/l3bVrF6Wlpbjd7kqnr127NkVFRRVGuD5TB9+Tf2e32yuMNO52uxk6\ndCizZ8/2bTP++NtP4Xin+ZO3VYDg4ODTPjtTmQA2btzImDFjmD9/PhMnTmTjxo38+uuvlJeXY7FY\naNiw4Rn3NxERERERERERERERERERERERkYuVx+PVP/2r0r/qds4jG99000089NBDrFu3DpvN5uug\neN111zFy5Ei2bt3KnDlzuOmmm3jwwQdp27YtoaGhAHz44YesWLGCoqIiEhMTAYiLi2Po0KE0bdqU\noKAg7HY7t912GzExMTgcDmbOnElQUBAFBQX06NGDFStWVNrZODw8nJ49exITE0NgYCCzZs3irrvu\n4pFHHmHBggX07du3QgfSEywWCz179sTpdNK5c+cKo+qeavr06WRkZOD1ehk8eDAAY8eOZeTIkQQE\nBDB69Gjat2/PnDlz+P777yvM27p1azIzM4mPj+eNN95g0KBBJCQk8Oabb2K320lOTsbhcJy2zIce\neojx48dTXl5Oy5Yteeqpp7BYLFx22WXUr18fOD767uDBg4mLi8Nms3HrrbcyaNCg07I6derE0qVL\niYuLo0mTJnTo0IHNmzdz5MgRhg8fTlhYGB07duTKK688rWynthnAq6++ymeffcaRI0fYuXMnc+bM\nOa397HY7ffr0YciQIYSFhVW6/k6oX78+t912G/Pnz6djx46nLdPfOm3Xrh3r16+nXbt2/Pjjj6dl\nVrZO7XY7ffv2rbC9+dOpUydSU1O5++67KS8vP2P5T13m8OHDmTx5MuXl5YwYMaLS6fv27UtiYiKN\nGzeutNzHjh3jvvvuY8+ePezevZvbb7+doUOHcuWVV/Lyyy/z+OOPM2nSJDweD+PGjaO0tJRu3bpV\nukx/+ynALbfcwpQpU+jZsydjx44F4I477mDEiBHceeedDB061G/e4cOHueeeewBo3749Bw8eJDY2\nFjjekfyFF17gsssuY9SoUQQHB9OyZUvfSNsiIiIiIiIiIiIiIiIiIiIiIiIiUvNYvGcaOrUSbrcb\nu92O0+lkwYIFBAYGnncBTmR9+eWXbN++nTFjxpx31n+b5557jiFDhtCyZcvflLN582Y2bNjg61R6\nIZxYz0uXLiUgIIABAwZcsGXJxSvtkjZnn6iKIts0MJLT+cP3jeQAeO21jOQcMzhY9L6xQ4xlNXnl\nbSM5B4oqHyH8XEXUPufv3PjlPcOXVM5VUZm5FWi3milXoM1c/UwxuR0EGaxfnQAzOV7r6V+OOl/F\nhrapYLu5diopN/eNO5uh7RygpNDMdmULMrP+HAHn/EdIzqjgaNnZJ6qCurajRnI8jtP/4sj52mdo\n3R05VrUvlVXFJcGGDghAeJCZbcHk+cpWkm8k51hg6NknqqKCUnPn0LBaZtq8yG3ueFebUiM55fYg\nIzkAVszVz9T2+UuBmWMdQEigmeN5HYuZdQdQZjNzzwBwzND5uLbBa4RCQ/uMw272HFpoaLsKCTVz\nbrCc+6O8Mzpa8NvPo6G1Dba5xez6q2lMHe9MbgcmrxFMlcvgKZRiQ2GhAeba6WiZuQq6DY1oYur6\np6YyeR9q6tHNebyaqVQtQ+c+k8+AauJxyuIxd88nVWPxmrtP81rNPMvFaJnMPcMztc+MC25tJAeg\nXwszz256bV1jJAfAU8vccwRTdtx+i7Gsq95bbSSnJr5HAXPXeAUG36OYun+sie9RwOy2YEpDh5lj\np8FLakyuPVOPSUzWz2bwns/UM5IAQ9sBmLsWBoPvUSxHjOR4aocbyQGz9/7G3j3aqn+EzlPlFJk7\nx7RoUPOuW6Tmmr/5P9VdBPmDuO/aZtW6/HO+O/B6vQwZMoSAgAB69OjxmzoaA7zzzju899572O12\nZsyY8Zuy/ptMnz6dkpKS39zR+Pfy2muvsWnTJhwOB7NnzyYpKYmMjAzg+Oi9iYmJREVFXdAyrFy5\nkhUrVvhGCx4wYAD9+vU77zyn04nFYsHr9WKxWEhJSanSfOvWrWPu3Lm+cnTr1u2MIx6bkJuby/jx\n433lbdiwYaWjOFfF3LlzWbduHXB8/Y0cOZKuXbuaKq6IiIiIiIiIiIiIiIiIiIiIiIiI1BDnNbKx\niEh10MjGVaORjatOIxtXTU38Rr5GNq46jWxcdRrZuGo0snHVaGTjqtHIxlWnkY2rRiMbV51GNq46\njWx8dhrZuOo0snHVaGTjqtPIxlWjkY2rRiMbi2ka2bjqNLJx1Whk46qpie9RQCMbVweNbFw1Gtm4\n6jSycdVoZOOq0cjGIv9HIxtLVVX3yMYX9xNEEREREREREREREREREREREREREREROW/qbCwiIiIi\nIiIiIiIiIiIiIiIiIiIiIiJ+qbOxiIiIiIiIiIiIiIiIiIiIiIiIiIiI+KXOxiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIuKXvboLICJSVZFtGhjLyvoh10hOZyMpZtWyeIxl1YmMMJZls1qM5LjNVc8Yt8dr\nLMtmppkueibbvMxirtE9FpuRHKvXXP1qojKD+7G9Bn51rvziXn1grXm3EAGGzjFWg8cDW03cNk2e\nrwzlmCyTySxTTF3/AFjcbmNZpngN7jM1UaCpCzOvuXYyeY6piWvP1G5cUzdNY5d4NbCCboPjGZi8\n0qiJxylT20HNq9lxptrcXW7upsFrbuczlAOlBg/opu6PTe4vlhp4T2vyPrS8BtbP1DZl8rmUvQYe\nqLxWU3cyFz+Lp7y6i3A6r5kd+WLfDvq1CDOW9e7uPCM5PWvgsyQAS1mxkZwGbS41kmNSTXyPAmDq\nDGozeN1i8NGNMSavpUxed5pSZqhIJreDUoP3H3ZDF1QlbnPrLiSw5m3oJq/Pa5mLMsYbGFzdRbig\njL2nNXhZZjF0rWhy3xMRuRjVwFfgIiIiIiIiIiIiIiIiIiIiIiIiIiIiUhPUzK+SioiIiIiIiIiI\niIiIiIiIiIiIiIhcxGrgHyMQ8UsjG4uIiIiIiIiIiIiIiIiIiIiIiIiIiIhf6mwsIiIiIiIiIiIi\nIiIiIiIiIiIiIiIifv1hOxsvW7aM6Oho3nnnneouSo312Wef0a9fP2bPnn1Bl7N8+XIjOZs3b2bW\nrFlGsi6k2NjY6i4Czz33XIWfN2/ezN69e39zbllZGU6nkz59+vg+27dvH06nk6FDh55x3uzsbB57\n7LHTPv/kk0/o2bOn7+edO3cydOhQ4uLieP3119mzZw9Op5Po6Ghuvvlm4uPjyczM/M11ERERERER\nEREREREREREREREREZHfzl7dBThfgwYNIjAwELfbXd1FqbF69epFaGgo69evv6DLWb58OXfeeaeR\nLIvFYiTnQqoJZXziiScq/Lx582Y6d+5MkyZNflNuQEAALperQsfiiIiI0z6rjL+22bRpEx07duSn\nn36iadOmzJkzhxkzZhAREUF+fj516tTB5XLx7rvv4na7GThw4G+qg4iIiIiIiIiIiIiIiIiIiIiI\niIiY84fobHzs2DEeeughPB4PR48eZdasWTRq1Aiv11thunXr1vH3v/8dq9VKXFwct9xyCzt37iQx\nMZHatWszYsQI/vKXv7B69WrefPNNIiMjsdvtTJs2DZfLxapVq3A4HMycOZOkpCSefvppQkJCAHjw\nwQf5+9//7rd8ixcv5sMPP6RWrVq8/PLLADzyyCOUlJTQt29f3yiupaWlNGvWjP/85z+kpKSwatUq\n0tPTsVqtjB8/nmuuucZv/sqVK0lJSSEkJISXX36ZBg0asGXLFmbOnIndbmf06NFcc8013H333dhs\nNi699FKmT58OcFobFRUVMWnSJA4fPkynTp0YN26c32XecsstBAYG0rp1a3Jycli0aBFr165l/vz5\nBAQEMHXqVOx2OwkJCfz444/Ex8dz77330r17d2bOnMnWrVupV68es2bNIjAwkOTkZPLy8vj3v/9N\nly5dGDt2bKXr++eff+aFF15gxowZzJ8/n+zsbLKysujTpw93330327Zt44UXXgBg4sSJ7Nq1i/Dw\ncG688UYAXn/9dW644QamTp1KmzZt2LJlC8nJyTRr1szv8iZOnEh2djZNmjTh+eefByAhIYGwsDC+\n++47oqOj6d27N+PGjSM0NJS8vLxKy56QkEBwcDDbt29nxIgRREdHn9ZukZGRfueNjY0lLS2N9PR0\nAgICuOaaa5g4cSL16tUjLy8Pl8uF1WrF6XSyf/9+1qxZA8Crr77KypUr+fTTT4mMjGTWrFn8+uuv\njBkzhlq1atG/f38GDBjgd5mvv/4669atw2az8fTTT9OyZctK63a+cnJyGDRoEJs2baJp06bYbDa2\nbdvGLbfcQp06dXzTnbqtioiIiIiIiIiIiIiIiIiIiIiIiEj1s1Z3Aarik08+oWvXrixYsICysrJK\np+vYsSNLlixh0aJFLFq0CICvvvqK+Ph4XC4XXbt2BY53Dk5LS6NPnz4AuN1uVq1axZIlSxgyZAjp\n6em0a9eOjIwM0tPTcbvdWK3+m+rgwYN8/vnnLFmyhIULFxISEsKyZcuIjY1lyZIlfPDBB7jdbho0\naMC0adO45JJL6NevH7t27aJ3794sWbKEV155hblz51ZarzVr1vDaa6/hcrkIDw8H4OWXX2bevHm4\nXC46dOiA3W5nzpw5LFq0CIfDwbfffus3a9myZfTq1YuUlBSys7PZv3+/3+muuOIKxo8fT9u2bWnb\nti2HDh1i4cKFpKamkpCQwMKFC2nSpAkul4srrriClJQUunfvzq+//kpmZiZpaWl06dKFTz75xJcZ\nFhaGy+VizJgxldb1wIEDPPfcc0ybNo2goCAA2rdvT2pqKh9//DFwvIPs66+/zmuvvcacOXO4+uqr\nycjIYNOmTezZs4ddu3YRFRVFfn4+EyZMYNSoUXz++ed+l7dt2zZCQ0NZvHgxtWvX5ptvvvH97vLL\nL8flcjF48GDS09MZPnw4s2fP5siRI5WWH6BHjx7MmzeP999/H+C0dquMv1GB3W43ycnJXH755ezc\nuRMAl8tFgwYNfNOMGTOGAQMGMHHiRGbNmgXA9u3b6d69Oy6Xi379+lW6zLi4ONLS0nj00UdxuVxn\nrNf5OHjwIOHh4XTp0oXNmzcDxzvir127lj59+vg6TIuIiIiIiIiIiIiIiIiIiIiIiIhIzfSHGNk4\nJyeH1q1bA1Q6Oi1ARkYGycnJeDweDh8+DED//v1JTk7ms88+Y/To0URFRWGz2QgICKB58+YA5OXl\n0ahRIwBatmzJ+vXruf322/n+++9Zs2YNISEhNGnSxO8ys7OziYqKAsBms2Gz2cjJyaF3794ARERE\ncPjwYRwOBw6Hg+DgYIKDgykpKWHDhg2+Dp5nGtX1oYceYvbs2Xg8HqZMmeIbbfnEfx0OB0VFRUyZ\nMoXc3Fyys7OJjo72m5WVlcUPP/zA8uXLKSgo4MCBAzRs2PC06U4uq8PhoKSkhICAAAICAmjVqhX7\n9u3zTXty2fft2+cbHbdly5b8+9//9v2uQ4cOAJV23AbYuHEjERER2Gw232fNmjXDarX6PisuLqZ+\n/fq+/7/88suZN28ex44do379+rjdbgIDA6lfvz4hISGEhYWxe/duv8vbt28frVq18pU3JyfHV84T\n/7XZbOzbt48+ffoQGBhI48aNKy0/QGRkJPXq1aOwsBAAu93ut92qomnTpgAV8qqie/fu7Nixg4cf\nfpghQ4Zw/fXX+53u/fff56OPPsLtdlfYt/xtj+cz8vCmTZv47rvvGDduHNnZ2QA0btyY2bNnc/To\nUQYPHuzr9C8iIiIiIiIiIiIiIiIiIiIiIiIiNc8fYmTjiIgIMjMzgeOdZU8ICgoiLy/P9/OCBQtI\nSkpizpw5vg6tISEhTJkyhWHDhpGeng5AeXk5paWlvg6oYWFh5OTkAJCZmUmjRo1o06YNa9euZcCA\nAaSlpdG2bVu/ZWvcuDEZGRkAeDweysrKaNy4MZmZmXi9Xn755RfCwsJOm8/j8TBv3jzmz59PUlIS\nHo+n0vpfccUVPP/88zRv3pyvvvrK93l+fj4AJSUlfPnll7Ro0YKUlBS6dOni6xh6ahtFRkYyevRo\nXC4X6enpXHXVVZUu92Rerxe3201paSm7du0iIiLC73QRERG+dt29e7evEzdQoQNxZfr27csDDzzA\nzJkzK50mODiYQ4cOcfDgQYKDg7HZbFgsFoKCgti/f7+vvavSOfbkbevU8trt/9cXv3HjxuzevZvS\n0lL27t171tyTndjeztRu8H8jGx84cOCsmafWzW63Vxj122azMXHiRCZPnuwb5dufpUuXsnjxYsaN\nG1chs6ys7LRtsqSk5JzLtXHjRpKTk5k/fz433HADmZmZvvYLDg6mdu3aZ80UERERERERERERERER\nERERERERkerzhxjZ+KabbuKhhx5i3bp12Gw2X0fi6667jpEjR7J161bmzJnDTTfdxIMPPkjbtm0J\nDQ0F4MMPP2TFihUUFRWRmJgIQFxcHEOHDqVp06YEBQVht9u57bbbiImJweFwMHPmTIKCgigoKKBH\njx6sWLGi0s7G4eHh9OzZk5iYGAIDA5k1axZ33XUXjzzyCAsWLKBv375+O9laLBZ69uyJ0+mkc+fO\nvo6m/kyfPp2MjAy8Xi+DBw8GYOzYsYwcOZKAgABGjx5N+/btmTNnDt9//32FeVu3bk1mZibx8fG8\n8cYbDBo0iISEBN58803sdjvJyck4HI6zrgOLxcI999xDXFwcAQEBTJ061fe7pk2bMmHCBGJiYrjm\nmmto0aIFQ4cOpW7dusyaNeus2ae64YYbeP/999m+fbvf3z/wwAOMGjUKi8XCpEmTgOMdxps3b86P\nP/5IixYtfGU+m06dOrF06VLi4uJo0qSJbzTjUw0cOJCHH36Yd955x2/n8TMZPny433Y7VZs2bXjm\nmWc4ePBghU7PJ9flm2++YebMmfz444/Ex8czbtw4OnXqxJ///GdefPFF1q1bx+TJk9m0aRNz5syh\nuLiYBx54oNJldujQAafTyeWXX17h8+joaGJiYrjvvvt8o3R37tyZ2NhYHn30UTp16uQ3b+PGjdxz\nzz0ADBo0iIyMDN+o4O3atWPTpk3k5+fzj3/8A6vVSkxMzFlaT0RERERERERERERERERERERERESq\nk8VbleFfawC3243dbsfpdLJgwQICAwN/c9aXX37J9u3bGTNmjMGSisiFsr77X4xlZf2QayTnzt3r\njeQAeO21DAVVPlL6uTr00qPGssIefdlIzt78srNPVEWXhZr5zk2ZwTNpucdcWFW+dFEVgTYzOSbt\nKzC3HdSymftDD2FBZx/FvyqsmNsOitxmsoLt5raDowZ3GofBchUXus0E1TKzHYQEmv0jJAVHzew3\ndQOKjeR4aoUayQHILS43knOoxEwOQMPa5r7XWc/QtmDocABAYOlRIzlF9hAjOQAFpeaugRo4zOzH\nx8wVCYe70EiOO9Bcmxu61DDqF4PXCPUdZvbjIG+pkRyAEsv5Pws5lanrzpp4jVBTz6G1QwKM5Jje\n90zUz2HwvGdwk8JbAw9Upp7EmrxnqIntdMxt7iRaWm6mreoYPLYcLDFXP7eh47nJ61dLDXzlYPI+\ntLwG1s9maD82eY99sR/PL3YWj5n7Y4vBZ9Vei5njsNdq5n7PNFPHzn+2/bORHIB3d+edfaIqmH1k\nm5EcAG/A2QdQqipLmZlnXHufHG0kB+DSaW8aydlXYOg5J+beo4C5dyklBh9yBRk6Ydmt5s5VJq+l\n9hrcFky51NB1p6nrH4DScnPnqyBD79RMXr+afE5i6hmJqfcoUDPrV6eWmRyT5z2T19RHj5m5Vqxj\n5lEZYO66M/OouX2vzZ/qGMuSi98bm/5T3UWQP4j7/79m1br8P8TIxl6vlyFDhhAQEECPHj1+U0dj\ngHfeeYf33nsPu93OjBkzDJVSzoXT6cRiseD1erFYLKSkpFzwZSYlJZGRkQEc74CXmJhIVFTUeWXt\n3LmTqVOn+jrytW7dmoSEhCrNO3fuXNatW+crx8iRI+natet5laOq1q1bx9y5c33l7datGyNGjDjv\nvEceeYTc3Fzf+nv55ZcJDw83VVwREREREREREREREREREREREZGLnqcGfrFZxJ8/RGdji8VCenq6\nsbyYmBhiYmKM5cm5c7lcv/syExMTjWVFRUWddx1GjhzJyJEjjZWlKrp160a3bt2M5b300kvGskRE\nRERERERERERERERERERERESk5jL7dyVFRERERERERERERERERERERERERETkoqHOxiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIuKXOhuLiIiIiIiIiIiIiIiIiIiIiIiIiIiIXxav1+ut7kKIiFTFsaOHq7sI\np9nQM9pY1nXrPjOSYy08aCQHwFM73FiWxX3MSE6+N9BIDkDtNclmgm572EwO4DF4WrZaLEZyDMUc\nzzJUv2MeIzEAmLwUslnNNFZQ4QEjOQDFH843khMYk2AkB6DQba7N65TkGss6TJiZoFo2IzEOu8Gd\nDygudBvJcdS2G8kxWT1Tm5TJG6NAT6mxLK/NzLnvcKm5g2ftADPfWy0rN9fqgTZzG1WAofXntZrZ\nXwA8FjPHFqPndU+5wTAz25QHcxU0eV1misFdxtg+Y+r6DgCvmePU/8/encdHVZ/9/3/NZLJMCEvC\nDmFHb9C4gVKpoGJFBLFCLCEkmUAIBFmCIKIFKVSWIFY2TQWCgCSAiAgtVbxZXKOyCpZag18IAdkK\nxARCQvaZ3x/8mJvABAJ8NJG+n49HHzWHM9e5zuecOedzZq5csRacMRLngjOl1Y3E8fE3c03wNjTn\nvCAvt/iGY/gZmh8AeBvcPWtRnrlghji97WYCGbpuArgM3hy8CnONxCn0rmYkDpibb9gNzX8AzhWb\nm5c5DV2GTc6ligyNucEhJ9/gc6jN0HU4wKfq9YKpivM7MHedshr6fPK/galnGZfVzHOMSSbPA6fN\n11gsU/Nqa+FZI3HA3HnwbM12RuIAzDmXZiyWV66Zz2CdvgFG4piU5TR3btpXTTMWy8cx0Uicqvg9\nismcTH0uBZDn8jYSx+QnJL6G5p3eJflG4gCkj+hvLFbLBauMxDH5nOadfdhYrGxbAyNxvPzMzRFM\nPsuY+h6lps2638atAAAgAElEQVTM5xFOv5pG4oDZ71ZNfTTlW2Ru3lLkY+bzu6wCc89ETYOq3hxB\nqq55Ww9WdgryKzH0/uaVuv2q92mWiIiIiIiIiIiIiIiIiIiIiIiIiIiIVAkqNhYRERERERERERER\nERERERERERERERGPVGwsIiIiIiIiIiIiIiIiIiIiIiIiIiIiHqnYWERERERERERERERERERERERE\nRERERDxSsfEVbN++nTlz5pRZtmrVKrp3787q1auvO+6PP/7IuHHjbjS9m8LmzZvJycm54jrx8fF0\n6NABp9NZZvnf/vY3vv/++2va3tGjRxk7duw151nVRUREePzv67Fnzx769u3LCy+84F72ySef0KtX\nL+bOnXvF165du9bjeyMhIYEXX3zR/fO6desIDw+nX79+pKamsn79ehwOB506dSIsLIzY2Ngb2gcR\nERERERERERERERERERERERERMcNW2QlUdRaLpczPYWFh+Pj4UFJSUkkZ3Vw+/vhjbr31VmrUqFHu\nOm+88QbR0dGXLe/Vq9d1bfPSY3ozuHifbnT/7rzzTmbNmlWmsPiRRx6hevXqfP3119cV89ixY2WK\nxVesWMHKlSsBOHv2LNWrV6dHjx6MGzeOYcOG0aRJkxvaBxERERERERERERERERERERERkaqu1OWq\n7BREKkTFxlexc+dOYmNjqVWrFjNnzgTAdckbPCMjg5deeonS0lIGDx7Mo48+yq5du5gxYwYAf/zj\nH7nnnntYv349b7/9Ns2aNcNmK3/ou3fvTosWLcjJyeH1118nKCiIxMREsrOz+X//7/9x7733MnLk\nSMaPH8+xY8do0qQJU6dOJT8/nyFDhuB0OnnwwQeJi4vjxIkTxMfH4+vrS+/evQkNDXUXdDZq1IgB\nAwaQkpLC0aNHmTx5Mi6Xi9OnT/Puu++yceNG3n77bWw2GwkJCeUWgE6aNIkffviBBg0aMGfOHJYt\nW0bdunXp1q0b77zzDkFBQTz44IOX5TZx4kRSU1M5cOAAd9xxBxMmTPA4bp7GPCkpiZUrVzJt2jQ6\nduzoPlYzZ87EZrMxbNgw93JPsrOzGTduHAkJCXz++ed89tln5OTk0Lp1a1566aUyx3TQoEH4+/uT\nnp7uLnpet24d3t7erFixgrvuuosvvviCP//5z7Rr187j9l555RXS0tLw9vamZ8+e3Hfffbz44ovU\nqlWL7OxsUlJSsFovbzQ+YsQIzpw5Q+3atTly5Aivv/46L7zwAkVFRTRr1oxDhw6xdOnSy8YHYP36\n9SxZsoTmzZtjs9mYPn26x9zi4+M5ffo0NWrU4C9/+Qv+/v4e1/O0jYrIysoiKCiIatWqcejQIZo1\na8bZs2fZt28ft9xyC9WrV7+uuCIiIiIiIiIiIiIiIiIiIiIiIiLy87u8ulHKqFGjBosWLSIoKIjd\nu3d7XGfx4sVMmDCBlJQU3nrrLQDmzZvHvHnz+Otf/8q8efMASE5OZvny5XTr1u2K27xQZDxgwABW\nr17tXh4YGEhKSgrx8fF8/PHHNG7cmKVLl1K7dm3++c9/sn//foKDg1m2bBmDBg0CYPfu3Tz00EOk\npKR47AR8cRfcgwcPMm/ePN59911cLheLFi1i2bJlTJkyhYULF5ab7+7du1m5ciWzZs0CoFu3bmza\ntAmA1NRUHn74YY+5TZ48mc6dO/Paa68xYcKEcsft0jwB4uLiCA0NLbNs9uzZLFy4kJSUFO6+++5y\n8z137hzjx49n4sSJBAUFAdC0aVOWLFnCt99+C5Q9posWLeKOO+5g79697N27l2+//Za0tDTuuOMO\nLBYLoaGhTJ06lfXr13vc3okTJzhy5AhLly6lRYsW7uUlJSUkJiZyyy23sHfvXo+vtdlsLFy4EJfL\nRXx8PHv27KFOnTpMnz6dunXr0qtXL/bv309WVhbR0dE4HA6ysrIAWLZsGStWrLjq+ZaQkEBKSgp3\n3XUXn3/++RXXvR7btm3j3nvvpUOHDmzduhU4X6A+efJkQkNDSU9PN75NERERERERERERERERERER\nERERETFDxcZX0bJlSwBatGjB8ePHPa5z7NgxWrdujY+PD97e3gDk5+cTFBREnTp1yM/PB84Xjnp7\ne5cpOPUkODgYm81GixYtOHbsmHv5hQJaq9VKRkYGmzZtIjo6mq+++orMzExCQkJo1KgRI0eOdBe+\nPvTQQ+Tm5jJy5Ei2bdt2xe2GhITg5eWFxWIhOzubI0eOEBMTw8SJEykoKCj3dUOGDGH06NHMnj0b\ngLp165Kbm8vJkyex2+34+vpy++23X5abJxeP27lz59zLK9JV12KxEBAQAIDdbi93vR07dpCbm4uX\nl5d7WbNmzQDw8fEBLj+mNWrUIC8vj88++4wvv/yS48ePExwcjMvlonnz5tSqVYu8vDyP2zt+/Lj7\nmF987Js2bQpwxdfa7Xb8/Pzw9/fH39+fgoIC7HY7dru9zLLatWuTnJxMSkqKu4DaarVe9XxzOp28\n9tprOBwO/va3v5UZc1O2bdvG6tWrSU5OZseOHQB06NCBlJQUxo8fT2JiovFtioiIiIiIiIiIiIiI\niIiIiIiIiIgZtspOoKo7cOAAcL7rb48ePQDw8/PjyJEj7nUaN27M/v37ad26NSUlJQD4+/uTlZWF\ny+XC398fOF/YWVxc7I5ZnsOHD1NUVERGRgYNGzZ0L7+4OLZ58+aEhYURGRkJQGlpKcXFxYwYMYLi\n4mL69etHz5498fLy4sUXX+TEiRNMmjSJjh074u/vT15eHqdOnSpTxGu1/l/teWBgIG3btmXRokUA\nFBcXl5tv165deeKJJ4iJiSE7O5vAwEA6d+7M5MmT6dmzJ3C+i++luQF4e3tTVFTkjnXxuFWrVq3M\n8uzsbGrXrl1uHi6Xi5ycHGrUqEFBQQF+fn4e13vooYeIi4tj6tSpvPHGG5fFgPKPaWFhId7e3mWO\nxdU0aNCAgwcPAufPo9tuu63Cr72Up6Jrl8vlcbnT6XSfR+VJS0ujqKiIlJQUXn/9dXccu91OdnZ2\nmXX9/PwuW1aRHA8ePEhycjIAAwcOBODIkSMEBwdTv359nE7nVWOKiIiIiIiIiIiIiIiIiIiIiIiI\nSOVQsfFV5OTkEBMTQ1BQkLuz8P33309cXBzffPMN8+fPJyYmhpdeeonS0lIGDx4MwDPPPMPQoUOx\nWCy8+OKLAERFRREZGUnTpk3dHZA9qVmzJiNHjuTs2bPMnTvX4zqPPvooEyZMoH///lgsFqZNm8bZ\ns2eZPHkyBQUFhIaGAue7ys6fP5/8/HyeeeYZALp3787MmTO5++67sVgs7pgX/7fVaqVv375ERUXh\n5eXFE088QVhY2GV5uFwuYmNjKS4upkmTJgQGBgLw+OOPM2vWLGbOnAmcL9q+NDeABx98kKlTp9Kh\nQweGDh3qcdwAnnrqKQYPHszTTz9NZGQkw4YN44cffmDz5s106dKFZ599lmeffZa4uDi8vb0ZNmwY\nHTt2LHeMW7duTatWrVi/fr3HMfB0TP/nf/6HkpISatWqRWFh4WVjVp4GDRrQoEEDoqOj8fHxuazY\nuCIxrsZTjIvPt/IKr1u0aMGPP/7I4MGDqVatGo0aNQIgKCgIu92Ow+EgISGBJk2a0LZtW9LT04mO\njmbBggXldo9eunQpH330EQBDhw51d5sGaNiwIenp6cyaNYusrCwAxo8ff0P7LiIiIiIiIiIiIiIi\nIiIiIiIiIiI/H4vLU0tUqVQRERGsWLGistO4IZmZmUyfPt1dbCznvffee3h7e9OrV6+ffVslJSXY\nbDa+/PJLdu/eTXx8/M++zZ9b4dnTlZ3CZbZ06W4s1v2pnxiJY837yUgcAGe18ruJXytLSaGRODku\nHyNxAKptSDQTqOdIM3EAp8HbstXALzMAGApzPpah/Ss02BTd5FTIy2pmsPzyThmJA5D/wVtG4viE\njzMSByCvxNyY1yjINBbrNIFmAvlW/C8gXIndZvDNB+TnlRiJY69m5vcVTe6eqVPK5IORj7Po6itV\nkMvLzL3vdJG5i2c1b+vVV6qA4lJzo+7jZe6k8jZ0/FxWc7/f67SYubYYva87Sw0GM3NOOTG3gybn\nZaYYfMsYe8+Ymt8B4DJznbIWnDES54IzpdWNxPHxN3NN8DY057wgL7f8v2ZVUX6G5gcA3gZ3z1qU\nZy6YIU5vz7+8fc0MXTcBXAZvDl6FuUbiFHpXu/pKFWRqvmE3NP8BOFdsbl7mNHQZNjmXKjI05gaH\nnHyDz6E2Q9fhAB+DO2hIVZzfgbnrlNXQ55P/DUw9y7isZp5jTDJ5HjhtvsZimZpXWwvPGokD5s6D\nZ2u2MxIHYM65NGOxvHLNfAbr9A24+kq/sCynuXPTvmqasVg+jolG4lTF71FM5mTqcymAPFf5DdCu\nhclPSHwNzTu9S/KNxAFIH9HfWKyWC1YZiWPyOc07+7CxWNm2BkbiePmZmyOYfJYx9T1KTZuZzyOc\nfjWNxAGz362a+mjKt8jcvKXIx8znd1kF5p6JmgZVvTmCVF2JW8r/q/UiFxvRsUWlbl+djasgE51u\nK9PevXuZMmVKpXesfe6558jMzMTlcmGxWJg9eza1a5srnPQkKSmJ1NRU4PxxjIuLo1OnThV6rcPh\nwGKxuPNNTk6+oVxWr17N3//+d2w2G6+99toN5XapzMxMRo8e7c63Xr16KiwXERERERERERERERER\nERERERERuQmp2LgKWr58eWWncEPatGlTJfZh1qxZv/g24+LiiIuLK/ff+/TpU+6/paSkGM0lPDyc\n8PDwCud2LerUqWM8XxERERERERERERERERERERERERGpeqre3+kSERERERERERERERERERERERER\nERGRa1JUVER8fDzh4eFs3rz5iuu6XC66devGli1brhpXxcYiIiIiIiIiIiIiIiIiIiIiIiIiIiK/\ncps2baJDhw6kpKTw9ttvX3Hdjz76iLp161Yors1AbiIiIiIiIiIiIiIiIiIiIiIiIiIicg1Kna7K\nTkFuMt999x1PPvkk3t7e1KxZk9zcXAICAjyum5qayv3331+huOpsLCIiIiIiIiIiIiIiIiIiIiIi\nIiIi8iuXm5vLuXPnSEpKolq1auTm5npc7/PPP+c3v/lNheNaXC6XSuNF5FehID+/slP4Wbk2zDcS\nx9LtGSNxRC6wFp41FsvpW91YLKkYS2mRkTi2gzuNxAEoav2AsVgWg1PZs7klRuJUD6iafzykqu3f\n2WJzx666t8VYrKqo56JvjMT5ILa9kTgiIhf7+qjnD6iux/2NzcwVrZj9qKuq3UNNM7F/Jvct/XSx\nsVitankbi1XVWEoKjcVy2XyNxRIBcFnMzM9NPu9JxZg6dgDW4gJjsXSdkv8GFqeZOafLWjXnnKaM\n8m9rLNacc2nGYolYi/KMxXL6VDMWSyrG1DUYYGe3HkbitNu8yUgc0Pco16Kq7V/kO3uMxAFYEdbG\nWCyXl4+xWFWNyWciu5+fsVhy85v71YHKTkF+JZ59oKXH5UlJSaSmpmKxWHC5XOzbt4/Fixdz2223\nMXz4cGbMmOGxs/GoUaP4y1/+woIFC2jfvj0dO3a84var5h1cRERERERERERERERERERERERERERE\nyhUXF0dcXJz75w8++IBdu3bRunVrcnJy3IXGubm55OfnU7duXQAOHTrEsGHDOHToEJ9//jnLly/H\nx6f8XypRsbGIiIiIiIiIiIiIiIiIiIiIiIiIiMivXNeuXRkzZgwffPABgwYNci/ftGkT27dvZ/r0\n6QCsXbsWgMTERNq3b3/FQmNQsbGIiIiIiIiIiIiIiIiIiIiIiIiIiMivnq+vL4mJiZct7927N717\n975s+YgRIyoU13rDmYmIiIiIiIiIiIiIiIiIiIiIiIiIiMhN6aYqNt6+fTtz5swps2zVqlV0796d\n1atXX3fcH3/8kXHjxt1oejeFzZs3k5OTc8V14uPj6dChA06ns8zyv/3tb3z//fc/S15r1669oWNc\n1a1bt47333//iutMnz4dl8t1w9t6+eWX6dSpE4cPH3YvK++YXioiIuKyZWfOnCEkJMQdLzc3lyFD\nhuBwOIiPjwdg8ODB9O3blwceeIDo6Gg+/PDDG94PEREREREREREREREREREREREREblxtspOwDSL\nxVLm57CwMHx8fCgpKamkjG4uH3/8Mbfeeis1atQod5033niD6Ojoy5b36tXr50ztpvbhhx/y+uuv\nX3EdUwXxkyZNoqCgoMyy8o7ppS59/wFs27aNxx57jK1bt9KkSRPWrVtH9+7d6dWrl7twfeHChRw9\nepS5c+fy6quvGtkPEREREREREREREREREREREREREblxN1VnY4CdO3cSGxvLmDFj3Msu7faakZFB\nREQEffv2ZfPmzQDs2rWLvn370rdvX3bv3g3A+vXrCQsL44033rjiNrt3786wYcOIiooiKysLgMTE\nRKZMmYLD4WDu3Lm4XC7GjRtH//79mTBhAgD5+flER0cTFRVFUlISACdOnCAsLAyHw8GaNWuA80Wk\nhw8fprS0FIfDAcDRo0cZMmQIcXFxhIWF4XK52LBhA/369cPhcJTpSnupSZMmER4ezqhRowBYtmwZ\nGzZsAOCdd95hw4YNHnObOHEiqampjB07lqlTp5Y7bp7GPCkpiUceeYQtW7aUOVYX8r14+cW2b9/O\n3LlzARg7dizHjh1j7dq1PPvss8TExJCQkFBm/T179vDCCy+4x3vKlCmEhoby0UcfAbBx40bCwsKI\njIwkIyOD2bNn88MPP7hfP2HCBLKysvj973/P2LFjCQ0NLbeTc0FBAYMHDyY2NpY+ffpcltu0adPK\nPQZ5eXnEx8cTHR3NjBkzADh58iSDBg0iOjqaxYsXu9f94YcfaN68Ob6+vqxdu5aBAwcSHR1NbGws\nS5cuBeC5557jvvvuc3ce3r59O3FxcQwZMsTdPdiT1NRUwsPDiYiIYP369eWuB5cf04ratm0bw4cP\nZ+fOnQBYrVb+/e9/U1hYeMWidRERERERERERERERERERERERERGpfDddsXGNGjVYtGgRQUFBZYpf\nL7Z48WImTJhASkoKb731FgDz5s1j3rx5/PWvf2XevHkAJCcns3z5crp163bFbebk5PD6668zYMAA\nVq9e7V4eGBhISkoK8fHxfPzxxzRu3JilS5dSu3Zt/vnPf7J//36Cg4NZtmwZgwYNAmD37t089NBD\npKSkeOwEfHHn2IMHDzJv3jzeffddXC4XixYtYtmyZUyZMoWFCxeWm+/u3btZuXIls2bNAqBbt25s\n2rQJOF98+vDDD3vMbfLkyXTu3JnXXnvNXTDtadwuzRMgLi6O0NDQMstmz57NwoULSUlJ4e67777i\nGF8as2nTpixZsoRdu3a5l6Wnp/PWW2+RkJDgXvfhhx9m4cKFrFu3Djh/7JcvX8748eNZsmQJd9xx\nB2lpaWzcuJGsrCzOnDlDUFAQZ86cYcaMGXTv3p1t27Z5zGfTpk106tSJRYsWlemcfSG38s4/gPfe\ne49HHnmE5ORkRo4cCZwvyI6LiyM5OZl+/fq513333XcJDw93/9y/f3+CgoL461//SlpaGgCzZs2i\nbdu2ZbYREBDAggULyM/P58yZMx7zuOeee1i5ciVLly51Fy6Xx1PX4oo4duwYrVq1cufQu3dvrFYr\nTzzxBLNnz76umCIiIiIiIiIiIiIiIiIiIiIiIiLyy7jpio1btmwJQIsWLTh+/LjHdY4dO0br1q3x\n8fHB29sbON9lOCgoiDp16pCfnw+AzWbD29ubFi1aXHGbwcHB2Gw2WrRowbFjx9zLLxTQWq1WMjIy\n2LRpE9HR0Xz11VdkZmYSEhJCo0aNGDlypLur7EMPPURubi4jR44st8j1gpCQELy8vLBYLGRnZ3Pk\nyBFiYmKYOHEiBQUF5b5uyJAhjB492l3oWbduXXJzczl58iR2ux1fX19uv/32y3Lz5OJxO3funHt5\nRbrgWiwWAgICALDb7Vdd/+KYzZo1A8DX19e9bNu2beTl5eHl5eVe1rx5c2rVqkVeXh7wf8e0VatW\nHD9+nDvuuIO9e/eyefNmUlNT3fGCg4OxWq1lXnup48ePu8+3C/mUl9ulDh48yJ133llm3w8dOnTZ\nsnPnznHy5Mky56Ddbsdut+Pn53fFAuALeQQGBpa7D2lpafTv35+BAwdy+vTpcmPB9XU2zszMJC0t\njUGDBrF//34yMjLw9fVl3LhxbNq0iX/9618cOHDgmuOKiIiIiIiIiIiIiIiIiIiIiIj82pU6Xfqf\n/leh/1U2W2UnYNqFwsWDBw/So0cPAPz8/Dhy5Ih7ncaNG7N//35at27t7kjr7+9PVlYWLpcLf39/\nAJxOJ8XFxVcthjx8+DBFRUVkZGTQsGFD9/JLi17DwsKIjIwEoLS0lOLiYkaMGEFxcTH9+vWjZ8+e\neHl58eKLL3LixAkmTZpEx44d8ff3Jy8vj1OnTpUp+LRa/69WPDAwkLZt27Jo0SIAiouLy823a9eu\nPPHEE8TExJCdnU1gYCCdO3dm8uTJ9OzZE4CSkpLLcgPw9vamqKjIHevicatWrVqZ5dnZ2dSuXbvc\nPFwuFzk5OdSoUYOCggL8/PwuW8ff399d/H3q1CmPMS6IiIjA5XKxZMkSBg4c6HGbpaWlFBUVsX//\nfho2bEj9+vX58ccf6dChA5988gm33377ZXHL06BBAzIyMujcuTOHDh26Ym6Xat68Od9++y2tWrVy\n73uzZs349ttvuf/++93L/vGPf/Dkk09eNZcL27vWguBFixaRkJBArVq1+MMf/uBebrfbyc7OpkmT\nJu5lFT2mF9u6dSvx8fE8/fTTbNq0ia1bt+Lv70+dOnXw8vKiXr16OJ3Oa8pZRERERERERERERERE\nRERERERERH45N11n45ycHGJiYvjpp5/cnYXvv/9+Nm7cyDPPPANATEwMU6dOxeFwEBsbC8AzzzzD\n0KFDGT58uHu9qKgoIiMj2bBhwxW3WbNmTUaOHMmSJUt4+umnPa7z6KOP8v3339O/f38GDBjAf/7z\nHw4cOEBERAR9+/alV69ewPnuvJGRkQwdOpTQ0FAAunfvzsyZM3n//ffLdLK9+L+tVit9+/YlKiqK\n/v37s3btWo95uFwuYmNjCQ8Pp06dOgQGBgLw+OOPs2XLFrp06QLgMTeABx98kKlTpzJv3rxyxw3g\nqaeeYvDgwSxfvhyAYcOGsXbtWmbMmMHcuXMBePbZZ4mLi8PhcLB7926P+bZp04b9+/fzl7/8xWN3\n3ks7+/bp04evv/6aw4cPe4wXExNDVFQU06dPL1OQ3K5dO3x9fQkJCfEY15OuXbvy+eefM3DgQHeH\n7Cvldmmen3zyCQ6Hwz0egwcPJikpCYfD4R63jz/+mEcfffSKMY8ePYrD4eCHH35gwIABbNy4scJ5\ndO3aleHDhzN9+nSqV6/uXt6jRw8mTpzozg0uP6aenD59moEDBzJw4EDmzp3L9u3b3QXcISEhbNu2\njX379tGnTx+ioqLw9fWldevW5cYTERERERERERERERERERERERERkcplcV1rK1S5TEREBCtWrKjs\nNG5IZmYm06dPZ+bMmZWdyq/S2LFjGT16NI0aNTIWMzc3l+3bt/PII48Yi/lrV/D/d7m+Wbk2zDcS\nx9LtmauvJHINrIVnjcVy+la/+kpilKW06OorVYDt4E4jcQCKWj9gLJbF4FT2bG6JkTjVA6rmHw+p\navt3ttjcsavuffVfFPs167noGyNxPohtbySOiMjFvj6aayzW/Y3NzBWtmP2oq6rdQ00zsX8m9y39\ndPl/retatap1+S+H3ywsJYXGYrlsvsZiiQC4KtDIoSJMPu9JxZg6dgDW4gJjsXSdkv8GFqeZOafL\nWjXnnKaM8m9rLNacc2nGYolYiy5vmnW9nD7Vrr6SGGXqGgyws1sPI3Habd5kJA7oe5RrUdX2L/Kd\nPUbiAKwIa2MslsvLx1isqsbkM5Hdw193FynPrNT0yk5BfiWe69yqUrdfNe/gvzIV6YJble3du5cp\nU6Ywfvz4Ss3jueeeIzMzE5fLhcViYfbs2dSuXbtSc7rgarmVdw7s3buXadOmuf+9bdu2jBs3rkLb\nDAgIMFZonJmZyejRo7FYLLhcLurVq3dDheVJSUmkpqYC5/c9Li6OTp06GclVRERERERERERERERE\nRERERERERKoOFRsbsHz58spO4Ya0adOmSuzDrFmzKjuFcl0tt1dffdXj8jZt2pCSkvJzpHRN6tSp\nYzSPuLg44uLijMUTERERERERERERERERERERERERkarJWtkJiIiIiIiIiIiIiIiIiIiIiIiIiIiI\nSNWkYmMRERERERERERERERERERERERERERHxSMXGIiIiIiIiIiIiIiIiIiIiIiIiIiIi4pGKjUVE\nRERERERERERERERERERERERERMQji8vlclV2EiIiFXEmL99YLB8vi5E4XvmnjcQBcPrVNBInrd9T\nRuIABCf/zVis6jYzt5vMAnO3rbq+ZmI5vbyNxAGwlhYbi5VT6mUkjt1m5v0CYLWYiXX4bJGROABW\nzO1fqaFpVfMa5s4pS0mhkTgum6+ROADZhU5jsYK8DL5nCgy9Z6rZjMSxYW6cAM7mmYmXa+gt09DQ\nOFVVJQafskxdhpf966SZQECf2+sZieNrMXee55Wau57brGZi+VFiJA5AvsvMNcrP0DwYwGnwHmpK\nTlGpsVjVvM38fnZxqbkLgp/N3O+Mm5q3eBs8DXKKzFwTanqZe+8B5OSbGfdqAWbmeFaXufMczMwR\nSgy9XwACfW/u3gim5ggGH9Oq5LzF5D3G1PXO5F3Py9BcA6DUaWb/TD9/mOC0mJn/ADir4NcgBqcI\nxj7rNHU+QdW8TlXF87yqclnNvP9MnlPeLjNzPJfV3OcRVfEeapKl2Mx3MtbCXCNxAEoD6hqLNcq/\nrZE4ry4qw5YAACAASURBVJz93kgcAD+rmZPqcK65612wwc+qiwzd/Ezd9wDOFpp5vrIbfCYyeTk4\ndc7MtbPQ5MTFkBYBBkfKae4529R3KZn55nKq623ucxJT36P4Gfx+wNvgHM/U9yjnDD3z1fc390yE\ny9w4FbrMXPNMfj9w2tDXhYfPmPsO+r6mgcZiyc1vVmp6ZacgvxLPdW5Vqdu/ub/hFxERERERERER\nERERERERERERERGpgkz+oqbIz+nmbhUiIiIiIiIiIiIiIiIiIiIiIiIiIiIi103FxiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIuKRio1FRERERERERERERERERERERERERETEo/+KYuPt27dz5MgRY/Hef//9\ny5YtXLiQkydPGtvG1cTHx9OhQwecTucvtk2AzMxMFixYcF2v9TRu12P79u3MmTPHSKyb2d69e/n+\n+++v+XUvv/wynTp14vDhw+5lFT3fIiIiLlt25swZQkJC3PFyc3MZMmQIDoeD+Ph4AAYPHkzfvn15\n4IEHiI6O5sMPP7zmvEVERERERERERERERERERERERETEvP+aYuOLCydvlKei2cGDB1OvXj1j27ia\nN954gzZt2vxi27ugTp06DBky5Lpea6rYGMBisRiLdbNKS0vj3//+9zW/btKkSXTu3LnMsoqeb56O\ny7Zt23jsscfYunUrAOvWraN79+6kpKQwbdo04Hyx/qxZs3jggQdITk7miSeeuOa8RURERERERERE\nRERERERERERERMS8ay42LiwsZOjQoURGRjJr1iwA1q9fz9tvv01RURGxsbHk5+czatQosrKyABgz\nZgw//fQTO3fuJDQ0lD/96U84HA4Adu7cSUREBBEREezZsweAvn378vLLL/Pkk09y6NChcnOZNGkS\n4eHhjBo1CoCTJ0/Sr18/HA4HM2bMAM4XSa5Zs4YZM2a410tMTGTLli1A2U6sffr0YdSoUYSHh3Pi\nxAnmzZtHREQEDoeD9PR0jhw5gsPhYN++fURHR/P5558DkJCQcFkn2BdffJGoqCj++Mc/AucLnuPi\n4hgyZIi7m6sniYmJxMfHExkZydtvvw3AuHHjOHz4MKWlpe5xA3C5XGVeu3btWnr37o3D4SAzMxOA\nZcuWERERwaBBgzh9+rTHbVb0mO7du5e+ffvywgsvuF/bo0cPevXqxbhx4+jfvz9w+TEtb9zWrl3L\nSy+9RHR0NBMmTODTTz9l0aJFAHzxxRcsXry43HECOHz4MCNGjKCgoIDExETGjRtHv3793OO2a9cu\n+vbtS9++fdm1axerVq3i448/dr9+3rx57Nmzp8Ln25gxYxg4cCAOh4MdO3bc0DFNT08nOjqafv36\n8cknnwBw9OhRhgwZQlxcHGFhYbhcLtLT03E4HERHR7Nu3Trg8mN69OhRoqKiGDFiBJGRkTidTt55\n5x2SkpJYvHgx0dHRl50rF6SmphIeHk5ERATr16+/4niXF+Nqtm3bxvDhw9m5cycAVquVf//73xQW\nFlKjRo3riikiIiIiIiIiIiIiIiIiIiIiIiIiv4xrLjbeuHEjHTp0YPny5ezbt48TJ07Qo0cP/vWv\nf/HnP/+ZuLg47HY73bp1Y9OmTRQVFZGXl0ft2rXdxY8RERHuDqhz5swhKSmJpKQkFixYAEBOTg5j\nxoxh6NChfPrpp+Xmsnv3blauXOkukK1VqxZLly4lJSWFffv2kZWVRXx8PKGhobz44ovMmTPnshgX\nd2I9dOgQU6dOZeXKldSrV4+oqChWrFjB888/T0pKCsHBwaSkpHDrrbeSnJzMQw89BMD48ePLdILd\ntWsX1atXZ9myZQQEBPDtt98CEBAQwIIFC8jPz+fMmTPl7te9997L8uXL2bhxI6WlpeXme2kX2Q0b\nNvDmm2+SkpJC7dq1ycrK4tNPP2XFihXExMSwatUqj9u72jEdPHgwdrudNm3auMf6gltvvZXRo0cT\nEhJCSEgIWVlZlx3T8sYNwOl0kpyczOTJk+nUqZO7++2mTZvo1q1buWN06tQppk6dyvTp0/Hz8wPg\nrrvuYvny5fzv//4vcL6YeN68ebz55pvMnz+fO++8k7S0NLZt20ZGRgb79++nTZs2FTrfdu3aRe3a\ntVm8eHGZAtnrOaYlJSXMmjWLhIQEli9fzrJly9zrHTx4kHnz5vHuu+9isVjc6yUnJ9O1a9dyj2lJ\nSQmJiYm0bt2avXv30q9fP4YMGUJsbCzJycnldoK+5557WLlyJUuXLmXp0qXl5g/X30362LFjtGrV\nyj0+vXv3xmq18sQTTzB79uzriikiIiIiIiIiIiIiIiIiIiIiIiIivwzbtb7g+PHjtG3bFoCWLVty\n4sQJ6tevT69evZgxYwYJCQkAPPzww4wZM4a6devy4IMPAnDu3Dlq1arlLg4FOHDgAMOGDcPlcuHt\n7Q1AUFAQAQEBBAYGcuDAgXJzGTJkCKNHjyY4OJgxY8Zw+vRpJk2aRF5eHgcOHCAvL4+goKAr7s/F\n3VpbtmxJQEAAcL6wct26dXz00UeUlJTQrFkzj68pb4xat27tjnns2DHq1KnjjhEYGEheXh41a9b0\n+PqWLVsCUL9+/XK7EXvKY8SIEcydOxen08nEiRM5cuQIBw4cIDo6mtLSUtq3b19uvhU5pp7Y7Xb8\n/f3x9/fHbrdTUFDg8Zh6yhfg7rvvBs53u7VardStW5djx45x8uRJGjduXO52t27dSsOGDfHy8nIv\na9asGVar1b0sPz/fffzz8/O55ZZbWLhwIYWFhQQFBVFSUoKPj0+Fzrfjx4+7j0vz5s3LbBOu/Zge\nPnyY8ePH43K5yhzjkJCQMvt05swZmjRpApwf63379nk8pk2bNi2TB1SsE3FaWhqJiYk4nc4rnmsV\njXepzMxM0tLSGDRoEAcPHiQjI4MWLVowbtw4/vjHPxIbG8uBAwfc4yMiIiIiIiIiIiIiIiIiIiIi\nIiIiVcs1Fxs3bNiQ9PR0OnfuTEZGBvXr16ekpITk5GRCQ0NZtWoVYWFh2O127HY7a9as4eWXXwbA\n39+frKws/vOf/7jjhYSEkJiYiI+PD8XFxUDFixq7du3KE088QUxMDNnZ2Xz44Yc89thj9O7dG4fD\n8X87abO5Y1/IIz8/n6KiojLdaK3Wso2e3333XdatW8fWrVtZs2aNe3l5HV4v5N2wYUN3N+MDBw7Q\ns2dPioqKKrRPF17TqVMnTpw4Qa1atfD39ycvL49Tp06VGRt/f3+ys7OpXbs2cL7L8CuvvMK8efP4\n6quvuO+++2jXrh0zZ84EKDMGF6voMb2wj1c6Pi6Xy+MxBc/jdnFhLUC3bt1ISEigQ4cOVxyjJ598\nknvvvZeZM2fypz/9yeM6F843l8uFv78/Xl5eWCwW/Pz8OHnyJIGBge6cr6ZBgwbs2bMHON99+Fpd\nfEwDAwNp1aoVkyZNolatWmXG6NJzsGbNmvz44480bdqUgoICgoODLzumJ0+e9LhNm81GQUHBFfNa\ntGgRCQkJ1KpViz/84Q/u5Xa7nezsbHehM1x+vnly6Vhu3bqV+Ph4nn76aTZt2sTWrVvx9/enTp06\neHl5Ua9ePZxO5xVzFBEREREREREREREREREREREREZHKY736KmU99thjbNu2jaioKG655Rbq16/P\n/Pnz6du3LwMHDuSzzz7jxIkTwPli4JycHHdx4uDBgxk0aBDLli1zF1XGxcURGxtL//79SUpKAsov\n5r2Yy+UiNjaW8PBw6tatS2BgIPfffz9Llixh+PDhZdb97W9/y8KFC5k2bRoAXbp0ITk5mXnz5mG3\n293rXbrdu+++G4fDwcaNG8ssb9KkCWPGjGHHjh0UFhbicDhITU1l7NixLF++nHbt2pGTk0NUVBS5\nubnu7r3lbedSO3bsIDIykq5du+Ll5UX37t2ZOXMma9asKfPap556isGDB7N8+XIAXn31VSIjI0lN\nTeW+++4jKCiIe+65B4fDQXR0NKmpqR63V9Fj+s477zBmzBi2bNlCdHQ0586duyyWxWLxeEwvHbfy\n/Pa3v2XHjh08/vjjVxwjgAceeIDc3Fx2797t8d+feeYZhg4dyvDhwxk6dChwvvNvixYt8PPz4/bb\nb3fnfDXt27fn5MmTxMTEkJOTc9m/X+sxHTFiBKNHjyY6OrpM5+hL44waNYrx48e7z8OrHdOLX3/P\nPffw4Ycf8sILL5SbV9euXRk+fDjTp0+nevXq7uU9evRg4sSJzJ07173s0vPNk9OnTzNw4EAGDhzI\n3Llz2b59u3ucQ0JC2LZtG/v27aNPnz5ERUXh6+vr7gIuIiIiIiIiIiIiIiIiIiIiIiIiIlWPxVXR\nNsLXYePGjWRmZhIREQFASUkJNpuNjIwMFixYwCuvvPJzbfpXKzExkfbt29OxY8fKTqVSFBUVMXz4\ncBYuXFjZqZRrzpw5PPDAA9x3330VWv+//ZiadCYv31gsH6+rF5lXhFf+aSNxAJx+NY3ESev3lJE4\nAMHJfzMWq7rNzO0ms8Dcbauur5lYTi9vI3EArKWeu9Bfj5xSr6uvVAF2m5n3C4C1Ar/gURGHz1b8\nLwZcjRVz+1dqaFrVvIa5c8pSUmgkjsvmayQOQHahua72QV4G3zMFht4z1a75j4d4ZMNs9/+zeWbi\n5Rp6yzQ0NE5VVYnBpyxTl+Fl//L8FzGuR5/b6xmJ42sxd57nlZq7ntusZmL5UWIkDkC+y8w1ys/Q\nPBjAafAeakpOUamxWNW8r/n3sz0qLjV3QfCzmckJzM1bvA2eBjlFZq4JNb3MvfcAcvLNjHu1ADNz\nPKvL3HkOZuYIJYbeLwCBvuZiVUWm5ggGH9Oq5LzF5D3G1PXO5F3Py9BcA6DUaWb/TD9/mOC0mJn/\nADh/vq9BrpvBKYKxzzpNnU9QNa9TVfE8r6pcVjPvP5PnlLfLzBzPZTX3eURVvIeaZCk2852MtTDX\nSByA0oC6xmKN8m9rJM4rZ783EgfAz2rmpDqca+56F2zws+oiQzc/U/c9gLOFZp6v7AafiUxeDk6d\nM3PtLDQ5cTGkRYDBkXKae8429V1KZr65nOp6m/ucxNT3KH4Gvx/wNjjHM/U9yjlDz3z1/c09E+Ey\nN06FLjPXPJPfD5w29HXh4TPmvoO+r2mgsVhy83vl032VnYL8Svyxyy2Vuv2f7Rv+f/zjH6xZs4Y3\n3njDveyLL75wd7r985///HNtWn6lTp48yZgxYxg4cKB7mcPhwGKx4HK5sFgsJCcn/+x5JCQkkJaW\nBpzvFDx+/HjatGnj/vfyuhhnZmYyevRod7716tVj5syZP3u+FWE6t6SkJHdX5QvdrDt16mQqXRER\nERERERERERERERERERERERGpIn7WzsYiIiaps3HFqLNxxamzccWos3HFqbNxxaizccWos/GvW1Xs\nbqTOxhWnzsYVo87GFaPOxhWnzsYVo87Gv27qbFwx6mxccepsXMFYVfBrEHU2rjh1Nv7lqbNxxVTF\ne6hJ6mxcMepsXHHqbFwx6mxcMepsXHHqbFxx6mxcMepsXDHqbCzXQp2NpaIqu7Pxzf3pvYiIiIiI\niIiIiIiIiIiIiIiIiIiIiFw3FRuLiIiIiIiIiIiIiIiIiIiIiIiIiIiIRyo2FhERERERERERERER\nEREREREREREREY9slZ2AiEhF7e3Vw1is2v9T10icJtOTjMQxqfHStcZirWvezlisyCPfGInjZbUY\niQPg9DJzG7S4XEbiAOQ5vYzFCvAx8ztFJvfPZejwBfmZm8L42cydUz6uEiNx8kvNjbmPzc9IHCvm\ncvL3Nvj7bqZOKoO8DZ0HLqvpqbrTSJTg0kwjcUppYCQOwMaMM0biFJeaGSOA+xrXMBarnt3MvSHi\njvpG4gDYCk4biZPvU9NIHACnwfuVr6HLVIHT4P3K0BTBZTF33bQanSNUvet5kaH7cQBFRuIAFLt8\njcUqdZrZP28vc8fO1JhjbkptlFdJgZE4Lpu58+C8G7//1fQ1Oejmri2Z+aXGYpliM/SeqWXoeQ9M\njri5MbcYvC/kFpvJqVl1byNxAH4yeG6WGrofB5mabGDusxuTs4NTeWae0wBKDD021DY0zwc4VWjm\nnPIxeF+vitepnwoNBfovUNvXzDmVVWDuLlPX38x1+Iyh9wtANZOfcRnyz9+b+x6lzm1mPkcInvKm\nkTimvXL2eyNx/lj9NiNxAOacSzMSp5Zf1XvGBvC1mLmJnis2t3/VDT3LmP0exdz+1TC0fwanCPgZ\nCpZbYm7Mq9mqXtlMLYPzc0rNzYVN8TZ6mTJ5PzZznWpk7HsUc5/pu6zmzqlcQ8+0hQYPnd1mJliz\nmj5G4oiI3Kyq3lOwiIiIiIiIiIiIiIiIiIiIiIiIiIiIVAkqNhYRERERERERERERERERERERERER\nERGPVGwsIiIiIiIiIiIiIiIiIiIiIiIiIiIiHtkqOwERERERERERERERERERERERERERkf82pU5X\nZacgUiG/is7Gq1atonv37qxevbqyU6myPvnkE3r16sXcuXN/0e1GRERcdZ2K5rZ27dpfxTGuyD7/\n3KZOnVrm582bN5OTk3PDcY8fP47D4SAyMtK9bM+ePfTt25cXXnjhiq/dvn07c+bMuWz522+/TVRU\nlPvnLVu2EB4eTkREBO+//z47duzA4XDwyCOP8NRTTxEdHW1kX0RERERERERERERERERERERERETk\nxv0qOhuHhYXh4+NDSUlJZadSZT3yyCNUr16dr7/++hfdrsViueo6lZXbz6Ui+/xzmzBhQpmfP/74\nY2699VZq1KhxQ3EbNmxISkpKmWLjO++8k1mzZlWokN3T2OzZs4egoCAKCgrw8/Nj/vz5JCcn4+Pj\nQ05ODjVq1CAlJYXExETat29Px44db2gfRERERERERERERERERERERERERMScKtfZuLCwkMGDBxMb\nG0tYWBjHjh0DwOUq2y48NTXV3R11/fr1AOzdu5fQ0FAcDgdffPEFAOvXr6dPnz6MHTuWcePGAZCS\nkkJ4eDgxMTFkZWXx/PPPk5ub6449fPjwcvNbtmwZ4eHh9O/fn6ysLLKyshgwYADh4eEsX74cgKio\nKMLCwhg7dixhYWEUFBTw/vvvu/PdsWNHufHXrl1L7969cTgcZGZmArBz50769euHw+Fgy5YtlJSU\nEBUVRf/+/ct0m710jM6dO8fIkSOJjo722HH2gpiYGPd/x8bGurcZERFBREQEe/bsAc53rh0zZgwD\nBgzgmWeeASArK4thw4YRFRVFVlZWhXO7kj179vDCCy/gcrkYN24cU6ZMITQ0lI8++giAjRs3EhYW\nRmRkJBkZGcyePZsffvjB/foJEyaQlZXF73//e8aOHUtoaGi5nXILCwsZOnQokZGRzJo1y73c4XAw\nd+5coqKi2Lx5M+np6fTp04cxY8ZQVFRUbu4Oh4PXXnuNJ598kl27dgGXn2+eHD16lLFjxwIwZ84c\nduzYwfbt24mLi2PIkCHEx8cDkJmZeVnn4YkTJ5KamsrYsWPdHY89vRc8mTx5Mg6Hg9jYWE6dOlXu\netfL6XRSUlLCb37zG/d4FBcXu8+pGy2OFhEREREREREREREREREREREREZGfV5UrNt60aROdOnVi\n0aJFFBcXl7vePffcw8qVK1m6dClLly4F4KuvviI6OpqUlBQ6deoEnC8OXrFiBd26dQOgpKSEDz/8\nkJUrV9KvXz/ee+897rjjDtLS0njvvfcoKSnBavU8LD/99BOffvopK1euZPHixQQEBLBq1SoiIiJY\nuXIl//jHPygpKaFOnTpMnz6dunXr0qtXL/bv389jjz3GypUref3110lKSip3vzZs2MCbb75JSkoK\ntWvXBmD27NksXLiQlJQU7r77bmw2G/Pnz2fp0qXY7XZ34ealVq1axSOPPEJycjJHjx7l5MmTHte7\n++672bNnD4cOHaJFixbA+YLXpKQkkpKSWLBggXvdU6dO8fbbb/Pmm28CkJOTw+uvv86AAQNYtWpV\nhXMrT3p6Om+99RYJCQnuLrkPP/wwCxcuZN26dQAsXryY5cuXM378eJYsWeI+fhs3biQrK4szZ84Q\nFBTEmTNnmDFjBt27d2fbtm0et7dx40Y6dOjA8uXL2bdvHydOnHD/W8eOHVm2bBldunRhyZIlTJky\nhZdeeqncwmU439k3NDSUadOmsX79+jLnW3h4OO+9994VX3upgIAAFixYQH5+PmfOnKFOnTqkpKSU\nWWfy5Ml07tyZ1157zd3x2NN7wZPRo0eTkpLC008/zd///vdy17te3333HW3btuW+++5j69atwPni\n6KSkJHr06MHOnTuNb1NEREREREREREREREREREREREREzLFVdgKXOnbsGG3btgWgWbNm5a6XlpZG\nYmIiTqeT06dPA9C7d28SExP55JNPGDZsGG3atMHLywtvb293EW12djaNGjUCoFWrVnz99df8/ve/\n57vvvmPDhg0EBAQQHBzscZtHjx6lTZs2AHh5eeHl5cWxY8d47LHHAGjYsCGnT5/Gbrdjt9vx9/fH\n39+fgoICtmzZ4i4SvVKX3xEjRjB37lycTicTJ04kICAAwP3/drudc+fOMXHiRDIzMzl69Cjdu3f3\nGOvgwYN8//33vP/+++Tm5nLq1Cnq1at32Xq/+93v2Lx5MzVq1OB3v/sdAAcOHGDYsGG4XC68vb3d\n6959990A7oLs4OBgbDYbLVq04Msvv6xwbuXZtm0bgYGBeHl5uZc1b96cWrVqkZeXB4DNZsPb25tW\nrVpx/Phx7rjjDpYsWUJWVhb5+fn4+vq6c7NarWVee6njx4+7z7eWLVty4sQJ6tevX2Zfvby8OH78\nOC1btsTHx4eaNWtecR+aN2/OkSNHyMvLK3O+tW7dmi1btlzTeFx4DwQGBpKXl3fVbV9w8Xth6NCh\n7n281OLFi9mxYwd5eXl06dLFvfxaOlFfydatW/n888/55ptvKCwsBKBNmzYkJSVx5MgRnn/+eVau\nXGlkWyIiIiIiIiIiIiIiIiIiIiIiIiJiXpXrbNywYUPS09OB88WyF/j5+ZGdne3+edGiRSQkJDB/\n/nx34WtAQAATJ06kf//+7g6ypaWlFBUVceDAAeB80eaxY8eA8110GzVqxG233cbGjRsJDQ1lxYoV\nhISEeMytcePGpKWlAeB0OikuLqZx48akp6fjcrn4z3/+Q2Bg4GWvczqdLFy40N2x1+l0lrv/t956\nK6+88gotWrTgq6++ci+/0E23oKCAL7/8kpYtW5KcnMy9997rLgy9dIyaN2/OsGHDSElJ4b333uP2\n22/3uM2QkBD27t3Lzp076dChg3vZW2+9RUpKSpnOxhcXAQMcPnyYoqIiMjIyaNSoUYVzK09ERASP\nP/44S5YsKXedC8d0//79NGzYkPr16/Pjjz9y22238cknn3DrrbcCFSuYvfh8y8jIcBcaw/mi5gsa\nN27MgQMHyMrKche3e3LpNj2db574+/uTn58PnO8efTWXbsfb25uioiL3zxe/F1avXu0xxunTp9m5\ncyfLli0jKiqqTMyCgoIy69rt9godv0vz+uabb1i2bBlvvfUWgYGBnDt3jiNHjgDnx+biQnYRERER\nERERERERERERERERERERqXqqXGfjrl27MmLECFJTU/Hy8nIXEt9///3ExcXxzTffMH/+fLp27crw\n4cMJCQmhevXqAHzwwQesWbOGc+fOMX78eACioqKIjIykadOm+Pn5YbPZ6NmzJ+Hh4djtdmbOnImf\nnx+5ubk8/PDDrFmzptxi49q1a9OlSxfCw8Px8fFhzpw59OnTh+eee45Fixbx5JNPXlaMC2CxWOjS\npQsOh4P27dtjsVjK3f9XX32VtLQ0XC4Xffv2BeDZZ58lLi4Ob29vhg0bxl133cX8+fP57rvvyry2\nbdu2pKenEx0dzYIFCwgLC2PcuHEsWbIEm81GYmIidrvd43aDg4PJyclx5x8XF0dsbCxWq5UOHTow\nfPhwj6+rVasWI0eOJC8vj7lz51JcXFyh3MrLA6BPnz4MGjSIrl27evz3mJgYoqKi8Pb2Ztq0ae7l\n7dq14/vvv3cfvyuN8wWPPfYYo0aNYvPmzbRr185dbHzpa/v378+4ceMIDg6+YnfhS1/n6Xzz5ELh\n7fTp093FyZ7ibt68maVLl7Jv3z6io6OZNm0aTZo04cEHH2Tq1Kl06NCBoUOHenwvXKpmzZpUq1aN\nmJgYGjRoQIMGDdz/1r59eyIiInj++edp164dQUFB2O12HA4HCQkJNGnSxGPMDz74gD179gAwdOhQ\ncnJy3EXbbdq0YceOHXz22Wfuc3zYsGHljqWIiIiIiIiIiIiIiIiIiIiIiIiIVD6LqyLtX39hJSUl\n2Gw2HA4HixYtwsfH54Zjffnll+zevZv4+HiDmYrIL2lb1y7GYtX+n7pG4jSZnmQkDoDL5vv/sXfn\n8VWUd///33O2LAQIAUUW2aQqFIu4PdpbKIooxa2ICxA4MewiIC5fSyLWDUXtLSIIjWUTkhBEUBRv\nsJVa21IVUES9W4mVzcoiCIQlIctZ5vcHP85tJIEDfiARX89/lMnMe66Zc51rrpm5csUkZ39F9bOn\nH683Wl9sltV/yxqTnKKKY68Tr9TEI39B5EQ4hpfSg2G7rCS/zR8wsDw+N45fBIlHsWE9T/TZlEmS\nAm7YJKfUtambkhTw2tQDj+zqQbndx6dE165R2F9qc67qJZvEyPXY/l7ggWKb+pka3WWSE6l31rFX\nitNbm/aZ5IQidpXz0mb1zLLOTLJpE6Kya+98ZdX/tY/jURqo/hf5jldFxK6dquu3OVeW7V2C0d8l\nsroWS7Wzj7CvPGKSI0l+j02ZUmR3rQp5be4ZJCkctfn8Er12dWpXqc3nd0bArh5Ihn2ERJtyWd07\nHmbRR6iTYveXiyz7nVZ1ypLP6DuTGrD7g3Uhw6fD+8psznk8kwjEqzhkU6aWde3q+e4yu05CxOh6\nMLo0CwAAIABJREFUnGb0jESSvEbXUEtfF4fMssJGH19Do36+JBWHbAoVMLyu18Z2ar9lB/0019Co\nu7GzzO4ic0ayzXMSy3uGOkbPXyXJ6DZUn9x4rU2QpEbtGx97pTg0H/97kxxJcv3VT2Z0vMqMniNk\n1W1vkiNJzx1cZ5JzwLCDl2LYnjtRm+/fwYjd9ep0fo8iSQeN+giGXQSz5wglhu/T6hi+J7JieHjy\nR8rNsvaX2fRh66bUunkRJRm+R3F3m+RE6tpciyXbtmWP0fMWw66UEnw2YeVWN3ySzqxfxywLp78n\n3v53TRcBPxDjrjq3Rvdf667gruuqX79+8vv9uuKKK77XQGNJWrRokV5//XX5fD4988wzRqXE97Fr\n1y7dc889chxHruvqzDPPrHbGX0v33nuvdu3aJdd15TiOJk2apIYNG55Q1ooVKzR9+vTYi48uXbpo\n6NChcW07YcIErVt36GGB4zh64IEHdP75559QOeK1ePFivfrqq7Hy9u7dW7169TrhvGAwGPv8HMdR\nbm6uVVEBAAAAAAAAAAAAAAAAAEAtUusGGzuOo4ULF5rl9e3bV3379jXLw/fXqFEj5eXlnfL9Pvvs\ns2ZZXbp0UZcuXU5o2wceeMCsHPG66aabdNNNN5nl1cTnBwAAAAAAAAAAAAAAAAAATr1aN9gYAAAA\nAAAAAAAAAAAAAADgdBeJujVdBCAunpouAAAAAAAAAAAAAAAAAAAAAIDaicHGAAAAAAAAAAAAAAAA\nAAAAAKrEYGMAAAAAAAAAAAAAAAAAAAAAVXJc13VruhAAEI8DB0trughHSCgrMsuKJtY3yXE9XpMc\na8+mXWCSc/9/3jHJkSQnGjbJidRtbJIjSa7j2GUZXeENi2TGiUYMw+x+9yoqm5MVNeyeJe7ZaJIT\nTmtlkiPZtlO+/V+bZe11GprkJNXxmeR4PbZfvuIDIZMcq+PzKWqSI0kHIzbnyu+1O+e1sOlUxPDO\nLxy1CfvmoM21WJJa1fObZVldjy2vV2Gj3xW2bFscw+uV1TXU49qdc6vrleV5MuXatMNWdVOSKowa\nqpRIsUnOYftCSSY5dVNsrqGW9wySTR/BDdjVg2S/XdbBkF1/w0qZUT1vHLBr70pcu2uoVR9hV6nd\n8dUxqlNJPrvvXpJhPTc65YpYBcmu3xkxvIZaXo59Rv0pyzq12+g7Y3mJqY3tVHEtvC7UVilG7ZTl\nfahV02lZDQwfI6iOKkxyQt4EkxxL/rDdux3Xb9M3PxRmVBkMny/fndzOJGfK7vdMciRJ3oBZVDRQ\nxyTndH+PYvocwaqeG4o6Ns9bPLI7T17D9wyRumfaBBm2LZ6yfWZZ+8I23+NEo/cMkl3/XKp971Es\nn+Va3a9Ldu8/yg07iwlGHTN/pNwkR5IS6qaaZeH099jyz2u6CPiBeOjq82p0/8xsDAAAAAAAAAAA\nAAAAAAAAAKBKDDYGAAAAAAAAAAAAAAAAAAAAUCUGGwMAAAAAAAAAAAAAAAAAAACoEoONAQAAAAAA\nAAAAAAAAAAAAAFSJwcao1urVq/Xcc8+dlOxQKKRgMKgePXocdb2tW7fq/vvvr/Jnjz/++HHvd+rU\nqXr//fePe7vaaMmSJXrllVcqLVu4cKFee+01SVJ6evoJ5U6bNk3dunWrdJ4effRRde7cWV999dVR\ntw0Gg4pGo5WWua6rn//857G8SCSi++67T8FgUMFgUJFIRNnZ2QoGg7rkkkuUkZGhOXPmnFDZAQAA\nAAAAAAAAAAAAAACALV9NFwC1m+M4JyXX7/crLy9P/fv3P+EyPPjgg9bF+kFZunSppkyZUu3PT/Sz\nGzlypFzXrbTs4YcfVllZ2TG3rWqfn332mf7rv/5Lq1at0i9+8Qv94x//UJs2bTRx4kQVFxfL6/Xq\nySeflCT1799fubm5J1RuAAAAAAAAAAAAAAAAAABgj8HGOKp//etfGj58uBISEvTUU08pKytLe/fu\n1UUXXaS7775bAwYMUEVFhVq2bKkvv/xSubm5+uyzz/T0009LkrKystSpUyctW7ZML774olq1aiWf\nzxcbXPpdEydO1Jo1a5SamhqbVXnTpk0aMmSIHMfR1KlTlZCQoGAwqJ07d+pPf/qTJGnx4sX661//\nqv3796tt27YaN27cUY/r7bff1gcffKCsrCwFg0F17NhRf/vb3/Too4/qoosuUl5enpYuXaqkpCRN\nnDhREyZM0COPPKKUlBRJhwbkZmVlKTs7W6mpqSoqKlJeXp48niMnC9+9e7fGjBmjunXravPmzXrz\nzTc1depUbd26VZs3b1aPHj2UmZlZZTmrO2+ff/65WrVqpYSEBEnSU089pXXr1ikQCOi6666TpCMG\nDFelsLBQjzzyiHw+n7p3715tOb6PlStXqn///po1a5YkyePx6PPPP1dxcXHsfAIAAAAAAAAAAAAA\nAADAj00keuwxXkBtcOTISOBbUlJS9Ic//EEHDx7UggUL1K1bN+Xm5mrr1q3asWOHGjVqpCeffFJn\nnHGGevXqpS+++EI5OTnKycnRtGnTlJOTI0nKz89XQUGBevToUe2+duzYoQ0bNqigoECXXnqpli9f\nLkkKh8OaOXOmLr/88tiyvLw8NWrUqNL2LVq00Isvvqi1a9ce9Zg+/PBDvf3228rKypJ0aDbe3r17\n64knntCyZcsUDoe1dOlSvfTSS+rXr58WLlyoCy64QOvWrdPChQsVDofl8Xjk8XgUDoc1depU/eQn\nP1FhYWGV+1u4cKEGDhyoyZMna//+/bHlHTt21Lx58/THP/6x2rJWd94WLFigvn37SpK+/vprbdmy\nRXPnzlWrVq2Oeuzf1aJFC82fP1/5+flasmTJcW0br08++UQ/+9nPlJiYqNLSUnXu3FnnnXeebr75\nZo0bN07RaPSk7BcAAAAAAAAAAAAAAAAAAHx/DDbGUbVs2VKS1KBBA7333nsqKChQMBjU+vXrtWvX\nLiUlJSkpKUnJyclKTk5WWVmZysrKlJaWpkaNGqm0tFTSodls/X6/WrduXSn/27Pvbt++Xeecc44k\nqU2bNtq2bZskxbZp3bq1tm/ffsyyHp7ttzqrV6+OleuwVq1aKTU1VSUlJSoqKlLTpk0lSeecc462\nb98eG2z82muvafny5WrevLmkQ4N1JcW2rcq2bdvUunVrBQIBNWvWrFJ5PR6PvF5vtWX1er1HnLeD\nBw9q586dsWVff/11pXN0mOM4Rz0PkrR161YNGTJEwWBQW7ZsiWs25OMRiUT0z3/+U3feeaf+/e9/\na82aNXIcRyNHjtSf/vQnua6rd99913SfAAAAAAAAAAAAAAAAAADADoONEbfLL79cd955p/Ly8rRo\n0SK1b9/+iHVc11VSUpL27Nmj3bt3Kzk5WZIUjUZVUVGhTZs2VVo/FArFZrZt0qSJNm7cKEnauHFj\nbMDv4WWbN2+OLTu8r6oca8DsnXfeqRYtWuhPf/pTles3aNAgNtB5w4YNatq0qdq3b6+33npLvXv3\nVkFBgTp06HDUfXxb06ZNtXHjRlVUVGjr1q3HVd5IJHLEeXvjjTd0ww03xP7dpEkTbd68WZIqrRfP\nwOEFCxZo+PDhmjNnjurVqxfbJjExUUVFRZXWTUpKOmJZVcfy7f1++umn6tWrl2bMmKHf/e53Wrly\npfbs2aOysrJY2b89s7H1YGcAAAAAAAAAAAAAAAAAAPD9MNgYcXEcR507d9bixYt1++23a9iwYUfM\nDnx4vREjRmjEiBEaOXKk7rjjDknSgAED1L9/f7355pvyeP6v2vXs2VN9+/bVW2+9pcaNG6tNmzbq\n37+/PvjgA1199dWSpEAgoMGDB+vdd9/V1VdfrY8//ljBYFBffPGFMjIy9NFHHx1RhmM5PGh6//79\nR6zv8/l0/fXXq2/fvpo/f75uueUWJSYmqri4WFdccYWi0egRg42Pts+bb75Zs2fP1l133aX69etX\nec6qU9V5+/Of/6zu3bvH1mncuLGaNWumjIyMSoON169fr0GDBmnQoEGaN29elfldu3bV+PHj9Zvf\n/EYpKSmx5d26ddOMGTP029/+Nrbs2muv1UMPPaTJkydXW17HcTRkyBANGjRIDz30kFavXh0blH7u\nuefq448/1s6dOzVgwIDYZ3j55ZfHdS4AAAAAAAAAAAAAAAAAAMCp57hMJYpTIBwOy+fz6R//+IfW\nrl2r0aNH13SRakR6eroKCgriXv+7523gwIFavXq1unXrdhJLWXsdOHjkAPeallB29Nmej0c08cjB\n6CfC9XhNcqw9m3aBSc79/3nHJEeSnGjYJCdSt7FJjiS5hoPura7wtfH3AJxoxDDM7nevorI5WVHD\n7lnino0mOeG0ViY5km075dv/tVnWXqehSU5SHZ9Jjtdj++UrPhAyybE6Pp+ix14pTgcjNufK77U7\n57Ww6VTE8M4vHLUJ++agzbVYklrV85tlWV2PLa9XYaPfFbZsWxzD65XVNdTj2p1zq+uV5Xky5dq0\nw1Z1U5IqjBqqlEixSc5h+0JJJjl1U2yuoZb3DJJNH8EN2NWDZL9d1sGQXX/DSplRPW8csGvvSly7\na6hVH2FXqd3x1TGqU0k+u+9ekmE9NzrlilgFya7fGTG8hlpejn1G/SnLOrXb6DtjeYmpje1UcS28\nLtRWKUbtlOV9qFXTaVkNDB8jqI4qTHJC3gSTHEv+sN27Hddv0zc/FGZUGQyfL9+d3M4kZ8ru90xy\nJEnegFlUNFDHJOd0f49i+hzBqp4bijo2z1s8sjtPXsP3DJG6Z9oEGbYtnrJ9Zln7wjbf40Sj9wyS\nXf9cqn3vUSyf5Vrdr0t27z/KDTuLCUYdM3+k3CRHkhLqpppl4fT38J8Ka7oI+IF4tMf5Nbp/uys4\ncBSLFi3S66+/Lp/Pp2eeeeak76+wsFBPPPFEbKbcdu3aKTs7+6TvNxgMynEcua4rx3GUm5tb6efV\nzdy7YsUKTZ8+PfbzLl26aOjQoUect5SUlBMeaHyssh2PxYsX69VXX42Vt3fv3urVq9cJ5wEAAAAA\nAAAAAAAAAAAAgNqJmY0B/GAws3F8mNk4fsxsHB9mNo4fMxvHh5mN48PMxvFjZuP4MLNx/JjZOD7M\nbBwfZjaOHzMbx4eZjePHzMbxYWbj+DCz8XFkMbNxXJjZOH7MbHzqMbNxfJjZOD7MbBw/ZjaOz+n+\nHoWZjePDzMbxY2bj+NW29yjMbBw/ZjbGDx0zGyNeNT2zsV0PBQAAAAAAAAAAAAAAAAAAAMBphcHG\nAAAAAAAAAAAAAAAAAAAAAKrEYGMAAAAAAAAAAAAAAAAAAAAAVfLVdAEAIF77yiJmWaGoa5IT8NY3\nyZGkho7N7398XRwyyZGkBoles6z7t79vkjO52X+Z5EjSsB2fmOQklR8wyZEk15dglhXyBExyLDsL\nruOY5Pj2bjHJkSQZffckyfX6TXJ2Bc4wyZEkN62NSY7f5qM7lLXnS7Os0tQWZlkqCZvE+MOlJjnR\nQLJJjrVAWZFJTjSpgUmOJPmNLleBSLlNkCQZtXeSFDW6NiTu2mCSI0mlRm1L6+SoSY4kue/MMctS\nt4F2WUY8RnXKcW36wZLddV2SPEbl8u/8wiRHkiKpTU1ywgn1THIkyVe6xyzLDdQxyfEa9l/rGLXD\nludckhSyucdyIhUmOZb3DFZS3RKzrIjH7vNL8NW+eRYCXpv2Luqzu1PzGz0jkSSvx+ba0Ka+3Wfn\nqbCpn6U+m3ZTkhLK95llOWGbtiWUcqZJjqWoYb8lELJrp2RVrAq7vnBaUl2TnIhhe1Ab26kkt/Zd\nF2qrJL/NuQpb1imjqJSA3X2M6fF5Ek1yvjF8PxA2aqZSAnb9V7unSdJXxTYHmJpoV6em7H7PJOeu\nhnbvUZ4uXmeWZfkuxYrV/aMnYvfdi3hs3jNIUoLVcxLXrt8STbb5Jh9IbmySI0n+umfZZRk1Cb6i\n/9gESdpf92yzLIVt3tcHjN6jSFLEX/vepQSM7vmiiXZjEfyy+x47Rm3ewahde+fz2Xz5Nt83yCRH\nks6b/qpZFk5/lvfjwMnEkxUAAAAAAAAAAAAAAAAAAAAAVWKwMQAAAAAAAAAAAAAAAAAAAIAqMdgY\nAAAAAAAAAAAAAAAAAAAAQJUYbAwAAAAAAAAAAAAAAAAAAACgSgw2Rtz+8pe/qFevXpo8efJxb7t4\n8eK41nvllVeOO3vr1q26//77j3u7H6LRo0frsssuUzQaPeJnS5YsiZ2/9PT0E8p/+eWX1bNnTy1a\ntCi2bNq0aerWrZvef//9o26bnZ2tr7766ojlvXv3rpT3xBNPaMCAAUpPT9c333yjZ599VsFgUJdc\ncokyMjL0zDPPnFDZAQAAAAAAAAAAAAAAAACAPV9NFwA/HN26dVPdunX13nvvHfe2r776qm688UZ5\nvd6jrvfKK6/o5ptvPu58x3GOe5sfoueff14ZGRlV/mzp0qWaMmWKpBM/H7fddpsCgYDC4XBs2ciR\nI+W67gnlFRUVqUWLFvrwww91yy23aMOGDSopKVF+fr4qKiokSffee68kqX///srNzT2h/QAAAAAA\nAAAAAAAAAAAAgJODwcY4Lt8edFpYWKhHHnlEPp9P3bt3V2ZmpqLRqMaNG6ctW7aocePGeuaZZ3Tn\nnXfq888/V2Zmpjp37qzhw4crJydHK1askNfr1SOPPKKEhARlZ2friy++UEZGhgYPHqyuXbsqPz9f\ny5YtU3Jysp555hmlpqZWW7aioiJlZ2drwoQJ+tvf/qa//vWv2r9/v9q2batx48Zp06ZNGjdunCKR\niIYMGaLk5GRt2LAhNnh3yZIl8vv9KigoUMeOHfX3v/9djzzyiC666KIq9/fUU09p3bp18vv9uv76\n63XppZdq7NixSk1NVVFRkfLy8uTxHDl5+KhRo7Rv3z41bNhQW7Zs0ZQpU/Sb3/xGFRUVatmypb78\n8kvl5ubqs88+09NPPy1JysrKUqdOnY74DA77/PPP1apVKyUkJMT9We7cuVNjxoyRz+dThw4dNHbs\n2GrzT9SqVat01VVXadmyZZIODYLevHmz9uzZo7S0NLP9AAAAAAAAAAAAAAAAAACAk+PIkZBAnFq0\naKH58+crPz9fS5YskSS9/fbbatasmfLy8jR+/HhJ0u9//3udf/75ys3N1fDhwyVJAwYMUEFBgf7f\n//t/ysvLU/PmzZWXl6dzzz1Xubm56tq1q/bs2aN33nlHBQUFGjhwoF5++eVqy3Lw4EE98MADeuih\nh2KDWFu0aKEXX3xRH3/8sSRp9uzZevDBB5WXl6dZs2bpggsuUGFhoQoLC/Xxxx9r3bp1uuCCC+Q4\njnr37q3HH388Nkj2u3bs2KEtW7Zo7ty5at26dWx5OBzW1KlT9ZOf/ESFhYVVbuvz+TRjxgy5rqvR\no0fr008/VaNGjfTkk0/qjDPOUK9evfTFF18oJydHOTk5mjZtmnJycmLbVzVr8YIFC9S3b99qz09V\nUlNTNXfuXOXl5emLL77Qnj17jmv7eKxatUqXXXaZWrVqpc2bN6tNmza6/vrrlZGRoZEjR+rgwYPm\n+wQAAAAAAAAAAAAAAAAAAHaY2RgnbOvWrXrqqadUUVGhLVu2yHVdbd68WRdccIEkKSkpKbau67py\nXTc2UHbJkiV68803FQ6H1bJly0rrHbZlyxZt3LhRGRkZikQiuvjii6stywcffKBzzz1XXq83tuxw\nbiAQkCRt27ZNbdu2VSAQkN/vV7169VRSUqK//vWvCofD2r59u5o3by7XddWqVStt2bJFJSUlVe5v\n+/btsUHG3x5s3KJFC0mHBvJWt21SUpISExOVnJys5ORkFRUVKSkpSUlJSbFlZWVlKisriw2c/vag\n3O/OPHzw4EHt3LmzUjnisXfvXj388MMqKSnRxo0bVVJSYj7b8CeffKIHH3xQe/bsUatWrdSqVSul\np6crPT1d06ZN05IlS457kDQAAAAAAAAAAAAAAAAAADh1mNkYxyUxMVF79+6VdGg23eHDh2vOnDmq\nV6+eXNdVy5Yt9cknn0iSysrKYtsFAgGFQqHYvxcsWKD8/HzdfffdRwyePax58+a66KKLlJubq3nz\n5mn06NHVlqtr1656+OGH9fjjjx/xs8P5zZo10/r161VRUaFwOCxJSk5OVnl5uTweT6WBysdy1lln\nafPmzZIU+++Jqur4XddVUlKS9uzZo927d6tOnTqxnx0eoHzYG2+8oRtuuOGYmd+1dOlSXXPNNcrN\nza00UDkxMbFSfnXLjnUsO3fu1LnnnqsZM2Zo1qxZWrlypUpKSrRv3z5JUpMmTRSJRI6rzAAAAAAA\nAAAAAAAAAAAA4NRiZmMcl3bt2um///u/lZGRocGDB2v8+PE699xzlZKSIknq3r273n77bQWDQTVu\n3FjPPPOMJKlbt24aM2aMrrjiCvXt21cXXnihgsGgfvKTn1TKb9Gihe677z717dtXl156qTp16qRg\nMCjHcZSZmalu3bpVW7a2bdvqnHPO0bJly2IzKEuK/f/AgQM1btw4RSIRDR06VJJ03nnnKRwOKzU1\nVeXl5ZXWP5qzzjpLZ511ljIyMhQIBNS+fftKP48n42gcx9GIESM0YsQIOY6jsWPHxn7261//WkOH\nDtXNN9+s/v376+2331ZOTk6l7ffu3atBgwZJkjp27KgxY8YcsY+f//znGjt2rP785z8fsXzYsGFa\ns2aNXnjhBUmHPr/77rtP77//vsaPH19tubOyspSYmKiEhARdd911ateunaRDMz1v375dJSUlGj16\ntAKBgAKBgCZNmlTpmAEAAAAAAAAAAAAAAADgxyISZYJG/DA4LtOJAt/LwoUL5ff71atXr1O+7+Li\nYq1evfqog7BPJ1v2FJtlhYwu1AGv3QTxDRNtsraXhE1yJKlBYvwzfh9LcuSgSc7kZv9lkiNJw3Z8\nYpKTFDpgkiNJri/BLCvkCZjk+Ax/F8A1+sUC/54vTXIkSY7d99j1+k1ydgXOMMmRpJSAzfH5DeuB\nr+g/ZlmlqS3MssqM2s96CaFjrxSHaCDZJOew4gM25arvtWnzokkNTHIkKWR0RxOIlNsESZLhL1JF\nja4N/l0bTHIkqTStjUmO5Tl3V8y3y+o20CTHiUaOvVKcoo5Nv8wju0cAVtd1SXKMHk34d3xukiNJ\nkdSmJjnhhHomOZLkK91jluUG6hx7pThYtVGS5AmVHXulOER8iSY5h5UU21xD6yVFTXIsz7lk00eo\n7y81KMkhkUS770xFpPY99rR6FJvgs7uPCRu+zLCKSjD8e3yeihKTnFKfTbspSUkV+8yynHCFSU4o\n5UyTHEtRw1cXgZBNPTDl2lwXJKk8UNckx/LlZm1sp8rCte+6UFtZPU+qjdeYgNfuPsby+Hwem3J9\nbdR3laSwUTNlVZ8kqYFhJ+GrAzbPAlMN36PUD+81ybmrod17lKeL15llWb5LsWJ1z+6N2n33Ih6b\n9wySlLCj0CbIsN8STbZ5LnwgubFJjiT5Da8NVu9SLN+j7K97tllWpMzmeafVexRJivjt3qVYPQOq\n77O5/4gm1jfJkWT6PXYiNudpX9Suvatn1N/4ckx/kxxJOm/6q2ZZOP1lL/2spouAH4gnr2t/7JVO\nImY2xg/Kvffeq127dsl1XTmOo0mTJqlhw4YndZ/Tp0/XihUrJB2afXfYsGHq3LlzXNsenpX5cHlz\nc3NNy5aSkhLXQGPL87ZixQpNnz49NhNxly5dYjNFAwAAAAAAAAAAAAAAAACA0wuDjfGD8uyzz57y\nfQ4bNkzDhg2r9ue33nprtT/Ly8s7GUU6bpbnrUuXLurSpYtZHgAAAAAAAAAAAAAAAAAAqL0M/yAd\nAAAAAAAAAAAAAAAAAAAAgNMJg40BAAAAAAAAAAAAAAAAAAAAVInBxgAAAAAAAAAAAAAAAAAAAACq\nxGBjAAAAAAAAAAAAAAAAAAAAAFVyXNd1a7oQABCP0rIysyzHqOlz3l9okiNJ7i9uNQqK2uRIcj1e\nsyxPxUGTnIg/2SRHkjYM6m2S85PZr5jkSJITqTDLqvAETHIck5RDfLKpn45hPY96/WZZVm2LJXf5\nDJMc5+qhJjmS5ETDdlmhUrOsfaEkkxxvok3bmeiz/b3AkuKQSU7dFJ9JzunOsm66fpu6GTJsonwe\nm6tDOGpXKK9jd8VK2FFokhNqfJ5JjiS5hsdnxROy65+7htdjK1Z9Ycv+gWVf0QmXm+REE+qa5Egy\nu5ex7CtK0n6bWxml1K199VySig98/z5CnRS7Y/Oo9vWpLVm155ZtS9iyj1D7Lle18hpq+flZHV95\n2PA+2+jwAt7a99lJtbOeW7H8vljWc6t7mYBr9zzidOd6at+9f9ToKaVlX8PyPtt/GrctZXnjzbIS\ng781y6qNfQRvebFJTqmvjkmOJI1NaWeW9dzBdSY5ls+XQ45Ne2f5jCs5YnQTKilq9FzR8n2hVR/B\n6rogSbufGGmWdca4qSY5nrJ9JjmSJMfuXUNte48iSUl+u+OzeEYiSfUSbHKs3g1Itvf+fqt+dTRi\nkyNJRu1Umez6wfXr2H1+OP1lL/2spouAH4gnr2tfo/tnZmMAAAAAAAAAAAAAAAAAAAAAVWKwMQAA\nAAAAAAAAAAAAAAAAAIAq1b6/gwQAAAAAAAAAAAAAAAAAAHCai0Tdmi4CEBdmNgYAAAAAAAAAAAAA\nAAAAAABQJQYbnyKrV6/Wc889V2nZyy+/rJ49e2rRokUnnPuf//xH2dnZ37d4PxrZ2dn66quvaroY\nphYvXhyrQwsXLtRrr732vfIeffRRde7cudJ5Gj16tC677DJFo9Gjbpuenn7Esn379qlDhw6xvOLi\nYg0fPlzBYFCjR4+WJA0dOlR9+vTR5ZdfroyMDC1duvR7HQMAAAAAAAAAAAAAAAAAALDhq+kC/Jg4\njlPp37fddpsCgYDC4XANlQg40sMPP6yysrJKy55//nllZGQcc9vv1nFJWrVqla655hqtXLnmF6li\nAAAgAElEQVRSZ599tpYsWaKePXuqV69e2r9/vyRpxowZ2rp1qyZPnqzf/e53NgcCAAAAAAAAAAAA\nAAAAAAC+NwYbn0IffvihBg8erNTUVE2cOFGS5LpupXU2bdqkcePGKRKJaOjQoerevbs++ugjPf30\n05KkrKwsderUScuWLdOcOXPUsmVL+XzVf4w9e/ZU69attX//fk2ZMkVpaWmaOnWqioqK9O9//1uX\nXHKJ7rrrLj3wwAPatm2bzj77bD3++OMqLS3V8OHDFY1G9ctf/lLDhg3Tjh07NHr0aCUkJOimm25S\n7969lZ2drTvvvFNNmzZVZmam8vLytHXrVj322GNyXVd79+7VggUL9NZbb2nOnDny+XyaMGGCzj77\n7CPKOnXqVH3yySeSpIMHD+r222/X1VdffUTZCgsL9cgjj8jn86l79+7KzMzU1KlTtXXrVm3evFk9\nevRQZmbmUT+LefPmKRQKKTMzU3369FH79u314YcfaurUqWrZsqUmTpyoNWvWKDU1VZMmTdKYMWP0\nwgsvxLYfMWKEBg4cqJkzZ8pxHAUCAT3//PNV7mvDhg3KyspSixYt9OWXX2rRokXKzs5WcnKy1q5d\nq6FDh6pnz55HbLd69WpNmTJF5eXlatKkiZo2barzzjtPb7zxhsLhsPx+v7p06aL69esfUY/Ky8s1\natQoRaNRHThwQM8995yaNm16xD5WrFihadOmyePxaMCAAbr22murPWff3Ue8Vq1apZEjR2r69Om6\n9dZb5fF49K9//Us9e/ZUvXr1TigTAAAAAAAAAAAAAAAAAACcGp6aLsCPSb169TRr1iylpaVp7dq1\nVa4ze/ZsPfjgg8rLy9PMmTMlSTk5OcrJydG0adOUk5MjScrNzdW8efPUo0ePo+7z8CDjzMxMLVq0\nKLa8QYMGysvL0+jRo/X222+rWbNmmjt3rho2bKhPPvlE69evV/PmzZWfn68hQ4ZIktauXauuXbsq\nLy9PvXr1OmJf357VdvPmzcrJydGCBQvkuq5mzZql/Px8jR8/XjNmzKi2vFlZWXIcR7NmzdLKlSur\nLFuLFi00f/585efna8mSJbFtO3bsqHnz5umPf/zjUc/J0qVLtXPnztiA5P379+u+++7TiBEj9M47\n72jHjh3asGGDCgoKdOmll2r58uVq0aKFtm3bpvnz56u4uFipqamSpJSUFP3hD39QaWmp9u3bV+X+\n5syZo/Hjx2vcuHE6cOBAbPkVV1yhGTNm6PXXX6+2rNdee60uu+wyjRkzRnv37pXjOLr99tuVlpam\nadOmqbCwUJI0a9YsBYNBzZ49W5K0fPlyde7cWbNmzVIoFKo2v1OnTnrppZc0d+5czZ0796jnrapZ\ni+Oxbds2nXPOObHzc9NNN8nj8ei6667TpEmTTigTAAAAAAAAAAAAAAAAAACcGgw2PoXatGkjSWrd\nurW2b99e5Trbtm1T27ZtFQgE5Pf7JUmlpaVKS0tTo0aNVFpaKkny+Xzy+/1q3br1UffZvHlz+Xw+\ntW7dWtu2bYstv/DCCyVJHo9HmzZt0vLly5WRkaF3331Xu3btUocOHdS0aVPdddddWrZsmSSpa9eu\nKi4u1l133aVVq1Yddb8dOnSQ1+uV4zgqKirSli1bNHDgQD300EMqKyurdrvExEQ1bNhQiYmJKi0t\n1aZNm/TWW29VKtvWrVs1ZMgQBYNBbdmyJTbjbsuWLeXxeOT1eo9atlWrVqm8vDz277S0NKWkpKhB\ngwYqLi7W9u3bdc4550g69Jlt27ZNF1xwgdasWaP8/HytWLFCP/3pT2P7lA4N3i4pKalyf9u2bVOb\nNm2Ulpam+vXrx5a3atVKqampOnjwYLVlTUpKUlJSkhITE2ODfb+7zHEcDRkyRHl5eRo8eLBc143t\n89tlrMq6det0++23a9CgQdq7d+9Rz9uJzGy8a9curVu3TkOGDNH69eu1adMmJSQkKDs7W8uXL9f/\n/u//auPGjcedCwAAAAAAAAAAAAAAAAAATg1fTRfgx+TwoMrNmzfr2muvlXRocO2WLVti6zRr1kzr\n169X27ZtFQ6HJUnJycnas2ePXNdVcnKyJCkajSoUCh1zoOZXX32liooKbdq0SU2aNIkt//aA3Fat\nWum2225T//79JUmRSEShUEijRo1SKBRSv379dP3118vr9Wrs2LHasWOHHn74Yf3iF79QcnKySkpK\n9M0331QajOrx/N849gYNGqhdu3aaNWuWJB11pt3vat26tfr06RMrWzgc1lNPPaXhw4fr4osv1q9+\n9asjBsEea1DsY489pqlTp+rTTz/Vz372syPWb9KkSey8bty4Uc2aNVP79u31wAMPaNiwYcrNzdXY\nsWNVUVER1zE0bdpUGzdu1Jlnnlnl7McnMoi3Oq7rynEcNW3aVBs2bFCXLl20efPmatefNWuWJkyY\noNTUVN1yyy2x5UlJSSoqKtLZZ58dW5acnKyioiI1bNjwqPv/tpUrV2r06NG6+eabtXz5cq1cuVLJ\nyclq1KiRvF6vzjzzTEWj0RM/YAAAAAAAAAAAAAAAAAAAcFIx2PgU2r9/vwYOHKi0tLTYzMI///nP\nNWzYMK1Zs0YvvPCCBg4cqHHjxikSiWjo0KGSpDvuuEMjRoyQ4zgaO3asJGnAgAHq37+/WrRoEZsB\nuSr169fXXXfdpQMHDmjy5MlVrtO9e3c9+OCDuv322+U4jp544gkdOHBAjz32mMrKytS7d29Jh2YE\nfuGFF1RaWqo77rhDktSzZ09NnDhRF154YWzmXUmV/t/j8ahPnz4aMGCAvF6vrrvuOt12221xnbPu\n3btr3LhxlcrWtWtXjR8/Xueee65SUlKO2Obb+67O2LFjNWbMGL344otHrN+4cWO1adNG/fv3V/36\n9fXcc88pEAho+/btuuGGGzRlyhS1b99eH3/8cVz7vP3225Wdna3mzZurXr16x1XeeI6lKt27d9eo\nUaO0YsUKeb3eSoO/v+3qq6/WyJEj1aFDB9WtWze2/Nprr9VDDz2kK6+8UmPGjJEk/frXv9bQoUN1\n8803xwZ/f9fevXs1aNAgSVLHjh21e/dupaenSzo02/XTTz+ts88+WyNGjFBycrLOOecctW3b9oSO\nEQAAAAAAAAAAAAAAAAAAnHyOazmtKmqd9PR0FRQU1HQx8P87lZ9HOByWz+dTMBjUrFmzFAgETsl+\nT6bSsjKzLMeo6XPeX2iSI0nuL241CrKbLdr1eI+9Upw8FQdNciL+ZJMcSdowqLdJzk9mv2KSI0lO\nJL5Z0+NR4bH53p/Yrz1UzSeb+ukY1vOot/pf2jleVm2LJXf5DJMc5+qhJjmS5ETDdlmhUrOsfaEk\nkxxvok3bmeir+peFTlRJcfx/XeJo6qbw+4rxsKybrt+mboYMmyifx+bqEI7aFcp7gr+oV5WEHYUm\nOaHG55nkSJJreHxWPCG7/rlreD22YtUXtuwfWPYVnXC5SU40oe6xV4qXUR/Psq8oSfttbmWUUrf2\n1XNJKj7w/fsIdVLsjs2j2tentmTVnlu2LWHLPkLtu1zVymuo5edndXzlYcP7bKPDC3hr32cn1c56\nbsXy+2JZz63uZQKu3fOI053rqX33/lGjp5SWfQ3L+2z/ady2lOWNN8tKDP7WLKs29hG85cUmOaW+\nOiY5kjQ2pZ1Z1nMH15nkWD5fDjk27Z3lM67kiNFNqKSo0XNFy/eFVn0Eq+uCJO1+YqRZ1hnjpprk\neMqO/IvJJ8yxe9dQ296jSFKS3+74LJ6RSFK9BJscq3cDku29v9+qXx2N2ORIklE7VWY4Z2f9Onaf\nH05/v3njXzVdBPxA/O6Gn9bo/mvf0wKYOtGZcX/oVqxYoenTp8eOv0uXLrGZok+WXbt26Z577pHj\nOHJdV2eeeaYmTpxYaZ3qPo/Fixfr1Vdfjf28d+/e6tWr1wmXxXVd9evXT36/X1dccYX2799/zLId\nj+nTp2vFihWSDh3TsGHD1Llz5xPOAwAAAAAAAAAAAAAAAAAAtRODjU9z8+bNq+ki1IguXbqoS5cu\np3SfjRo1Ul5e3lHXqe7zuOmmm3TTTTeZlcVxHC1cWHnG3WOV7XgMGzZMw4YNM8sDAAAAAAAAAAAA\nAAAAgB8by7+SAJxMtn+bGQAAAAAAAAAAAAAAAAAAAMBpg8HGAAAAAAAAAAAAAAAAAAAAAKrEYGMA\nAAAAAAAAAAAAAAAAAAAAVWKwMQAAAAAAAAAAAAAAAAAAAIAqOa7rujVdCACIR2lZmVmWVcvnODY5\nkuQYFao8ahIjSUpU2Cwr6vWb5HhChvXAl2CS89GvepjkSNLFS98wywp5AiY5PsN6biVs2HvxGH6R\nPW7EJCfqeE1yJMmj2tfV81SUmGVF/UlmWQdKbBrQpDo+kxyfDBt02R1fvSSbHNdr00ZJUlnEpp4b\nxUiS6tTGxtO1q1NW7ZRVuylJrseu7bTql3lKdpvkSNKBhDSTnGS/3e8cW50nS06kwiwr4rXpK1re\nM0Sidufc7DrjGNapqM39h+uxuRYfdqDYplx1UozuiYz7dxbHVzfF9pxbCdW+ZsqM37BticouLFIL\nrw1WfB678+RE7fpAVm2n1XVPsr32WamNVdOyPbe6J/Ia1vPa2E5Fa2NFqKWsnpdZ1nOrelARsbs3\nDnjt+sJW58ryualVlNfy+athnbJ6l5LgGD7DM7q/8pQfMMmRpGhCXbOsu5PbmeRM2/SaSY4klZ55\nnklObXwUKNm1nd5oyCRHklyjeh42nFevNn5+TqjULCviTzbLKim2qQspdW2ekUi291dm71GMTrn1\nMy4rTrjcJCfiSzTJsWTZ3iXUsbuG4vR37+v/rOki4Afi2V93qNH9M7MxAAAAAAAAAAAAAAAAAAAA\ngCox2BgAAAAAAAAAAAAAAAAAAABAlRhsDAAAAAAAAAAAAAAAAAAAAKBKDDYGAAAAAAAAAAAAAAAA\nAAAAUCUGG+MH4fHHHz/ubbKzs/XVV1+dhNLUvCeffFKu68b+XVhYqM8++8wke/To0brssssUjUYl\nSaFQSMFgUD169Djmtunp6Ucs++yzz9SxY0eVl5dLkr7++mtlZmYqGAzqscceU3FxsYLBoHr16qVu\n3bopIyNDq1atMjkWAAAAAAAAAAAAAAAAAADw/fhqugBAPB588MGaLkKtkp2dXenf69atUzgcVvv2\n7b939vPPP6+MjIzYv/1+v/Ly8tS/f/9jbus4zhHLVq1apauuukofffSRfvGLXygvL0+jRo3SJZdc\nov379yslJUV5eXn64IMP9N5772nMmDHf+xgAAAAAAAAAAAAAAAAAoLaLRN1jrwTUAsxs/CM0e/Zs\n/f3vf5ckzZgxQ7Nnz1bfvn01YMAAzZkzR5K0Y8cO3XbbbQoGg3r11VclSR999JH69OmjPn36aO3a\ntZKkYDCo3/72t7r11lv14YcfSpJWr16t++67T5mZmbrjjjskSfn5+UpPT9eQIUO0d+9eSdLDDz+s\nvn376u6775Ykua6rUaNGKT09PTaT8a5duxQMBisNdJ06daqys7PVr1+/WHmPZt68ebH1+vTpo0cf\nfVQ33HCDvvzyS0nSxIkTlZ6erjvvvFPl5eWxMh82YsQIrV69WsOGDdPw4cM1evToave1YcMG3Xrr\nrbrvvvt0yy23SDo0MHj8+PHq3bu33nzzzWq3PTwr8Pvvv6+pU6dKkm688Ubdf//96t27t/bv3y9J\nuvfee3XppZfGZh6eP3++pk+frtmzZysjI0Ou66q0tFQZGRkaMGCApk+fXu0+X3nlFfXt21fp6en6\n4IMPYsu/PWvy9/XJJ59oyJAhWrlypSTJ4/Fo7dq1CofDqlev3knZJwAAAAAAAAAAAAAAAAAAsMFg\n4x+h7t2765133pEkffjhh+rbt6/mz5+v/Px8LVmyRJK0du1ade3aVXl5eerVq5ckKScnRzk5OZo2\nbZpycnJief3799f06dMrDWr95ptvNGfOHP3+97/Xnj179M4776igoEADBw7Uyy+/HNvHSy+9pGef\nfVaSVFRUpOLiYhUUFOiBBx6QJDVq1Eh5eXlHHEPHjh01b948/fGPfzzqsS5dulQ7d+5UZmamJGn/\n/v267777NGLECL3zzjvasWOHNmzYoIKCAl166aVavny5WrRooW3btmn+/PkqLi5WamqqJCklJUV/\n+MMfVFpaqn379lW5vzlz5mj8+PEaN26cDhw4EFt+xRVXaMaMGXr99derLWtVswLv27dPTz/9tHr2\n7KlVq1ZJkp599lm1a9cutk6/fv00fPhwDR48WLm5uXIcR+vXr1fz5s2Vn5+vIUOGVLvPa665Ri+9\n9JKmTJlS6fOrqiwnIhKJKBKJqH379vr8888lSYMHD9amTZv0q1/9SvPmzTPZDwAAAAAAAAAAAAAA\nAAAAODkYbPwj1KJFC23dulW7d+9Wamqqtm7dqiFDhigYDGrLli1yXVddu3ZVcXGx7rrrrtgg19LS\nUqWlpalRo0YqLS2N5bVp00YNGjSotOzCCy+UdGgW2y1btmjjxo3KyMjQ73//exUXF0uShg8frnvu\nuUeTJk2SJKWlpemqq67SmDFjqhxg/G0tW7aUx+OR1+s96nqrVq1SeXl57N9paWlKSUlRgwYNVFxc\nrO3bt+ucc86JHce2bdt0wQUXaM2aNcrPz9eKFSv005/+NLZPSWrQoIFKSkqq3N+2bdvUpk0bpaWl\nqX79+rHlrVq1Umpqqg4ePHjU8n5X8+bN5fF4lJqaWu0+pSNnBf7pT3+qpk2b6q677tKyZcuq3e69\n995TMBjUPffcU+nzq2qW4ROZefif//ynvvjiCw0ZMkSFhYUqLS1VamqqJkyYoGXLlmnBggXHfU4A\nAAAAAAAAAAAAAAAAAMCpw2DjH6n27dsrJydHV155pRYsWKDhw4drzpw5qlevnlzXldfr1dixYzVu\n3DjNnTtXkpScnKw9e/Zo9+7dSk5OjmVt3LhRe/bsUVJSUmzZtwcBN2/eXBdddJFyc3M1b948jR49\nWpJ09dVXa9KkSfrnP/+poqIihcNh9e/fX5MnT9arr75aqbzVDXQ91gDYxx57TEVFRfr000+rXL9J\nkybauHFj7DiaNWumDh06qKCgQMOGDVNubq46dOhw1H18W9OmTWPno6rZj49WXo/n0Ndx586dx1zf\ndd1KP/P5fAqFQrF/h8NhjRo1ShMnTtScOXOq3efMmTM1c+ZMTZgwQdFoNLY8OTlZRUVFldYNhUKV\n1qmuXN+2cuVKPfLII5o5c6YyMzP1wQcfaOvWrZKkQCCg1NTUExrEDAAAAAAAAAAAAAAAAAAATg1f\nTRcANaN79+6xGW3r1Kmj8ePH69xzz1VKSoqkQzMCv/DCCyotLdUdd9whSbrjjjs0YsQIOY6jrKys\nWFZ+fr4KCws1duzYKveVlpamTp06KRgMynEcZWZm6sorr9TgwYMVCoV09tlnq0GDBtq1a5fuvvtu\nVVRUqEuXLpKkP//5z5o7d66++OILZWRk6IknnqiU7TjOMY917NixGjNmjF588cUj1m/cuLHatGmj\n/v37q379+nruuecUCAS0fft23XDDDZoyZYrat2+vjz/+OK593n777crOzlbz5s1Vr169I35+tG2v\nvPJKZWVlyev1qkmTJlWuv2XLFmVnZ+vzzz9XZmamgsGgrrnmGnXq1ElZWVlau3atfve732njxo16\n7LHHVFZWpt69ex91n8FgUBdffHGlff3617/W0KFDdfPNN6t///6SpJ49e6pv374aMmSIrrnmmirz\n1q9fr0GDBkmSrrrqKq1evVrp6emSpA4dOuidd97Rrl27NG/ePAUCAXXp0kV16tSptnwAAAAAAAAA\nAAAAAAAAAKBmOS7TiuJ7CAaDmjt3bmxWXvyf9PR0FRQU1HQxTiulZWVmWVYtXxzj3ePPMipU+dEn\noD4uiQqbZUW9fpMcT8iwHvgSTHI++lUPkxxJunjpG2ZZIU/AJMdnWM+thA17Lx7DL7LHjZjkRB3v\nsVeKk0e1r6vnqSgxy4r6k469UpwOlNg0oEl1bH6fzyfDBl12x1cvySbH9dq0UZJUFrGp50YxkqQ6\ntbHxdO3qlFU7ZdVuSpLrsWs7rfplnpLdJjmSdCAhzSQn2W9372Z1niw5kQqzrIjXpq9oec8Qidqd\nc7PrjGNYp6I29x+ux/Z36w8U25SrTorRPZFx/87i+Oqm1M75DEK1r5ky4zdsW6KyC4vUwmuDFZ/H\n7jw5Ubs+kFXbaXXdk2yvfVZqY9W0bM+t7om8hvW8NrZT0dpYEWopq+dllvXcqh5UROzujQNeu76w\n1bmyfG5qFeW1fP5qWKes3qUkOIbP8IzurzzlB0xyJCmaUNcs6+7kdiY50za9ZpIjSaVnnmeSUxsf\nBUp2bac3Gjr2SnFyjep52PCPeNfGz88JlZplRfzJx14pTiXFNnUhpa7NMxLJ9v7K7D2K0Sm3fsZl\nxQmXm+REfIkmOZYs27uEOnbXUJz+xiz+35ouAn4gJt90QY3uv3ZemfCDEc/MwifbihUrNH369FhZ\nunTpoqFDh57Ufe7atUv33HOPHMeR67o688wzNXHixErrVHduFi9erFdffTX28969e6tXr14ntbyF\nhYV64oknYvts166dsrOzTzhvwoQJWrdunaRDx/nAAw/o/PPPNykrAAAAAAAAAAAAAAAAAACoPZjZ\nGMAPBjMbx4eZjePHzMbxqY2/0c3MxvFjZuP4MbNxfJjZOD7MbBwfZjaOHzMbx4eZjePHzMbxY2bj\nY2Nm41OvNs4YKjGzcbyY2fjUq41Vk5mN48fMxqceMxvHh5mN48PMxseBmY3jwszG8WNm4/jUxs+P\nmY3jx8zGpx4zG8eHmY1xPJjZGPGq6ZmN7XpgAAAAAAAAAAAAAAAAAAAAAE4rDDYGAAAAAAAAAAAA\nAAAAAAAAUKXaOec+AAAAAAAAAAAAAAAAAADAaSwSdWu6CEBcGGwM4AejNBQ1y7K6TCf57CaId4xy\nEgznrK9w7S4TftforLt29cCJVJjk/HTZn0xyJCn/7E5mWf22fmyS40RDJjmWAqFSu7Bo2CyqNKGB\nSU7A8HscdW1aF49Zyym5Xr9dlsdrliXZtC9WZyps/kdIbI6vwhMwybGrBVLAa3OuvIbtnVsLb7VM\nvy9GFd0xbIOdiN3nF/ImmOR8o/omOZJ01jszTXLKuw0xyZGkBMu+cDRikuM5WGSSI0lOQopJTrm/\njkmOZPvA0eO1aRNM+wgem7bTdazurmxFjO6JvK5d22nFCZebZbk+mzZYkvxG/R9LZVGb+un32tXz\nqNX9uuzOuWVfuCJic3yWz6UalH5tluUYPScpTmlmkiPZXa+KDc950zp2/XNPyW6TnNKkhiY5kuQY\nXfss+xq1sZ0yag5+FHyOzcmyvOcLGd1nJ0XLTHIkKeRJMsvyGH1lLNtOr1HbkmT4iMTqPElSwKid\nOhiyK1SSv/bdy1h+j6dtes0kZ2TrXiY5kvTswUKTHNP3KIbvwXwVJSY5ntJ9JjmSVNqglUmO5f2e\n69g9N3WM+i1W/XzJ9tlNbRQ1/PzM3hMZPeOyVG74iCTJ6B17yGP3DMhsjITRc2oAOF1Zj2AAAAAA\nAAAAAAAAAAAAAAAAcJpgsDEAAAAAAAAAAAAAAAAAAACAKjHYGAAAAAAAAAAAAAAAAAAAAECVGGwM\nAAAAAAAAAAAAAAAAAAAAoEoMNsZJ8fjjjx/3NtnZ2frqq69OQmlq3pNPPinXdWP/Liws1GeffRbX\ntqWlpbrjjjuOus6KFSv0t7/97XuVUZL+8pe/qFevXpo8eXJs2csvv6yePXtq0aJFR9126tSpev/9\n949YPnr06Ep5M2fOVL9+/dSvXz8VFhYqNzdXwWBQl156qYLBoLKysr73cQAAAAAAAAAAAAAAAAAA\nABu+mi4ATk8PPvhgTRehVsnOzq7073Xr1ikcDqt9+/bH3PZ//ud/dOONNx51nS5dunyv8h3WrVs3\n1a1bV++9915s2W233aZAIKBwOHzcedFoVI7j6N///rckqaSkRO+++67mz5+vaDSq0tJSnX/++crI\nyFBGRobmzp0rx3FMjgUAAAAAAAAAAAAAAAAAAHx/DDb+AZg9e7batm2rX/7yl5oxY4a8Xq/eeust\n+Xw+de/eXZmZmdqxY4dGjx6thIQE3XTTTerdu7c++ugjPf3005KkrKwsderUScFgUK1atVJhYaHG\njh2rSy65RKtXr9aCBQu0e/duJSYm6oUXXlB+fr6WLVum5ORkPfPMM0pNTdXDDz+szz//XGeddZae\ne+45ua6r0aNHa8+ePWrfvr0efPBB7dq1S/fcc4+i0ajmzZsn6dCMt1u3btXmzZvVo0cPZWZmHvV4\n582bp1AopMzMTPXp00ft27fXhx9+qKlTp6ply5aaOHGi1qxZo9TUVE2aNEljxozRCy+8ENt+xIgR\nGjhwoGbOnCnHcRQIBPT8889Xua8NGzYoKytLLVq00JdffqlFixYpOztbycnJWrt2rYYOHaqePXtW\nuW16eroKCgr0/vvva82aNRo1apRuvPFGnXfeedqwYYPmzJmj/4+9O4+vorr/P/6+S24WAmRRFtlR\nkSW4a22Vr0sLNBZbRBEMSUBWARUBlcXWDZWqBaRigQCyhASKAkoFNfZba+mvEARxBwsJVCGRRQIh\n+91+f/Dwfg0kcMWPJNLX8/Hg8dDJzHvOnDtz5szck5NGjRpp3LhxWr9+vXJzc+V0OrVs2TItWbJE\nkvSXv/xFixcvVkVFhUaMGKFAIKD/+Z//0fDhw0P7ycnJ0ezZsyVJN998szwejzp16qSCggItXrxY\nq1evVkZGhoYMGaLbb79dkmqst+P5fD4NGjRILpdLTZs21bPPPitJ1WZg/kZNy8Lx6aefqnPnztqx\nY4cqKiokSQcOHNDevXvVokULNWjQoNo+gsEgg40BAAAAAAAAAAAAAAAAAKhHnHVdAGdDmBEAACAA\nSURBVJzaL37xC73zzjuSpM2bN6t///5atmyZli5dqjVr1kiStm7dquuvv16ZmZnq3bu3JGn27Nma\nPXu2XnzxxdBgVUkaMGCAMjIylJGREVp24MABLVq0SH/605906NAhvfPOO8rOztZdd92lFStWhPax\nfPlyTZ8+XZJUVFSkkpISZWdna/LkyZKkc845R5mZmSccwyWXXKKsrCy9+eabJz3WtWvXav/+/aEB\nycXFxRo/frxGjhypd955R/v27VNeXp6ys7N11VVX6e2331br1q1VUFCgZcuWqaSkRHFxcZKk2NhY\nzZ07V+Xl5Tpy5EiN+1u0aJGmTJmihx9+WEePHg0tv+GGGzRv3jy99tprtZa1pkGxR44c0TPPPKPk\n5GTl5uZKkqZPn65OnTqF1rnzzjs1YsQIDRkyREuWLJHD4dDOnTvVsmVLLV26VEOHDg2t+9FHH6lz\n585yu4/9XkCHDh00duxYJSUlKSkpSUVFRbr11ls1YsSIauU4vt5q4nK5NGfOHC1evFjR0dH66KOP\naj3W05Wbm6urrrpKl112mbZs2aIGDRro3nvv1X333ae0tDQdOHAgtC6DjAEAAAAAAAAAAAAAAAAA\nqH8YbPwj0Lp1a+3du1dff/214uLitHfvXg0dOlRpaWnas2ePgsGgrr/+epWUlOi+++4LDXItLy9X\nQkKCzjnnHJWXl4fy2rdvr/j4+GrLLr30UkmS0+nUnj17lJ+fr/T0dP3pT39SSUmJJGnEiBEaO3as\nZsyYIUlKSEjQz3/+c40ZM6bGAcbf1qZNGzmdTrlcrpOul5ubq8rKytD/JyQkKDY2VvHx8SopKVFh\nYaHOP//80HEUFBSoa9eu2rJli5YuXar169erS5cuoX1KUnx8vEpLS2vcX0FBgdq3b6+EhAQ1btw4\ntLxt27aKi4tTWVnZSct7vJYtW8rpdCouLq7WfUonzhTcpUsXnXfeebrvvvu0bt260PIVK1aoX79+\nof+Pjo5WTEyMYmJiFB0dHZot+Pi84+utJuXl5XrkkUeUnp6uf/7zn9/5WMOxefNm/elPf9Ibb7wR\nOi979uyplStX6rbbbtPixYvN9wkAAAAAAAAAAAAAAAAAAOww2PhHonPnzpo9e7ZuvPFG/fnPf9aI\nESO0aNEiNWrUSMFgUC6XSxMmTNDDDz8cGsAZExOjQ4cO6euvv1ZMTEwoKz8/X4cOHVJ0dHRo2bcH\nAbds2VKXX365lixZoqysLN17772SpO7du2vGjBn65JNPVFRUJJ/PpwEDBmjmzJlatWpVtfIeP/j1\nVMu/8cQTT6ioqCg0y+7x6zdv3lz5+fmh42jRooWSkpKUnZ2t4cOHa8mSJUpKSjrpPr7tvPPOC9VH\nTbMfn6y8Tuexy2f//v2nXD8YDFb7mdvtltfrDf2/z+fTPffco2nTpmnRokWSjs1OXFJSovPOO6/W\nMnw7s7b/rs0///lPtW/fXkuWLNGVV14Z2iYqKkpFRUXV1q1p2an4fD4FAgEtWLBAWVlZ+vTTTxUI\nBPTVV19JOvZZBgKB71RmAAAAAAAAAAAAAAAAADhb+INB/vEvrH91zV3XBUB4fvGLXygtLU1jx45V\ngwYNNGXKFHXo0EGxsbGSjs0IPGfOHJWXl+vuu++WJN19990aOXKkHA6HJk6cGMpaunSptm/frgkT\nJtS4r4SEBF122WVKS0uTw+HQoEGDdOONN2rIkCHyer1q1aqV4uPjdfDgQd1///2qqqpSt27dJEl/\n/etftXjxYu3YsUPp6el66qmnqmU7HI5THuuECRM0ZswYLVy48IT1mzZtqvbt22vAgAFq3Lixnn/+\neXk8HhUWFuqWW27RH//4R3Xu3FkffPBBWPscOHCgJk2apJYtW6pRo0Yn/Pxk2954442aOHGiXC6X\nmjdvXuP6e/bs0aRJk/T5559r0KBBSktLU48ePXTZZZdp4sSJ2rp1q5599lnl5+friSeeUEVFhfr0\n6SNJWr16tW699dZT1tcjjzyizZs3KxgM6qOPPtKUKVPCqudLLrlEc+bM0SeffFJteadOnZSXl6f0\n9HTNnTtX0dHRuuaaazR8+HBt2bJFc+bMqTXzueeeU1xcnCRp1KhRatu2bbWfl5WVafz48XI4HHI4\nHJo6dWroZ+GUGQAAAAAAAAAAAAAAAAAAnFmOINOJ/ldJS0vT4sWLQ7Py4v+kpKQoOzu7rosR8vrr\nr6tXr151XYx65dDRMrMsq4Yv2m13LTnNSmXHa1ikCKPx5A5vuU2QJDldp14nDBUOj0mOJL3S6jKz\nrDv3fnDqlcLgCnhPvdIZZnoeBHxmUeWR8SY5HpfdL2BY9fQs2yiHv8osK+CONMsqOWpzrkc1sPl9\nPutfwykvtTnXrY7P6r4gSQGj2rJs74LO+vd7nUHDX+6yaltc/kqbIMmuUJK8Lpu25UCZ3T2m2b8W\nmuRU3jTUJEeSIg37wo6A3yTHVXLAJEeSgpGxJjmVEQ1MciTJH7A7zz0um8+vPj7HWLZ3Uv3rI3iC\ndm2LJBUbPGo3irK5hiUpaNi/UzBw6nXOsIqAzfkZZfjM4DO8jN2yqXOf4R/kq/LbHKDPsA2OL//K\nLMthdJ4fiW1hkiPZ3a9KvHbX8HlGbbAkOUu/Nskpj040ybFk+XVRfWynjJqD/wqRRs2ww/C9W4XR\n/ElRfrv3il539KlXCpPb6JI5XGXXdrqM+tXRVgcnu3qS7J4byg3vV9ERNhefq6LYJEeSghGG5/mB\nPJOc0e16m+RI0vSy7SY5pt+jGD7HOKpKTXKc5Sf+heDTVR7f1iQnwujZQ5KCRt8XSpLDqD/lNPrs\nJCngsXs3dbTE5t4e2zDCJEcyfS2s0hKba7lhbP37fqDS8BVJtPeoSU55REOTHMmw/+qz+84ismGc\nWRbOfiNf+bCui4Afidm3X1Kn+69/dzj8oOrD7LHr169XRkZGqCzdunXTsGHDftB9Hjx4UGPHjpXD\n4VAwGFSTJk00bdq0auvUVjerV6/WqlWrQj/v06ePeve2e4itjeVA46efflrbtm2TdOw4J0+erI4d\nO55W1vbt2/XUU0+F6qNTp06aNGmSWVkBAAAAAAAAAAAAAAAAAED9wWDj/zJLliyp6yKoW7du6tat\n2xnd5znnnKPMzMyTrpOVlVXj8ltvvVW33nrrD1GsM2by5MlmWR07djxlXQIAAAAAAAAAAAAAAAAA\ngLOD3d+jAwAAAAAAAAAAAAAAAAAAAHBWYbAxAAAAAAAAAAAAAAAAAAAAgBox2BgAAAAAAAAAAAAA\nAAAAAABAjRhsDAAAAAAAAAAAAAAAAAAAAKBG7rouAADUBZejrkvwwynzBc2yPPWwogKeGLMsX8Cm\nriIcdvXUb89Ws6yJsZ1Mcp478oFJjiT5XZEmOU6P3e9LeQ1/98rjtDkXnFVlJjnHwlwmMUGXxyTH\nPMuuyTPj8ZWb5Pgj7No7SxH179Ygl7/SJMfhs8mRpGBkQ7MsK5bXi1WdB512j6QBh017J0kRRsfX\nLNbmvidJvl8MM8mJqTpqkiNJQUe0WVbAFWGSE4yMNcmRJL9RluWLF9s2uB7eRIMBmxzD9sCSx6rt\ndNu1Lcf4vn+EUZ/TnKP+zbMQrSqTnKDs+tRuGV17klmdRxj2yzxem+cry/6dv1EzsywrMU6768Vh\n1PGMr/raJEeSVGIXFYyIMsmJCtq0B5Lk8HtNcoJGfTKpfrZTEQGbevpvEHTa9DccVaUmOZIUFWHz\n/OGw6nPK+B5q9I4y2m3Xnhu96pTT8P255XPM0Uq/SU7DSLu+sNW7G19kI5sgSQHDF0reJheZ5Ewv\n226SI0njYjqa5Mws+dgkR7L7HkWSAlE292OfJ84kR5Iirb5HqbR5Dy9JAU8DsywrVu+lJMkRsGnv\nLDm9FWZZfrdN/9xSQEbnueF9L9Jh12+xeq8f5be7jl1HDpjkeBPamOQAwNmKwcYAAAAAAAAAAAAA\nAAAAAABnmN9oojzgh1b/pvcAAAAAAAAAAAAAAAAAAAAAUC8w2BgAAAAAAAAAAAAAAAAAAABAjRhs\nDAAAAAAAAAAAAAAAAAAAAKBGDDbGD+LgwYOaO3fuSddJS0tTIBA4YfnKlStPut3evXv14IMPfqfy\npKSkfKf1J02apC+//PI7bVOXaqvL07FixQolJyfrlVdeCS178cUXddNNN2nDhg0n3ba2euvTp0+1\nvKeeekqpqalKSUnRgQMHNH36dKWlpenKK69Uenq6/vCHP5gcCwAAAAAAAAAAAAAAAAAA+H7cdV0A\nnJ3OOeccjRgx4qTrOByOGpevXLlSt91222lta7X+j43l8d1xxx3yeDzy+XyhZaNHj1YwGDytvKKi\nIrVu3VqbN2/W7bffrry8PJWWlmrp0qWqqqqSJI0bN06SNGDAAC1ZsuT7HwQAAAAAAAAAAAAAAAAA\nADDBzMYI27cHD/v9ft13330qKyvTfffdp/T0dD3//POSpO3bt6tfv3566KGHQutv3rxZffr00e9+\n9zulp6dLkoLBoKZPn65f//rXev/997Vnzx6lpaVpx44dSk9P17vvvltrWXbt2qWhQ4dq2LBhqqys\nVGVlpUaOHKkBAwZo+vTpko7NrpyamqqRI0eqqKhIknT//ffr0KFDkqTx48fr66+/PukxZ2VladGi\nRZKkfv366fHHH9ctt9yi//znP5KkadOmKSUlRaNGjVJlZaXuvvvuatuPHDlSmzZt0vDhwzVixAjd\ne++9te4rLy9Pffv21fjx43X77bdLOjZT8JQpU9SnTx+98cYbJy1rMBjUH/7wB7311luSpGeeeUZp\naWkaOnSoXn311Rq32b9/v+68806lpaXpmWeeqZZlJTc3Vz//+c915MgRSccGRu/evVuHDh2Sx+OR\nx+Mx2xcAAAAAAAAAAAAAAAAAALDFYGOELSYmRj6fT8uWLVNeXp4uvPBCrVixQjfddJOWLFmivXv3\nav/+/erYsWNowO83MjIy9NJLLyklJaXa8j59+ujJJ5/UunXr1LJlS2VmZqpDhw5asmSJrr/++lrL\n4vP5NH/+fF133XXKyclRTk6Orr76amVlZWnnzp3at2+fXn75ZQ0aNEgzZ84MDXTt2bOn3n77bVVV\nVam0tFSJiYm17mPt2rXav3+/Bg0aJEkqLi7W+PHjNXLkSL3zzjvat2+f8vLylJ2drauuukpvv/22\nWrdurYKCAi1btkwlJSWKi4uTJMXGxmru3LkqLy8PleV4ixYt0pQpU/Twww/r6NGjoeU33HCD5s2b\np9dee63WsgaDQS1YsEAtWrRQz549tW/fPn355ZfKzMxUu3btat0uLi5OixcvVmZmpnbs2BEaiG0p\nNzdXV199tdq2bavdu3erffv26tWrl9LT0zV69GiVlZWZ7xMAAAAAAAAAAAAAAAAAANhgsDHCdtFF\nFyknJ0crVqzQJ598oqSkJO3evVvZ2dlKS0vTzp07deDAgRq3LSsrU1xc3AkDX9u2bau4uDiVlpaG\nloUzq+43OW3btlVhYaEKCwt1wQUXhH721VdfqbCwUO3bt5fH41GLFi0kHRu4++677+qf//yn/ud/\n/uek+8jNzVVlZWXo/xMSEhQbG6v4+HiVlJSosLBQ559/viSpffv2KigoUNeuXbVlyxYtXbpU69ev\nV5cuXSRJbdq0kSTFx8dXO9ZvKygoUPv27ZWQkKDGjRufUEenGpS7YcMGeb1eSVJhYWGojk422Pjw\n4cMaM2aM0tPTtX379lrL9n18+OGH+u1vf6tNmzYpNzdXkpSSkqLXX39dnTt31po1a8z3CQAAAAAA\nAAAAAAAAAAAAbDDYGGFLSkpSZmamBg4cqJdffllJSUlq27atRo0apczMTL388suhwbXBYLDaoOGY\nmBgdOnRI+fn5p9yPw+E45Trf5OzevVstWrTQeeedp7y8PEnSrl271KxZM7Vo0UL5+fmqqqrSnj17\nJEnR0dGKjo7WqlWr1LNnz5Pu44knnlBRUZE++uij0DF9W/PmzUPlyM/PV4sWLZSUlKTs7GwNHz5c\nS5YsUVJS0imP5RvnnXee8vPzdejQoRpnPz7ZIGyHw6H58+frH//4hwoLC9W8eXPt2rUrVB+1Wbt2\nrXr06KElS5ZUG5QcFRWloqKiauvWtKwm3y7n/v371aFDB82bN08LFizQxo0bVVpaGjq+5s2by+/3\nh3WMAAAAAAAAAAAAAAAAAADgzGOwMcKWlJSk4uJiJScna//+/Tr33HN1xx13aPXq1Ro4cKBGjBih\n8vJyLVu2TOPHj9eGDRuUnp6u8vJyDRs2TEOHDtXSpUvldB477WobVNyqVSuNHz9e7733Xq1l8Xg8\nGjJkiP7f//t/6t69u7p3767c3FylpqbqggsuUNOmTXX77bdr4cKFuu+++xQfHx/atnv37iouLlZi\nYuIpj3nChAl67rnn5PP5Tihv06ZN1b59ew0YMEDvvfeeunfvrnbt2qmwsFC33HKL9u/fr86dO1fb\n5mQDqQcOHKjf/e53mjJliho1anTCz081CNvhcGjixImaMmWKmjZtqpYtWyo9PV15eXm1bnvNNddo\n4cKFGj169AnLc3JydPfdd4eW3XTTTZo3b55+97vfnbQcEydO1ODBgzVy5Eht2rRJnTp1kiTFxcWp\nsLBQpaWlGj58uNLS0rR27VrdcsstYR8jAAAAAAAAAAAAAAAAAAA4sxxBphLFGeDz+eR2u7Vr1y7N\nnTtXv//97+usLDk5OTp48KBSUlLqrAynkpKSouzs7O+V8U2dT58+Xddee61+8pOfGJWu7hw6WmaW\n5TQa1+xx2f3OhlM2zXGZz65Z97jsBoC7jaKChoPSfQGbunIZlilgeFue3LDzqVcKw3NHPjDJkSS/\nK9Ikxxn0n3qlMHkNf/fKbdS4OKvs2js5XSYxQZfHJMdaQHbXX2mJ1ySnUaRNjj8ixiTnG1bH1zDW\nbZJjyeGvssnxVZrkSFIgsqFZlhXL68Xlt6mroNPufAo4bNo7ye74Am6b+55k12+JrDpqkiNJwYho\ns6yAK8Ikx1VZYpIjSf7IWLMsK46z/RVOMGATY9T/+UbJUaM+QpRNHzZo2LZI0tES3/fOaGTYbbG8\nN9RHVv0W0/650bUnSXLYPF9Z9sscXpvnq6Bh/y5oVE+WLNtOq/uVq+SASY61YESUTY5he+7w29yr\ngkZ9smNZ9a+dsqqn/wZW56ez4sS/4ni6rJ4/LM+DgOEzkdU9tNLwtm71PYrl+3Or71EkqbjKprIa\nRtrdQ+vjI5/ldxZWnIbn1LiYjiY5M0s+NsmRJL/T7n5s9flZvZeSpEi3TXtn+Q4o4GlglmXF8vtQ\nR8DuO7WjpTZtp9U7Eknyu23655Ld9ygNYm2uY8v7nuWzv+UzuxWr50dvQhuTHEmKjrI7N3H2G7J8\na10XAT8SC/pfVqf7P7vf3qPe+Mc//qGMjAxJ0mOPPVZn5fjLX/6iVatW6YUXXpAkrV+/XhkZGaEZ\ndbt166Zhw4b9oGU4ePCgxo4dK4fDoWAwqCZNmmjatGnV1qltht/Vq1dr1apVoZ/36dNHvXv3rnHd\nxx9/XLt27VJiYqLGjh2rcePG6eDBgwoGg3I4HJoxY0ZYszvXpC7qDQAAAAAAAAAAAAAAAAAAnHnM\nbAzgR4OZjcPDzMbhY2bj8DCzcfiY2fjMY2bj8DGzcRg5zGwcNmY2Dg8zG4ePmY3Dw8zGYcYws/F3\nwszGZxYzG4cZw8zGZxwzG4ePmY3Dzap/7RQzG4ePmY3Dw8zG4WFm4/DVx0c+ZjYODzMbh4+ZjcPD\nzMbhY2bjMDGzcViY2Rh1hZmNEa66ntm4/r3VBAAAAAAAAAAAAAAAAAAAAFAvMNgYAAAAAAAAAAAA\nAAAAAAAAQI0YbAwAAAAAAAAAAAAAAAAAAACgRu66LgAAhCvG7ajrIpzAGwyaZTkVMMmJjnCZ5EiS\nw/D4FLQ5PodhkSp8NudUwwiTGEl254EkPXv0E5OcV9teZZIjSb13/tMkJ+CJMcmRpAjT89wmy+uO\nNsmxZNlpdPgqzbKcLsML0IpRmVzeMpOc/2NTLkfAZ5LjddidVS53pE2QVY4kR8BvluUz+h1Rl+Gv\nmgZdHrswIy6/XdsSMDoXLPtSnkCVSU6lp6FJjiRFekvNspx+r0lOwNPAJEcy7gsbCcjumcgZtGmn\nAg675w+nw6ahqo+fnSQ5/DbXcSAiyiTHUtBpd1+3PM8d9e81gnxOm3uo07CeXEZtsGR3flY47Poa\nXrdNVrThCeVy1r+T81C5Xf/Vqt9Z6UywCZIUF2V3v/K4bD4/y/tVudHzntvw3KyP7VS5Ydtytos0\navN8UXEmOZJh/9Xw2d/prTDL8rtt7qEeu+bOjD9g1965DZ9DoyNsnh9Nnz+Mrj2rZ2xJqgranVRR\nVvfQgN3xzSz52CRnTGxXkxxJmlG+3SzL6knNbfTZSTL7HqXS6BqWJBlexlbv8GT4/tVh9B2tpaDh\ndzuW74Wt5mt0GbVT5YZtcOzh3WZZFQntTXL8lq/wGrc2iYky/A5Tqn/v8ADg+2JmYwAAAAAAAAAA\nAAAAAAAAAAA1YrAxAAAAAAAAAAAAAAAAAAAAgBox2BgAAAAAAAAAAAAAAAAAAABAjRhsDAAAAAAA\nAAAAAAAAAAAAAKBGDDbGD87r9SotLU09e/Y0yVuxYoWSk5P1yiuvVFt+8OBBzZ0712QfKSkpJjl1\nZe/evXrwwQdPa9vHH39c1113nb788svQsnvvvVdXX321AoHASbetqd6OHDmipKSkUF5JSYlGjBih\ntLQ03XvvvZKkYcOGqV+/frr22muVnp6utWvXnlbZAQAAAAAAAAAAAAAAAODHwh8I8o9/Yf2ra+66\nLgDOfhEREcrMzNSAAQNM8u644w55PB75fL5qy8855xyNGDHCZB8Oh8Mkpy6d7jE8+uijqqioqLbs\nhRdeUHp6+mntMzc3Vz169NDGjRvVqlUrrVmzRsnJyerdu7eKi4slSfPmzdPevXs1c+ZMPfvss6dV\nbgAAAAAAAAAAAAAAAAAAYI/BxtCmTZs0f/58ORwOeTwevfDCCzp06JDGjRuniooK9erVS6mpqZKO\nzVzboUMH/fvf/9aECRM0adIkeTwederUSQUFBVq8eLFmz56t9evXy+Vy6bHHHtP5558fdlkeffRR\nff7552rWrJmef/557d+/X2PGjJHb7VZSUpImTJggSQoGq4/U3759ux599FG1adMmNFh10qRJiomJ\n0datWzVs2DAlJydry5YtmjZtmiRp4sSJuvjii2stSzAY1OTJk9W3b181bdpUEyZMUFxcnIqKipSZ\nmSmv16v7779fxcXFuuKKKzR69Gg99NBDmjlzpiRp3759mjNnjhITE7V3717t3r1bPXv21KBBg2rc\n37p167Ro0SK1adNGbrdbU6dOVb9+/dS5c2dt3rxZs2bNUps2bU7YbtasWfrwww8lSWVlZRo4cKC6\ndOkSVn2vX79eL774opxOp1JTU3XzzTeftD5OR25urkaPHq2MjAz17dtXTqdTn376qZKTk9WoUaPT\nygQAAAAAAAAAAAAAAAAAAGeGs64LgPohNjZWc+fOVUVFhY4cOaIVK1YoJSVFy5cv1+uvvy6/3y9J\nOnDggIYMGaLs7GwlJSWpQ4cOGjt2rJKSkpSUlKSioiKlpqYqOztbDzzwgDIzM79TObZu3arly5dr\n+vTpkqS4uDgtXrxYmZmZ2rFjhw4dOlTjdh07dgxt82033HCD5s2bp9dee02SNGPGDGVkZCgjI0Nz\n586ttRzBYFBPPfWUfvnLX+ryyy+XJPl8Ps2aNUsXXnihtm/frpycHF199dXKysrSzp07dfjwYfn9\nfpWVlWnNmjX67LPP1LVrV0nSJZdcoqysLL355pu17jMzM1NZWVnq2bNnaFlxcbHGjx+vkSNH6p13\n3ql124kTJ8rhcGjBggXauHFjresd77LLLtPy5cu1ePFiLV68+KTrnu5MyQUFBTr//PN15MgRSdKt\nt94qp9OpX/3qV5oxY8ZpZQIAAAAAAAAAAAAAAAAAgDODwcaQpNCMufHx8SotLVVBQYEuuOACSVKz\nZs10+PBhSVJiYqJatWolSXK5XIqOjlZMTIxiYmIUHR2tiooK/eUvf1FqaqqmTp2q8vLy0D7CmRl3\nxIgRGjt2bGgQ6uHDhzVmzBilp6dr+/btKi0t/U7H1bZtW8XFxamsrEySlJ+fr1GjRmnkyJHVyna8\nAwcOaMeOHaFB1pLUunVrSccGQJeWlqqwsDBUR+3atdNXX32lhIQE/f3vf9e6deu0bds2JSUlSTpW\nv06nUy6Xq9Z9ut1uRUREqF27dqFlCQkJio2NVXx8vEpKSmrdNioqSomJiYqKijrpcR1v27ZtGjhw\noAYPHhz6jGtzOjMbHzx4UNu2bdPQoUO1c+dO7dq1S5GRkZo0aZLefvttffzxx8rPz//OuQAAAAAA\nAAAAAAAAAAAA4MxgsDGq+WZAaYsWLZSXl6dgMKh9+/YpLi5OkuR0nvyUCQQCWr58uZYuXar777+/\n2gBVr9erQCBw0u27d++uGTNm6JNPPlFRUZHWrl2rHj16aMmSJdUG4UZFRamoqOiEsp9qQGxSUpLm\nz5+vzMzMk85s3KRJE82bN08vvfRSrYN8zzvvPOXl5UmSdu3apWbNmqlLly5auXKlrr/+em3evFkX\nXnjhCWWsjc/nk9fr1a5du8Ja/1TC2XbBggV6+umnNWfOnGqfbXR09An1GxMTc8KyU+1z48aNuvfe\nezV//nxNmDBBGzdu1L59++T3++VwONSkSZNTnhMAAAAAAAAAAAAAAAAAAKDuMNgY1TgcDklS3759\nlZWVpTvvvFO9evUKzcj7zc9Ptv2ll16qtLQ05eTkVPtZcnKy+vfvf8LybwSDQQ0ZMkT9+/fXueee\nq/j4eF1zzTVauHChRo8eXW3da665Rjk5Obr77rslScuWLdP48eO1YcMGpaenjHflSQAAIABJREFU\nh2YyPt7w4cM1ZMgQDRw4UBkZGSc9Fo/Ho1GjRum555474RilYwOjc3NzlZqaqgsuuEBNmzZV165d\n5XK5dO2116qiouKE+jpZ/aWmpiolJUVvvvlmWOufysaNGzV48GANHjxYb731Vo3rdO/eXaNHj9bU\nqVPVsGHD0PKbb75ZjzzyiGbOnBla9pvf/EbDhg1TVlZWrfs8fPhwaJ8zZ87Upk2b1KVLF0nHBnrn\n5uZqx44d6tu3r1JTUxUZGRmaHRoAAAAAAAAAAAAAAAAAANQ/juD3mToVgLkvvvhCs2fP1tSpU+u6\nKPVORXl5XRfhBF7DFjRCNrM8B50ukxxJcljeIoL1bxbro77TH9D/bQ0jbHIk1ct6eq3tVWZZvXf+\n0yQn4IkxyZGMz3MjvvpXJLkNT3OHr9IsK+iKMMs6Wmpz/TWyOj39XqOgY4orberK6vi8DrdNkCSX\n0/AENeII+M2yfEa/I2pZT/Wx7XT4q8yyAu5IkxzLerI6viqnxyRHkiK9pWZZQYfNeR6MiDbJqa8C\nsruOnUGbdirgsHv+cKr+tS2SdLTEZ5LTOMLmmdYf1cgk5xslR79/n6NhrN193fI8/x6/w/2D8Qds\nznOn4cG5fBVmWYGIKJOcSp/ds7HXKCra8KGoPvZfD5Xb9V9dRlOcVBo+HMdF2d2vPC6bz8+yr1jh\nt8lyG56b9bGdKnfY9YXPdpFuo/65YffOqv9q+f7c6bW7h/rdNvfQs7n/I0kew+fQyogGJjmmXw8Y\nfYBOw/eK5UG7aybK6h4asHlGszQmtqtZ1ozy7WZZ9fEdnhXL72gteQI27/CCLrt+i+U1U1zznG/f\nWcMGdvMimh5fuU25rL5HsWyDYw/vOvVKYapIaG+SY/QYYyoqaPc9Q2RsY7MsnP0GZb9f10XAj8Si\nlMvrdP923wQAP0IZGRlav369pGOzCA8fPlzXXXfdD7rP9evXKyMjIzRrcbdu3TRs2LCwtn366ae1\nbds2ScfKO3nyZHXs2PGU2x08eFBjx46Vw+FQMBhUkyZNNG3atNM+hrqoNwAAAAAAAAAAAAAAAAAA\ncOYxszGAHw1mNg4PMxuHj5mNw8PMxmceMxuHj5mNw8fMxmcWMxufecxsHB5mNv5xY2bjusHMxqfG\nzMbhY2bj8DCz8ZnHzMbhY2bj8NTHdoqZjcPHzMbhYWbj8DCzcfiY2Tg8zGwcvvr4Ds8KMxuHj5mN\nw8fMxuFhZuPwMLMxvgtmNka46npmY7s7OAAAAAAAAAAAAAAAAAAAAICzit20IwAAAAAAAAAAAAAA\nAAAAAAiLP1D//gI2UBNmNgYAAAAAAAAAAAAAAAAAAABQIwYbAwAAAAAAAAAAAAAAAAAAAKiRu64L\nAADhCjocdV2EE3h8FWZZQXekSY4/EDTJkSSX067OnUZ/9sHvjDDJkaTG/sMmOYGIxiY5kuTwe82y\n/O4ok5zeu3JNciTpk/59THKSlq8yyZGkgMvunHIEba4/j7fUJEeSFLS59gKRDU1yJLv2TpIcvkqz\nLMllklISsMmJdBt31St9JjFW14zb6HqRJFlmGQk4bM4DSXLL5vh89bCPYNVuSlLQaXfNWPWn3Ibd\n16DLY5LjNuxTV0Y0MMuqeukRk5zYQb81yZGkgNH9yvI89xpexxFOm3bKadRGSZIjYHOvsur//B+b\n39Wv8tj0p5z177angAyfHQ3PKcsoK/XxHhqIsHl2lAyfiVx2c2R4jd5HOA3voaZ9IKNyxXrs6jxo\ndHyuevguULL9/Ky4jdoWy3eB9bGd8tS/j67esvr8goZ9BJ9Rn8zyfYTlPdRZD+vc6jyICFSZ5EhS\nwGP3HOowOhUsv7uyqnPL71FiqkrMsgIuo8/P8JnP77J59p9Rvt0kR5LGRnc0y5pZ8rFJTr38HsVv\n992Aw2/YThl9l2JZJsv3ppLN9VcRsGs73U6b96bH1K93U1Euu8+uIqG9WVZE0KaeXIZti9X3HwGj\n+wIAnK2Y2RgAAAAAAAAAAAAAAAAAAABAjRhsDAAAAAAAAAAAAAAAAAAAAKBGDDYGAAAAAAAAAAAA\nAAAAAAAAUCMGGwMAAAAAAAAAAAAAAAAAAACoEYONERav16u0tDT17NnTJG/FihVKTk7WK6+8Um35\nwYMHNXfuXJN9pKSkmOTUlb179+rBBx+s9eeDBw+WJM2aNUsbNmww2WdhYaHS0tI0YMCA0LKPPvpI\n/fr100MPPXTSbTdt2qTnn3/+hOWLFi1Sampq6P83bNig/v37KyUlRStXrtR7772ntLQ03XTTTfrN\nb36j9PR0FRcXmxwPAAAAAAAAAAAAAAAAAAD4ftx1XQD8OERERCgzM7PaINTv44477pDH45HP56u2\n/JxzztGIESNM9uFwOExy6lJtx/Cvf/1L11xzjfn+mjdvfsLnfPHFF2v69OmaOXPmKbevqbwfffSR\nEhISVFFRoaioKM2ZM0dLliyRx+NRcXGxGjVqpMzMTM2aNUtXXHGFfvrTn5oeEwAAAAAAAAAAAAAA\nAAAAOH0MNj5LbNq0SfPnz5fD4ZDH49ELL7ygQ4cOady4caqoqFCvXr1Cs8umpKSoQ4cO+ve//60J\nEyZo0qRJ8ng86tSpkwoKCrR48WLNnj1b69evl8vl0mOPPabzzz8/7LI8+uij+vzzz9WsWTM9//zz\n2r9/v8aMGSO3262kpCRNmDBBkhQMBqttt337dj366KNq06aNnn32WUnSpEmTFBMTo61bt2rYsGFK\nTk7Wli1bNG3aNEnSxIkTdfHFF9dalmAwqMmTJ6tv375q2rSpJkyYoLi4OBUVFSkzM1Ner1f333+/\niouLdcUVV2j06NF66KGHQgNr9+3bpzlz5igxMVF79+7V7t271bNnTw0aNKjG/a1bt06LFi1SmzZt\n5Ha7NXXqVPXr10+dO3fW5s2bNWvWLLVp0+aE7WbNmqUPP/xQklRWVqaBAweqS5cutR7XypUr9fDD\nD4f+f82aNfrjH/+oHj166K677pIk9e3bVy1atNBXX32lmTNnqmnTpifkPPHEE9qxY4c8Ho9+//vf\n69xzz611n6cjEAjI5/PpJz/5id5//3397Gc/k9fr1UcffaQrr7xSjRo1Mt0fAAAAAAAAAAAAAAAA\nAACw5azrAsBObGys5s6dq4qKCh05ckQrVqxQSkqKli9frtdff11+v1+SdODAAQ0ZMkTZ2dlKSkpS\nhw4dNHbsWCUlJSkpKUlFRUVKTU1Vdna2HnjgAWVmZn6ncmzdulXLly/X9OnTJUlxcXFavHixMjMz\ntWPHDh06dKjG7Tp27Bja5ttuuOEGzZs3T6+99pokacaMGcrIyFBGRobmzp1bazmCwaCeeuop/fKX\nv9Tll18uSfL5fJo1a5YuvPBCbd++XTk5Obr66quVlZWlnTt36vDhw/L7/SorK9OaNWv02WefqWvX\nrpKkSy65RFlZWXrzzTdr3WdmZqaysrLUs2fP0LLi4mKNHz9eI0eO1DvvvFPrthMnTpTD4dCCBQu0\ncePGWtfbv3+/3G63EhISQsu+Kdtbb70VWvaf//xHTz75pJYvX64mTZrUmDV27FhlZmbqtttuC9Wv\npU8++USdOnXSVVddFTqmRx55RBkZGbr55pu1efNm830CAAAAAAAAAAAAAAAAwI+BPxDkH//C+lfX\nmNn4LPLNjLnx8fEqLS1VQUGBevToIUlq1qyZDh8+rMTERCUmJqpVq1aSJJfLpejoaMXExCgmJkbR\n0dGqqKjQO++8o3Xr1snn81Wbiff42YhrMmLECI0dO1YtW7bU+PHjdfjwYT366KMqLS1Vfn6+SktL\nqw2UPZW2bdsqLi5OZWVlkqT8/HyNGjVKwWBQERERtW534MAB7dixQz/72c9Cy1q3bi3p2ADo0tJS\nFRYWqlOnTpKkdu3a6auvvlJCQoL+/ve/a926dbr44ov1i1/8QgUFBWrTpo2cTqdcLlet+3S73YqI\niFC7du1CyxISEhQbG6v4+Hjl5+fXum1UVJQSExMVFRWl8vLyWtdbsWKF+vbtW21ZTWVr3769YmNj\nJUkOh6PGrJdeeknvvfeeSktLdeONN4aWh/M5h2Pjxo169913tWXLFlVWVko6Nqg8IyNDe/bs0QMP\nPKDly5eb7AsAAAAAAAAAAAAAAAAAANhjZuOz0DcDRVu0aKG8vDwFg0Ht27dPcXFxkiSn8+QfeyAQ\n0PLly7V06VLdf//91Qaeer1eBQKBk27fvXt3zZgxQ5988omKioq0du1a9ejRQ0uWLKk2CDcqKkpF\nRUUnlP1UA12TkpI0f/58ZWZmnnRm4yZNmmjevHl66aWXVFJSUuM65513nvLy8iRJu3btUrNmzdSl\nSxetXLlS119/vTZv3qwLL7zwhDLWxufzyev1ateuXWGtfyrHbxsIBPThhx/qyiuvPOX6p/qcDx8+\nrM2bN2vp0qVKTU2ttm1FRUW1daOjo0/4rMIp75YtW7R06VLNnz9f8fHxKisr0549eyQdGxR/ssHi\nAAAAAAAAAAAAAAAAAACg7jHY+Cz0zSy2ffv2VVZWlu6880716tUrNOttbbPcfnv7Sy+9VGlpacrJ\nyan2s+TkZPXv3/+E5d8IBoMaMmSI+vfvr3PPPVfx8fG65pprtHDhQo0ePbrautdcc41ycnJ09913\nS5KWLVum8ePHa8OGDUpPTw/NZHy84cOHa8iQIRo4cKAyMjJOeiwej0ejRo3Sc889d8IxSscGRufm\n5io1NVUXXHCBmjZtqq5du8rlcunaa69VRUXFCfV1svpLTU1VSkqK3nzzzbDWP5WNGzdq8ODBGjx4\nsN566y397W9/0w033FDr+t/e16n227hxYzVo0EB33XWXNm/eXO1nV1xxhVJSUvT+++9LOjY7c3R0\ntNLS0vTll1/Wmvn666+Hyvvee++puLhYbvexCdQ7duyo9957TwsWLFD//v01ePBgDR069FRVAAAA\nAAAAAAAAAAAAAAAA6pAj+H2mXQVQoy+++EKzZ8/W1KlTTXP/9re/6eqrr1ZsbKxp7o9F+XEzLtcH\nTq9dmYLuSJMcn2Gr7nKe/mD54zn9XpMcv9NuRmx3xWGTnEBUY5McSXL4Ks2y/O4okxxXwOazk6RP\n+vcxyUlavsokR5ICLrtzymHUrXJWlZrkSJKCJ/+LBOEKRDY0ybFmec0UV7hMcpxRNjmRLrs2WJLK\nS30mObENba4Zq+ulvgrI8B4qm7qqj30E0/PAqL2TJJ/R7+W6bS9jE8Hv8cuQx/MF7D6/qpceMcmJ\nHfRbkxxJChj1zy3P80q701wRRtexVRslSY6Azb3Ksj2QpOJymzYhuoHbJMdpeB1LUmnJ9+/vN4i1\n61NbnlP1kVU7bNm2WN4brMpl2Zcq9dq0CQ0i7ObtsDzPrT6/Kr9hmYzOA6OPTpLkMXy+iqyHU7hY\n9fUt3wXWx3bqLH8MNWXVTlm25wGjD9DyOa0+3kPrY5kc/iqTHEkKujxmWWdz22l57bmrav7rsacj\n4GlgkmN5TvldRs/+hm3L2OiOZlkzSz42yamP36NYfjdgeU5ZfZdi2nY6bd5HSNLRUptOekS0zfco\nkuQ2bIetvkdpFG1TT/XxvidJEUGberJsW6zeVVueT9FRNt/V479DypL36roI+JHITr+qTvdv16sA\n6khGRobWr18v6dhsvsOHD9d11133g+5z/fr1ysjICM0e3K1bNw0bNiysbZ9++mlt27ZN0rHyTp48\nWR07hvfQeNNNN51WeVevXq1Vq1aFytunTx/17t37tLIkKS0tTQ6HQ8FgUA6HQ0uWLDntLAAAAAAA\nAAAAAAAAAAAAUH8x2Bg/esOHD9fw4cPP6D67deumbt261frz1q1b1zqr8eTJk3+oYtXq1ltv1a23\n3mqWl5mZaZYFAAAAAAAAAAAAAAAAAADqr3r4B78AAAAAAAAAAAAAAAAAAAAA1AcMNgYAAAAAAAAA\nAAAAAAAAAABQIwYbAwAAAAAAAAAAAAAAAAAAAKgRg40BAAAAAAAAAAAAAAAAAAAA1Mhd1wUAgHAd\nKvebZfkCQZOchh6PSY4kxRjlVPptjk2SXEb1JEnRDpscz6FdNkGS/HEtTXKKqwImOZLU2GGXFQja\nfH5Op113ocufXzXJmdf8cpMcSUrwuMyybsv/l0lO0B1pkiNJXofN52fZaXSWF5ll+WMSzLJU4TWJ\n8bhsGjynw6jhNOasKjPJCUZEm+RIUkA2deUK2JwDkuQK2rXnQZdNf8NT9rVJjiT5Y88xy7Li8FWa\nZTkjbHpmDq/N9SJJVW6ja8aofyBJbqddO+UeOsUk5+AzY0xyJKl56hCTHG+zTiY5khRl2bYEje7u\nDsPfYzc6Pr/Lri91jM39wW12ydhdx1Zcfrs22Oq+J9n1ESxV+WzO8yijPqck+Q2f/a36sH7D+1WE\nUTNVYfTZSVIDp907Loffpo0KOqNMciTJ6pSyPA9chs9XDm+5TY6vwiRHkvyR8SY5PsPzvD62U1WG\n703PdjFGHRenYb/F6uy07B8EDO+hVn3FA2U+myDZXTMJUREmOZLd9yiSXV01irR7v9zAZVPnkft3\nmORIkrfJhWZZVtefu6rUJEeSAlE2zx+W789nlnxsljUmtqtJziWN7fqKg776wCTH8mnPF9nILMvq\n3uewPM8tv0cxuiM7DPvn9fK7FMNnGSuWJXLt3GCSU37+dSY5kuRx2Tz8R+6xaaMkSRdcY5eFs57l\n+zngh8TMxgAAAAAAAAAAAAAAAAAAAABqxGBjAAAAAAAAAAAAAAAAAAAAADVisDEAAAAAAAAAAAAA\nAAAAAACAGjHYGAAAAAAAAAAAAAAAAAAAAECNGGyM7+3VV1/VZ5999r1zVq9erVdeeSWsdbdv366V\nK1d+731KUkpKiknO2cDr9SotLU09e/YMLSssLFRaWpoGDBhw0m337t2rBx988ITlb7/9tm688cbQ\n/2/fvl0DBgxQamqqZs+erV27diktLU3Jycn65S9/qfT0dOXl5dkdFAAAAAAAAAAAAAAAAAAAOG3u\nui4Afvx69+59xvfZsWNHdezY0STL4XCY5JwNIiIilJmZWW1gcfPmzU9YVpua6jI3N1eXXXaZvvji\nC7Vu3Vpz5szRH/7wBzVv3lzFxcVq1KiRMjMz9eqrr8rn8+n22283PSYAAAAAAAAAAAAAAAAAAHD6\nGGx8ltu0aZPmz58vh8OhyMhIPfbYYxo3bpwqKirUq1cvpaamSjo2u2+HDh3073//WxMnTlSDBg30\n+OOPy+v1atiwYbrpppuUlpamtm3bavv27ZowYYKuvPJKZWRkaPny5Xrqqaf005/+VJL061//Whdd\ndJHy8vK0aNEiNWrUSNOmTdMHH3yg+Ph4TZs2TVu3btULL7wgj8ejuLg4TZs2TZK0fv16rV27Vhdc\ncIEefvjhGst25MgRTZs2TTfeeKPGjBkjSUpLS9Mll1yid999V48//rguv/xy5eTkaOHChXK73Xr6\n6afVqlWrWuupsrJSDzzwgMaPH6/9+/eH6szj8eiFF17QoUOHqtXbddddp2XLlmnSpEmSpC1btmjr\n1q3Ky8tTTEyMtm7dqmHDhik5ObnG/S1atEg5OTlKTEzURRddpHvuuafGejvepEmTVFRUJKfTqYMH\nD+q3v/2tLr74Yk2bNk3vv/++oqKitGDBAuXn5+uhhx5SmzZt9MUXX+jll1+usRyzZ8/W+vXr5XK5\n9Nhjj+n8888P57T6TgoKCnTHHXcoNzdXrVu3lsvl0vvvv6+bb7652jEGg0HzfQMAAAAAAAAAAAAA\nAAAAgO/HWdcFwA8vNjZWc+fOVVlZmVasWKGUlBQtX75cr7/+uvx+vyTpwIEDGjJkiLKzs9WlSxdN\nnz5dTz/9tLKysrR06dJQ1oABA5SRkaGMjAxJ0vDhw9WnT59q+zty5IieeeYZJScnKzc3V9u2bdPB\ngweVmZmp6667Tjk5OZKkRo0aacGCBUpMTNQHH3wgSWrdurUWLlyorVu3hvK+XbakpCR169YtNBD5\nGw6HQ3369NFTTz2ldevWKRAIaP78+Vq6dKmmTJmiefPm1Vo/fr9fkydP1t133622bdtWq7OKigod\nOXLkhHpr1aqV9u7dq8LCQr377rvatm2bunbtKkm64YYbNG/ePL322ms17s/n8yknJ0fZ2dm64oor\naq232jz//PPy+XyaOnWq3nvvPX322Wc6ePCgsrKy9OKLL0o6Npj5ySef1MMPP6zi4uJas1JTU5Wd\nna0HHnhAmZmZta53ur7++mslJibqyiuv1KZNmyRJ48aNU05Ojnr27Km33nrLfJ8AAAAAAAAAAAAA\nAAAAAMAOMxv/F2jTpo0kKT4+Xps3b1aPHj0kSc2aNdPhw4eVmJioxMTE0My/LpdLX375pSZPnqxg\nMKjDhw+Hstq3by+Px6OysrJa99eyZUs5nU7FxcWptLRUu3bt0vvvv6/09HRVVVXplltu0bnnnqv2\n7dtLktq2bauCgoJqZY2MjAzlfbtsTuex8fE1zYLbtm1b7dmzR6WlpSoqKtKePXt01113hY61Ntu2\nbVNERIQcDkeNdVZaWqqCgoJQvTVv3lxFRUVyu9169913tWPHDlVVVal379569dVX1bZtW8XFxdVa\nR0VFRaHytGvXTh9//HGN9VabqKgoJSYmKjo6WuXl5frPf/4TGugcFRUlSdq7d2/os2rcuHGtWWvW\nrNEbb7whn88XOmap5vo9nZmHc3Nz9fHHH+v+++/X3r17JUktWrTQzJkzdfToUfXr1089e/b8zrkA\nAAAAAAAAAAAAAAAAAODMYLDxf5mrrrpKeXl5ateunfbt26e4uDhJ/zeI9xvnn3++Hn30UcXFxcnr\n9YaW5+fnq0mTJoqJial1H8cPSm3Xrp1uuukmTZgwQZLk9Xq1detW5efnS5J2796t5ORk7d69u8aM\n48tW0zrH7zM+Pl6dOnXSggULQvusTVJSkmbOnKmxY8dq4cKFNe6jRYsWoXr76quvFB8fr9atW+vj\njz9WmzZt9Omnnyo2Nvak9fCNuLg4FRYWho79VOufSps2bfT3v/9dKSkpqqysVGRkpFq0aKGdO3eq\nWbNmOnLkSK3b/vnPf9aaNWu0ceNGrVq1KrTc6/UqEAhUq/uKiopTluX4Y9i4caNmzZqlli1b6skn\nn1ReXp4iIyPVsmVLxcTEqEGDBqdxxAAAAAAAAAAAAAAAAAAA4ExhsPF/EYfDoZ/97GeaNm2aFixY\noFtuuUUulyv0s2+75557NHbsWPn9/tDAY0launSptm/frokTJ0qSRo0apc8//1x//etfdeONN2rM\nmDEnZHXq1ElvvPGG0tPT5XA4NH78eEnSkSNHdNdddyk+Pl6XXXZZtYG33844Pu+FF17Q3/72Nx05\nckTbt2/XnDlzTljH6XSqX79+Sk1Nlcvl0q9+9SvdcccdtdZNQkKCevXqpfnz5+uyyy47Yd99+/bV\nuHHjqtVb165d9a9//Utdu3bVjh07aqzvmkRERKh79+668847dc455+iiiy466fqn0rlzZyUmJiol\nJUWRkZFauHChBg4cqAkTJqhVq1ahAeU1ufTSS5WWlqYLL7yw2vLk5GT1799fQ4cODc3ofMUVVygl\nJUUPPPCALr/88hrzNm7cqMGDB0uS7rjjDm3btk0tW7aUJHXt2lW5ubkqLi7W//7v/8rpdKp///6n\ndcwAAAAAAAAAAAAAAAAA8GPnC5zeBJXAmeYInu50qvivk5aWpsWLF9c60/B3sWnTJm3YsEFjxowx\nKNmP14YNG7Rlyxbdc889prk+n09ut1ulpaW699579dJLL5nm15W9RaVmWVY36oae7389fCPGfXoD\nzo9X6rNr1l02RZIkRTv8Jjmuw3tMciTJH9fSJOeIz+48aOyoNMvyuqNNcoxOzWOCAZOY+c1r/qWH\n05HgcZll3Zb/L5sgp12ZvA6b3y2zPA+c5UVmWf6YBLOskqO1/yWE7yKqgU2du07zF5FqU1pic3yN\nIm1yghE2bZQkBWRTV66AzbFJMmvvJCno8pjkOEu/NsmRJH/sOSY5DsPHUYe33CzLH1H7X3L5Llze\nMpMcSaoyuq9bcjtt2ykLh56xe8ZsnjrEJMfbrJNJjiTbtsVp9PvnDru+sMNfZZLjd0Wa5HzD6h7a\nMLZ+/s7/0RLf985oFF3/7nuSXR/BUpXfpq6iDB/YDV8jyGnUh/Ub9hH8Ru+ALL/zaeC0eUciSfLb\ntFHlziiTHMmurqoMKz02wu5+FeGz6Xc6fKf+S3LhKo+MN8mx/LqoPrZTVX6+DguX1btqS1bngdW9\nSpIChteMVZXvL7e7x1hdMwlRdu86Lc/NwtLv3w+WpEaRdsfXwGVT5xH7T5wk6XR5m1x46pXCFHDY\n1JW7/JBJjiRVRdncQy2bTUfA5tyUpDGxXU1yLmls11cc9NUHJjlOr11fyu+2Oz6nbK7js/17FE+M\n3TuSCMN3lGbfo0TZ3I+Dbrt3XF7DrnD0jvUmOSXnX2eSI0kel80zX9RemzZKkpwXXGOWhbPfbS/l\n1nUR8COxcvBP6nT/9fNbDtRLpzvzbn3x9NNPa9u2bZKOHcvkyZPVsWPHH3Sfq1ev1qpVq0J116dP\nH/Xu3TusbceNG6eDBw8qGAzK4XBoxowZSkxMDGvbzz//XI8//rgcDofGjBmj9evXKyPj/7N3p4FV\nVff+/z/7TJkAE4LKIDI4EAbFAfhLkaviQLlqBdoiU0IQQVSGIv0VCNY6ES7VoAgiQhBICJOzrVax\nt62tBYIM0gGijApBDJSQQEhIzvB/wOWUwAkE+GoCfb+eKOfs/dlrr7332tM6K7PD5ejatauGDh16\ndit1jmUDAAAAAAAAAAAAAAAAAADnDzobo9qysrLMsjp16qROnTqZ5VVHWlra97o8SerVq5d69epV\n5fedO3dW586dI343derUs15u27ZttWzZskqfde3a9azzTnQuZQMAAACb91eMAAAgAElEQVQAAAAA\nAAAAAAAAAOcPu78dBgAAAAAAAAAAAAAAAAAAAOCCQmdjAAAAAAAAAAAAAAAAAAAAABHR2RgAAAAA\nAAAAAAAAAAAAAABARJ6aLgAAVJfb8OcRoZBRjk2MqYqgXalifG6zrJBVpbvsTl1Bt9ckxwkETXIk\nyfGXmWX5XdEmOR63Y5IjSXJsDuSLo+z2zfxSv1mWE7TJsto3JcnlWG2/2tji2bXnltxGde4KBUxy\nrDkhmzbPctMFjHYEl+E5pjayaqMkKWB0veGxPMUYnkNd3hibIMP23GtUV0fsLlvk1MJGOKHdVWZZ\noYojNjmGbYvjtylTrWV0rYgaUAvbA0kqqTBs9IxY3l5ZsbtnsKtzn2FFeVw2WW6jHEkKheyynKDN\nfYNVPUl2dWV0RSZJOuI3bA88NiXzBcpNciSpPGDTDtfGNkqya6es7h3/E/iNqsqy7bS6Uiw3fJbr\ns3xpUUufvVmorWt25EJuO42e30lSyGX3LN4dqDDJcZUWmeRIkt8Xb5Jj+R7F8v1A+4ts3hNtKDJ8\n7mb1bMPwPsYwyq7RCxoex7WwIfZaXiPUwncpjtG1fsgTZZIj2T1fliRXTJxJjtV9jCRFu22yQuV2\n7R0AXIh4iwMAAAAAAAAAAAAAAAAAAAAgIjobAwAAAAAAAAAAAAAAAAAAAIiIzsYAAAAAAAAAAAAA\nAAAAAAAAIvLUdAEAAAAAAAAAAAAAAAAAAAD+0wSCoZouAlAtjGx8HnvnnXe0cePGc855++239cYb\nb1Rr2ry8PL355pvnvExJ6t+/v0nO+WL37t2aMGGCJGnChAnauXNnted95ZVXtGrVqlNO8+yzz55T\n+Y4ZOXKkOnXqpGAwKEmqqKhQcnKyunfvftp5I23TjRs3qn379jpy5Igkac+ePUpNTVVycrKefvpp\nHTp0SMnJyerZs6e6deumlJQU5ebmmqwLAAAAAAAAAAAAAAAAAAA4N4xsfB7r2bPn977MpKQkJSUl\nmWQ5jmOSc75YunSp+vbte8bzBYNBrVmzRg8//PApp3v88cfPtmiVTJ8+XSkpKeF/e71eZWdna8CA\nAaedN9I2zc3N1e23365169apc+fOys7O1ogRI9ShQwcVFxerTp06ys7O1meffaYVK1Zo9OjRJusB\nAAAAAAAAAAAAAAAAAADOHZ2NvyOrV69WZmamHMdRVFSUnnzyST322GMqKyvTPffco4EDB0o6OhLs\n1VdfrS+//FLjx49XXFycnnrqKVVUVGjo0KHq1q2bkpOT1bx5c+Xl5WncuHHq0KGDZs+erSVLlmjS\npEnq3LmzJOlHP/qRWrVqpa1bt2r+/PmqV6+eMjIy9PnnnyshIUEZGRlav369pk+fLp/Pp/j4eGVk\nZEiS/vKXv+j999/XlVdeqYkTJ0YsW1FRkTIyMnTbbbeFO4QmJyerffv2+uSTT/TUU0/phhtu0PLl\nyzVv3jx5PB6lp6eradOmVdbTkSNH9POf/1xjx45VQUFBuM58Pp+mT5+u/fv3V6q3m2++WYsXLw6P\nELx27VqtX79eW7duVWxsrNavX6+hQ4eqR48eEZc3f/58LV++XImJiWrVqpVGjBgRsd5ONGHCBBUW\nFsrlcmnfvn16/PHHde211yojI0Pr1q1TdHS05s6dq23btukXv/iFmjVrpq+//lqvv/66JMnv92vj\nxo0aM2ZMpdycnBxVVFQoNTVV8+fP10cffaQGDRqEyyZJf/rTn3TLLbdIkmbMmKENGzZIkg4fPqxB\ngwbprrvuUnJysgoKCvTRRx9JOjpa9Z/+9CcVFxdX2qYnevPNN/X666/L5XJpzJgx6tixoyQpFLIb\nnn/Dhg0aNmyYPvroI3Xu3Fkul0vr16/XddddV6muLZcJAAAAAAAAAAAAAAAAAABsuGq6ABeyOnXq\n6NVXX9Xhw4e1bNky9e/fX0uWLNFvf/tbBQIBSdLevXs1ZMgQLVq0SG3bttXUqVOVnp6unJwcLVy4\nMJw1YMAAzZ49W7Nnz5YkDRs2TL179660vKKiIk2ZMkU9evRQbm6uNm3apH379ik7O1s333yzli9f\nLkmqV6+e5s6dq8TERH3++eeSpMsvv1zz5s3T+vXrw3nHl61du3bq2rXrSZ1WHcdR7969NWnSJH3w\nwQcKBoPKzMzUwoUL9cwzz2jOnDlV1k8gEFBaWpqGDx+u5s2bV6qzsrIyFRUVnVRvTZs2VX5+vr75\n5ht98skn2rRpk6655hpJ0q233qo5c+bo3Xffjbg8v9+v5cuXa9GiRbrxxhurrLeqvPjii/L7/Zo8\nebI+++wzbdy4Ufv27VNOTo5efvllSUc7Mz/77LOaOHGiiouLw/N+/PHHuvPOOyvlvf/++yooKFBq\namq4bIsXL65UNkl655131KtXr/C/x48fL8dxNHfuXK1atUqSlJ2drQYNGlSaL9I2PdFdd92lJUuW\n6KWXXgrvW5LdqNOBQECBQEBt2rTRF198IUkaMmSItm/frh/+8IfKyckxWQ4AAAAAAAAAAAAAAAAA\nAPhuMLLxd6hZs2aSpISEBK1Zs0Z33XWXJKlhw4Y6cOCAEhMTlZiYGB751+12a+fOnUpLS1MoFNKB\nAwfCWS1btpTP59Phw4erXN5ll10ml8ul+Ph4lZSUaPv27Vq3bp1SUlJUXl6ue++9VxdffLFatmwp\nSWrevLl2795dqaxRUVHhvOPL5nId7ZceafTZ5s2ba9euXSopKVFhYaF27dqlwYMHh9e1Kps2bZLX\n663UsfX4OispKdHu3bvD9daoUSMVFhbK4/Hok08+0ebNm1VeXq6ePXvqnXfeUfPmzRUfH19lHRUW\nFobL06JFC/3973+PWG9ViY6OVmJiomJiYlRaWqqvvvoq3NE5OjpakpSfnx/eVseP2vub3/wmPIr0\nMbm5uWrVqtUpy7Zr1y5ddNFFqlu37knliI6OVmlpaZXljbRNT7RixYpwp/bjt22k7Xw2Iw//4x//\n0ObNm/Xggw9qy5YtKi0tVXx8vNLT01VeXq6f/OQn6tWrl2JjY884GwAAAAAAAAAAAAAAAAAAfPcY\n2fh70rFjR23dulWhUEjffvut4uPjJf27E+8xV1xxhV566SVlZ2frrbfeCn++bds27d+//5SdMk/s\nDNqiRQt169ZNWVlZWrJkifr06RPOkqQdO3aoUaNGVWacWLZI05y4zISEBLVu3VpZWVnKysrSpEmT\nqixvu3btNG3aNE2ZMkXBYDDiMpo0aRKutz179ighIUGXX365/v73v+vSSy9VcXGx6tSpc8p6OCY+\nPl7ffPNNeN1PN/3pNGvWTBs2bJAkHTlyJFzeLVu2aP/+/eGRjbdt26bGjRsrJiam0vxPP/20CgsL\n9be//U0JCQnhsm3fvj08zbJly3T//fdXqzxVrcep1i8zM1OZmZlKT0+vtA1iY2NVWFhYadqKioqT\nttPplrVq1So9+eSTyszMVGpqqj777DPl5+dLknw+n+Lj48+6/gEAAAAAAAAAAAAAAAAAwHePzsbf\nA8dx9IMf/EA5OTnq16+f7rnnHrnd7vB3xxsxYoTGjBmjlJQUpaenhz9fuHChhg0bpmHDhkmSHnnk\nEb399tuaMmWKpk2bFjGrdevW8nq9SklJ0aBBg7Rp0yZJUlFRkQYPHqx9+/bp+uuvP6mskf5fkqZP\nn67Jkyfrvffe0/DhwyNO43K5dP/992vgwIEaNGiQ3n777VPWTf369XXPPfcoMzMz4rJ/+tOfnlRv\n11xzjXw+X/i/JzqxTMd4vV7deeed6tevn9asWXPa6U+nTZs2SkxMVP/+/cP1MWjQID3xxBN65pln\nwh3Kly5dqr59+0bMGDdunJ577jk5jqPu3burX79+Wr16tVwulyoqKvTFF1+oXbt2pyzHhg0blJyc\nrM2bNyslJUXr1q2r9P2p1u+2225TcnKyFi1aVGm6++67T0OHDlVOTk74sx49eqhv375avnx5lXlb\ntmzRAw88oAceeEA5OTlavXq12rZtK+lo5/Lc3Fzl5ubqxz/+sfr166ebbrpJcXFxp1w/AAAAAAAA\nAAAAAAAAAABQc5wQw4rWesnJyVqwYEGVIw2fidWrV2vlypUaPXq0QcnOXytXrtTatWs1YsQI01y/\n3y+Px6OSkhKNHDlSr732mt59913dd9991Z536dKl8nq96ty5s/Lz89WhQwfTMp7P9hSVmGX5AzZN\nX4zX7jcbcZ6z6/h+ogPlpx6B+kzU87nNslyhgEmOp2i3SY4kVSQ0Nck5ZFjnF/kPmGUd9sWb5ES7\nbfZNS+82u9EsK7/Ub5Y1YtcKk5ygN+b0E1U3y7E5jl2yu2R0lRaefqJq8sfUN8sqOVRhkhNXx2uS\nY9VuHnOwxKatush3xCQn6LP7wVGF0e7prX3NnSn3wW/Nso7UudQkx+jyR5Jt2xKMSTDJcYJ255iQ\ny2OSc8TuskVRtfDny8EPXjbLimr7/5nkVDSzu6dz/DZtsCSF3DbnKzl2O4LVMRNwGa3b/7G6Rqhb\nx+Y4tnbw0LnXe71ou+uWkCfKLOug1UWCIavbq1jDk2hQdlklFTYnGp/hfahVlNtlVybH8JG81bmh\nwm137FnWlZUjfruLII/R+vmOFJnkSFKRu55JjuUjoNrYTlm1Uf8JYoy2n2V7YNV0lgfs9gOf2+5a\n2OrZW0Gp3XVZudF7lIRou/cMVu9RJGlHsc11fsM4u+v8aJdNnXu//cIkR5LKG7Uxy3IFbOrcfWCX\nSY4kHbqomUmO5XuU0FkOlBXJ/IbXmeRsKCozyZGkaQc3mGVZCRreh1pd67tK/mWSI0n+uAZmWbXt\nPYpk+y7F7D2Kt9QkJxhV1yTHmm/nutNPVA37LrVpoySpns/musy7PdckR5LcbW41y8KFr2fmqpou\nAs4T7zx4U40uv3a+5UAlZzvybm2Rnp4eHlXZcRylpaUpKSnpO13m22+/rbfeeitcd71791bPnj2r\nNe9jjz2mffv2KRQKyXEcvfDCC0pMTKzWvF988YWeeuopOY4T7tBdnY7GkjRz5kzl5uYqJiZG06ZN\nU1xcnBo1alSteU8nLy9PkyZNCtdH69atNWHChLPOq4ltCgAAAAAAAAAAAAAAAAAAvn90Nj4PZGVl\nmWV16tRJnTp1MsurjrS0tO91eZLUq1cv9erVq8rvO3furM6dO0f8burUqWe93LZt22rZsmVnNe+o\nUaPOermnk5SUpOzsbLO8mtimAAAAAAAAAAAAAAAAAADg+0dnYwAAAAAAAAAAAAAAAAAAgO9ZIBiq\n6SIA1eKq6QIAAAAAAAAAAAAAAAAAAAAAqJ3obAwAAAAAAAAAAAAAAAAAAAAgIjobAwAAAAAAAAAA\nAAAAAAAAAIjIU9MFAIDquijKbZYVCIbMsmqbI367dXN5A2ZZIZfN9gt6Y0xyJMkJ2dRVjMcxyZGk\nkLuuWVaU2+g3RUb1ZKlX3u/NskLeWLOs5y7taJIzet/fTHIkyW21exruBiFfnF1YLeQKGbWdjvXv\nAoMmKSFX7buF8Jrt5zZ1JNmd9yS785XjP2KSI0keq/3JMaynCrv1k9HlRrljd7xElfzLJicu0SSn\ntvL94D6zrIqLGpvkuP/2kUmOJAWu7W6WVRsF3V6bnNp6v2d1njG/Rjh35e4osyybveAoy3u1C5lj\nWE1WdW55FLtdNmWyuiYzZ7QBreqptvIYrp/VtfDsvFKTHEka1P4ik5zauhdYtVNx3tp3Dq2tXEYt\nsWXLaVUmn9UzU9meQ60q65IYu/vsCqMy1da2xUq02QNYKWg0TlgwNsEkR7K9BgoZ3cuUJjQ3yZGk\nKKtrBMN6sqzz1D2fm+S4DJ8rjq7b3iTnhdI8kxxJcoJ270Ot7tmDhs/wTM9XRszeo0jGz0lsrvUD\n0fVMcmrrfWhF43YmOTEuw21n9NwtmNjMJEeS7K7KAKD24MkKAAAAAAAAAAAAAAAAAAAAgIjobAwA\nAAAAAAAAAAAAAAAAAAAgIjobAwAAAAAAAAAAAAAAAAAAAIiIzsYAAAAAAAAAAAAAAAAAAAAAIqKz\n8X+od955Rxs3bjznnLfffltvvPFGtabNy8vTm2++ec7LlKT+/fub5Jwvdu/erQkTJpxyGqttumzZ\nMvXo0aPSdn355ZfVrVs3rVy58pTzTpgwQTt37jzp8969e1fKmzRpkgYOHKj+/ftr7969mjp1qpKT\nk9WhQwelpKTo+eefP+f1AAAAAAAAAAAAAAAAAAAA585T0wVAzejZs+f3vsykpCQlJSWZZDmOY5Jz\nvli6dKn69u17ymmstmmfPn3k8/nk9/vDnz366KMKhUJnlVdYWKjLL79ca9as0U9+8hNt3bpVJSUl\nWrhwocrLyyVJjz32mCRpwIABysrKOveVAAAAAAAAAAAAAAAAAAAAJuhsXAutXr1amZmZchxHUVFR\nevLJJ/XYY4+prKxM99xzjwYOHCjp6Oi+V199tb788kuNHz9ecXFxeuqpp1RRUaGhQ4eqW7duSk5O\nVvPmzZWXl6dx48apQ4cOmj17tpYsWaJJkyapc+fOkqQf/ehHatWqlbZu3ar58+erXr16ysjI0Oef\nf66EhARlZGRo/fr1mj59unw+n+Lj45WRkSFJ+stf/qL3339fV155pSZOnBixbEVFRcrIyNBtt92m\n0aNHS5KSk5PVvn17ffLJJ3rqqad0ww03aPny5Zo3b548Ho/S09PVtGnTKuvpyJEj+vnPf66xY8eq\noKAgXGc+n0/Tp0/X/v37K9XbzTffrMWLF4dHCF67dq3Wr1+vrVu3KjY2VuvXr9fQoUPVo0ePiMub\nP3++li9frsTERLVq1UojRoyIWG8nmjBhggoLC+VyubRv3z49/vjjuvbaa5WRkaF169YpOjpac+fO\n1bZt2/SLX/xCzZo109dff63XX39dkuT3+7Vx40aNGTNG+fn5GjVqlAKBgK6++moFAgFlZGRUe5ue\nqKCgQKNHj5bH41G7du00btw4STrrjsWR5Obm6vbbb9cHH3wg6WhH8R07dmj//v2qX7++2XIAAAAA\nAAAAAAAAAAAA4HwSCNr10wK+S66aLgAiq1Onjl599VUdPnxYy5YtU//+/bVkyRL99re/VSAQkCTt\n3btXQ4YM0aJFi9S2bVtNnTpV6enpysnJ0cKFC8NZAwYM0OzZszV79mxJ0rBhw9S7d+9KyysqKtKU\nKVPUo0cP5ebmatOmTdq3b5+ys7N18803a/ny5ZKkevXqae7cuUpMTNTnn38uSbr88ss1b948rV+/\nPpx3fNnatWunrl27hjsiH+M4jnr37q1Jkybpgw8+UDAYVGZmphYuXKhnnnlGc+bMqbJ+AoGA0tLS\nNHz4cDVv3rxSnZWVlamoqOikemvatKny8/P1zTff6JNPPtGmTZt0zTXXSJJuvfVWzZkzR++++27E\n5fn9fi1fvlyLFi3SjTfeWGW9VeXFF1+U3+/X5MmT9dlnn2njxo3at2+fcnJy9PLLL0s62pn52Wef\n1cSJE1VcXBye9+OPP9add94Z/vdNN92kPn366O6775bP55NUvW0aSXx8vBYsWKDs7Gxt3rxZ+/fv\nr3IdzlZubq46deqk5s2ba8eOHWrZsqXuuecepaSk6NFHH9Xhw4fNlwkAAAAAAAAAAAAAAAAAAGzQ\n2biWatasmSQpISFBa9as0ZVXXilJatiwoQ4cOCBJSkxMDI/863a7tXPnTqWlpWnQoEHau3dvOKtl\ny5ZKSEg4ZafOyy67TC6XS/Hx8SopKdH27du1bt06paSk6K233govs2XLlpKk5s2ba/fu3ZXKGhUV\nFc47vmwu19HdLNJouc2bNw8vs7CwULt27dLgwYP1xBNPqKysrMrybtq0SQUFBXIcJ2KdlZSUaPfu\n3eF6a9SokQoLC+XxePTJJ5/oz3/+s7744gu1bdu2UjmqqqPCwkI1bNhQktSiRYsq660q0dHRSkxM\nVExMjEpLS/XVV1+FOzpHR0dLkvLz89WyZUvVr1+/0ijEv/nNb3TvvfeG/x0TE6PY2FjFxMRUubzq\nlu3AgQMaPXq0UlJSlJeXd8p1OFsbNmzQ448/rtWrV4c7Pffv31+//e1v1aZNG7333nvmywQAAAAA\nAAAAAAAAAAAAADbobHwe6Nixo7Zu3apQKKRvv/1W8fHxkv7difeYK664Qi+99JKys7P11ltvhT/f\ntm2b9u/fr9jY2CqXcWJH4BYtWqhbt27KysrSkiVL1KdPn3CWJO3YsUONGjWqMuPEskWa5sRlJiQk\nqHXr1srKylJWVpYmTZpUZXnbtWunadOmacqUKQoGgxGX0aRJk3C97dmzRwkJCbr88sv197//XZde\neqmKi4tVp06dU9bDMfHx8frmm2/C63666U+nWbNm2rBhgyTpyJEj4fJu2bJF+/fvD49svG3bNjVu\n3Pi0HYsjqU7Z3n//fd11113Kysqq1Ik6OjpahYWFlaaN9NnplltQUKCrr75ac+bM0dy5c7Vq1SqV\nlJSoqKhI0tFO4MdG6q5umQEAAAAAAAAAAAAAAAAAwPfHU9MFwKk5jqMf/OAHysjI0Ny5c3XvvffK\n7XaHvzveiBEjNGbMGAUCAV1xxRX61a9+JUlauHCh8vLyNH78eEnSI488oi+++EK///3vddttt2n0\n6NEnZbVu3Vq/+93vlJKSIsdxNHbsWElSUVGRBg8erISEBF1//fWVOt4en3Fi3vTp0/WHP/xBRUVF\nysvL06xZs06axuVy6f7779fAgQPldrt19913hzs5R1K/fn3dc889yszM1PXXX3/Ssn/605/qscce\nq1Rv11xzjVasWKFrrrlGmzdvjljfkXi9Xt15553q16+fGjRooFatWp1y+tNp06aNEhMT1b9/f0VF\nRWnevHkaNGiQxo0bp6ZNm4Y7lC9dulR9+/Y9bV51tmkkN910k8aNG6ff//73J30+bNgwrV27VrNm\nzZIkdevWTWPHjtXKlSv1zDPPVJk5fvx4RUdHKyoqSnfffbdat24t6d8dtktKSjRy5Ej5fD75fD69\n8MIL4XnPtj4BAAAAAAAAAAAAAAAAAMB3wwkxlOgFLTk5WQsWLKhypOEzsXr1aq1cuVKjR482KNn5\na+XKlVq7dq1GjBhhmuv3++XxeMKdcV977TW9++67uu+++0yXcz4rLSszywoEa1/T5zHqa/3t4cDp\nJ6qmS2PsOoCHXG6THPehfSY5khSMSzTJ8RvuTt6Q3ywr6Paa5Di18FLBVXr6kdarK+SteuT/M/X8\npR1Nckbv+5tJjiS5XTbHseV+4ATKzbIC7iizrJJDFSY5deOM/niIY/tHSA4esmlf6kXbnGdCHrtt\nZyYUPP001Y0yOu9Jdsefp/BrkxxJ8sdfZpJjWU+eom/MsgL1GprkVBieQqMO/8skx+r6p7byHNhl\nluW/qLFJjvvvH5vkSFLg2u5mWbVRyOgHqNb3e6UlNufQC/kaITrObjwDr+HvkC3v1Wobq2cIkt2x\nJ9kdf5abzlML74ksWd1fBWvj9bkhy3ODRzb3DZkbCkxyJGlQe5vrV8uhIGpjO1VLD+NayWXUElue\nY6za4aDhnm45fkptPM9Y3dPW1rZlR7HNs8Dm9Wyew0t2+6e3uPY9I5Fk9uytwvCPN1/o14pW7bDL\nf8QkR5JG121vkvNCaZ5JjiQ5Qbt3q9b37BYsz8eHDtay9yiSaZ1bvUepU/fCfUcr2d2Hlrt8JjmS\n5DW6T3MftLtP817a4vQTAf/nv2etqOki4DzxwfAf1OjyGdn4Ane+jxSbnp6uTZs2STq6LmlpaUpK\nSvpOl/n222/rrbfeCtdd79691bNnz2rN+9hjj2nfvn0KhUJyHEcvvPCCEhOr9zL/iy++0FNPPSXH\nccIdui07Gp9L2U70l7/8RbNnzw7XUdeuXTV06FCzsgIAAAAAAAAAAAAAAAAAgNqBzsYXuKysLLOs\nTp06qVOnTmZ51ZGWlva9Lk+SevXqpV69elX5fefOndW5c+eI302dOvWsl9u2bVstW7bsrOc/nXMp\n24m6du2qrl27muUBAAAAAAAAAAAAAAAAAIDaqfb9DQcAAAAAAAAAAAAAAAAAAAAAtQKdjQEAAAAA\nAAAAAAAAAAAAAABE5KnpAgAAAAAAAAAAAAAAAAAAAPynCQRDNV0EoFqcUCjE3grgvLD/4GGzLK/b\nMcnx+UtNciQp5I0xCgra5Eg66LepJ0mq5w6Y5BwKuk1yJCnGYzPAv2NXTXIMT8uu8hKTnHJvnEmO\nJHmD5TZBQZv9SZLk9ppFBY2yvhrR1yRHkprNWGKSY7lvuov3mGUF6zQwyyo2Os3E1bHZDyzbFkk6\ndLDCJKdetM3xF/JEmeRIkqusyCbIsfvDL4HoemZZVsffEbtLBEU5NmFBx+68Xuq3W0GPy+YAjA4e\nMcmRJLls6srqXCXZnhucCqPrasP1C1m1CYZty6J/7jXL6p1kcw6NNrq3kiTHb3TMGN4TSVLxEZv9\n6kK+RqgXY1fnIbfPLMtsn7JUG9tzw/srJ2BzzVnhtrtWdBud1y3PeyHrA9mA5X5gdu6zbM8Nz8dm\n5TIsk1l7Z9RGSbWznbJqo/4TBL3RJjmucrtn+lbPz52g3yRHMrxnkBQyOv78hp0U3EbnK3dF7dsP\nJLt9wfKdRZzHps4P++32g2ij9yiSFDS6nvLI7hrBZfQ84ojhexRfoBbexxhevwaNnguPiUkyyZGk\nF0rzzLKs7hs8B3aZ5EiS/6LGZlkHS2yOv+g4u3ERrZ7lSobvUaJscizPe5b3oS6r+w/D+1Crd06H\nA3b1VL9urFkWLnzdZ/61pouA88RHj3Sp0eUbPmEDAAAAAAAAAAAAAAAAAAAAcCGhszEAAAAAAAAA\nAAAAAAAAAACAiOhsDAAAAAAAAAAAAAAAAAAAACAiOhsDAAAAAAAAAAAAAAAAAAAAiIjOxueJvLw8\nbdy4saaLofz8fK1ateo7y09OTlYwGKz29K+//rreeeedak+/ejYzXosAACAASURBVPVqvfjii2dT\ntBrXv3//M5o+OTlZycnJSklJ0cyZM6s93x/+8Af17NlT06ZNC3+2bNky9ejRQ2+88cYp550xY4ZW\nrlx50ucjR46slJeZmal+/fqpX79+ysvLU1ZWlpKTk9WxY0clJydr/Pjx1S4vAAAAAAAAAAAAAAAA\nAAD47nhqugConk2bNsnv96tNmzY1Wo5jnY1vuumm7yTfcZzvJPf7XsZ34UzL7TiOFixYcMbzdevW\nTXXr1tWKFSvCn/Xp00c+n09+v/+MsiQpGAzKcRx9+eWXkqSSkhL99a9/1eLFixUMBlVaWqqkpCSl\npKQoJSXlrMoMAAAAAAAAAAAAAAAAAAC+G3Q2Pg8sXrxYWVlZkqTf/OY3WrBggUpLSzV+/HgdOHBA\nN9xwg372s59p4MCBKi8vV7NmzfTVV19pwYIFevrpp+X3+/X1118rNTVVPXr00Nq1a5WRkSFJGj9+\nvK699lqtXr1aS5cu1b/+9S9FR0dr1qxZGjlypA4cOKB69erpueee04oVKzRjxgwVFxdr3bp1ev75\n57Vjxw6tWLFCP/vZz/T//t//05gxY9S4cWMlJyerQ4cO+uyzz5Samqr27dtrwoQJKisr0z333KO+\nfftGXNdQKKQnn3xSGzdu1Pjx49WhQwdlZ2fr/fffV0xMjDIyMlS/fn39z//8jzZt2iSfz6e7775b\nf/zjH7Vt2zYNGTJEf/7zn7VlyxY98MADVdbpzp07NWXKFD3//PPKzMxUfn6+duzYoe7duys1NVXr\n1q3TlClTJEnjxo3Tli1blJiYqNtvv12S9Morr6hLly6aNGmS2rRpozVr1mjGjBlq1qxZxOWNHTtW\nhYWFqqio0KhRoxQKhZSZmSnHceTz+TR9+vSI823dulXjx4/X5ZdfrvLy8vBnTz31lCoqKjR06FB1\n69ZNH3zwgebNm6fmzZvL4/Fo8uTJCoVCCgaDcrvdVdaD3+9Xamqq3G63Lr30Uv36178Ob4dI2+Zs\n/POf/1SbNm20efNmlZWVSZL27t2r/Px8NWnSRHFxcZWWEQqF6GwMAAAAAAAAAAAAAAAAAEAt4arp\nAuD0+vXrp4ceekhDhgxRVlaWHMfRsmXL1K1bN2VlZSk/P1/ffvutGjRooMmTJ+viiy9Wz549tWXL\nFklS9+7dlZOTE+6w/MILL2j27NmaPXu2Xn311fBy9u7dq/nz52vmzJmSpPT0dGVnZ6t9+/b65JNP\ndMcddygtLU333XefsrKydMkll0iqesTdzp07a+HChbrttts0e/ZsPfTQQ1q4cKE+/vhjBYPBKte3\nf//+mjNnjl599VX5/X69//77WrJkifr27avXX39de/bs0a5du7RgwQI1b95cknTzzTdr1apVkqSP\nP/5Y3bt3rzJ/7969evbZZzV58mRFR0dLktq3b6+cnBx9+OGHko52Jn7llVc0c+ZMzZo1S9dee602\nbdqk3Nxcbd++XVu2bFFSUpKKi4s1duxYPfzww/rjH/8YcXnr1q1TYmKiXnvtNdWrVy/8eZ06dfTq\nq6+qtLRURUVFEeedN2+ennnmGU2cOFHFxcWSpKlTpyo9PV05OTlauHChJGnhwoVatGjRSeudmpqq\nlJSUKsvmdrs1a9YsLViwQDExMfrb3/5WZb2drdzcXHXs2FHXX3+91q5dq7i4OI0cOVKjRo1ScnKy\n9u7dG56WTsYAAAAAAAAAAAAAAAAAANQujGx8njhxVNkdO3Zo48aNevPNN3Xo0CHt27dPMTExiomJ\nUWxsrGJjY8OjyLZs2VIej0cez9HNvW3bNj3yyCMKhULyer3hzOuuu06S5HK5FAwG9fzzz2vbtm36\n17/+pSFDhpxReR3HCee53W7t2LFDL730kiSpqKhIhYWFSkxMjDhvy5Yt5fP5VFZWpgMHDqhx48aS\npCuvvFIrV67Unj171KJFC0kK/9fr9eriiy/W7t27VVBQoCZNmlRZtlWrVqlRo0aVRvxt1qyZXC5X\n+LPS0lLVr18//P9XXXWV5syZoyNHjqh+/fry+/3y+XyqX7++6tSpo4SEBG3bti3i8r755hu1bNlS\nksKdo48tU5ISEhJUUlKiiy66qMp5fT5f+PudO3cqLS1NoVBIBw4ckHR0m3m93nB9HHOsc3pVSktL\n9cQTT2jfvn3Kz89Xjx49qpz2bK1Zs0YrV65UWVmZbrzxRnXp0kXdu3dX9+7d9c4772jBggX6+c9/\nbr5cAAAAAAAAAAAAAAAAAABw7uhsfJ7weDzhzsPS0U6rt956q2699VYFAgG5XCcPUn2sg/K2bdt0\n2WWXye/3S5LatWunGTNmyOfzqaKiIjz98Z1vN23apPLycmVnZ+ull14KZ3k8nkrzxMbGqrS0VJIq\njVAbCoXCnZuPlbdPnz666qqrVF5eLp/PV+W6btu2TZdccoliY2MVHx+v3bt3S5K2bt2qxo0bq1Gj\nRtqxY4ckafv27Wrbtq2koyM4p6enq1OnTqeqSt17773q0KGDMjIy9Mtf/jLiNLGxsdq/f79CoZBi\nY2PldrvlOI6io6NVUFCghISE8HqeTsOGDcMjBh8rd3U1adIkXB/HRj++4oor9Ktf/Urx8fHhbREM\nBlVeXn5Sh+dQKHTKzsaffvqpWrZsqalTp2rcuHHh9YmOjlZhYWGlaaOjo7Vr164zKr/f71cwGNTc\nuXMlSUOGDFEwGFRBQYEaNmyoRo0a6csvv6xUXgAAAAAAAAAAAAAAAAD4TxAI0l8K54eTe6iiVrr+\n+uv1/vvv6xe/+IUkqU+fPnr77bc1aNAgDRs2LNzhN5IPP/xQycnJSk5OliQNGzZMQ4YM0aBBgzR7\n9uyI87Ro0UJff/21hg4dWqkDa6tWrbRhwwb94he/0P79+5WUlKQtW7boueeeU0lJSXi6Ezu4Dh06\nVM8//7xSUlI0duzYKsvqOI4WLlyohx56SMOGDZPH49G9996rvn37avHixfrJT36iSy+9VE2aNFFK\nSoq2b98envcHP/iBPvvsM/3whz88RU0e1aVLFx06dEjr16+P+P3w4cP18MMP69FHH9XDDz8s6egI\nxC1atFB0dHS4g/OpOvIec+ONN6qgoECDBw9WcXFxxHWuyqBBg/TEE0/o2WefVb169SRJI0aM0Jgx\nY5SSkqL09HRJ0sCBAzVgwAB9+OGH4Y7n1Slb+/bt9Yc//EHDhw8Pd2aWpNatW2vr1q1KSUkJ71s3\n3XSTli9fruHDh58y87nnntMDDzygBx54QJ9//nml0Zwl6fDhwxo7dqwGDhyoGTNmqH///tWqCwAA\nAAAAAAAAAAAAAAAA8P1zQgwlekGbMGGCHnnkETVt2rSmi/KdKy8v16OPPqo5c+bUdFGq9OKLL6pL\nly7q2LGjaa7f75fH49Gnn36q9evXa+TIkab5tcX+g4fNsrxum47NPn/VHf3PVMgbYxQUtMmRdNBv\n1wG8njtgknMo6D79RNUU47H5zY1lP3nH8LTsKi85/UTVUO6NM8mRJG+w3CYoaLM/SZLcXrOooFHW\nVyP6muRIUrMZS0xyLPdNd/Ees6xgnQZmWcVGp5m4Ojb7gfVvcA4drDj9RNVQL9rm+At5okxyJMlV\nVnT6iarDsfstZiC6nlmW1fF3xO4SQVGOTVjQsTuvl/rtVtDjsjkAo4NHTHIkSS6burI6V0m25wan\nwui62nD9QlZtgmHbsuife08/UTX1TrI5h0Yb3VtJkuM3OmYM74kkqfiIzX51IV8j1Iuxq/OQu+q/\nhnWmzPYpS7WxPTe8v3ICNtecFW67a0W30Xnd8rwXqoU/uLfcD8zOfZbtueH52KxchmUya++M2iip\ndrZTVm3Uf4KgN9okx1Vu90zf6vm5E/Sb5EiG9wySQkbHn99wRDS30fnKXVH79gPJbl+wfGcR57Gp\n88N+u/0g2ug9iiQFja6nPLK7RnAZPY84YvgexReohfcxhtevQaPnwmNikkxyJOmF0jyzLKv7Bs+B\nM/uLw6fiv6ixWdbBEpvjLzrO7o+wWz3LlQzfo0TZ5Fie9yzvQ11W9x+G96FW75wOB+zqqX7dWLMs\nXPjumPFpTRcB54nfj7i5RpdvdwYHalBBQYHGjh2rBx54IPxZcnKyHMdRKBSS4zjKysr6zsuRnp6u\nTZs2STo6Sm9aWpqSkv59o1PVyL379u3TmDFjwuW95JJLlJGRUe3lvvHGG3r33Xfl8Xj0/PPPn1XZ\nzkReXp4mTZoUXp/WrVtrwoQJZ5UFAAAAAAAAAAAAAAAAAABqL0Y2BnDeYGTj6gYxsnF1MbJx9TCy\ncfUxsnH1MLJx9dTGUQslRjauLkY2rh5GNj4DtXEkTEY2rh5GNq42Rjauntp4jcDIxmegNrbnjGxc\nLYxsfCZhjGxcLYxsXG2MbPz9Y2Tj6mFk42rmMLJxtTGycfUwsnENYGTjamNk4+phZOPqYWTj6mNk\nY5zvGNkY1VXTIxsbPmEDAAAAAAAAAAAAAAAAAAAAcCGhszEAAAAAAAAAAAAAAAAAAACAiOhsDAAA\nAAAAAAAAAAAAAAAAACAiOhsDAAAAAAAAAAAAAAAAAAAAiMhT0wUAgOryuR2zrJBRTtnrU42SpKj+\nE01ynKDfJEeS4rxRZlmugwUmOTF1G5rkSFLp3F+a5MQ++IxJjiQFZbefyxdnEuN2DMsUsDn6Qt4Y\nkxxrTjBgktNiWrZJjiT9tdN/meR0Xv1nkxxJcpUfMstyDpSZZcl3mUlMeSBokhPlqZ2/Cwx5bM4N\nfquTsaRQ1EUmOYatnQ4fsWkPJKmOz22UZFfpZUGb2nIcuzLFGB4zrpDN9gu5vSY5kuQ3+q2wt8Kw\n3QzZtHeSJKO6CrnsHnOEjK6BnJDdft6v3SVmWa5AhUlO0LHbz2V0jnEf2muS828JJilWbUttHDug\n3OUzy3IbnpEDbrt7WisVRvdE0Ya7gdU5RpJkVOdBw2tFv9/mfOVz29VTaYXhOdSI5fpZHcdBw32z\nqMyuzq2qKs7wFFoum3bYMdw1a2U7VQvPC7WV1VV1ucfuGZ7H6Pq8LGR1j2373NRtdO6zfLZh9Yxr\n94hBJjmSdMUri8yyZPQsN85jdx/qLt5jkuM1fI/yr0mPmmVdPHGGSU7IsTuOg0bvUQwfu8kJlJtl\n+aPqmeRYviayeo/yQmmeSY4kjYlJMst6seSfJjmu0iKTHEnyGL47tnqPEjC86fNanvyMWL2vLzds\nWzyG9VTm2Nx/RLvt9s2Qy+bcEDK6/gGAC1XtezsBAAAAAAAAAAAAAAAAAAAAoFZgZGMAAAAAAAAA\nAAAAAAAAAIDvWcjyz3wB3yFGNgYAAAAAAAAAAAAAAAAAAAAQEZ2NAQAAAAAAAAAAAAAAAAAAAERE\nZ+P/s3r1ar344ouVPlu2bJl69OihN95446xzv/76a02YMOFci1frvPjii/rss8/C/3722WfPKuft\nt98+5fcVFRVKTk5W9+7dT/puzpw5KigoOKPlRdrOF4L+/ftLkgKBgJKTk88p6w9/+IN69uypadOm\nhT+r7rEwY8YMrVy58qTPR44cWSkvMzNT/fr1U79+/ZSXl6esrCwlJyerY8eOSk5O1vjx489pHQAA\nAAAAAAAAAAAAAAAAgA1PTRegNnEcp9K/+/TpI5/PJ7/fX0MlOn88/vjjZzXfW2+9pR/96Edyu90R\nv/d6vcrOztaAAQNO+m7o0KFntcwTt/OF4Ph1Otf169atm+rWrasVK1aEPzuXYyEYDMpxHH355ZeS\npJKSEv31r3/V4sWLFQwGVVpaqqSkJKWkpCglJUULFiy4ILcRAAAAAAAAAAAAAAAAAADnIzobH2fN\nmjUaMmSI4uPjlZGRIUkKhUKVptm+fbsmTpyoQCCgoUOH6o477tC6des0ZcoUSdL48eN1/fXX64MP\nPtD8+fPVrFkzeTxVV3OPHj3UokULFRcX66WXXlL9+vU1Y8YMFRYW6ssvv1SHDh00atQopaWlaffu\n3WratKmeffZZlZaW6qGHHlIwGNR//dd/adiwYfr22281cuRIRUVFqVevXurdu7cmTJigRx55RI0b\nN1Zqaqqys7OVn5+vp59+WqFQSAcOHNDSpUu1fPlyzZ8/Xx6PR+np6WratGnE8o4dO1aFhYWqqKhQ\nly5dJEnJyckqKCjQRx99JEnKy8vTk08+KY/HozvuuEOpqakRy/bII4/oiy++UGpqqm6++WY99NBD\nWr58uTIzM+X1ejVp0iQ1b948YjnS09P1wQcfaPHixeGyfvTRR5o3b568Xq9+9atf6corr6yy3nfu\n3KkpU6bo+eefV2ZmpvLz87Vjxw51795dqamplbbpuHHjtGXLFiUmJur222+XJL3yyivq0qWLJk2a\npDZt2mjNmjWaMWOGmjVrdtp6GzVqlEKhkDIzM+U4jnw+n6ZPnx5xvoEDB6q8vFzNmjXTV199pQUL\nFqh3796KiopS69attXv3bi1YsCC8nx6/v86fP18fffSRGjRooFatWmnEiBEn5fv9fqWmpsrtduvS\nSy/Vr3/965Nyjon0WXX885//VJs2bbR582aVlZVJkvbu3av8/Hw1adJEcXFxlZYRCoXobAwAAAAA\nAAAAAAAAAAAAQC3hqukC1Cb16tXT3LlzVb9+fa1fvz7iNK+99poef/xxZWdnKzMzU9LRjqevvPKK\nXn75Zb3yyiuSpKysLOXk5Kh79+6nXOaxTsapqal64403wp8nJCQoOztbI0eO1P/+7/+qSZMmWrBg\ngRITE7VhwwZt2bJFl112mRYuXKgHH3xQkrR+/Xrdcsstys7OVs+ePU9a1vEdOHfs2KFXXnlFS5cu\nVSgU0ty5c7Vw4UI988wzmjNnTsSyrl27VomJiXrttddUt27d8OfZ2dlq0KBB+N+XX365Fi9erIUL\nF+q9996rsmwzZ85UUlKSsrKy9NBDD4XrNycnRxMmTNBrr71WZb2lpaWpa9eu4X8Hg0FlZmYqJydH\n2dnZuuyyy6qcd+/evXr22Wc1efJkRUdHS5Lat2+vnJwcffjhh5L+vU1nzpypWbNm6dprr9WmTZuU\nm5ur7du3a8uWLUpKSlJxcbHGjh2rhx9+WH/84x8jLm/dunXheqtXr1748zp16ujVV19VaWmpioqK\nIs7boEEDTZ48WRdffLF69uypLVu2qFWrVhozZozatWundu3aaf/+/fryyy+VkpKiwYMHSzraifij\njz7S4sWLdeONN1ZZF263W7NmzdKCBQsUExOjv/3tb1VOe7Zyc3PVsWNHXX/99Vq7dq3i4uI0cuRI\njRo1SsnJydq7d294WjoZAwAAAAAAAAAAAAAAAABQu9DZ+DgtW7aUJLVo0ULffPNNxGl2796tK6+8\nUj6fT16vV5JUWlqq+vXrq0GDBiotLZUkeTweeb1etWjR4pTLvOyyy+TxeNSiRQvt3r07/Pl1110n\nSXK5XNq+fbs+/vhjpaSk6K9//av27dundu3aqXHjxho1apQ++OADSdItt9yiQ4cOadSoUcrNzT3l\nctu1aye32y3HcVRYWKhdu3Zp8ODBeuKJJ8Kjz55oz549leqoKvn5+XrwwQeVnJysXbt2KRQKVVm2\nYyPZHnOs3q688spK2+B0o+oWFhaqSZMmcrvdkhTuRBzJqlWrdPjw4fC0ktSsWTO5XK7wZ8e2aWJi\nokpLS3XVVVdp+/bt+vTTT/WnP/1Jfr9fPp9P9evXV506dZSQkKBDhw5FXN4333wTrrfjR2o+Ngpy\nQkKCSkpKIs4bExOjmJgYxcbGKjY2VmVlZZX+HRMTo7KyMrVq1UpZWVmaP3++JOnAgQNq1KiRpFNv\nq9LSUj3xxBNKSUnRp59+qsOHD1c57dlas2aNZs6cqd/97nfhbd+9e3e9+eab+vGPf6wFCxaYLxMA\nAAAAAAAAAAAAAAAAANjw1HQBapNt27ZJOjrq73//939LOtppddeuXeFpmjRpoi1btujKK6+U3++X\nJMXGxmr//v0KhUKKjY2VdHSk3YqKinBmVXbu3Kny8nJt37493DlUUqWOsM2bN1efPn00YMAASVIg\nEFBFRYVGjBihiooK9evXT/fcc4/cbrfGjRunb7/9Vr/61a/UuXNnxcbGqqSkRHv37q3UYdfl+nc/\n84SEBLVu3Vpz586VJFVUVEQsa6NGjcIj327fvl233npr+Lvjs5cuXaqHHnpIN954o7p3765QKBSx\nbJLk8/lUUVGhqKio8LqVl5dry5YtleqjoqJCwWCwUrmPX25CQoLy8/NVUVEhr9erI0eOhDNPdO+9\n96pDhw7KyMjQL3/5y4jTnLhNj3XMjo6OVkFBgRISEk5a76o0bNgwXG87duw47fSnEml5J3bYlqT4\n+PhwZ+3t27dXmffpp5+qZcuWmjp1qsaNGxfOiY6OVmFhYaVpTzwWqsPv9ysYDIb3rSFDhigYDKqg\noEANGzZUo0aN9OWXX55y/QAAAAAAAAAAAAAAAAAAQM2hs/FxiouLNXjwYNWvXz88svBNN92kYcOG\nae3atZo1a5YGDx6siRMnKhAIaOjQoZKk4cOH6+GHH5bjOBo3bpwkaeDAgRowYIAuv/zy8AjIkVx0\n0UUaNWqUDh48qGnTpkWc5o477tDjjz+uQYMGyXEcTZo0SQcPHtTTTz+tsrIy9e7dW5KUm5urWbNm\nqbS0VMOHD5ck9ejRQxkZGbruuuvkOE448/j/d7lcuv/++zVw4EC53W7dfffd6tOnz0nluOGGG5ST\nk6PU1FQFAgFJ0ueff66MjAxt3rxZKSkp+tnPfqZbbrlFzzzzjK6++mrVqVPnpLI99NBD4cxu3bpp\n9OjRuvXWW9W3b18NHjxYAwcOlNfr1aRJk8LT9ejRQ3379tWDDz6oW265RQ8++KC2b9+ubdu26Uc/\n+pEGDBigBx54QAMHDpTP59MTTzyhq666qsp679Kli9577z2tX78+4vfHb9Px48dLOtqhuUWLFtq8\neXN4pOLj67EqN954oxYuXKjBgweHO6gfrzoZp3NihsfjUffu3dWvXz8lJCSoXbt2Eedr3769Zs2a\npX/84x+VPm/durW2bt2qlJQUvfrqq4qJiTnpWKjKc889p/j4eEnSI488Umk0Z0k6fPiwxo4dK8dx\n5DiOJk+eXOV6AAAAAAAAAAAAAAAAAACAmuWEGEq0RvXv31+LFi2q6WLge/Liiy+qS5cu6tix43e+\nLL/fL4/Ho6VLl8rr9YY7pZ/PDh0uNcuyaviCiyedfqJqiuo/0STHCZSb5EhSwB15hPCz4T24xySn\nom5DkxxJKp0beXTzMxX74DMmOZJkeVZ2Ge3pIcMfArgqykxyQh67fdNUKGgS4xjlSNJfO99uktN5\n9Z9NciTJt3ezWVbIZffbuULfZSY53hj36SeqhiiP6/QTnYFDByP/9YozVbeOTZ37Dds7qyjLnz0d\nrrA7juv4bPapiqBdpVvdRlr+2MzrMjxfhQJmWVb8smkTvIEjJjmSzM57kiR31T/SPROW5wWrayDH\n8ALP9LosYHNeCBptO8murtyH9prkHHNACSY5deOMzu2O7TXCwUMn/zD6TEXH2R17bsP9PFALH3tW\nBGzKFG14rVgb68nwssXsusXntqvzUr/hOdSIz2137Fkdx0HDfbPoiF2dW+0KcV67farcqG2xvCe6\n0NupC53H6P7Kb9igW5XpiGEb7Da8D62NbafV9tv9yP0mOZJ0xSuG71SDNvf+ls+q3cU271HKDN+j\nHEgfYZZ18cQZJjmW98ZW96EVhqeqqPKDZln+qHomOZbjRTlWx57L5pmpJI2JSTLLerHknyY5vj2b\nTHIkKRgVZ5ZV296jSFK04b2MxTMSSbrIa9Ov4YivrkmOZHctJdndf0TLpr4lu2eUlu92EuvGmmXh\nwnf7S3+p6SLgPPG/o7rW6PIZ2biGMZLrdyc5OVmO4ygUCslxHGVlZX3ny0xPT9emTUcv/B3HUVpa\nmpKS/n1zUtX23rdvn8aMGRMu7yWXXKKMjIxzKsvMmTOVm5urmJgYTZs27bRlOxN5eXmaNGlSeH1a\nt26tCRMmnFN5AQAAAAAAAAAAAAAAAOA/SdDyl/fAd4jOxjUsJyenpotwwcrOzv7el5mWlnbK70eP\nHh3x8wYNGpiXd9SoUZX+fbqynYmkpKQaqV8AAAAAAAAAAAAAAAAAAPD9sv27iwAAAAAAAAAAAAAA\nAAAAAAAuGHQ2BgAAAAAAAAAAAAAAAAAAABARnY0BAAAAAAAAAAAAAAAAAAAARERnYwAAAAAAAAAA\nAAAAAAAAAAAROaFQKFTThQCA6igrLa3pInynXGveNckJdrjPJMdcKGiT4/A7me+b4z9ilhXyRJll\noZqMjj1nxTKTHEkKdOlnluWS3aXswUN+k5y6dTwmOdZq3fr9ZZFNjiR17W+XVQtdn/axSc769DtN\ncgDgePfNW2eW9e7gG8yyLNW6c6gxi/WzXLcV+YfMsn7QpI5JTshxTHIkyTF6FHvE6BZbkqIu8Nts\nq+1nte3+E9TGOq+Nx7Ely/WzUh6wqyef+8Lep2qj2rifX+iszu0X+nl97Z13mWXd+PFysywzvEc5\nbzmBcrOskNtnloVqsjr2JP0srq1JzvMlm0xyJMljeNnCM5LqsVo/03e0bq9Z1oV8nrG8zo+JjjbL\nwoXvthf/XNNFwHnijz/7rxpd/oV7BgAAAAAAAAAAAAAAAAAAAABwTuhsDAAAAAAAAAAAAAAAAAAA\nACAiOhsDAAAA/z97dx4fVX3vf/w9k0lIQoAkoMi+qAiIiki5LlAQi4pXLQUL2WYgYZNV/SFoUNEK\nBLWAqFgqm5hJAi6QlkdLJQK9XFR2EOplkVWTgEYkELJnlt8fXOYSmCzAVxPo6/l48NDMnPP5fs6Z\nM+d858wnnwAAAAAAAAAAAAAAAMAvio0BAAAAAAAAAAAAAAAAAAAA+HXVFhtv2bJFc+bMKffYRx99\npL59++qTTz657LjfffedEhMTrzS9WmfOnDnaunWr7+dpJeZ/TwAAIABJREFU06ZdVpz09PRKny8r\nK5PdbtdDDz100XMLFixQTk7OZY1blblz52rjxo0/S+zaYN68edq0aVOly1zua3qhcePGqVu3bvJ4\nPJIqf00vFBMTc9Fje/bs0R133KGSkhJJ0vfff68hQ4bIbrfr1VdfVX5+vux2u/r166fevXvL4XBo\n8+bNRrYFAAAAAAAAAAAAAAAAAGorr9fLP/5V619Ns9V0AlfCYrGU+3ngwIEKCgqSy+WqoYyuHi++\n+OJlrbdixQo9/vjjCggI8Pt8YGCgnE6nYmNjL3pu+PDhlzXmvzuPx6Nt27Zp1KhRlS53ua/phd55\n5x05HA7fz5W9phe68D0pSZs3b9YDDzygHTt26J577pHT6dTYsWPVtWtX5eXlKSwsTE6nU1u3btWX\nX36pp556ysh2AAAAAAAAAAAAAAAAAACAK3fVdjaWpG3btmno0KGaMGGC77ELK7iPHDmimJgYDRo0\nSGvWrJEk7dixQ4MGDdKgQYO0c+dOSdKqVas0cOBAvfPOO5WO2bdvX40ePVpxcXE6efKkpLNddadO\nnSq73a633npLXq9XiYmJGjx4sK8AtKioSA6HQ3FxcZo/f74k6YcfftDAgQNlt9u1YsUKSVJiYqIy\nMzPldrtlt9slSdnZ2Ro5cqRGjBihgQMHyuv1avXq1YqOjpbdbldmZmaF+U6YMEEJCQnavn2777EL\nu9Tu27dPUVFRiouL05IlSyrMbfTo0dq/f7+GDBmi9957T5KUkZGhgQMHKjY2VkePHq0wj6SkJHXv\n3r1crqtXr1ZUVJTsdrsOHjzod7309HRfp+pzXXPnzp2rxMRERUdH+/I9Z+3atXrttdd82zlz5kw9\n9thj2rFjhyTJ6XQqKipK8fHxOnnypJ599lnl5+f71h8zZowyMzMVFxensWPHKjY21tfh90I//fST\n4uLiNGrUKPXt27fK3M6Xk5OjYcOGyeFwaPHixZKkQ4cOyW63y+FwaOXKlb5l/+u//ks9e/b0xR8+\nfLiGDx+u2NhYZWRk+Lb1/Nc0PT1dTz31lOLj4zV9+vQK81i+fLmioqIUExNTrvO1yd+E2LVrl4YN\nG+brzGy1WrVz5065XC7Vr1//ZxkTAAAAAAAAAAAAAAAAAACYcVUXG9evX1+LFi1SZGSkr2j4QosX\nL9aLL74op9OphQsXSpLmzZunefPm6d1339W8efMkScnJyUpNTS1XsOlPXl6e3n77bQ0ZMsRXBCtJ\nERERcjqdGjdunNauXatmzZrpgw8+UMOGDbVr1y4dPHhQzZs3V0pKioYNGyZJ2rlzp3r27Cmn06l+\n/fpdNNb5XWKPHj2qefPm6cMPP5TX69WiRYuUkpKiqVOnasGCBX5z3b59uxo2bKjFixerXr16vsed\nTqcaNWrk+7lly5ZaunSpUlJSfEWu/nL705/+pPbt2ys5OVkjR4707d/U1FQlJib6imb9mTx5snr0\n6OH72ePxaOHChUpNTZXT6VTz5s0r3ul+9scdd9yh1NRUffrpp77Htm3bprVr1+r555/3Ld+/f39N\nnz5dq1atksvl0t///nctW7ZM0dHR+vjjj3Xbbbdp7969+vjjj+VyuWS1WmW1WuVyuTR37lzdfPPN\n2rdvn998Pv74Y8XHx+utt95SXl5epbldaP78+RoxYoSSk5MVHR0tSZo9e7aSkpKUnJysPn36+Jb9\ny1/+ot/97ne+n59//nlZLBYtWrTIV8B74WsqnX1d33///QrfG5L04IMPatmyZXr77bd9RfAX7usr\n4Xa75Xa71bFjR+3fv1+SNHToUB05ckQPP/ywUlNTjYwDAAAAAAAAAAAAAAAAAAB+Hld1sXHbtm0l\nSW3atNHx48f9LnPs2DHddNNNCgoKUmBgoKSzXYYjIyPVqFEjFRUVSZJsNpsCAwPVpk2bSsds3ry5\nbDab2rRpo2PHjvke79y5s6SzXVuPHDmizz77TA6HQ1988YVOnDihTp06qWnTpho/frxWrVolSerZ\ns6fy8/M1fvx4bd68udJxO3XqpICAAFksFuXm5iorK0vx8fGaMmWKiouL/a7z/fffl9tHFcnOztaw\nYcNkt9uVlZUlr9dbYW5er7dcB9pz++2mm24q9xpU1aU2NzdXzZo1U0BAgCQpODi40uUv1KpVK1mt\nVt/6krRlyxbf63lO69atFR4eroKCAuXm5qpp06aSpBtvvFHHjx/3FRv/5S9/0WeffeYrem7ZsqUk\n+db159ixY2rTpo2CgoLUrFmzSnO70Lfffqvbb79dkhQSEiJJOn36tFq0aFHusaysLDVo0KBcsXhw\ncLAaNmyo4ODgi7b3wn0kSXXq1KlwmS+//FJ2u13PPPNMuVj+Xr/L6Tz89ddf68CBAxo2bJj27dun\noqIihYeHKykpSatWrdKHH36owsLCS44LAAAAAAAAAAAAAAAAAAB+GVd1sfHhw4clne36e66INDg4\nWLm5ub5lmjVrpoMHD6q0tFQul0uSFBoaqpMnT+qnn35SaGiopLOddsvKynwxK5KZmanS0lIdOXJE\nTZo08T1+fmFp69atNXDgQCUnJ+uTTz5Rr169VFZWprFjx2rWrFlasmSJb53nnntOL7zwgj744ANf\nbgUFBfrxxx/LFXdarf/3UkVERKhDhw5KTk5WcnKypk+f7jfXJk2a6MiRI5Lk++8558f+8MMPNXLk\nSC1ZskT169eX1+v1m5skBQUFqayszPez2+1WaWmpDh48WG5/lJWVyePxXJTTuXEjIiKUnZ3ti1VS\nUuJ3G0JDQ31FsDk5ORXGk6TRo0erZcuWWr169UXPnRvzXIH4oUOH1LRpU3Xs2FEZGRnq37+/0tLS\n1KlTJ795+NO0aVMdPnxYpaWlys7OrjS3C7Vq1UpfffWVJPmKxRs0aKDvvvuu3GMfffSRBg0aVK18\nKhqvsjwWLlyohQsXKikpqdzrFRoaWu59JFX8mlY21qZNm/TKK69o4cKFGjJkiLZu3erbV0FBQQoP\nD7+sImYAAAAAAAAAAAAAAAAAAPDLuKqLjfPy8hQfH6+ffvrJ11n47rvvVkZGhp588klJUnx8vKZN\nmya73a6hQ4dKkp588kmNGjVKY8aM8S0XFxen2NhYX6FqRRo0aKDx48fr/fff14ABA/wu85vf/EZ7\n9uzR4MGDNWTIEH3//fc6fPiwYmJiNGjQIPXr10+StHnzZsXGxmrUqFHq37+/JKlv376aNWuWli9f\nLovF4ot5/v9brVYNGjRIcXFxGjx4sNLT0/3m0aVLF504cUJDhgzRmTNnJElfffWV7Ha7Dhw4IIfD\noR07dqhnz56aOnWqJk2apLCwsIty+93vfueL2bt3bz311FNatmyZb//GxcVpxowZSkhI8C3Xt29f\nRUVFKSMjQyUlJbLb7dqwYYMmTpyo1NRUWa1WJSQkKC4uTna73Vdke6Fu3bppzZo1mjVrlt9Owefv\nF+lswbHT6VReXt5Fz9lsNj366KOKiorS0qVL9cQTTyg4OFj5+fnq1auXPB7PRcXGF8Y434ABA7R4\n8WKNHz9eDRo0qDK38w0fPlzz58+X3W5XamqqJOnpp5/W5MmTZbfblZGRobKyMu3fv7/KAuhdu3Zd\n9JpWN4/7779fdrtdaWlp5Zb77W9/q+HDh/tyk8q/phU5ePCgEhISlJCQoNTUVG3ZskW33nqrpLPd\nuTdv3qzNmzdrwIABio6O1t133626detWun0AAAAAAAAAAAAAAAAAAKDmWLy0Fb0kMTExSktLq+k0\nUMv8HMfFsWPHdOzYMXXt2tVo3KtZ8f92ub5WWbf91UgcT9ffGoljnLfyztjVZrmqf0/mqmRx+e8+\nfzm8tjrGYqGaDL33LF9+ZCSOJLnvizYWyypzU9kz+S4jceqF2YzEMa3Wbd8Gg3OnHjHmYtVCd07+\nzEicnUl9jMQBgPP99v0dVS9UTX+N72Islkm17hpqmIntM7ltX2bnG4t1b7MwI3G8lfwi96WyGLoV\nW2LoI7Yk1bnGP2abev1MvXb/DmrjPq+N72OTTG6fKaVuc/spKODaPqZqo9p4nF/rTF3br/Xr+vY+\nDxqLdddnFTfXqTF8j3LVsrhLjcXyBgQZi4VqMvXek/R03VuNxJlZsNdIHEmyGZy2cI+kekxtn9Hv\naAMCjcW6lq8zJuf5IcHBxmLh2tfrzfU1nQKuEv/1TM8aHb92XsFrscq6xOLK2O12WSwWeb1eWSwW\nJScn13RKPlXlVtFxsWHDBs2fP9/3fI8ePTR8+PBqjdm0aVM1bdr0yhL/X/v27dP06dN9eXTo0EGJ\niYmXHS8pKUl79579gGOxWDR58mS1b9/eSK4AAAAAAAAAAAAAAAAAAKD2oNj4EqWmptZ0Ctcsp9NZ\n0ylUqKrcKjouevTooR49evwcKV2S9u3bG92/kydPNhYLAAAAAAAAAAAAAAAAAADUXtdub3sAAAAA\nAAAAAAAAAAAAAAAAV4TOxgAAAAAAAAAAAAAAAAAAAL8wr8db0ykA1UJnYwAAAAAAAAAAAAAAAAAA\nAAB+WbxeL6XxAK4KZwqLjMUy9UtBJk+hFovFSJzTJW4jcSQpMjjAWKwAq5nts50+biSOJHmDQszE\nCTQT52wwc8eUJzDYSByru8xIHEnyWsz8npO15IyROJIkQzlJkieorpE4tlNZRuJIksVdaiROfuRN\nRuJI0mdtuxqL9dihL43FyisycyyE1K2dfzykqMBlJE5E1hdG4hTd0tNIHEkKlMdIHIvXTBxJclsD\njcUKKCs0EsdanGckjiS56zU2EsfiMXNcSpLFVWIslqnzuQweU6auVyb3uQzOEYxtX0m+kTiS5A1p\nYCaOwbmGyeNcVkNzfYPzV9upTCNxXOEtjMQ5J6/YzL6qH2zms5rbZmaef05B/pW/lyOLj155Iv/L\nFdHSWKwya5CxWKYEes2chwNOHzMSR5Jc4c3NxTLU2yLQZe4ekKlrnzfA3PHkDTA3VzS2fVZzn2Os\npQVG4nhtdYzEkcxun7F5i6HP65K57TP5mcjkecrdoKmROB6T771r/Ks1r6F71QEG5+emPqeZ/Exk\ncq5vy/3OSJyiiNZG4khSscvMcR4WVDt7X/1UaOZYCDf4PYrNzFvP2PEkSR5Dn40lc/Mpo/fw6oQZ\niWPyumByjmAxNC+Tx9w+99RtaCSOye9RrEWnjcUqvOFWI3GerdvBSBxJmlPwP8ZinSkwcyyY/B7F\namjeIpm5RyJJEd/9t5E4Zbc+YCSOJAWY/H4guL6ROEbPnYbumwbkmatFsDUz9z7Gta/nrP+q6RRw\nlVg/oVeNjl87P90BAAAAAAAAAAAAAAAAAAAAqHEUGwMAAAAAAAAAAAAAAAAAAADwi2JjAAAAAAAA\nAAAAAAAAAAAAAH5RbAwAAAAAAAAAAAAAAAAAAADAL4qNr1JbtmzRnDlzjMZcvny5sVj79u3Tnj17\nLnm9uXPnauPGjcby+LnZ7XZ5PJ7LWjc7O1ubNm2q9vIJCQmVPr9v3z4jr+Hu3bs1aNAgTZo0yffY\nunXr1K9fP7311luVrpuenq5PPvnkoseTkpL03HPP+X5euXKloqKiFB0drQ0bNmjVqlWy2+3q3r27\nBg4cqKFDh17xdgAAAAAAAAAAAAAAAAAAgCtnq+kEcPksFovReMuXL9eAAQOMxNq7d69cLpc6duxo\nJF5tdSWvwbli47vvvrvKZb/88ssql2vfvr3at29/2fmcc/vtt2v27NnlCot79+6tevXq6csvv7ys\nmMeOHStXlJ2WlqZly5ZJks6cOaN69erpkUceUWJiokaPHq0WLVpc2UYAAAAAAAAAAAAAAAAAAAAj\n6Gx8Ffuf//kfjRw5UuPGjZMkFRYWavz48XI4HL6uxxs2bFBUVJRiYmK0atUq37q///3v9fTTTysq\nKko//PCD7Ha7Dhw4IIfDUWl33PT0dL3wwgtyOBx68cUX5XK5FBcXp8GDB/s64S5dulTz58/X4sWL\n5XA45PV6/eZWmbVr1+q1116TdLZ78MyZM/XYY49px44dkiSn06moqCjFx8fr5MmTevbZZ5Wfn+9b\nf8yYMcrMzFRcXJzGjh2r2NjYCjsQ//TTT4qLi9OoUaPUt29fSWc7LCcmJio6OlpLliypME+v16tX\nXnlFTzzxhLZt2yZJysjIUHR0tOx2uzIzMyVJ48aNk91u15gxY1RYWKg1a9YoKSlJK1eulMPhUE5O\njrxer8aOHauYmBhNmzat3DjLly/XE088IUmKi4vTwIEDNXHiRA0cOFDFxcXasGHDRZ2Hz+23xx9/\n3Lff/Lkwt8q29XKcPHlSkZGRatWqlb799ltJZwuMDxw4IEmqV6/eZcUFAAAAAAAAAAAAAAAAAAA/\nPzobX8XCwsI0e/ZsDR8+XKdPn1Z6erp69+6tfv36aeLEicrJydGdd96pZcuWqaysTHFxcXrkkUck\nSd9++63ef/99hYWFyev1yul0KjY2VsnJyVWO6/F4lJycLI/HI4vFoj//+c8KCwvTyy+/rN27dys6\nOlohISFyuVy+AtmPPvrootyuv/56v/G3bdum48ePKykpSdLZ7sH9+/fXgw8+qJUrV+r222/X3//+\ndy1btkwZGRn6+OOPddttt2nv3r06evSofve738lqtcpqtcrlcmnu3Ll65ZVXtG/fPr+dlj/++GPF\nx8erR48euv/++32P33HHHZo+fbpiYmI0ZMiQCvdHTEyMGjdurEmTJqlLly5auHChli5dqszMTC1Y\nsECvvvqqkpKSVK9ePc2fP1/r169X3759Vb9+fW3cuFFPPfWUpLNFufn5+UpLSytXGJ2TkyObzabI\nyEhJUqNGjTRu3DgtX75cd955pw4ePKgePXqoTp062rhxo2+9C/dbly5d/ObvLzeTNm/erK5du6pe\nvXratGmTWrVqpZdfflmvvvqqCgoK9Mc//lE33nij0TEBAAAAAAAAAAAAAAAAAIAZFBtfxVq1aiVJ\nioiIUEFBgY4ePao9e/Zo+fLlys/P148//qjCwkLNnTtXHo9Hp06d8q3btm1bhYWFSTpblCpVv3Nt\n586dJUlWq1WFhYWaMmWKTpw4oezsbF+h6oWx/OVWUbHxli1b1KhRo3KPtW7dWllZWSooKFBubq6a\nNm0qSbrxxhv15Zdf6vHHH9fXX3+t1atXKywsTM2bN5cktWzZUpIUHh6ugoICv+MdO3ZMDz74oIKC\ngtSsWTPf461atZLValVAQECl+6Nt27YKCgpScXGxcnNzlZWVpfj4eElSkyZN5PF4NHPmTB0+fFg/\n/fSThg4d6jdOZGSkHnjgAT311FPq0qWLBg8eLOlsofbvf/9733IhISEKCQlRaGioQkNDVVxcXGFu\n5+83f6qb25XYvHmzDh8+rICAADVs2FCDBg1St27d5HQ6tW3bNs2dO1dvvvmm8XEBAAAAAAAAAAAA\nAAAAoDbzeC7vr80DvzSKja8B5wp7W7durV69eqlXr15yu92yWq0aNWqUkpKSFB4e7usyLJ0tFL7Q\nuaLjqpxffPv555+rbdu2mj17tp577jlfLjabrVwR7Pm5uVwu2WwVH3qjR4/Wpk2btHr1aj300EMX\nFS5HRETo2LFjkqRDhw6padOm6tixo2bPnq3+/fsrLS1NUVFR1doWSWratKkOHz6s5s2bKzs7+6Ln\nqyrCPnz4sK6//nqFhoYqIiJCHTp00KJFiyRJZWVl2rt3r0pLS+V0OvX222+X20dlZWW+OC6XS7Gx\nsbLb7frtb3+rwYMHy+PxaNeuXRo7dmyF45+fX0X/X5GKcgsJCVFubm65ZYODgy96rKp8pLOF5uc6\nZickJEiSsrKy1Lx5czVu3LhcF2cAAAAAAAAAAAAAAAAAAFC7XFxxiqvOuSLhgQMHKj09XYMHD9aI\nESNUXFysPn36aMyYMZoxY4bq1at30Trnu+uuuzR+/HhlZGRUe+w77rhD69at05NPPqnTp0/7Hr/z\nzjv197//XZMmTboot5EjR6qoqKjSuKNHj5bT6VReXt5FudpsNj366KOKiorS0qVL9cQTTyg4OFj5\n+fnq1auXPB6POnXq5Hcf+TNgwAAtXrxY48ePV4MGDS56vrJ1LRaLUlJSNHLkSA0fPlxWq1WDBg1S\nXFycBg8erPT0dLVp00bffvuthg8frsOHD/vWveWWW7Rr1y5NmjRJJ0+e1KlTp+RwODRw4ED16NFD\nkrRu3Tr16tWr0n0lSe+8846SkpK0cuVKPfnkk1XmfU6bNm303XffXZRbZGSkQkJCZLfblZmZKUnq\n0KGDDh06JIfDUenr98EHHyghIUEJCQnaunWrr4O2dLbT86FDhzRjxgxFR0dr0qRJGjZsWJV5AgAA\nAAAAAAAAAAAAAACAmmHxVqf9KfBvIiYmRmlpaTWdhs+6devUrVu3cgW7/87OFFZepH4pTP0FApOn\n0Op2F6/K6RK3kTiSFBkcUPVC1RRgNbN9ttPHjcSRJG9QiJk4gWbinA1m7pjyBAYbiWN1l1W9UDV5\nLWZ+z8lacsZIHEmSoZwkyRNU10gc26ksI3EkyeIuNRInP/ImI3Ek6bO2XY3FeuzQl8Zi5RWZORZC\n6tbOPx5SVOAyEici6wsjcYpu6WkkjiQFysxfSrB4zf3FBbc10FisgLJCI3GsxXlG4kiSu15jI3Es\nHjPHpSRZXCXGYpk6n8vgMWXqemVyn8vgHMHY9pXkG4kjSd6Qi38Z9bLiGJxrmDzOZTU01zc4f7Wd\nyjQSxxXewkicc/KKzeyr+sFmPqu5bWbm+ecU5F/5ezmy+OiVJ/K/XBEtjcUqswYZi2VKoNfMeTjg\n9DEjcSTJFd7cXCxDvS0CXebuAZm69nkDzB1P3gBzc0Vj22c19znGWlpgJI7XVsdIHMns9hmbtxj6\nvC6Z2z6Tn4lMnqfcDZoaieMx+d67xr9a8xq6Vx1gcH5u6nOayc9EJuf6ttzvjMQpimhtJI4kFbvM\nHOdhQbWz99VPhWaOhXCD36PYzLz1jB1PkuQx9NlYMjefMnoPr46Z72BNXhdMzhEshuZlMviXaj11\nGxqJY/J7FGvR6aoXqqbCG241EufZuh2MxJGkOQX/YyzWmQIzx4LJ71GshuYtkpl7JJIU8d1/G4lT\ndusDRuJIUoDJ7weC6xuJY/Tcaei+aUCeuVoEWzNz72Nc+3r88Z81nQKuEhsm3l+j49fOSghc8/bt\n26fp06f7iis7dOigxMTEn31cu90ui8Uir9cri8Wi5OTkcs9XVOy5YcMGzZ8/3/d8jx49NHz48J89\n3969exuLNX/+fG3YsEHS2e0cMWKEunfvflmxTpw4oWeeeca3L6+//nrNmjXLWK4AAAAAAAAAAAAA\nAAAAAKB2oNgYNaJ9+/ZyOp2/+LhVjZmamur38R49eqhHjx4/R0q/mBEjRmjEiBFGYjVq1KhGXj8A\nAAAAAAAAAAAAAAAAAPDLqp1/twYAAAAAAAAAAAAAAAAAAABAjaPYGAAAAAAAAAAAAAAAAAAAAIBf\nFBsDAAAAAAAAAAAAAAAAAAAA8ItiYwAAAAAAAAAAAAAAAAAAAAB+Wbxer7emkwCA6igqLjYWy2Lo\n1BeQ972ROJLkrn+DmUBej5k4kiwel7lYZUVG4uTb6huJI0lhZaeMxPGERBiJI0lei8VYLIvHbSaO\nq8RIHEnyBoYYieORuf1klbmpkKnXz2pwnwecPmYkjiuytZE4pq1t9x/GYnXb8YWROPXCbEbimHYm\n38w5vW5YoJE4Jt97eaVmrn0Wg+fgsCBzv9dpat5yytB+kqTgADP7qsxcSjKUkiQp0FCwQIM5meIy\neAcg0Gturui1GHrPmIpTS5UYfM8Eu83Mz03N7ySpwNABWn9PhpE455xq+4CROKbmCCY/M0hS/pmy\nK47hNXjdq28wlsn3jCmmbsWauhZLZq8NpkIVG0yq1G0mVoM65o5NQylJMndMeWrhcWDybOcyuIEB\nVjOZhdjMHVNFLjMnPJNz6tp4niox+ea7xtkMHedug+89U5/TygweB0EGj3OboVAm75uamnYG5maa\nCSTJFd7cWCyT971NsbjMfA9m9HsUd76xWK46ZvIyeV/R1HdqFoPfzRm7RyLJaw0wE8fgLjd1bjH1\nHZgk2XK/MxbL2HcpBo+pp+veaizW1Jx/GYlTr27tO84lM/dIpNr5PVFZLZwKB8rccV5mqNemyfsR\n19UPNRYL174ef/xnTaeAq8SGiffX6Pi17woHAAAAAAAAAAAAAAAAAABwjTP4OybAz+rabvkDAAAA\nAAAAAAAAAAAAAAAA4LJRbAwAAAAAAAAAAAAAAAAAAADAL4qNAQAAAAAAAAAAAAAAAAAAAPhFsTGu\n2Jo1a5SXl3dZ6y5fvtxoLtOmTTMSx263y+PxGIlVU2JiYi5rvXfffVe9e/fWxo0bfY/94Q9/UPfu\n3ZWZmVnpuv72m9fr1d133+2L53a7NWHCBNntdtntdrndbiUmJsput6tr165yOBxasmTJZeUOAAAA\nAAAAAAAAAAAAAADMstV0Arj6rV27Vu3atVP9+vUved3ly5drwIABxnJ58cUXjcSxWCxG4tSky92G\nMWPGyOv1lnvs5ZdfVnFx8WWNuWfPHt17773avHmz7rnnHn3++edq27atZs2apfz8fAUEBGjGjBmS\npNjYWCUnJ19W3gAAAAAAAAAAAAAAAAAAwDw6G8OvkpISjRo1SrGxsZo9e7YkKT09XZ988omk/+ua\nO2XKFG3YsEETJ070dRVOTEzUxIkTNWjQIP3jH/+Q9H8db7/77jslJiYqOztbdrtdBw4ckMPh0Pr1\n6/3mkZ2drYkTJ0qS5syZo61bt/rGeOONN2S325WWlqYTJ07IbrcrNjbWt+7cuXOVmJio6OhoX6fc\nQ4cOyeFwKDo6WuvWrat0H3i9Xs2cOVOrV6+WJD3++OOaOHGi+vfv7+vk/NxzzykuLk7PP/+8JGnk\nyJG+9d1ut8aPH6/09HQ99dRTio+P1/Tp0yscb9s24CFHAAAgAElEQVS2bRowYIBeeuklORwO336b\nOXOmHn/8ce3YscPveunp6UpISJDD4dDQoUP1wQcf+PKvyr59+xQVFaW4uLifrZvwpk2bFBsbq2++\n+UaSZLVatX//fuXn5yssLOxnGRMAAAAAAAAAAAAAAAAAAJhBsTH8ysjIULdu3ZSamqqDBw/qhx9+\nKPf8uQ62r776qnr06KGZM2eW6yr88MMPKzU11del9sKOt82aNZPT6VS7du2UnJysnj17VphLRR16\nb775ZjmdTkVFRalRo0ZyOp0XLXPHHXcoNTVVn376qSRp9uzZSkpKUmpqqlJSUioc0+v1atGiRWrW\nrJkeeughSdLp06f1+uuvq2/fvtq8ebN27NihevXqKSUlRWFhYdq5c6dCQ0Plcrm0dOlSHTp0SDff\nfLMkqWXLlnr//fe1c+fOCsecP3++Fi1a5CvkPqd///6aNm2aVq1aVeG6gwcPVmRkpN59913t27ev\nwuUu1LJlSy1dulQpKSlauXJltde7FLt27dLtt9+u4OBgFRUVqXv37rrllls0YMAAvfDCC/J4PD/L\nuAAAAAAAAAAAAAAAAAAA4MpRbAy/jh8/rptuukmS1KZNm4uKjavqmtumTRvZbDbZbLZKl69O992K\ndO7cWdLZTrkVadWqlaxWqwICAiRJmZmZmjx5sgYPHqwff/yx0vgbN25UWVmZ7+fmzZvLarUqPDxc\nBQUF5fZR27Ztdfz4cd1yyy3KyMjQRx99pK+//lqdOnXy5SFJderUqXC8wsJChYeHq02bNuUeb926\ntW/MioSEhCgkJETBwcG+xyoq0j5fdna2hg0bJrvdrqysrCt6Pfxxu936+uuvNXr0aH3zzTfavn27\nLBaLxowZo9WrV8vr9eqLL74wOiYAAAAAAAAAAAAAAAAAADCHYmP41aRJEx06dEiSdOTIETVu3Fih\noaEqKiqSpHKFuoGBgSotLS23/uHDh1VaWiqXyyVJqlu3rgoLC5WTk1NuuaoKYisaU5KvkPl8VRU1\n33jjjXr77bfldDq1YsWKCse1WCxauHCh1q9fr+PHj/uN3aRJEx08eFDS2e1t2rSpOnXqJKfTqcGD\nB+vjjz/2FRtXlZ90tmA4NzdXR44cqXCZS1GdwuEPP/xQI0eO1JIlS1S/fn3fOsHBwcrNzfWbX1Vj\nnj/u7t271a9fPy1YsEBvvPGGNm3apJMnT6q4uFjS2X14fmdj08XOAAAAAAAAAAAAAAAAAADgylBs\nDL8efPBBbd68WXFxcbrpppvUuHFjdevWTWvWrNGsWbN8nYIl6de//rWmTZumefPm+R779NNPZbfb\nZbfbJUmPPfaYJk+erLVr15Ybp0WLFpowYYK2bt3qN4+IiAgFBgZqxowZOnbsWIX5rlmzRna7XQcO\nHJDD4VBmZma5588VNY8dO1bPPPOMHA6HkpKSKt0HFotFiYmJmjp1arkY53Tp0kVnzpxRXFyc8vPz\n1blzZ3Xq1El5eXnq27evcnJydN111/nNw5/hw4dr2LBhSktLq9byVS1z4MABJSQkKCEhQampqX6X\n6dmzp6ZOnapJkyYpLCzM93jv3r21YMECvfTSS77HHnnkEU2ZMkVvvfVWpbkMGzZMCQkJmjJlirZs\n2aKOHTtKktq1a6evvvpKOTk5iouL871e99133yVtLwAAAAAAAAAAAAAAAAAA+OVYvLQShWGJiYka\nPXq0WrRoUdOpXJXcbreGDBkip9NZ06nUOkX/2xHZBIuhU19A3vdG4kiSu/4NZgJ5PVUvU00Wj8tc\nrLIiI3HybfWNxJGksLJTRuJ4QiKMxJEkr8Gie4vHbSaOq8RIHEnyBoYYieORuf1klbmpkKnXz2pw\nnwecrviXdS6FK7K1kTimrW33H8ZiddvxhZE49cIu/usLtcGZfDPn9LphgUbimHzv5ZWaufaZ/MWn\nsCBzv9dpat5yytB+kqTgADP7qsxcSjKUkiQp0FCwwFr4u3Qug3cAAr3m5opei6H3jKk4tVSJwfdM\nsNvM/NzU/E6SCgwdoPX3ZBiJc86ptg8YiWNqjmDyM4Mk5Z8pu+IYXoPXvfoGY5l8z5hi6lasqWux\nZPbaYCpUscGkSt1mYjWoY+7YNJSSJHPHlKcWHgcmz3YugxsYYDWTWYjN3DFV5DJzwjM5p66N56kS\nk2++a5zN0HHuNvjeM/U5rczgcRBk8Di3GQpl8r6pqWlnYG5m1QtVkyu8ubFYJu97m2JxmfkezOj3\nKO58Y7FcdczkZfK+oqnv1CwGv5szdo9EktcaUPVC1YljcJebOreY+g5Mkmy53xmLZey7FIPH1NN1\nbzUWa2rOv4zEqVe39h3nkpl7JFLt/J6orBZOhQNl7jgvM9Rr0+T9iOvqhxqLhWvffa+tq+kUcJX4\n4vneNTp+7bvCAb+g9PR0rVixwldY0r9/f/Xr1+9nHXPfvn2aPn26b8wOHTooMTGx3DIVFbrMnz9f\nGzZs8C0zYsQIde/evVrj2u12WSwWeb1eWSwWJScnX/Y21MR+AwAAAAAAAAAAAAAAAAAAvzw6GwO4\natDZuJrobFxtdDauZhw6G1cbnY1/eXQ2rj46G1eNzsbVR2fjasahs3G10dm4euhsXD10Nr40dDb+\nZdHZuHrobFx9dDauHjobVw+djXEOnY2rh87G1UNn4+qjs3H10Nn4EmLR2bha6GxcfXQ2rp7a+D0R\nnY2rh87GqCl0NkZ11XRn42v7WzgAAAAAAAAAAAAAAAAAAAAAl41iYwAAAAAAAAAAAAAAAAAAAAB+\nUWwMAAAAAAAAAAAAAAAAAAAAwC+L1+v11nQSAFAdP/54pqZTAAAAAAAAAAAAAAAAACp03XX1ajoF\nXEXue21dTaeAq8QXz/eu0fHpbAwAAAAAAAAAAAAAAAAAAADAL4qNAQAAAAAAAAAAAAAAAAAAAPhF\nsTEAAAAAAAAAAAAAAAAAAAAAvyg2BgAAAAAAAAAAAAAAAAAAAOAXxcZXiTVr1igvL++y1l2+fLnR\nXKZNm2Y0XlViYmJ+0fGuBn/5y1+0Z88e389nzpzRZ599ZiT2u+++q969e2vjxo2+x/7whz+oe/fu\nyszMrHRdu90uj8dT7jGv16u7777bF8/tdmvChAmy2+2y2+1yu91KTEyU3W5X165d5XA4tGTJEiPb\nAgAAAAAAAAAAAAAAAAC1lcfj5R//qvWvptlqOgFUz9q1a9WuXTvVr1//ktddvny5BgwYYCyXF198\n0Vis6rBYLL/oeFeDfv36lfv59OnTysjIUJ8+fa449pgxY+T1lj85vfzyyyouLq5yXX+v1Z49e3Tv\nvfdq8+bNuueee/T555+rbdu2mjVrlvLz8xUQEKAZM2ZIkmJjY5WcnHzF2wAAAAAAAAAAAAAAAAAA\nAMygs3ENKikp0ahRoxQbG6vZs2dLktLT0/XJJ59I+r+OvlOmTNGGDRs0ceJEX1fhxMRETZw4UYMG\nDdI//vEPSf/XVfa7775TYmKisrOzZbfbdeDAATkcDq1fv95vHtnZ2Zo4caIkac6cOdq6datvjDfe\neEN2u11paWk6ceKE7Ha7YmNjfevOnTtXiYmJio6O9nWjPXTokBwOh6Kjo7Vu3boKt//c9m3cuFFz\n586VJD3++OOaOHGi+vfvX66Tc0lJicaNG6ejR49qy5YtGjFihEaOHKlx48ZJkk6ePKkhQ4YoKipK\nKSkpOnr0qK+AVZK2b9+uhQsXKjExUVOnTlX//v19+82fJUuWKCYmRuPGjasyt/NVJ7eKJCYmKjMz\nU263W3a7XdLZ13TmzJl67LHHtGPHDknS/Pnzy3Ue/uqrrzRhwgRt3LhRDofD1/H45ZdfVlRUlJ5+\n+ukKx9y3b5+ioqIUFxf3s3UT3rRpk2JjY/XNN99IkqxWq/bv36/8/HyFhYX9LGMCAAAAAAAAAAAA\nAAAAAAAzKDauQRkZGerWrZtSU1N18OBB/fDDD+WeP9cl9tVXX1WPHj00c+bMcl2FH374YaWmpvo6\nwV7YVbZZs2ZyOp1q166dkpOT1bNnzwpzqah78M033yyn06moqCg1atRITqfzomXuuOMOpaam6tNP\nP5UkzZ49W0lJSUpNTa20uNbfmKdPn9brr7+uhx9+WJs3b5Ykud1uTZ48WU8++aRat24tSQoLC9N7\n772n4uJinT59Wh999JFiYmK0bNky/e1vf1OLFi2UnZ2t48ePa/369dq7d69uu+02SVKvXr20YMEC\n/fWvf/Wbl8vlUkZGhtLS0nTXXXddlFvfvn19uflTVW5ut7vCdf3tm/79+2v69OlatWqVJGnEiBHq\n37+/7/nOnTtr9uzZuvfee5WcnKyOHTtKknbu3Klly5b5Ctn9admypZYuXaqUlBStXLmyyrwux65d\nu3T77bcrODhYRUVF6t69u2655RYNGDBAL7zwgjwez88yLgAAAAAAAAAAAAAAAAAAuHIUG9eg48eP\n66abbpIktWnT5qJiY6/XW+n6bdq0kc1mk81mq3T5quJUpnPnzpLOdqOtSKtWrWS1WhUQECBJyszM\n1OTJkzV48GD9+OOPlzRe8+bNZbVaFRERoYKCAknS3r17lZOTU64At1WrVpLkW+7YsWO+fdmkSRPl\n5ubKZrNp/fr1+u///m/t379ft956qySpdevWCg8PV2Fhod8ccnNzdcMNN0g6u48vzC08PNyXW0X7\no6LcbrjhBp06deqS9sm5fCsb05+RI0fqmWee0ZtvvlnhMtnZ2Ro2bJjsdruysrKu6Fjxx+126+uv\nv9bo0aP1zTffaPv27bJYLBozZoxWr14tr9erL774wuiYAAAAAAAAAAAAAAAAAADAHIqNa1CTJk10\n6NAhSdKRI0fUuHFjhYaGqqioSJLKFeoGBgaqtLS03PqHDx9WaWmpXC6XJKlu3boqLCxUTk5OueUq\n6lp8TkVjSvIVMp+vqqLmG2+8UW+//bacTqdWrFhR4bjnCpjPz9df7E6dOumtt97S66+/flEX3HPL\nN2vWTIcOHZLX69X333+viIgItWzZUv/617/UuHFj5eXlKSwsrFrbER4eruPHj0uSjh49WuXyFfGX\n2w8//KDw8HC/y9etW1cFBQWXXKAtnX2dysrKyj3Wp08fvfnmm/r666+Vm5vrd70PP/xQI0eO1JIl\nS1S/fn1fzsHBwRetExISUmGcc7xeb7n9tHv3bvXr108LFizQG2+8oU2bNunkyZMqLi6WdPY9cP5r\narrYGQAAAAAAAAAAAAAAAAAAXBmKjWvQgw8+qM2bNysuLk433XSTGjdurG7dumnNmjWaNWuWr1Ow\nJP3617/WtGnTNG/ePN9jn376qex2u+x2uyTpscce0+TJk7V27dpy47Ro0UITJkzQ1q1b/eYRERGh\nwMBAzZgxQ8eOHasw3zVr1shut+vAgQNyOBzKzMws9/y5ouaxY8fqmWeekcPhUFJSUoXx7r//fj3/\n/PPasmXLRTEuFBkZqUcffVQLFy4st8y5///973+v1NRURUdH69FHH1VAQIBuu+02BQUF+f57oYrG\nCgwMVJ8+fRQdHa1t27ZVuXxFKsvNn4cfflizZs3S8uXLKx1z9OjRSk9P1+uvv6633npLknT99der\noKBAEydO9BU2Dx06VFFRUWrUqJEiIiL8jtmzZ09NnTpVkyZNKleM3bt3by1YsEAvvfSS77FHHnlE\nU6ZM8Y1Z0TYPGzZMCQkJmjJlirZs2aKOHTtKktq1a6evvvpKOTk5iouL8x1L9913X6XbCwAAAAAA\nAAAAAAAAAAAAao7FSyvRq1JiYqJGjx6tFi1a1HQq17SNGzdq+/btGjt2bE2nAkk//nimplMAAAAA\nAAAAAAAAAAAAKnTddfVqOgVcRe5JWlv1QoCkjZMfqNHxbTU6Ov4tpKena8WKFb6utf3791e/fv1q\nOKuzriS3//f//p9OnDghr9cri8WiN998Uw0bNqxyvX379mn69Om+MTt06KDExMTL34hqstvtslgs\nvnyTk5MvO1Ztfk0BAAAAAAAAAAAAAAAAAIA5dDYGcNWgszEAAAAAAAAAAAAAAABqMzob41LQ2RjV\nRWdjAAAAAAAAAAAAAAAAAACAfzNeD71icXWw1nQCAAAAAAAAAAAAAAAAAAAAAGonio0BAAAAAAAA\nAAAAAAAAAAAA+GWr6QQAoLqswQHGYpW6zfwJgqAAi5E4klTXZiiW12MmjiSXwd9JMbTLFSyXmUCS\nirxmjimb1dxxYLWYixVQVmgkjjcwxEgcSSoxdHi6DP4ZEZOvXx2LmQ0sdBs8DgxtXx2Dv6JWbOqE\nICnE4jYWK8/MW0bp7X5lJI79+FdG4pyTf6bMSJzAEDPnzmCD11CLq8RMHEPnTUkqCY4wFivQ3K4y\nxuIuNRTHzHEpSR6D1ytTvFZz81e3oWufqeuCJHkN/lUvt8lghpja58FWc9tm8ZibCxdbgozEMTlH\nKHTVvuNckkoLzez3cM8JI3HyQhsbiXOOp/jK51P1wmrnLcYfCs3NFU0JN3Rvw+R7z2vwc2hOgaH3\ni8F7QKbO52GuPCNxJKmkTgNjsUy9eoFec9cYU/NzGZpzSlKpwfl5kaHrVYipe4GS8svM3I8IsZk7\nudTG89QpA9e8fxemzsPbjhUYiSNJ3a43M9/4odTcNea6UHNzIIuhz0Qm77sZOrXI4C0ghRo8d5YZ\n2lUm79uYyinIVWQmkKQCS7CxWCGBta8PmrWs2Egcb0CgkTiSVOwxeN/U0DU00OT3YF4z1+Myk99h\nGvzOydR9b0NTTkmSTea+Oz5TYCbWS9ffZiSOJP2xYK+xWMWGPtOG1TNzTjA1P5BktIYgz9BtfXMZ\nSZFec/NOc+rVdAIAYFztm9EDAAAAAAAAAAAAAAAAAAAAqBUoNgYAAAAAAAAAAAAAAAAAAADgF8XG\nAAAAAAAAAAAAAAAAAAAAAPyi2BgAAAAAAAAAAAAAAAAAAACAXxQbAwAAAAAAAAAAAAAAAAAAAPCL\nYuNrxLp169SvXz+99dZbl7V+enp6tZZbvnx5tWPOmTNHW7duvaQ8Tpw4offee++S1jFty5YtmjNn\nTo3mcKXmzp2rjRs3XvJ6x48fl91uV2xsrO+x3bt3a9CgQZo0aVKl61a035YsWaK4uDjfzxs3blRU\nVJRiYmK0fPlybd26VXa7Xb1799Zvf/tbORwO5eXlXXLuAAAAAAAAAAAAAAAAAADAPIqNrxG9e/fW\nCy+8cNnrr1ixQm63u8rlLqXY+HI0atRII0eO/FnHqA6LxVLTKdSIJk2ayOl0lnvs9ttv1+zZs6u1\nvr/9tnv3bkVGRqq4uFiS9Oc//1nJyclKS0tTnz599Ktf/UpOp1P9+/fX888/r+TkZNWvX//KNwYA\nAAAAAAAAAAAAAAAAAFwxW00nAHO8Xm+5n/ft26dXXnlFNptNv/nNbzRkyBB5PB698MILysrKUuPG\njTVz5kyNHj1a+/fv15AhQ9S9e3eNHDlS8+bN04YNGxQQEKBXXnlFderUUWJiog4cOCCHw6GhQ4eq\nZ8+eSklJ0apVqxQaGqqZM2cqPDxcEyZMUG5ursrKynTfffdVmK/dblfXrl21detWDRkyRM2bN9fL\nL7+sVq1a6Y033pAkJSYmKjQ0VDt37tTw4cPVt29frVq1Su+//75at24tm82mGTNmaPXq1VqyZIls\nNpuSkpLUokULpaena9u2bcrMzFTLli01bdo0vfzyy9q/f79uuOGGKrsXZ2Zm6vXXX9fMmTO1cOFC\nZWdn6+jRo3rooYc0ZMgQ7dixQ6+//rok6bnnntPBgwfVsGFDPfDAA5KkefPm6b777tP06dPVsWNH\nbdu2TXPnzlWrVq38jnf+fhs/fry8Xq8WLlwoi8WioKAgvfPOO37Xi4uLU2lpqVq1aqVvv/1WycnJ\nlW7X+V599VUdOHBAQUFBeu2113TddddVe93q8Hg8crlc+o//+A/t2LFD9957r8rKyrR792517dqV\nomIAAAAAAAAAAAAAAAAA/7a8Hm/VCwG1AJ2Nr2EtW7bU0qVLlZKSopUrV0qS1q5dq2bNmsnpdGrq\n1KmSpD/96U9q3769kpOTfV2F4+LilJaWpmeffVZOp1PNmzeX0+lUu3btlJycrJ49e+rkyZP65z//\nqbS0NMXHx+ujjz7S9u3b1bBhQy1evFj16tWrMsd77rlHKSkp6t27t9q3b++3g26vXr20YMEC3zak\npKQoLS1NDz30kKSzBa2LFi1SSkqKpk6dqgULFvjW9Xg8Sk5O1quvvipJ2rlzp5YtW1Zlp94ff/xR\n06ZN04wZMxQcHCxJuuOOO5SamqpPP/1U0tli4nnz5ulPf/qT/vznP+v222/X3r17tXnzZh05ckQH\nDx5U+/btlZeXpwkTJmjUqFH65z//6Xe8HTt2+Pbb+QW4YWFheu+991RUVKTTp0/7XbdRo0aaMWOG\nrrvuOvXr108HDhyodNvO98wzz8jpdGrAgAH661//Wu31quvrr79Whw4d9Ktf/UqbNm2SJE2ZMkXz\n58/XI488om3bthkfEwAAAAAAAAAAAAAAAAAAmENn42tYdna2XnvtNZWWliorK0ter1dHjx7Vbbfd\nJkkKCQnxLev1euX1emWxWCRJK1eu1D/+8Q+5XK5ynXjP756clZWlw4cPy+FwyO1266677tL333+v\ntm3bSpLatGlTaX4Wi0WdO3eWJFmtFde9t27dWuHh4SooKPAtGxgY6Iufm5urrKwsxcfHS5KaNGni\nW/fC+CNHjtQzzzyj5s2ba8KECRWOuWnTJjVp0kQBAQG+x1q1aiWr1ep7rKioSJGRkb7/v/nmm7Vg\nwQKVlJQoMjJSLpdLQUFBioyMVFhYmCIiInT48GG/4x0/fty331q3bl1uTEmKiIhQQUGBGjRocNG6\nISEhCgkJUWhoqEJDQ1VcXFzhdl1o8eLF2rp1qwoKCnT//ff7Hr+wS/bl2rRpk9avX6/t27erpKRE\nktS+fXvNnz9fWVlZevbZZ7Vs2TIjYwEAAAAAAAAAAAAAAAAAAPMoNr6GBAcHKzc31/fzhx9+qJEj\nR+quu+7SQw89JK/Xq1atWmnXrl3q2bOniouLfV17g4KCVFZWpjp16vjWXblypTZt2qQVK1b4Ha95\n8+bq0qWLZs2aJUkqKyvTv/71L+3evVuSdOTIEfXq1avCfL1er2w220WPVVXo6vF4VFpa6ivcjYiI\nUIcOHbRo0SJfHuecXywsSX369NF//ud/Kj4+Xrm5uYqIiPA7xmOPPaauXbtq1qxZeumll/wuExoa\nqpMnT8rr9So0NFQBAQGyWCwKDg5WTk6OL3Z1CndvuOEG3347evRolctXprqFwqdOndK2bduUkpKi\n5cuXKysry/fchQXLISEh5Y6t6o69fft2paSkyGazafz48SosLNTJkyfVvHlzRUREKDAwsFq5AgAA\nAAAAAAAAAAAAAACAmlFxO1lcdTp06KBDhw7J4XCoqKhIPXv21NSpUzVp0iSFhYVJkn7zm98oOztb\ndrtdL774om/d3r1766mnnvJ1me3cubPsdrsyMjLKjdGyZUtNmDBBW7duVWRkpO68807Z7XY5HA5t\n2LBBXbp00YkTJzRkyBCdOXOm0nzPdVE+Z+nSpZowYYI2btwoh8OhwsJCv+vFxcUpNjZWn376qaxW\nq6xWqwYNGqS4uDgNHjxY6enpftfzer0aOnSooqKi1KhRowoLjc+57777lJ+fr507d/p9/sknn9So\nUaM0ZswYjRo1StLZwuc2bdooODhYt956q9/t9Oeuu+5STk6O4uPjlZeXd9Hz1Ylx4bJ//OMfFR8f\nr4SEBF9X6PM1aNBAdevWVXx8vLZt23ZRPjExMdqxY4ckKTIyUiEhIbLb7crMzKxw7L/97W9KSEhQ\nQkKCtm7dqry8PF9Befv27bV161YtWrRIUVFRSkhI0LBhw6q9XQAAAAAAAAAAAAAAAAAA4Jdn8Va3\nDSpQS7hcLtlsNn3++efauXOnxo0bV9MpGTVnzhzdd999+tWvflXTqdQ6P53xX4B+OUrdZk59QQHV\nLwSvSl2boVhej5k4klwGfyfF0C5XsFxmAkkq8gZUvVA12KzmjgPrJfxyQVUCysy8Z7yBIUbiSFKJ\nocPT5TE3fTH5+tWxmNnAQrfB48DQ9tUx+CtqxaZOCJJCLG5jsfIMXWbS25m5htuPf2Ukzjn5Z8qq\nXqgaAkPMnDuDDV5DLa4SM3EMnTclqSS48l9suxSB5naVMRZ3qaE4Zo5LSfIYvF6Z4rWaeb9IktvQ\ntc/UdUGSTN5NcNfCWxOm9nmw1dy2WTzm5sLFliAjcUzOEQpdte84l6TSQjP7PdxzwkicvNDGRuKc\n4ym+8vlUvbDa+cfTfig0N1c0JTzYzLXB5HvPa/BzaE6BofeLof0kmTufh7kubhBwuUrqNDAWy9Sr\nF+g1d40xNT+XoTmnJJUanJ8XGbpehZi6Fygpv8zM/YgQm7mTS208T50ycM37d2HqPLzt2MWNUC5X\nt+vNzDd++P/s3XtAlHXe///XDAMCohw0SzNFN1t0Lc3T5pqrUWneZXm6C5FB0My0NTUqRUvLYwd0\nLd3MQ2YM4Fm2djW1rO1rqyIe1uoO+3nchEpFUBRRGGZ+f3g7t4cBUT8Gus/HP8o11/X6vK/DXNc1\n13z4UGzuGnNLoLl7IIuhz0Qmn7sZOrXI4CMgBRo8d5YY2lQmn9uYqsnPWWQmSFKhxd9YVoBv1RsH\nzVpy+vIzVYDbx9xfcz3tMvjc1NA11Nfk92BuM9fjEpPfYRr8zsnUc29Dt5ySJJvMfXd8otBM1qt1\n7jaSI0lvF2YZyzpt6DNtUA0z5wRT9weSjPYhKDD0WN9cRVKY29x9pyl+IXUquwTcQH4/4bPKLgE3\niIxxD1dq+1XzmwCgHMuXL9fHH38sm82mpKSka8qy2+2yWCxyu92yWCxKTk42VGXZpkyZoqyssze8\nFotFY8aMUUREhOf1sj705ebmauTIkZ566y7qII0AACAASURBVNSpo2nTplWozfT0dK1cudKT3atX\nL/Xo0eOq16EythsAAAAAAAAAAAAAAAAAAPj10dkYN5yoqChFRUUZyXI4HEZyrsSYMWPKfX348OFe\np9euXfuq6+3Zs6d69ux5Vct6UxnbDQAAAAAAAAAAAAAAAAAA/Pqq3t8qAQAAAAAAAAAAAAAAAAAA\nAFAl0NkYAAAAAAAAAAAAAAAAAAAAgFd0NgYAAAAAAAAAAAAAAAAAAADgla2yCwAAAAAAAAAAAAAA\nAAAAAPhP43K7K7sEoELobAzghhFgMzcYe4Chs59VVe+C77b6GMuyGbyhsVosRnJK5WskR5L8De0/\nl8ysm2T4JtI30EiMj6vESI4k+fmY2X8+5ja5bAazTP3RCH+DRZnaf26Dt43+Bnegybokp5GUmJ/+\nZSTnzdDmRnLOee7HHUZyTO4/U0p8qpkJMpUjycfQde+sqne/UWToeuzv52ckRzJ7PTZ1j1cVnw1Z\nTBZl8Dj3dbuM5BSWGryGmoqymPsc47KZO09Vq4IHaKCheyC30XOwVGwop7TmbUZyjo8ZaCTnnBpj\n5lx7iKH3sCSj7xmbterdtwSe/MVIjqnjSZJ8TuUZy7JZg43kVLOYO6YsVjNZPjn/YyRHkiyN/2As\ny8fQce52mXvvWUrNnDmtZwqN5EiSNSDMWJaPxcw11NS+k8w9NzV1jpKq5nkqJNDccXCzK3WZOc7v\nudXM80lJ8tmzwUhOWJOORnIks9dQV0CokZxqBr9HMfXpw9TxZJqvTN1vVL3711JD3w1IUoDBW2qL\nq9RIjsti7nuwUpu/kRyf0jNGciTJZjX3vMzUd3NWt5l9J8nYZz6byedSVe+jo7F9J0lug+8ZGTp3\nvl2YZSRHkl6q3tRY1sTD3xrLqmqsp/KNZfn5m7mvNvmZqNRa01gWAKBs5j79AAAAAAAAAAAAAAAA\nAAAAALip0NkYAAAAAAAAAAAAAAAAAAAAgFd0NgYAAAAAAAAAAAAAAAAAAADgFZ2NAQAAAAAAAAAA\nAAAAAAAAAHhFZ+Mq5osvvlCPHj30zjvvXNXy6enpFZpvxYoVFc6cMWOGMjMzr6iO3NxczZkz54qW\nMW3Lli2aMWNGpdZwrWbNmqVNmzZ5fW3btm169913JUnR0dHG2ly6dKm6deum5cuXe6b95S9/UWRk\nZJm1nJOYmKiDBw9eMr1Xr14X5E2ePFkxMTGKjo7WkSNHNH36dNntdrVp00axsbFKSkoytj4AAAAA\nAAAAAAAAAAAAAODq2Sq7AFwoMjJSNWrU0MaNG69q+ZUrV+rxxx+Xj49PufOtWLFCvXv3vqo2KqJ2\n7doaPHjwdcuvKIvFUtklXDdLly7VCy+8IMnsej755JPy8/OT0+n0THvuuefkdruvKi8/P18NGjTQ\n1q1b1adPH+3du1eFhYVKSUlRcXGxJHnWo1+/fkpOTr72lQAAAAAAAAAAAAAAAAAAAEbQ2bgKurhT\n565du/Taa6/JZrPpoYceUlxcnFwul8aOHavs7GzdeuutSkpK0tChQ/XDDz8oLi5O999/vwYPHqzZ\ns2drw4YN8vHx0WuvvaZq1aopMTFRu3fvVmxsrAYOHKhOnTopJSVFq1evVmBgoJKSkhQSEqKEhATl\n5+erpKREHTp0KLPecyPSZmZmKi4uTvXr19f48ePVsGFDvfXWW5LOjngbGBioHTt2aNCgQerWrZtW\nr16tDz/8UOHh4bLZbJo6darWrl2rhQsXymazacqUKbrjjjuUnp6urVu36uDBg2rQoIEmTZqk8ePH\n64cfftBtt9122dGLDx48qDfffFNJSUmaP3++cnJydODAAXXt2lVxcXHavn273nzzTUnSqFGjtGfP\nHtWqVUsPPvigJGn27Nnq0KGDJk+erGbNmmnr1q2aNWuWGjZs6LW987fb888/L7fbrfnz58tiscjP\nz08zZ870ulxMTIyKi4vVsGFD/fvf/y630+25/FtvvVWS5HQ69frrr19Qm7ftdrHDhw9r+PDhstls\nat68uUaNGiXp0mPwWmRkZOjBBx/U6tWrJZ3tGH3gwAHl5eUpLCzMWDsAAAAAAAAAAAAAAAAAAMA8\na2UXgMtr0KCBFi1apJSUFH3yySeSpPXr1+v222+Xw+HQxIkTJUnvvfeeIiIilJyc7BlVOCYmRmlp\naXrxxRflcDhUv359ORwO3XXXXUpOTlanTp2Ul5enL7/8UmlpaYqPj9fSpUu1bds21apVSwsWLFCN\nGjUuW2P79u2VkpKiyMhIRUREaPr06ZfM07lzZ82bN8+zDikpKUpLS1PXrl0lSS6XSx988IFSUlI0\nceJEzZs3z7Osy+VScnKyJkyYIEnasWOHFi9e7LWd8x05ckSTJk3S1KlT5e/vL0lq0aKFUlNTtWbN\nGklnOxPPnj1b7733nt5//33dc889ysrKUkZGhvbv3689e/YoIiJCBQUFSkhI0JAhQ/Tll196bW/7\n9u2e7VazZk3P9KCgIM2ZM0dFRUU6fvy412Vr166tqVOn6pZbblGPHj20e/fuMtfr4pGpy6rt4u12\nsZCQEH300UdyOBzavXu38vLyymzzamVkZKhdu3YKDw/XgQMH1LhxYz322GOKjY3Vc889p1OnThlv\nEwAAAAAAAAAAAAAAAAAAmMHIxjeAnJwcvfHGGyouLlZ2drbcbrcOHDigu+++W5IUEBDgmdftdsvt\ndstisUiSPvnkE3366adyOp0XjMR7/si12dnZ2rdvn2JjY1VaWqrWrVvrl19+UePGjSVJjRo1Krc+\ni8Wili1bSpKs1rL7r4eHhyskJESFhYWeeX19fT35+fn5ys7OVnx8vCSpbt26nmUvzh88eLBGjhyp\n+vXrKyEhocw2N2/erLp168rHx8czrWHDhrJarZ5pRUVFnhF2i4qK1KRJE82bN09nzpxRWFiYnE6n\n/Pz8FBYWpqCgIIWGhmrfvn1e2/v555892y08PPyCNiUpNDRUhYWFCg4OvmTZgIAABQQEKDAwUIGB\ngTp9+nSZ67Vp0yY9/fTTnp/Lqu1y++XYsWMaP368CgsLtW/fPhUWFhofbXjnzp165ZVXlJeXp/Dw\ncIWHhys6OlrR0dH6y1/+ok8++URRUVFG2wQAAAAAAAAAAAAAAAAAAGbQ2bgK8vf3V35+vufnJUuW\naPDgwWrdurW6du0qt9uthg0baufOnerUqZNOnz7tGbXXz89PJSUlqlatmmfZTz75RJs3b9bKlSu9\ntle/fn21atVK06ZNkySVlJTo22+/1TfffCNJ2r9/vzp37lxmvW63Wzab7ZJp53do9sblcqm4uNjT\nOTY0NFRNmzbVBx984KnjnPM7C0vSww8/rEcffVTx8fHKz89XaGio1za6d++uNm3aaNq0aXr11Ve9\nzhMYGKi8vDy53W4FBgbKx8dHFotF/v7+Onz4sCf7cusjSbfddptnux04cOCy85enrPa+/vprdejQ\noULzXrzdLrZq1Sp16dJFPXv2lN1u90z39/dXdnb2BfNefFxWpO7Dhw/rrrvu0htvvKFjx47p9ddf\n12OPPSan06ng4GDVrVtXRUVFl10PAAAAAAAAAAAAAAAAALjZuF30l8KNgc7GVVDTpk21d+9excbG\nas6cOerUqZMmTpyou+66S0FBQZKkhx56SOvXr5fdbtett96qpKQkSVJkZKSGDx+uzp07KyoqSi1b\ntpTdbleTJk0uaKNBgwZKSEhQVFSU2rZtq3vvvVd2u10Wi0VxcXGKjIxUamqq4uLiVFpaWm6950ZR\nPmfRokX661//qpycHMXGxur999/3ulxMTIz69eunBg0ayN/fX1arVU899ZRiYmLk4+OjRx99VE8+\n+eQly7ndbg0cOFAlJSW64447yuxofE6HDh30ySefaMeOHV5ff/bZZzVkyBBZLBaNHj1a0tmOz40a\nNdLu3bs9IxVfvJ7etG7dWikpKYqPj5fT6bzk9YpkXDzv22+/reDgYFksFr377rtauXKlxo0bd9W5\n57vvvvs0atQoff7555dMf+aZZ7Rt2zbP/ouMjFRCQoI2bdqkiRMnlpk5evRo+fv7q1q1anr00UfV\ntGlTSVJISIh+/vlnFRYWatiwYfLz85Ofn5/+/Oc/X/N6AAAAAAAAAAAAAAAAAACA68PiZihRVBKn\n0ymbzaavv/5aO3bs0LBhwyq7JKNmzJihDh06qG3btsYy3W63Vq1apccee8xY5o3kVNHpyi7hElZV\nvVOo22CnbYvBS4RLVa8zuan9Z3LdXAa3udXQseDjKrn8TBXk8vE1klNq8Df7bFXv0DR6TJnaf27r\nzf87aidOXvqLQlejepCZ4/ytsOZGcs557kfvv3h1pWoEVb1jwVn1LsfGzsFS1bzfOF1qpiZ/H4PX\nUIPnzpv5HsHkdc/ofaer/F9yrajCUoPXUENRJo/zqnqvX9WY3E6SdPKEmfspU9fQn8YMNJJzTo0x\nc649o7rVQCX/y2Iu6+hpl7EsU+oUHzaSU1rzNiM5kmQtuvxfsqqoI5ZgIzm1qhmJkSRZ3GaOA9v+\nLUZyJKmo8R+MZflYzZzzTF2LJcl6+riZnDOFRnIkqTjkDmNZp51mjqkAX3Pnu2JD9+eBJ38xkiNV\nzfNUaWCYkZz/BKaevRk6NCVJ1fdsMJJzuklHIzmS5Hfa3DXUFVD+wDoVZfpe2IQq+yzX0D2CyftX\nU/vP5Mc9k4eUqfsNl6X8v+xaGXxKzxjLKrH6Gcsy9YzS6jZ3r2jqPXOzPyMx+VzR5PvY1DMS/+rm\nvmd4qXpTY1kTD39rJCeohpnviUwem9bCo8ayTvmbua829XlWkmwGs0wJ+N+/UA9URJvxayu7BNwg\ntr7etVLbr3o9BfAfY/ny5fr4449ls9k8IzNfrXOjMrvdblksFiUnJxuqsmxTpkxRVlaWpLMj8o4Z\nM0YRERGe18sapTc3N1cjR4701FunTh1NmzatQm1aLJar7mj8wgsvKDc317ON/vznP6tWrVpXlbVh\nwwbNnTvXs44dO3bUoEGDrioLAAAAAAAAAAAAAAAAAABUXXQ2RqWJiopSVFSUkSyHw2Ek50qMGTOm\n3NeHDx/udXrt2rUrpd7p06cby+rYsaM6djT32/8AAAAAAAAAAAAAAAAAAKBqMvg3DgEAAAAAAAAA\nAAAAAAAAAADcTOhsDAAAAAAAAAAAAAAAAAAAAMArOhsDAAAAAAAAAAAAAAAAAAAA8MridrvdlV0E\nAFTEkSMnKrsEAAAAAAAAAAAAAAAAoEy33FKjskvADaTN+LWVXQJuEFtf71qp7TOyMQAAAAAAAAAA\nAAAAAAAAAACv6GwMAAAAAAAAAAAAAAAAAAAAwCtbZRcAAAAAAAAAAAAAAAAAAADwn8btcld2CUCF\nMLIxAAAAAAAAAAAAAAAAAAAAAK/obHwFvvjiC/Xo0UPvvPPOVS2fnp5eoflWrFhR4cwZM2YoMzPz\niurIzc3VnDlzrmiZyjJr1ixt2rSpssuociZNmnTBz59//rkKCgquOffnn3+W3W5Xv379PNO++eYb\nPfXUU3r55ZfLXXbLli2aMWPGJdMXLlyomJgYz8+bNm1SVFSUoqOjtWLFCmVmZsputysyMlJPPPGE\nYmNjjawLAAAAAAAAAAAAAAAAAAC4dnQ2vgKRkZEaO3bsVS+/cuVKlZaWXna+K+lsfDVq166twYMH\nX9c2cH298sorF/y8fv16HTt27Jpz69atK4fDccG0e+65R9OnT6/Q8haL5ZJp33zzjcLCwnT69GlJ\n0vvvv6/k5GSlpaXp4YcfVtu2beVwONSrVy+NHj1aycnJqlmz5jWvCwAAAAAAAAAAAAAAAAAAuHZ0\nNr5Cbrf7gp937dqlqKgoxcTEaOHChZIkl8ulxMRE2e12vfjii5KkoUOH6ocfflBcXJxnVOHZs2cr\nOjpadrtde/fuVXZ2tux2u3bv3q3Y2Fh99dVXkqSUlBRFR0fr6aef9nQoTUhI0IABA7Rt27Zy67Xb\n7XrnnXcUExOjzz//XLt27bpklNrExERNnDhRvXr10qeffipJWr16tf77v/9bL730khITEyVJa9eu\nVd++fWW323Xw4EFJZ0drHjt2rGJjYz0dYMePH6+oqCiNGDGizLrS09O1fPlySVJ0dLSks6MYJyYm\nqm/fvp5tec769ev1xhtveNYpKSlJ3bt31/bt2yVJDodDUVFRio+PV15enl588UWdPHnSs/xzzz2n\ngwcPKiYmRn/605/Ur18/uVwur7UdPXpUMTExGjJkiLp163bZ2i7e3perzZucnBy99NJLkv5vtOot\nW7bomWee0eDBgzVs2DBJZ0elvnjk4XHjxmnDhg166aWXPCMe79q1S7169ZLdbtf/+3//r8x6J0yY\nILvdroEDB+rIkSNlzne1XC6XnE6nfv/733u2R0lJib755htJolMxAAAAAAAAAAAAAAAAAABVHJ2N\nr1GDBg20aNEipaSk6JNPPpF0tmPs7bffLofDoYkTJ0qS3nvvPUVERCg5OdkzqnBMTIzS0tL04osv\nyuFwqH79+nI4HLrrrruUnJysTp06KS8vT19++aXS0tIUHx+vpUuXatu2bapVq5YWLFigGjVqXLbG\n9u3bKyUlRZGRkYqIiPA6Sm3nzp01b948zzqkpKQoLS1NXbt2lXS20+gHH3yglJQUTZw4UfPmzfMs\n63K5lJycrAkTJkiSduzYocWLF1/VaLgtWrRQamqq1qxZ45m2detWrV+/XqNHj/bM36tXL02ePFmr\nV6+W0+nUqlWrtHjxYvXt21fLli3T3XffraysLC1btkxOp1NWq1VWq1VOp1OzZs1SkyZNtGvXLq/1\nLFu2TPHx8XrnnXdUUFBQbm3e1qWs2qKiorRs2bIKbYdzgoKCNGfOHBUVFen48eOqXbv2JSMPT5gw\nQR07dlRSUpKnw/c///lPxcbGyuFw6P777y+zzZEjR8rhcKh37976+OOPy5zvan333Xdq2rSp2rZt\nq82bN0s62zl67ty5+q//+i9t3brVeJsAAAAAAAAAAAAAAAAAAMAcW2UXcKPLycnRG2+8oeLiYmVn\nZ8vtduvAgQO6++67JUkBAQGeed1ut9xut6dT6SeffKJPP/1UTqdTDRs2vGC+c7Kzs7Vv3z7Fxsaq\ntLRUrVu31i+//KLGjRtLkho1alRufRaLRS1btpQkWa1l9y0PDw9XSEiICgsLPfP6+vp68vPz85Wd\nna34+HhJUt26dT3LXpw/ePBgjRw5UvXr11dCQkK59V2sYcOGslqt8vHx8UzbsmWLateufUm92dnZ\nKiwsVH5+vurVqydJ+s1vfqONGzfq8ccf13fffae1a9cqKChI9evXl3S2c7ikC9b1Yj/99JO6dOki\nPz8/3X777eXW5k1Ztd15553atGnTFW8PSQoNDVVhYaGCg4MrtFzPnj01a9YsffHFFxoyZIiaNm3q\ndb4FCxYoMzNThYWFeuCBBzzTLx7B+2pt3rxZX331lbZt26YzZ85IkiIiIjR37lxlZ2frxRdf1OLF\ni420BQAAAAAAAAAAAAAAAAAAzGNk4yvk7++v/Px8z89LlizR4MGDtXDhQtWsWVNut1sNGzbUzp07\nJUmnT5/2zOvn56eSkpILlk1JSdGIESPK7NxZv359tWrVSsnJyUpNTdWwYcNUt25d7d+/X5I8/5bF\n7XbLZrNdMu1ynUldLpeKi4u1b98+SWc7uzZt2lTJyclKTk7WpEmTPPNe3Pn24Ycf1p///Gd99913\nF2yr8wUGBqqoqEiSdPjwYa91nzN06FA1aNBAa9euveS1c7X99NNPkqS9e/eqXr16atasmdatW6de\nvXopLS1NzZs3L3d9z1evXj3t27dPxcXFysnJKbe2y73mrTZvzt8eR44cuWyNF7fj6+ur4uJiz89B\nQUEaN26c+vfvr+XLl3vNOHbsmLZu3aqUlBTFxMRckHn+cSud7TRf1r4sr65t27YpJSVF8+fPV2ho\nqE6dOqXs7GxJZ7eNr6/vZTMBAAAAAAAAAAAAAAAAAEDlobPxFWratKn27t2r2NhYFRUVqVOnTpo4\ncaJefvllBQUFSZIeeugh5eTkyG6365VXXvEsGxkZqeHDh3tGcm3ZsqXsdrvWrVt3QRsNGjRQQkKC\nMjMzFRYWpnvvvVd2u12xsbHasGGDWrVqpdzcXMXFxenEiRPl1ntuFOVzFi1apISEBG3atEmxsbE6\ndeqU1+ViYmLUr18/rVmzRlarVVarVU899ZRiYmLUv39/paene13O7XZr4MCBioqKUu3atRUaGup1\nvnbt2unzzz/XtGnTvI4UfHHdQ4cOlcPhUEFBwSWv2Ww2PfbYY4qKitKiRYvUp08f+fv76+TJk+rc\nubNcLtclnY0vzjhf7969tWDBAj3//PNeRxIub9mK1ObNuY63U6dO9XRO9pb7+eefy263a/fu3YqN\njdXBgwclSX/84x81adIkzZ49W5L097//XTExMZo8ebK6devmtc3g4GBVr15d8fHx2rp16wWvtW7d\nWtHR0dq+fbskKSwsTAEBAbLb7Z42vfn73/+uAQMGaMCAAcrMzFRBQYGns3tERIQyMzP1wQcfKCoq\nSgMGDNDTTz9dZhYAAAAAAAAAAAAAAAAAAKh8FvflhrjFfySn0ymbzaavv/5aO3bs0LBhwyq7pEoR\nHR2ttLS0yi4D/+vIkfI71wMAAAAAAAAAAAAAAACV6ZZbalR2CbiBtH51TWWXgBvEtomPVGr7tkpt\nHVXW8uXL9fHHH8tmsykpKemasux2uywWi9xutywWi5KTkw1Vee0uV1tZoxhv2LBBc+fO9bzesWNH\nDRo0qEJtTpkyRVlZWZ78MWPGKCIi4hrW4vLS09O1cuVKT729evVSjx49rjqvKu9TAAAAAAAAAAAA\nAAAAAABgDiMbA7hhMLIxAAAAAAAAAAAAAAAAqjJGNsaVuHfsp5VdAm4QOyZ3q9T2rZXaOgAAAAAA\nAAAAAAAAAAAAAIAqi87GAAAAAAAAAAAAAAAAAAAAALyiszEAAAAAAAAAAAAAAAAAAAAAr2yVXQAA\nVFSI8o1luX39DeUEGMmRJLfVzCn50KlSIzmSVM+VZyyrJKiOkRxb8UkjOZLk9AsylnUz8yk5ZSzL\n1HvGUlpsJEeS5HYbiyq1mTm32ApzjeRIkisw1EyQxdzvqPnl7DSWdapeC2NZRYVOIznVg3yN5Fhl\n7tiUpBMnzazfrscfMZLT9ovPjeRI0hmXmRy3wfNBNZu594zFUF3WInP3Us6AMCM5xaWGdp4kf6u5\n/Wdxm6mr1GrmfCBJFouxKGOsxebuEWT1MZPjMncvLB8z+++0wUcv/qVFxrJMbXO3j5+RHEnyOXnE\nSE5p0C1Gcs4xdQ2tEWTmWHCavUUwcg8U+tMmA5Wc5byro7Esi/OMsSxTLIY+X7kCDN3nS7KUGDy3\nGPrcYHGeNpJTVZk8d1pcZs5Rbls1IzmSwfeeoXWTJBnc5m5D9wgmn0cYe88Yug+WquZ5yujzpJuc\n0z/ESI7JZxtuQx+KTH3GlsxeQ009N7UWHjWSI0luv0AjOSbfey7/YGNZpr5LqVdq7lnumaBbjeT4\nnTluJEcye99i6nO2qe/TJMklM+cWH1eJkRxJRq/Hpu43TL6PS/1rGskx+VzK1D21JLmq1TCSY/v+\nCyM5kuRsFmksy9QzkqAa5p6bmnTyhJn38qt17jaSM+NUlpEcSbIWFxrLMvWZyORzm6p4LyWZOR8A\nQFXCyMYAAAAAAAAAAAAAAAAAAAAAvKKzMQAAAAAAAAAAAAAAAAAAAACv6GwMAAAAAAAAAAAAAAAA\nAAAAwCs6GwMAAAAAAAAAAAAAAAAAAADwis7GAAAAAAAAAAAAAAAAAAAAALyis/ENYsOGDfrqq6+u\neLmcnBxt3rz5OlR0ZU6cOKHPPvvsipfbsmWLZsyYcR0qun5yc3M1Z84co5mzZ8++7H6cNGmSkbaG\nDRumdu3ayeVySZJKSkpkt9vVtWvXyy4bHR19ybTvv/9eLVq00JkzZyRJv/zyi+Li4mS32zVhwgSd\nPHlSdrtdPXr0UGRkpGJjY5WRkWFkXQAAAAAAAAAAAAAAAAAAwLWxVXYBqJiOHTte1XLnOhvfd999\nhiu6MsePH9e6dev08MMPX/GyFovlOlR0/dSuXVuDBw82ludyubR161YNGTKk3PleeeUVI+3NnDlT\nsbGxnp99fX3lcDjUr1+/yy7rbV9lZGTowQcf1Pbt29W+fXs5HA796U9/Ups2bVRQUKCgoCA5HA5l\nZmZq48aNGj58uJH1AAAAAAAAAAAAAAAAAICqzO12V3YJQIXQ2fg6SUxMVGhoqL799lt169ZNPXr0\n0OjRo3Xs2DG1atVKI0aM0KFDhzRs2DBVq1ZNPXv2VK9evZSYmCin06kff/xRcXFx6tatm9LT0zV3\n7lwNHDhQffr0kXR2xN8lS5bo6NGj8vf31/vvv69hw4bp2LFjqlmzpt5++21t3LhRs2bNUkFBgbZv\n366kpCQFBwdrxIgRKigoUOvWrfXCCy9Ikux2u9q0aaPMzEz1799fq1at0rhx4xQWFqaEhASNGTNG\ntWrVumQ9c3JyNGHCBLndbh07dkxLlizRxIkTtXv3bvn5+emNN95QTk6Opk6dqpycHMXGxmr06NFq\n1qyZpk2bpn/9618KDQ3VtGnT5OvrW+b2PHjwoN58800lJSVp/vz5ysnJ0YEDB9S1a1fFxcVp+/bt\nevPNNyVJo0aN0p49e1SrVi09+OCDks6ODNyhQwdNnjxZzZo109atWzVr1iw1bNjQa3sJCQnKz89X\nSUmJnn/+ebndbs2fP18Wi0V+fn6aOXOm1+V27dql8ePHq2HDhnrrrbc8x0JgYKB27NihQYMGqVu3\nbvrnP/+pt99+WzVq1NDYsWMVERGhPn36qGHDhjp48KDeeOMNNW7cWJL0j3/8Q506dZIkzZo1Szt3\n7pQknTp1Sv3791eXLl1kt9t1+PBhUh+oQwAAIABJREFUrV27VpKUnp6uf/zjHyooKNCdd96psWPH\neq13xYoVWrZsmaxWq0aOHKm2bdtKMnsR27lzp5555hmtXbtW7du3l9Vq1Y4dO9SyZUvVrFnTMx8X\nTgAAAAAAAAAAAAAAAAAAqh5rZRdwM2vSpIkcDoeeeuopLV26VJGRkUpOTlZOTo4OHz6sHTt2qFOn\nTnI4HOrRo4dnuUceeUSpqalKTk6WJPXs2dPrSLlHjhzRwoUL9d5770mSpkyZIofDoRYtWuirr77S\nQw89pDFjxuiJJ55QcnKy6tSpo3Xr1qldu3ZKTU3V7t27dejQIU9e+/btlZKSogcffFBdu3bVZ599\npuLiYhUWFnrtaHzOgQMHNHv2bC1ZskQWi0UjR46Uw+FQ79699fHHH6tly5aaPn26/vCHPyg5OVnN\nmjVTVlaWcnNz5XA4dP/992vdunVl5h85ckSTJk3S1KlT5e/vL0lq0aKFUlNTtWbNGklnOxPPnj1b\n7733nt5//33dc889ysrKUkZGhvbv3689e/YoIiJCBQUFSkhI0JAhQ/Tll196bW/79u2qVauWFixY\ncEFn2KCgIM2ZM0dFRUU6fvy412UjIiI0ffr0S6Z37txZ8+bN08cffyxJWr9+vV555RU5HA7ddddd\nkqQTJ07o1Vdf1YQJE7Rw4ULPsn/961/Vs2dPz8+jR4+WxWLRBx98oM2bN0uSHA6HateufUGbDRo0\n0IcffqgdO3aUuW27dOmixYsX691339XcuXM9002NJl1aWqrS0lI1a9ZMP/zwgyRp4MCB2r9/v+c4\nBwAAAAAAAAAAAAAAAAAAVRcjG19HLVu2lCT5+PjowIED+v7777VixQqdPHlSR44cUadOnbRz5049\n//zz6tu3r9q3by9JatSokWw2m3x8fDxZ3kZ9PZdvtVrlcrmUlJSkffv26ejRoxo4cKDXmn7++Wc1\nbdpUktS4cWMdOnRIt9566yV5nTt3VkJCgm655Rb98Y9/LHc9mzdvfkGtCxYsUGZmpgoLC/XAAw94\nXWb//v3avn27YmNjVVxcrO7du5eZv3nzZtWtW/eCNho2bCir1eqZVlRUpLCwMM//mzRponnz5unM\nmTMKCwuT0+mUn5+fwsLCFBQUpNDQUO3bt6/MbXRuVOHw8PAL2pSk0NBQFRYWKjg4uNztcr7w8HCF\nhITo1KlTkqS4uDjNnTtXKSkpGjVqlOrWravg4GCFhITI399fP//8syQpOztbwcHBqlGjhifL399f\ntWrVkr+/v4qKisps81y91apVK3OejRs3KiUlRdKFx5i34+1qRh7+7rvvtHv3bj399NPas2ePioqK\nFBISoilTpqi4uFh9+vRRz549FRgYeMXZAAAAAAAAAAAAAAAAAADg+mNk4+vIZvu/vtzh4eEaOnSo\nHA6Hli1bpt/97nfy8fHRqFGjNHbsWH300Ueeefft26fi4mKVlpZekHdxZ8/zO99mZWWpuLhYDodD\njzzyiGdem82mkpISz3x169bV3r17JZ3t8Huuo/HF9QYEBCggIEArV65U165dy11Pq/X/DqNjx45p\n69atSklJUUxMTJl1hIeHe0Z6Xrx4sZ588sky87t3765nn31W06ZNK3OewMBA5eXl6ejRowoMDJSP\nj48sFov8/f11+PBhhYaGSqpYh9nbbrtN+/fvl3R21OYr5Xa7y2zn3PTbbrtNkyZNUmRkpD799FNJ\n0vHjx5Wfn6/9+/erbt26kqSlS5fqqaeeqnC7VzJdkubPn6/58+drypQpcrlcnumBgYHKz8+/YN6S\nkpIL5qlIW5s3b9Zrr72m+fPnKy4uTpmZmcrJyZEk+fn5KSQk5Ko6MQMAAAAAAAAAAAAAAAAAgF8H\nnY1/JU8++aTS09PVv39/DR48WEVFRcrIyFC/fv00ZMgQ9erVyzPvmjVrZLfbZbfbJUnjxo3TvHnz\ntGDBAr366qte8xs1aqQff/xRgwYNumDE3t/+9rfauXOnXn75ZeXl5alLly7KyMhQTEyM7rzzTk9n\nY4vFcknmww8/rIKCAtWqVavcdTt/2eDgYFWvXl3x8fHaunWrZ3qdOnVUWFiol156SXv37lWzZs3k\n6+ur2NhY9e/fX1lZWeW20aFDB508eVI7duzw+vqzzz6rIUOG6LnnntOQIUMknR2BuFGjRvL399fv\nfve7MtfzYq1bt9bhw4cVHx+vgoKCctf3YosWLVJCQoI2bdqk2NhYz0jGFy/74YcfKiYmRg6HwzP6\nc40aNTRx4kSNHz9e/fv3V0lJiX744Qc1b9683Hp37twpu92u3bt3KzY2Vtu3b69wvQ888IDsdrvS\n0tIumO+JJ57QoEGDlJqa6pnWrVs3RUVFad26dWXm7dmzRwMGDNCAAQOUmpqqLVu2eLZ98+bNlZGR\noYyMDPXu3Vt9+/bVfffdp+rVq5e7fgAAAAAAAAAAAAAAAAAAoPJY3AwrWqUkJiZq6NChuuOOOyq7\nFK1bt065ubmKjo6u7FIqzYwZM9ShQwe1bdv2urcVHR2ttLQ0z88//fSTfvrpJ7Vp0+a6t32jKDny\no7Est6+/oZwAIzmS5LbaLj9TBRw6VXr5mSqonivPWFZJUB0jObbik0ZyJMnpF2Qs62bmU3Lq8jNV\nkKn3jKW02EiOJMngrVCpzcy5xVaYayRHklyBoWaCLOZ+R80vZ6exrFP1WhjLKip0GsmpHuRrJMcq\ns7fpJ06aWb9djz9iJKftF58byZGkM+X/8YUKM/nRqJrN3HvGYqgua1H+5WeqIGdAmJGc4lJDO0+S\nv9Xc/rO4zdRVajVzPpCkCvze5K/OWmzuHkFWn8vPUxEuc/fC8jGz/07LzH2+JPmXFhnLMrXN3T5+\nRnIkyefkESM5pUG3GMk5x9Q1tEaQmWPBafhJnol7oNCfNhmo5CznXR2NZVmcZ4xlmWIx9PnKFWDo\nPl+SpcTgucXQ5waL87SRnKrK5LnT4jJzjnLbqhnJkQy+9wytmyTJ4DZ3G7pHMPk8wth7xtB9sFQ1\nz1NGnyfd5Jz+IUZyTD7bcBv6UGTqM7Zk9hpq6rmptfCokRxJcvsFGskx+d5z+QcbyzL1XUq9UnPP\ncs8E3Xr5mSrA78xxIzmS2fsWU5+zTX2fJkkumTm3+LhKLj9TRRm8Hpu63zD5Pi71r2kkx+RzKVP3\n1JLkqlbDSI7t+y+M5EiSs1mksSxTz0iCaph7bmrSyRNm3suv1rnbSM6MU+UP2nclrMWFxrJMfSYy\n+dymKt5L+dYJN5aFm1/LMasruwTcIP415b8qtX1zd+K4qfztb3/TypUrNXPmzF+tTbvdLovFIrfb\nLYvFouTk5Ove5pQpUzyjKlssFo0ZM0YRERGe18saFTg3N1cjR4701FunTh1Nmzbtmmq5uK169eqp\nXr1615R5zq5duzR58mRPG02bNlViYuJV511uuwEAAAAAAAAAAAAAAAAAgJsDnY2rmKlTp1Z2CZKk\n7t27q3v37r9qmw6H41dtT5LGjBlT7uvDhw/3Or127drG601NTTWad76IiAij9V5uuwEAAAAAAAAA\nAAAAAAAAgJuDub/tCwAAAAAAAAAAAAAAAAAAAOCmQmdjAAAAAAAAAAAAAAAAAAAAAF7ZKrsAAAAA\nAAAAAAAAAAAAAACA/zRuV2VXAFSMxe12uyu7CACoiNNFRZVdwnX17xMlRnIa1vA1kmOa22IxkmPh\nsvWrO+U0t80DbWaOA1TcGUMfTKofO2AmSJIztIGxLFnM/aGOEyedRnJqBFXN3+erauv3Tc9HjeRI\n0j3pq4xlVUW2vANGcpxh4UZyAOB8PiePGMtyBYYayXFbzV6Lq9o11DQT62dy3azb/2Ysy9Wqu5Ec\nU59nJXOfaS2lxUZyJMnt42csqyriecSNqyq+91BxJs9TLls1IzkmjwOTxycqxtT+q6r7zuo8YyTn\nZr+u91v0jbGs1L73GMsyhfuWG9fpUnPb3N+nap6nbmYlBt8yfqVmzucuX38jOZLZcwLPSCrG1PqN\nCGxqJEeSkgqzjGXxdW/F+AcEVHYJuIG0GL26skvADWLnG/9Vqe2b650BAAAAAAAAAAAAAAAAAAAA\n4KZCZ2MAAAAAAAAAAAAAAAAAAAAAXtHZGAAAAAAAAAAAAAAAAAAAAIBXdDYGAAAAAAAAAAAAAAAA\nAAAA4BWdjW8QGzZs0FdffXXFy+Xk5Gjz5s3XoaIrc+LECX322WfXLX/WrFnatGnTdcs37ZFHHlH/\n/v3Vr18/7dy585rzdu3ape+//97zc3p6upYvX35VWcOGDVO7du3kcrkkSSUlJbLb7eratetll42O\njr5k2vfff68WLVrozJkzkqRffvlFcXFxstvtmjBhgk6ePCm73a4ePXooMjJSsbGxysjIuKraAQAA\nAAAAAAAAAAAAAACAWXQ2vkF07NhRnTp1uuLlqkpn4+PHj2vdunWVXUaVUatWLX300Ud65513NG/e\nvGvOy8rK0v/8z/8YqEyaOXOmIiIiPD/7+vrK4XCodu3al13WYrFcMi0jI0MPPvigtm/fLklyOBz6\n05/+JIfDoREjRigoKEgOh0Njx47VE088oeTkZP3+9783si4AAAAAAAAAAAAAAAAAAODa2Cq7gJtV\nYmKiQkND9e2336pbt27q0aOHRo8erWPHjqlVq1YaMWKEDh06pGHDhqlatWrq2bOnevXqpcTERDmd\nTv3444+Ki4tTt27dlJ6errlz52rgwIHq06ePJGnLli1asmSJjh49Kn9/f73//vsaNmyYjh07ppo1\na+rtt9/Wxo0bNWvWLBUUFGj79u1KSkpScHCwRowYoYKCArVu3VovvPCCJMlut6tNmzbKzMxU//79\ntWrVKo0bN05hYWFKSEjQmDFjVKtWrUvWMycnRxMmTJDb7daxY8e0ZMkSTZw4Ubt375afn5/eeOMN\n5eTkaOrUqcrJyVFsbKxGjx6tZs2aadq0afrXv/6l0NBQTZs2Tb6+vpfkp6enq7S0VH369FF0dLTS\n0tI0a9Ys5eTk6MCBA+ratavi4uI8869fv16ZmZkaPXq07Ha7WrRooa+++kqvv/66WrVqJYfDoVWr\nVikgIEDTpk3TlClT9NprrykoKEiS9Nxzz2n06NFKTExUSEiI8vPz5XA4ZLVe2i//6NGjGj58uGrU\nqKEDBw7o008/Lbe287ndbklSfn6+qlWrVuY+TUlJ0erVqxUYGKikpCQFBQUpLi5OPj4+uvXWW/XW\nW29p0aJFSk5OliT97W9/00cffSTp7GjYq1at0p133qmxY8d6rWPFihVatmyZrFarRo4cqbZt215Q\nnwk7d+7UM888o7Vr16p9+/ayWq3asWOHWrZsqZo1a16yTQAAAAAAAAAAAAAAAAAAQNXByMbXUZMm\nTeRwOPTUU09p6dKlioyMVHJysnJycnT48GHt2LFDnTp1ksPhUI8ePTzLPfLII0pNTfV0IO3Zs6cG\nDx58Sf6RI0e0cOFCvffee5KkKVOmyOFweDrYPvTQQxozZoxntNg6depo3bp1ateunVJTU7V7924d\nOnTIk9e+fXulpKTowQcfVNeuXfXZZ5+puLhYhYWFXjsan3PgwAHNnj1bS5YskcVi0ciRI+VwONS7\nd299/PHHatmypaZPn64//OEPSk5OVrNmzZSVlaXc3Fw5HA7df//9FRr1+PxRc1u0aKHU1FStWbPG\nM23r1q1av369Ro8e7Zm/V69emjx5slavXi2n06lVq1Zp8eLF6tu3r5YtW6a7775bWVlZWrZsmZxO\np6xWq6xWq5xOp2bNmqUmTZpo165dXutZtmyZ4uPj9c4776igoKDc2i6Wl5cnu92u+Ph49e3b1zP9\n/H2al5enL7/8UmlpaYqPj9fSpUtls9n0/vvv66OPPlJAQIC++eYb9e3bV4MHD9bAgQOVnJzs2U4N\nGjTQhx9+qB07dpRZR5cuXbR48WK9++67mjt3rtdtfS1KS0tVWlqqZs2a6YcffpAkDRw4UPv37/cc\n5wAAAAAAAAAAAAAAAAAAoOpiZOPrqGXLlpIkHx8fHThwQN9//71WrFihkydP6siRI+rUqZN27typ\n559/Xn379lX79u0lSY0aNZLNZpOPj48ny9uor+fyrVarXC6XkpKStG/fPh09elQDBw70WtPPP/+s\npk2bSpIaN26sQ4cO6dZbb70kr3PnzkpISNAtt9yiP/7xj+WuZ/PmzS+odcGCBcrMzFRhYaEeeOAB\nr8vs379f27dvV2xsrIqLi9W9e/dy27hYw4YNZbVaL2h3y5Ytql279gXzhYeHKzs7W4WFhcrPz1e9\nevUkSb/5zW+0ceNGPf744/ruu++0du1aBQUFqX79+pLOdtSVpJCQEBUWFnqt4aefflKXLl3k5+en\n22+/vdzaLlarVi05HA7l5eVp9OjRatOmjaQL90F2drb27dun2NhYlZaWqnXr1jp16pTGjRun3Nxc\n5eTkqFu3bpK8Hx8NGzaUJM/Iyd5s3LhRKSkpl2R4y7uakYe/++477d69W08//bT27NmjoqIihYSE\naMqUKSouLlafPn3Us2dPBQYGXnE2AAAAAAAAAAAAAAAAAAC4/uhsfB3ZbP+3ecPDw9W5c2d17txZ\nTqdTNptNxcXFGjVqlA4dOqTx48d7Ohvv27dP9evXV2lp6QV5F3f2PL8za1ZWloqLi+VwOPTuu+96\n5rXZbCopKfHMV7duXe3du1cdO3bU/v37PR2NL643ICBAAQEBWrlypV5//fVy19Nq/b8Bso8dO6at\nW7cqJSVFK1asUHZ2ttc6wsPDFRkZqVGjRknSBa+dLzAwUIcPH5Ykz79lbZOhQ4dq8+bNWrt2rbp2\n7XrJ9goNDdVPP/0kSdq7d6/q1aunZs2aafr06erVq5fS0tIUFRVV7rqer169ep59lZOTU25tZb0W\nFBSkEydOeKafv0/r16+vVq1aadq0aZKk4uJi/eMf/1Djxo01ffp0jRo16oL9fPr06XLb8mb+/PlK\nSUnR4cOHPftCOrvd8/PzLxjRuqSkRC6X64L9fbm2Nm/erNdee0333XefFi5cqMzMTP3mN7/R7bff\nLj8/P4WEhFxVJ2YAAAAAAAAAAAAAAAAAuNG5XPSdwo2h7F6DMOrJJ59Uenq6+vfvr8GDB6uoqEgZ\nGRnq16+fhgwZol69ennmXbNmjex2u+x2uyRp3LhxmjdvnhYsWKBXX33Va36jRo30448/atCgQdq3\nb59n+m9/+1vt3LlTL7/8svLy8tSlSxdlZGQoJiZGd955p6ezscViuSTz4YcfVkFBwQUdTr05f9ng\n4GBVr15d8fHx2rp1q2d6nTp1VFhYqJdeekl79+5Vs2bN5Ovrq9jYWPXv319ZWVles9u1a6fPP/9c\n06ZN8zpS8MV1Dx06VA6HQwUFBZe8ZrPZ9NhjjykqKkqLFi1Snz595O/vr5MnT6pz585yuVxq3rx5\nufnn6927txYsWKDnn39ewcHBl63tfPn5+erfv79n/b0JCwvTvffeK7vdrtjYWH399ddq0aKFvvji\nCz377LM6fvy4Z957771Xq1at0ssvv3xFdTzwwAOy2+1KS0u7YL4nnnhCgwYNUmpqqmdat27dFBUV\npXXr1pWZt2fPHg0YMEADBgxQamqqtmzZot/97neSzo6AnZGRoYyMDPXu3Vt9+/bVfffdp+rVq5eZ\nBwAAAAAAAAAAAAAAAAAAKpfFzbCiVUpiYqKGDh2qO+64o7JL0bp165Sbm6vo6OjKLqXKi46OVlpa\nWmWXcdM7XVRU2SVcV/8+4X2E7yvVsIavkRzT3OV0fL8SFi5bv7pTTnPbPNBm5jhAxZ1xmcmpfuyA\nmSBJztAGxrJkMfe7cydOOo3k1Aiqmn88pKqt3zc9HzWSI0n3pK8yllUV2fIOGMlxhoUbyQGA8/mc\nPGIsyxUYaiTHbTV7La5q11DTTKyfyXWzbv+bsSxXq+5Gckx9npXMfaa1lBYbyZEkt4+fsayqiOcR\nN66q+N5DxZk8T7ls1YzkmDwOTB6fqBhT+6+q7jur84yRnJv9ut5v0TfGslL73mMsyxTuW25cp0vN\nbXN/n6p5nrqZlRh8y/iVmjmfu3z9jeRIZs8JPCOpGFPrNyKwqZEcSUoq9D4A4NXg696K8Q8IqOwS\ncAO5++Wb+7tOmPPtW+a+Y78aVfMKjkr3t7/9TStXrtTMmTN/tTbtdrssFovcbrcsFouSk5N/tbYv\n53K1lTV68IYNGzR37lzP6x07dtSgQYOue70X27VrlyZPnuypo2nTpkpMTLzqvClTpnhGo7ZYLBoz\nZowiIiKM1AoAAAAAAAAAAAAAAAAAAKoOOhtXMVOnTq3sEiRJ3bt3V/fuZkZ/qSiHw/GrtnclLldb\namqq1+kdO3ZUx44dr0dJVyQiIsLo9h0zZoyxLAAAAAAAAAAAAAAAAAAAUHWZ+7vTAAAAAAAAAAAA\nAAAAAAAAAG4qdDYGAAAAAAAAAAAAAAAAAAAA4BWdjQEAAAAAAAAAAAAAAAAAAAB4RWdjAAAAAAAA\nAAAAAAAAAAAAAF5Z3G63u7KLAICKOF1UZCzLbbEYyXG6zJ1Cfc2UZJSp7SRJpYa2la+r2EiOJLls\n1YzkWAxeSguKXcaygq0lRnJ8jucYyZGk4lq/MZJTanCbV8X3nkvmirKq6t3qWUrMnc+LrP7GskqK\nSo3k1Khu5vf5LC6nkZxzCorM1BXsd8ZIjtMvyEiOVDWPc7nNnc9dFh8jOT4uM9cFSXJbbUZyTJ4P\nLAa3uan956pWw0iOJFlKzdwDWYoLjeRIki3vR2NZzlvuNJJzxre6kRypat4jWA3uP7ehe2GXj6+R\nHEnyOZlrJOdMYC0jOeecLjRzTQ72NXPOK/I1d26RpOJT175+Ico3UMlZzhp1jGVVRdV+3GYk50yD\n1kZyJMk379/GskrCGhrJse1cYyRHklwnzByf1hqhRnIkqfSersayTN23nJw/zkiOJG2b9aWRnDbP\nP2gkR5JCu/23sawzt99jJMfk8yTb/7fBSI41wNy9VFU8T5m6p/5PUHxLEyM51uJTRnIkyfrD10Zy\nSps/bCRHkmz55j4TmbqGVkXFpebOd/5uc+9jU8823FYzz20kc985+crcMxKnwbHLbIY+Z58x+Aio\nmsVMmC3vgJEcSTod1thYlql3X1V8RmLyO0yTLC4z3zOYfAZ0xs/ccwRTz0hMfY8iSdZT5p5JHHcH\nG8kx9T1KscFnnS9Wb2os689Fu4zk+JwuMJIjSRZD952ugBAjOZJUrYa5LNz87n55VWWXgBvEt289\nWqntM7IxAAAAAAAAAAAAAAAAAAAAAK/M/MomAAAAAAAAAAAAAAAAAAAAKsxt8K+qA9cTIxsDAAAA\nAAAAAAAAAAAAAAAA8IrOxgAAAAAAAAAAAAAAAAAAAAC8orMxKkVJSYnsdru6du1qJG/p0qXq1q2b\nli9ffsH03NxczZkzx0gb0dHRRnIqS05Ojl566aWrWvb111/X/fffr4MHD3qmDRs2TO3atZPL5Sp3\n2cmTJysmJkbR0dE6cuSItmzZohkzZkiS0tPTtWzZMiUmJmrixImSpCFDhuidd965qjoBAAAAAAAA\nAAAAAAAAAIBZtsouAP+ZfH195XA41K9fPyN5Tz75pPz8/OR0Oi+YXrt2bQ0ePNhIGxaLxUhOZbra\ndRg/frxOnz59wbSZM2cqNja23OX27t2rwsJCpaSkqLi4uNw6jhw5ouLiYhUUFFxVjQAAAAAAAAAA\nAAAAAAAAwDw6G8OrLVu2aP78+bJYLPLz89PMmTOVl5enF154QadPn9Zjjz2mmJgYSWdH/L3rrrv0\n/7N35/FVVff+/9/7DJmBDIwyhEkEBUVobS1QLFURr1rAemXICZOACooURUGvqCCoBZxQNKBCBkBb\nidI6Ua2XB+1FBKGDFZRJGUQBSQiZz7B/f/DjfEUSEvCDQX09Hw8ewDlrv/fa6+zsYe11Vj755BPd\neeedmjJlimJiYtSpUyd9/vnnWrx4sebPn6/Vq1fL6/XqvvvuU7t27Wpdl2nTpunjjz9W06ZN9dhj\nj2nfvn2aMGGCfD6fOnfurDvvvFOS5LruMctt3rxZ06ZNU3p6uh555BFJ0pQpU5SQkKCNGzdq9OjR\n6tevnz744APNmTNHknTXXXfp/PPPr7Yurutq6tSpuu6669SkSRPdeeedSk5OVkFBgXJychQMBnXb\nbbepqKhI3bt317hx4zR58uToTL1ffvmlnnnmGaWlpWnPnj369NNP1bdvXw0fPrzK9b3++utatGiR\n0tPT5fP5NGvWLF1//fU699xztX79es2bN0/p6enHLTdv3jz985//lCSVlpZq2LBhOu+882rV3qtX\nr9ZTTz0lj8ejjIwMXXnllSdsjxNxHEeffvqpDh48qNTU1BOWbdWqlfLz89WtW7da1RMAAAAAAAAA\nAAAAAAAAAJx+nrquAM5cSUlJevbZZ1VeXq5Dhw7ppZde0pAhQ7Rs2TL9+c9/VjgclnRkRtpRo0Zp\nyZIl6ty5szp06KCJEyeqc+fO6ty5swoKCpSRkaElS5bo9ttvV05OzknVY+PGjVq2bJnmzp0rSUpO\nTtbixYuVk5OjLVu26ODBg1Uu17Fjx+gyX3fJJZdowYIFevXVVyVJjz76qLKyspSVlaVnn3222nq4\nrqsHH3xQV1xxRXRAbCgU0rx583T22Wdr8+bNWrlypS666CLl5eVp69atKiwsVDgcVmlpqVasWKGP\nPvpIXbp0kSRdcMEFysvL05tvvlntOnNycpSXl6e+fftGXysqKtKkSZN000036d1336122bvuukuO\n4+i5557Te++9V225b7rwwgu1bNkyLV68WIsXLz5h2ZpmSm7btq2uuuoqZWZmaty4cSotLa22bI8e\nPZSVlaWf/vSnta4rAAAAAAAAAAAAAAAAAAA4vZjZGNU6OmNuSkqKSkpK9Pnnn+vyyy+XJDVt2lSF\nhYVKS0tTWlqaWrZsKUnyer1qwuS9AAAgAElEQVSKj49XQkKCEhISFB8fr/Lycr377rt6/fXXFQqF\njpmJt6aZcSVp7Nixmjhxolq0aKFJkyapsLBQ06ZNU0lJibZv366SkpIaZ839utatWys5OTk68HX7\n9u26+eab5bqu/H5/tcvt379fW7Zs0S9+8Yvoa61atZJ0ZAB0SUmJ9u7dq06dOkmS2rRpoy+++EKp\nqan63//9X73++us6//zzdemll+rzzz9Xenq6PB6PvF5vtev0+Xzy+/1q06ZN9LXU1FQlJSUpJSVF\n27dvr3bZuLg4paWlKS4uTmVlZbVrHEmbNm3SvHnzFIlEVFhYeMKytfn8hgwZoiFDhuipp57SihUr\n1L59+2PeP7r9LVq00C233KK4uLha1xUAAAAAAAAAAAAAAAAAAJxezGyMGh0dUNq8eXNt27ZNruvq\nyy+/VHJysiTJ4znxbhSJRLRs2TLl5ubqtttuO2aAajAYVCQSOeHyl112mR599FF9+OGHKigo0Guv\nvabLL79c2dnZxwzCjYuLU0FBwXF1r2lAbOfOnbVw4ULl5OSccGbjxo0ba8GCBXr++edVXFxcZZmz\nzjpL27ZtkyTt2LFDTZs21XnnnaeXX35ZvXv31vr163X22WcfV8fqhEIhBYNB7dixo1bla1KbZZ97\n7jnNnDlTzzzzzDGfbXx8/HHtm5CQcNxrX1dcXKxDhw5Jkpo1a6ZwOKy0tDR99dVXko4M4E5LS4uW\n79+//0ltDwAAAAAAAAAAAAAAAAAAOL0YbIwaOY4jSbruuuuUl5enwYMH66qrrorOSHv0/RMt37Vr\nVwUCAa1cufKY9/r166dBgwYd9/pRrutq1KhRGjRokBo1aqSUlBT9/Oc/1wsvvKBx48YdU/bnP/+5\nVq5cqRtvvFGStHTpUk2aNElr1qxRZmZmdCbjbxozZoxGjRqlYcOGKSsr64TbEhMTo5tvvlm///3v\nj9tG6cjA6LVr1yojI0Pt27dXkyZN1KVLF3m9XvXo0UPl5eXHtdeJ2i8jI0NDhgzRm2++WavyNXnv\nvfc0cuRIjRw5Um+99VaVZS677DKNGzdOs2bNUr169aKvX3nllbr33nv1+OOPR1/7zW9+o9GjRysv\nL6/KrJKSEo0ZM0aBQECvvfaarr76arVp00Y+n09Dhw7Vhx9+qF69ep3y9gAAAAAAAAAAAAAAAAAA\ngNPLcb/NNKkAvhM7d+7U/PnzNWvWrLquSp0qLyszy3K/xaDtrwtF7A6hfpsqmbJqJ0kKG7WVP1Jp\nkiNJEV+sSY5jeCotqjzxbO8no4EnaJLjPbTHJEeSKtPameSEDdv8TPzZi8iuUh6deZd6TtDueF7m\niTPLCpaFTXLqJdp8n8+JhExyjioqs6lXg5gKk5xQTJJJjnRm7udy7Y7nEcdrkuON2JwXJMn1+Exy\nLI8HjmGbW31+kdh6NReqJSdscw3kVJaY5EiS7+BOs6xQo/YmORX+RJMc6cy8RvAYfn6u0bVwxOs3\nyZEkb/EBk5yKhLSaC52E8hKbc3IDv80xr8xvd2yRpMrSb799yar+tx6drFC9xmZZZ6LYnR+Y5FS0\n6m6SI0n+g5+ZZQVT001yfP98s+ZCtRQ5bLN/euqlmORIUvj8vmZZVtctxQvvNcmRpA/mvWuS85Nb\nf22SI0kp/a4zy6pofr5JjmV/ku+T1SY5nni7a6kz8ThldU39Y1DZ6OyaC9WCp7LqSWBOKevjv5nk\nhDtfZpIjSb4Cu3siq3PomagybHe8i3Ptfo6t+jZcj02/jWT3zMkvuz6SkOHcZT6j++wKwy6gWMcm\nzHfwU5McSSpPbWuWZfXTdyb2kVg+w7TkRGyeM1j2AVXE2PUjWPWRWD1HkSRPqV2fxCG3gUmO1XOU\nSsO+ztsTO5llPVq22STHW15kkiNJjtF1ZyQ+2SRHkmLr2WXhh++83/2prquA74n/zL26TtdvcxcF\n/IBkZWVp9eojnbOO42jMmDHq2bPnaV3n6tWrlZWVFZ21uFevXho9enStlp05c6Y2bdok6Uh9p06d\nqo4dO9a43IEDBzRx4kQ5jiPXddW4cWPNmTPnlLehLtoNAAAAAAAAAAAAAAAAAACcXgw2Br5hzJgx\nGjNmzHe6zl69eqlXr17Vvt+qVatqZzWeOnXqKa2zYcOGysnJOaVlq1IX7QYAAAAAAAAAAAAAAAAA\nAE4vu99NAAAAAAAAAAAAAAAAAAAAAOAHhcHGAAAAAAAAAAAAAAAAAAAAAKrEYGMAAAAAAAAAAAAA\nAAAAAAAAVWKwMQAAAAAAAAAAAAAAAAAAAIAq+eq6AgBQWyUh1zDNJiveZ/mdDZs6WTZTcWXYLKtB\nrNcmKGRXJ0+w3CTH9cWa5EhScviQWZbrxJnkVKa1M8mRJG8kaJLjWZVrkiNJviatzLLCHXqY5PjC\nlSY5klTmr2eSE2t4uHP98WZZPsNjns3eKRUaBcV5/TZBUXbHTwseo/OeJHkqDpvkuB672yPL/dyq\nrZxQhUmOJMkbMYmxPIc6wTKzrFBsfZMcb8jmWkOSypwYk5wEw/28okVXsywrvrefM8uK6djdJKey\n+QUmOZIUMTy2hIy+f+5zDU/GXpv90+s4JjnWSn1JJjm+M3DzXL/NvYckOYb7lG/zKpugiOF1VHIj\nkxjLdgon2dRJkvyb/tckx9PwLJMcSXJibPbPkg69TXIkac/Y/zbLcrw2B4V2jy40yZGkX9wwwySn\nMmy3n6/9TT+zrEOfFZnk/Oof75rkSFJ4/x6THE/bLiY50pl5nPIf2G6S82Ng1W/q3bHeJEeSwh1/\naZIT8/m/TXIkKdiovVmW1c9MqeEDglDE6DmK365j0fXY3BtLUoVN14aKyyyfo9i0lRO26umU/B6j\nZzuSFLZpq3jD/nOr/sDy1LYmOZLkd0NmWd6ta0xyPPGJJjmSFDyrs0mO5a1xuVG/myTFemx+jsNx\nNv2TkiSj47mlIrvDlGLiUu3CjI7prtHzHcs+oEfLNptlTYzvaJLz1M4/meRIUiTGpt/NidgdgwHg\nh4iZjQEAAAAAAAAAAAAAAAAAAABUicHGAAAAAAAAAAAAAAAAAAAAAKrEYGMAAAAAAAAAAAAAAAAA\nAAAAVfLVdQUAAAAAAAAAAAAAAAAAAAB+bCKuW9dVAGqFmY1xWrzyyiv66KOPvnVOfn6+/vjHP9aq\n7ObNm/Xyyy9/63VK0pAhQ0xyfgiCwaACgYD69u0bfW3v3r0KBAIaOnToCZctLi7W2LFjFQgEdMst\nt0iS5s2bpzVr1kiSpkyZop07d+rSSy/VG2+8oUgkop/97GfR9wEAAAAAAAAAAAAAAAAAQN1iZmOc\nFv379//O19mxY0d17NjRJMtxHJOcHwK/36+cnJxjBhY3a9bsuNeqsmLFCvXr10/9+/dXUVFRteUa\nNWqkzZs3q3HjxmrevLlZ3QEAAAAAAAAAAAAAAAAAwLfDYOMfoffff18LFy6U4ziKjY3Vfffdp9/9\n7ncqLy/XVVddpYyMDElHZvft0KGDPvnkE911111KTEzU/fffr2AwqNGjR6tPnz4KBAJq3bq1Nm/e\nrDvvvFM/+clPlJWVpWXLlunBBx/UxRdfLEm65pprdM4552jbtm1atGiR6tevrzlz5ugf//iHUlJS\nNGfOHG3cuFFPPvmkYmJilJycrDlz5kiSVq9erddee03t27fX3XffXWXdDh06pDlz5uhXv/qVJkyY\nIEkKBAK64IILtGrVKt1///3q1q2bVq5cqRdeeEE+n08zZ85Uy5Ytq22niooK3X777Zo0aZL27dsX\nbbOYmBg9+eSTOnjw4DHt1rNnTy1dulRTpkyRJH3wwQfauHGjtm3bpoSEBG3cuFGjR49Wv379qlzf\nokWLtHLlSqWlpemcc87R+PHjq2y3b5oyZYoKCgrk8Xh04MAB3XPPPTr//PM1Z84cbdiwQXFxcXru\nuee0fft2TZ48Wenp6dq5c6f+8Ic/VFmP+fPna/Xq1fJ6vbrvvvvUrl272uxWVfJ4PPrPf/6jfv36\nVVn3oxzHUSQS0Zo1a/Szn/3slNcHAAAAAAAAAAAAAAAAAABseeq6AqgbSUlJevbZZ1VaWqqXXnpJ\nQ4YM0bJly/TnP/9Z4XBYkrR//36NGjVKS5Ys0Xnnnae5c+dq5syZysvLU25ubjRr6NChysrKUlZW\nliRpzJgxGjhw4DHrO3TokB5++GH169dPa9eu1aZNm3TgwAHl5OSoZ8+eWrlypSSpfv36eu6555SW\nlqZ//OMfkqRWrVrphRde0MaNG6N5X69b586d1atXr+hA5KMcx9HAgQP14IMP6vXXX1ckEtHChQuV\nm5ur6dOna8GCBdW2Tzgc1tSpU3XjjTeqdevWx7RZeXm5Dh06dFy7tWzZUnv27NHevXu1atUqbdq0\nSV26dJEkXXLJJVqwYIFeffXVKtcXCoW0cuVKLVmyRN27d6+23arz2GOPKRQKadasWVq3bp0++ugj\nHThwQHl5eXrqqackHRnMPGPGDN19990nnGU4IyNDS5Ys0e23366cnJxqy9XGgAED5PF49F//9V96\n9NFHT1i2Xbt22rJlixITE7/VOgEAAAAAAAAAAAAAAAAAgB1mNv6RSk9PlySlpKRo/fr1uvzyyyVJ\nTZs2VWFhodLS0pSWlhad+dfr9WrXrl2aOnWqXNdVYWFhNKtt27aKiYlRaWlptetr0aKFPB6PkpOT\nVVJSoh07dmjDhg3KzMxUZWWlrr76ajVq1Eht27aVJLVu3Vqff/75MXWNjY2N5n29bh7PkTHzruse\nt97WrVtr9+7dKikpUUFBgXbv3q0RI0ZEt7U6mzZtkt/vl+M4VbZZSUmJPv/882i7NWvWTAUFBfL5\nfFq1apW2bNmiyspK9e/fX6+88opat26t5OTkatuooKAgWp82bdro3//+d5XtVp24uDilpaUpPj5e\nZWVl+uyzz6IDnePi4iRJe/bsiX5WDRo0qDZrxYoVeuONNxQKhaLbLFXdvlW99nWxsbGaMmWK7rrr\nLt1www3avn179PM6yuPxyHEc9e7dW2lpafrnP/95wkwAAAAAAAAAAAAAAAAAAPDdYWZj6Kc//am2\nbdsm13X15ZdfKjk5WZKOGxTarl07PfHEE8rJydHy5cujr2/fvl0HDx5UQkJCtev45qDUNm3aqE+f\nPsrOztayZcv03//939EsSfr000/VrFmzajO+WbeqynxznSkpKerUqZOys7OVnZ2tBx98sNr6du7c\nWY8//rgefvhhRSKRKtfRvHnzaLt98cUXSklJUatWrfTvf/9bTZo0UVFRkZKSkk7YDkclJydr7969\n0W2vqXxN0tPTo4N2KyoqovXdunWrDh48qEOHDlW77Isvvqjc3Fzddtttx6w/GAwe1xbl5eUnrMeX\nX36pcDgsx3HUqFEjRSIRNWzYUF999ZUk6eDBg0pOTpbrukpJSVGvXr1OaXsBAAAAAAAAAAAAAAAA\nAMDpwWDjHznHcfSLX/xCeXl5Gjx4sK666ip5vd7oe183fvx4TZw4UZmZmZo5c2b09dzcXI0ZM0Zj\nxoyRJN18883Kz8/Xww8/rMcff7zKrE6dOsnv9yszM1PDhg3Tpk2bJEmHDh3SiBEjdODAAV144YXH\n1bWqf0vSk08+qVmzZmnFihW68cYbqyzj8Xh0/fXXKyMjQ8OGDVN+fv4J2yY1NVVXXXWVFi5cWOW6\nr7vuuuParUuXLoqJiYn+/U3frNNRfr9fl112mQYPHqz169fXWL4m5557rtLS0jRkyJBoewwbNkz3\n3nuvpk+fHh1QXpWuXbsqEAho5cqVx7zer18/DRo06JjXu3fvriFDhmjDhg1VZn3yySe67rrrlJGR\nodjYWLVv315XXnmlXnnlFQ0ZMkRdu3ZVUlLSKW8nAAAAAAAAAAAAAAAAAAA4vRz3VKdOBSQFAgEt\nXry42pmGT8b777+vNWvWaMKECQY1+/5as2aNPvjgA40fP940NxQKyefzqaSkRLfccouef/550/zv\nwleHS+u6CseJ99l9Z8Mjm8NxyPCoXhyM1FyolhrEek1yPJWG+4Fj8/m5vliTHEnylBWYZbm+OJOc\nsL/6metPljcSNMlxV+Wa5EiSr0krs6xwhx4mOU640iRHksr89UxyYs/Qr6hZHvPKSkImOeEYm8aK\n89p+GSdYFjbJaRBTYZITiUk0yZEkT8VhkxzX4zPJkSTXH2+WZcVTWWKW5Xr9NjmGbe4JlpllhWKS\nai5UC97QiX8TyMkoc47/MuOpSAgVm+RIUjiuvlmWmbefM4uK7djdJKey+QUmOZIk1+76PGT0/XOf\n4enKU179b+E5GaG46r9geypKim2uYf3xNvdEPo/tNYLFNVADv90xOBJrc/0qSb7Nq2yCIjbXUZLk\nSW5kklN5VheTHElyDM+h3m3vm+R46qea5EhSpOigSU5Jh94mOZK056b/NstyjO4b2j260CRHkipi\nbH6OK8N2N3yf/KafWdahz4pMcn71j3dNciRJa088sUZt+dvaHVsqm51nlmV1nPIf2G6S82MQbNTe\nJMe73ea8IEnhtheZ5Pj3fWKSI9m1k2TXj1Bq2FkWithkxfvtOhb9hpfCFUa3V8WVls9RbNrKH7bp\nv5MkeWzuYySZXVdb9p9b9U0FfXZ9gX7Xpp9akrxb15jkeOLt+nKDZ3U2y7JSbtTvJtk9S3ENJ+uy\nOp5LUrnRcxTX6DmKJMUYPkuxeo5SP97m3OB67fZNy31qYnxHk5yndv7JJEeSIkZ9+m6cXb9UTIOG\nZln44es0cUVdVwHfE5sevaZO12/3ZBc/St/3GWlnzpwZnVXZcRxNnTpVHTvaXBhVJz8/X8uXL4+2\n3cCBA9W/f/9aLfu73/1OBw4ckOu6chxHjz76qNLS0mq17Mcff6z7779fjuNowoQJWr16tbKysqL1\n6NWrl0aPHn1qG/Ut6wYAAAAAAAAAAAAAAAAAAM5MDDbGt5KdnW2WddFFF+mii2y+mV5bU6dO/U7X\nJ0kDBgzQgAEDqn3/4osv1sUXX1zle3Pnzj3l9Z533nl66aWXjnmtV69ep5z3Td+mbgAAAAAAAAAA\nAAAAAAAA4MzEYGMAAAAAAAAAAAAAAAAAAIDvmBtx67oKQK146roCAAAAAAAAAAAAAAAAAAAAAM5M\nDDYGAAAAAAAAAAAAAAAAAAAAUCXHdV3m4QbwvVBRfMguzLH5roUTqjDJkaRITKJZlpWSkN0pwjFL\nspPoBE1yXG+MSY4klYft2jwhVGySUxlTzyTHksex26MqwxGzLK/Hpl5xJftNciQpnNTILMuKa/j5\nWSo+bHNMCMfYnGMS/bbfCywvCZnkNPCVmORE4hqY5EiS9/CXJjmRuPomOZLkhMrNsiLxKSY5TsRm\nH5Akz+F9JjmRxDSTHEmK+OPMsjxG13iux2eSI0kVrs0xIT542CRHklxfrF2WUVs5rt15XUZZQY/d\ntaI/UmmWJaPuIMv9IObzf5vkhNJam+QcdSgYb5KTmOQ3ydl12HA/kJRqcG2WWrzFoCZHBJt2Mst6\np8PPzLKstLi4uUnOOYuXm+RIkm/zKrOst66ZbJLTrm9bkxxJSjuvjUlO6m9HmuRIkmvULyXZnfuc\nsiKTHEkKNT7bJMd3YLtJjiQFd28zy3L8NsfzyIX/ZZIjSRuvutIkJ6FhgkmOZHyc+mS1Sc4TPceb\n5PwYTPjXMpOc0tUrTHIkKeGX/U1ygh+tMcmRJF/zdmZZoQ69bIIs74mMeCpt+pIkKRJr2Fdt1FZF\nNl2Kkuz6l8OGv4a7gcduA8M+m76boOH2xYXLTHLKvTb3jZIU47XrP68I2eznlYbPruKN+r1jQjaf\nnSTJa3N9J9n2B5oxPDccLrHJsnqOItk+SzF7juK32T8tz3ueCrt+YatnMuNaXW2SI0lP/O0Rk5yK\nC+3qVC/B7tyAH76OE16t6yrge2Lz47+p0/UzszEAAAAAAAAAAAAAAAAAAACAKjHYGAAAAAAAAAAA\nAAAAAAAAAECVGGwMAAAAAAAAAAAAAAAAAAAAoEoMNgYAAAAAAAAAAAAAAAAAAABQJQYb47R4++23\nVVRUdErLvvzyy6Z1mTFjhklOIBBQJBIxyaorQ4YMOaXlnnrqKfXp00dr1qyJvnb//ferZ8+e2rVr\n1wmXXbhwoQYPHqzBgwdr8+bN2rNnj+644w5J0vvvv6/HHntM8+bN09ixYyUd+bwmT558SvUEAAAA\nAAAAAAAAAAAAAAC2fHVdAfwwvfPOO+rQoYPq169/0su+/PLLuvbaa83qcs8995jkOI5jklOXTnUb\nxo0bJ9d1j3lt2rRpKi8vP+FyJSUl+vvf/66lS5cqEomorKxMhYWFx9Tj6L8PHz6syspK7d+/X7Gx\nsadUTwAAAAAAAAAAAAAAAAAAYIuZjVFrFRUVuummmzR06FDNnTtXkpSfn68//vGPkv7frLn33nuv\nVq9erTvuuCM6q/CUKVN0xx136Prrr9cbb7wh6f/NFLxz505NmTJFe/bsUSAQ0JYtW5SZmalVq1ZV\nWY+vz4z72GOPad26ddF1PPLIIwoEAlqyZIkOHDigQCCgoUOHRpedN2+epkyZosGDB2vRokWSpG3b\ntikzM1ODBw/WX//61xO2geu6mj17tt566y1J0jXXXKM77rhDAwcOjM7kfOeddyojI0N33XWXJEVn\n7JWkcDisW2+9Vfn5+ZowYYJGjBihBx98sNr1rV+/Xtdee63+53/+R5mZmdF2mz17tq655hpt2LCh\nyuXy8/M1cuRIZWZmatSoUVq8eHG0/jXZvHmzBg0apIyMjGgbfRv79+/Xnj175PF4lJiYeNz7R+vU\nrVs35efnq2XLlt96nQAAAAAAAAAAAAAAAAAAwAaDjVFrK1eu1EUXXaS8vDxt3bpVX3755THvH52h\n9oEHHlCvXr00e/bsY2YVvuKKK5SXl6fs7Oxjyh/VvHlz5eTkqEOHDsrOzlbv3r2rrUt1M/SeffbZ\nysnJ0aBBg9SwYUPl5OQcV+aCCy5QXl6e3nzzTUnS3LlzNXPmTOXl5Sk3N7fadbquq+eee07NmzdX\n3759JUmHDh3Sww8/rH79+mnt2rXasGGD6tWrp9zcXCUlJWnjxo1KSEhQKBTS0qVLtW3bNp199tmS\npFatWumFF17Qxo0bq11nVlaWnnvuuehA7qMGDhyoGTNm6PXXX6922WHDhik1NVVPPfWUNm/eXG25\nb2rVqpWWLl2q3NxcrVixotbLVSUxMVG33HKLbr31VgUCAe3fv7/asj/5yU+0YMEC9ezZ81utEwAA\nAAAAAAAAAAAAAAC+D9yIyx/+1OpPXfPVdQXw/bF371516tRJktSmTZvjBhvXNGtumzZt5PP55PP5\nTli+NrPvVqdr166SJI+n+nH06enp8ng88nq9kqRdu3Zp6tSpcl1XhYWFJ8xfs2aNfvWrX0X/36JF\nC3k8HiUnJ6ukpESVlZVq3769JKlt27bau3evzjnnHK1cuVIvvfSSYmNj1blzZxUWFio9PV2SFBsb\nW+36SktLlZycrLi4uGNeb926tXbv3q2SkpJql42Pj1d8fPwxy1Y3SPvr9uzZo4ceekiVlZXavXu3\nXNet1XLV6du3r/r27atXXnlF2dnZGjp06DGf8dHPITY2VuPHj2dmYwAAAAAAAAAAAAAAAAAAziDM\nbIxaa9asmbZt2yZJ2rFjh5o0aaKEhASVlZVJ0jGz1vr9flVWVh6z/Pbt21VZWalQKCTpyKy3paWl\n2rdv3zHlahrYWt06JUUHMn9dTYOa27VrpyeeeEI5OTlavnx5tet1HEcLFy7UqlWrtHfv3iqzmzVr\npq1bt0o6sr1nnXWWOnfurJycHA0bNkx/+MMf1Llz51rVTzoyYLigoEA7duyotszJqM1A7hdffFFj\nx47VokWLVL9+/egycXFxKigoqLJ+1QmHw/riiy8kHWmbcDisBg0a6NChQ5KOfH6pqanR8v379z/p\nbQIAAAAAAAAAAAAAAAAAAKcPg41Ra5dffrnWrl2rjIwMtW/fXk2aNNFFF12kt99+W3PmzInOUCtJ\nv/zlLzVjxgzNnz8/+tqbb76pQCCgQCAgSbr66qs1depUvfPOO8esp2XLlpo0aZLWrVtXZT1SUlLk\n9/s1a9Ysff7559XW9+2331YgENCWLVuUmZmpXbt2HfP+0UHN48eP18SJE5WZmamZM2eesA0cx9GU\nKVM0ffr0YzKO6tatmw4fPqyMjAwVFxera9eu6ty5s4qKitSvXz/t27dPjRo1qrIeVRk9erRuuOEG\nLVmypFblayqzZcsWjRw5UiNHjlReXl6VZXr37q3p06dr8uTJSkpKir7ep08fLViwQP/zP/8Tfe3K\nK6/Uvffeq8cff7zKrHA4rEmTJikjI0Pz5s3TkCFDFB8fr+7du2vw4MFavny5fvOb39S4PQAAAAAA\nAAAAAAAAAAAAoG44bm2mOgW+pSlTpujmm29Wy5Yt67oq30vhcFjDhw9XTk5OXVelTlUUH7ILc2y+\na+GEKkxyJCkSk2iWZaUkZHeKqHmY/Hcv0Qma5LjeGJMcSSoP27V5QqjYJKcypp5JjiVPLb54UVuV\n4YhZltdjU6+4kv01F6qlcFKjmgt9x1zDz89S8WGbY0I4xuYck+i3/V5geUnIJKeBr8QkJxLXwCRH\nkryHvzTJicTVN8mRJCdUbpYViU8xyXEiNvuAJHkO76u5UC1EEtNMciQp4o8zy/IYXeO5nuN/88qp\nqnBtjgnxwcMmOZLk+mLtsozaynHtzusyygp67K4V/ZHKmgvVllF3kOV+EPP5v01yQmmtTXKOOhSM\nN8lJTPKb5Ow6bLgfSEo1uDZLLd5iUJMjgk07mWW90+FnZllWWlzc3CTnnMXV/3auk+XbvMos661r\nJpvktOvb1iRHktLOa2OSk/rbkSY5kuQa9UtJduc+p6zIJEeSQo3PNsnxHdhukiNJwd3bzLIcv83x\nPHLhf5nkSNLGq640yW2WABsAACAASURBVElomGCSIxkfpz5ZbZLzRM/xJjk/BhP+tcwkp3T1CpMc\nSUr4pc1vRgx+tMYkR5J8zduZZYU69LIJsrwnMuKptOlLkqRIrGFftVFbFdl0KUqy618OR+yeMzTw\n2G1g2GfTdxM03L64cJlJTrnX5r5RkmK8dv3nFSGb/bzS8NlVvFG/d0zI5rOTJHltru8k2/5AM4bn\nhsMlNllWz1Ek22cpZs9R/Db7p+V5z1Nh1y9s9UxmXKurTXIk6Ym/PWKSU3GhXZ3qJdidG/DDd84t\nr9R1FfA98fGTNvfGp+oMvNIB6lZ+fr6WL18enR144MCB6t//9P6gbt68WQ8++GB0nZ06ddKUKVOO\nKVPdbMVZWVlavXp1tMyYMWPUs2fPWq03EAjIcRy5rivHcZSdnX3K21AX7QYAAAAAAAAAAAAAAAAA\nAE4vBhvjOzFr1qy6rkKtDRgwQAMGDPhO19mxY8cTzlrs9XqrHQg8ZswYjRkz5pTWazlTcl20GwAA\nAAAAAAAAAAAAAAAAOL1sfzczAAAAAAAAAAAAAAAAAAAAgB8MBhsDAAAAAAAAAAAAAAAAAAAAqBKD\njQEAAAAAAAAAAAAAAAAAAABUicHGAAAAAAAAAAAAAAAAAAAAAKrkq+sKAECtOYbfj4iETWJKvQkm\nOZIUZ5QTco2CJPk8jlmW3yjLGwma5EhS0IkxyfE6du0U47XL8hw+ZJIT9tczyZEkq13Kcj+I81h+\n98rmBzASm2SSI9kdE3x2u6Y8wXKzrDKjn2NLDUs/N8kJprQ0ybHmes+8No/EJ9sEebw2ObI6Gthy\nKg6bZUWSGhoF2VyTSZKnstQsS16/XZaRWCdikuOU2+0HbqLd8SDi2Pz8eV2bdpIkJ1hmkuOLMzxu\nWt4Tya6trITrNTbJqYixu36VJAVDJjFxe/5hktOk6fkmOUcFy779sdjsvGCs759n13UVjuP4bY4J\ndndEUqR1V7OsM7HNg7u2mOSEE9NMciRJEcPzldG5z/HYPSowu94wrJO/5dlmWZE4m/NMyOj6R5J+\n+vvJJjlOfKJJjmR8nGplc+4blz/FJOfHINSonUnOl+9/ZJIjSa0vG2qS401rZpIj2e2bZyqrc0yl\n4fW55YPtQqMDVbzP7j7N6vGAz7IzN2J3vrISa3hr7D203yaoQSubHEmhiF3PYozXprHivIa9nUbH\nFtcXa5IjSa5hv7Dj2rSVE6owyZGkSq9dW1n1J6W6JSY5khT21DfLsuL64+u6CsdxDPvPIzE2zzGf\n+NsjJjmSdGtPm3uix4v7meQAJytieP4HTidmNgYAAAAAAAAAAAAAAAAAAABQJQYbAwAAAAAAAAAA\nAAAAAAAAAKgSg40BAAAAAAAAAAAAAAAAAAAAVInBxgAAAAAAAAAAAAAAAAAAAACqxGDjH7C//vWv\n6t+/vx5//PFTWj4/P79W5V5++eVaZz722GNat27dSdXjwIEDevbZZ09qGWvvv/++HnvssTqtw7c1\nb948rVmz5qSX27t3rwKBgIYOHRp97V//+peuv/56TZ48+YTLfvHFFxo+fLgCgYAeeOABSdKUKVO0\na9cuSVIgEFA4HFanTp30r3/9SwcPHtR5550XfR8AAAAAAAAAAAAAAAAAANQtBhv/gPXp00d33333\nKS+/fPlyhcPhGsudzGDjU9GwYUONHTv2tK6jNhzHqesq1IlmzZopJyfnmNfOP/98zZ07t8Zlc3Jy\nNH78eOXk5Oi222477v2jbdq+fXu99957+tvf/qZzzjnHpuIAAAAAAAAAAAAAAAAAAOBb89V1BXB6\nua57zP83b96s++67Tz6fT5deeqmGDx+uSCSiu+++W7t371aTJk00e/Zs3Xzzzfr44481fPhw9ezZ\nU2PHjtX8+fO1evVqeb1e3XfffYqNjdWUKVO0ZcsWZWZmatSoUerdu7dyc3P1+uuvKyEhQbNnz1Zy\ncrImTZqkgoICBYNB9ejRo9r6BgIB/eQnP9G6des0fPhwtWjRQtOmTVN6eroeeeQRSUdmxk1ISNDG\njRs1evRo9evXT6+//rpeeOEFtW7dWj6fT7NmzdJbb72lRYsWyefzaebMmWrZsqXy8/O1fv167dq1\nS61atdKMGTM0bdo0ffzxx2ratGmNsxfv2rVLDz/8sGbPnq2FCxdqz549+vTTT9W3b18NHz5cGzZs\n0MMPPyxJuvPOO7V161alpaXp17/+tSRp/vz56tGjhx588EGde+65Wr9+vebNm6f09PQq1/f1drv1\n1lvluq4WLlwox3EUExOjJ598ssrlMjIyVFlZqfT0dH322WfKzs4+4XZ93QMPPKAtW7YoJiZGDz30\nkBo1alTrZb/J4/Fo48aN6tq1q+rXr19lGcdxVK9ePR0+fFiFhYUMNgYAAAAAAAAAAAAAAAAA4AzC\nzMY/Mq1atdLSpUuVm5urFStWSJLeeecdNW/eXDk5OZo+fbok6emnn1bHjh2VnZ0dnVU4IyNDS5Ys\n0e23366cnBy1aNFCOTk56tChg7Kzs9W7d28dPHhQ7777rpYsWaIRI0bopZde0gcffKC0tDQ9//zz\nqlevXo11vPjii5Wbm6s+ffqoY8eOVc6ge8kll2jBggXRbcjNzdWSJUvUt29fSVIkEtFzzz2n3Nxc\nTZ8+XQsWLIguG4lElJ2drQceeECStHHjRi1btqzGmXr379+vGTNmaNasWYqLi5MkXXDBBcrLy9Ob\nb74p6chg4vnz5+vpp5/WM888o/PPP1+bNm3S2rVrtWPHDm3dulUdO3ZUUVGRJk2apJtuuknvvvtu\nlevbsGFDtN2+PlA3KSlJzz77rMrKynTo0KEql23YsKFmzZqlRo0aqX///tqyZcsJt+3rJk6cqJyc\nHF177bV69dVXa71cVW644Qbt2LFDV1xxhfLy8k5YNikpqVYzaQMAAAAAAAAAAAAAAAAAgO8OMxv/\nyOzZs0cPPfSQKisrtXv3brmuq08//VRdunSRJMXHx0fLuq4r13XlOI4kacWKFXrjjTcUCoWOmYn3\n67Mn7969W9u3b1dmZqbC4bC6d++uL774Qm3btpUktWnT5oT1cxxHXbt2lXRkVtzqtG7dWsnJySop\nKYmW9fv90fyCggLt3r1bI0aMkCQ1a9Ysuuw388eOHauJEyeqRYsWmjRpUrXrfO+999SsWTN5vd7o\na+np6fJ4PNHXysrKlJqaGv332WefrQULFqiiokKpqakKhUKKiYlRamqqkpKSlJKSou3bt1e5vr17\n90bbrXXr1sesU5JSUlJUUlKiBg0aHLdsfHy84uPjlZCQoISEBJWXl1e7Xd/0/PPPa926dSopKdGv\nfvWr6OvfnCW7Nho0aKCZM2eqsrJSv/3tbzVgwIBjPlfHcaL/v+KKK1RYWKhly5ad9HoAAAAAAAAA\nAAAAAAAAAMDpwczGP3BxcXEqKCiI/v/FF1/U2LFjtWjRItWvX1+u6yo9PV3//Oc/JemYQakxMTEK\nBoPHLJubm6vbbrut2oGnLVq0ULdu3ZSdna28vDzdcsstatasmXbs2CFJ0b+r47qufD7fca/VNNA1\nEomosrIyOnA3JSVFnTp1UnZ2trKzszVjxoxo2a8PFpakyy67TI8++qg+/PDDY9rqm66++mrdeOON\nmjNnTrVlEhISdPDgQX311VdKSEiQ1+uV4ziKi4vTvn37lJKSEt2mmjRt2jTaXp9++mmN5U+ktgOF\nCwsLtX79euXm5iojI+OY5b45YDk+Pv6E7SUdGdwuHdmXkpOT5bquGjZsqAMHDigSiRwzk3F6erou\nuOCC2m4SAAAAAAAAAAAAAAAAAAD4DjDY+AeuU6dO2rZtmzIzM1VWVqbevXtr+vTpmjx5spKSkiRJ\nl156qfbs2aNAIKB77rknumyfPn00YcKE6EyzXbt2VSAQ0MqVK49ZR6tWrTRp0iStW7dOqampuvDC\nCxUIBJSZmanVq1erW7duOnDggIYPH67Dhw+fsL5HZ1E+aunSpZo0aZLWrFmjzMxMlZaWVrlcRkaG\nhg4dqjfffFMej0cej0fXX3+9MjIyNGzYMOXn51e5nOu6GjVqlAYNGqSGDRtGBwNXp0ePHiouLtbG\njRurfP/GG2/UTTfdpHHjxummm26SdGTgc5s2bRQXF6fzzjuvyu2sSvfu3bVv3z6NGDFCRUVFx71f\nm4xvlv3973+vESNGaOTIkdFZob+uQYMGSkxM1IgRI7R+/frj6jNkyBBt2LBBkpSamqr4+HgFAgHt\n2rWryvWuXbtW1157rQYPHqyf//znSkxM1KBBgzR37lwNGTJEAwcOPOltAQAAAAAAAAAAAAAAAIAf\ngqMTcfKHPzX9qWuOeybUAviWQqGQfD6f/va3v2njxo265ZZb6rpKph577DH16NFDP/3pT+u6KnWq\nouTEg9VPSiRcc5laKHNiTHIkKc5rM+g6ZHhUDxtm+T022+eNBGsuVEtBx1dzoVrwGm2bJFmelWMK\nq/4iwMkqqd/CJEeSrJoqxg3ZBElynTPvu1dOqMIsK+iLN8nxGX4vxHL7LI/DwTKbc0NK6AuTnGBK\nS5Oco4oP2xw/68fa5Lh+m31TMtynPN6ay9RW2O58ZdVWnrIT/1aKk+HGJNoEGV2TmfP6TWLOxHOM\nt8jmGCVJkcQ0s6ywL84kx/Ja0ak8/guapyIS18AkR5KciN01kNyITYzX7lzsPfylSU55UhOTnGhe\niU27px36j0lOUdPzTXKOsrgGSpbdOSac1Mgsy/fJarMsK47f5mcm2OZnJjmS5Ck/ZJe1819mWVaC\nu7aY5Hh/McAkR5IUsTkGS5JjdDy3Ou9JducGb6ndscXqvCdJkbh6JjmVqW1MciQp5qN3THKceKPr\nfJ2Zxyn3gzdMcn4Ufj7QJGbXXaNNciSp9d0PmuS4O22uySTJ7fBzsyyz+wbD453VOcaqH16y7aMs\nrLTZvnif3b2/0WMi275cw/vQsMemv8UjuwcpvoKdJjklDVqZ5Eh2z1EkyWs04ZNlm1sep6y4hv3C\njtGDPsvnKJXeWLMsqz6SBv4ykxxJCsfVN8sye46SYBIj12N3DrXqd5Nk9kDb3brOJEeSbu052STn\n8eJ/m+RIUmyizb0jfhza37y8rquA74mtT9vcr58quzMTUIf++Mc/6tVXX5XP59Ps2bO/VVYgEJDj\nOHJdV47jKDs726iW1Zs5c6Y2bdok6cgsv1OnTlXHjh2j71c38++BAwc0ceLEaH0bN26sOXPm1Gqd\n+fn5Wr58eTR74MCB6t+//ylvQ120GwAAAAAAAAAAAAAAAAAAOL0YbIwfhEGDBmnQoEEmWTk5OSY5\nJ2Pq1KknfH/ChAlVvt6wYcNTru+AAQM0YIDdjCx10W4AAAAAAAAAAAAAAAAAAOD0OvN+pysAAAAA\nAAAAAAAAAAAAAACAMwKDjQEAAAAAAAAAAAAAAAAAAABUicHGAAAAAAAAAAAAAAAAAAAAAKrkuK7r\n1nUlAKA29hSUmGVVhCMmOV7HMcmRpMaJPpOc3UVBkxxJapTgNcuKdytNcr56fIpJjiQl3DbHJCfO\na7cfWHKN9k8nEjbJkSTXY7NPxez9yCRHkuTzm0VFYpJMcr6Ka2ySI0l+j81+kOiz2899hbvNsoqS\nmptlhctt9vUG/jKTnHBcfZOco4oP25wfkt2vTHLC9ZqY5EhSRDb7pzdUbpIjSU4kZJYVjrU5tlge\nOyuanmuSE1O4yyRHktyd/zHLCne5zCzLSsSxOYd6XLvzuinH5rvQ/gNbTXIku+OU6483yZEkp+Kw\nWZbrTzDJifjjTHIkyVt60CSnMi7FJOeoshKbY3p9myZXxGt3/SrZXCNYXR9IUqh+U7OsM7HX07Ab\nwcyZ2E6+iiK7MKPrslB8qkmOJPnKC82ynKDNNazl9blcm343qz4ESfKWG+5TZ6BITKJJjmWbW7I6\nTgUjZ+AB7wwV65x5P8cho8/PL5ttk+zu0yS7a4S9xXbPB8pDNm2eFGM391WjBJvnKJL04T6bPrz0\nBjEmOZLUwGPz+X06aaRJjiQ1fTTPLCtORv1lhs8srO5pPaEKkxxJivhizbJid//DJMettOs3jaSl\nm+QcTrC7frW8QkjwG/VxfbXDJEeSCurZtLkkqeLMeo4i2T5L+SE/R3EMj1NWzz8q/Db3MZIU49rU\naUJSF5McSXrG/dQsCz987W9eXtdVwPfE1qcH1un6mdkYAAAAAAAAAAAAAAAAAAAAQJUYbAwAAAAA\nAAAAAAAAAAAAAACgSgw2BgAAAAAAAAAAAAAAAAAAAFAlX11XAAAAAAAAAAAAAAAAAAAA4MfGjbh1\nXQWgVpjZGAAAAAAAAAAAAAAAAAAAAECVGGwM/Ijk5+ef8P1gMKhAIKC+ffueUv7mzZv10Ucf1Vju\n7bffVlFR0SmtAwAAAAAAAAAAAAAAAAAAfHcYbAz8iCxfvlzhcLja9/1+v3JyctSwYcNTyt+0aZP+\n85//1FjunXfeUWFh4SmtAwAAAAAAAAAAAAAAAAAAfHd8dV0BACfn/fff18KFC+U4jmJjY/XQQw/p\nrrvuUmFhobp166bbbrtNWVlZatu2rbp166apU6dq/vz5GjdunD7++GMNHz5cPXv21NixY2u9zltu\nuUWFhYWqX7++fv/73yshIUFvvfWWXnjhBfn9fk2bNk3r1q1Tdna2JOlPf/qTFi9erI8//lj33Xef\nfD6fLr30Ug0fPlz33nuvVq9ere3bt6tLly665557tG3bNt1///0KBoMaPXq0+vTpc7qaDwAAAAAA\nAAAAAAAAAAAAnAQGGwPfQ0lJSZo7d65uuOEGvfjii+rTp4/69++vO+64Q/v27dOoUaM0fvx4vfHG\nG7rjjjvkOI6efvppZWZmavHixXIc56TWN3PmTNWrV09ZWVlatWqV+vbtq4ULF2rZsmXyer0qLy9X\n+/btFR8fr1AopN/+9reSpFatWmnp0qVyHEcDBw7U8OHD9cADDygYDOrmm29Wy5YtJUlz587VzJkz\nddZZZ+mGG25gsDEAAAAAAAAAAAAAAAAAAGcIBhsD30Pp6emSpJSUFP3f//2fDh06pJdfflnFxcXa\nv3+/GjdurN69e+uvf/2r2rVrF13OdV25rlvjYGPXdaP/jkQimj17trZv366vvvpKo0aNUkFBgZo3\nby6v1ytJiouLO245SdqzZ48eeughVVZWavfu3dWue9euXZo6dapc11VhYeGpNQoAAAAAAAAAAAAA\nAAAAADDHYGPge65Hjx5q3bq1LrnkEoVCIfl8PhUVFemdd97ROeeco7///e/q0aOHJCkmJkbBYFCx\nsbEnzAwGg4pEIvJ4PNq0aZMqKyuVk5OjJ554Qq7rKiUlRXv27FEwGJTf71dFRYViY2Pl8/lUXl4e\nzXnxxRc1duxYde/eXX379o0ONvb7/aqsrIyWa9eunaZNm6bk5GQFg8HT01AAAAAAAAAAAAAAAAAA\nAOCkeeq6AgBOneM46tmzp/Lz8zVs2DCNHTtWpaWleuSRR3Tbbbfp1ltv1fPPP6/S0lJJUp8+fTRh\nwgQtW7bshLn9+vXToEGDtHLlSrVp00afffaZRo8ere3bt0uSPB6PRo4cqYyMDAUCAe3cuVOSdOGF\nF+q1117T5MmTJUm9e/fW9OnTNXnyZCUlJUXzf/nLX2rGjBmaP3++JGn8+PGaOHGiMjMzNXPmTPN2\nAgAAAAAAAAAAAAAAAAAAp8ZxXdet60oAQG3sKSgxy6oIR0xyvI5jkiNJjRNtJpvfXWQ3O3SjBK9Z\nVrxbWXOhWvjq8SkmOZKUcNsck5w4r91+YMk12j+dSNgkR5Jcj80+FbP3I5McSZLPbxYViUmquVAt\nfBXX2CRHkvwem/0g0We3n/sKd5tlFSU1N8sKl9vs6w38ZSY54bj6JjlHFR+2OT8ku1+Z5ITrNTHJ\nkaSIbPZPb6i85kK15ERCZlnhWJtji+Wxs6LpuSY5MYW7THIkyd35H7OscJfLzLKsRBybc6jHtTuv\nm3JsvgvtP7DVJEeyO065/niTHElyKg6bZbn+BJOciD/OJEeSvKUHTXIq41JMco4qK7E5pte3aXJF\nvHbXr5LNNYLV9YEkheo3Ncs6E3s9DbsRzJyJ7eSrKLILM7ouC8WnmuRIkq+80CzLCdpcw1pen8u1\n6Xez6kOQJG+54T51BorEJJrkWLa5JavjVDByBh7wzlCxzpn3cxwy+vz8stk2ye4+TbK7RthbbPd8\noDxk0+ZJMXZzXzVKsPulvR/us+nDS28QY5IjSQ08Np/fp5NGmuRIUtNH88yy4mTUX2b4zMLqntYT\nqjDJkaSI78S/ofZkxO7+h0mOW2nXbxpJSzfJOZxgd/1qeYWQ4Dfq4/pqh0mOJBXUs2lzSVLFmfUc\nRbJ9lvJDfo7iGB6nrJ5/VPht7mMkKca1qdOEpC4mOZL0jPupWRZ++Nrd+HJdVwHfE9ueubZO1293\nRwbgeyU/P1/Lly+X8//3YA0cOFD9+/ev41oBAAAAAAAAAAAAAAAAAIAzCYONgR+pAQMGaMCAAXVd\nDQAAAAAAAAAAAAAAAAD4UYrwm3hgrLKyUpMmTdL+/ft1ww036NJLL62y3Nq1azVnzhx5PB5NnjxZ\n3bp1O2Gu3e+tAQAAAAAAAAAAAAAAAAAAAFAn/vKXv+iiiy5STk6OFi1aVG25F154QU899ZSefvpp\nZWVl1ZjLYGMAAAAAAAAAAAAAAAAAAADge+7DDz9U9+7d5ff71aBBAxUXF1dZrm3btiouLlZRUZFS\nUlJqzPVZVxQAAAAAAAAAAAAAAAAAAADAd6u4uFilpaXKyspSYmKiiouLlZSUdFy5X//61xo9erRc\n19VTTz1VY67juq57OioMAAAAAAAAAAAAAAAAAACAqrUZ88e6rgK+J3Zk/bbK17OysrR69Wo5jiPX\ndbVlyxY9//zzOvfcczVu3Dg9/PDDVQ42DgQCevLJJ+W6ru68805lZWWdcP3MbAwAAAAAAAAAAAAA\nAAAAAAB8z4wZM0ZjxoyJ/v/Pf/6zNmzYoPbt26uoqCg60Li4uFhlZWVq1KiRJMl1XcXFxclxHB0+\nfLjG9XhOT/UBAAAAAAAAAAAAAAAAAAAAfFcuu+wyvffee8rMzNSwYcOir//lL3/R3Llzo/8fMWKE\nAoGAMjMzNXz48BpzHdd13dNRYQAAAAAAAAAAAAAAAAAAAFStzZg/1nUV8D2xI+u3dbp+ZjYGgP+P\nvSuPirL63w8ziIKAu+aemgv6LVMTzeWkueXyq8wWRVEyFP2WCpqYu+RuWqG5fDHNDcsFNU+ZmGYd\nNRkWtyBxwVTADRDZVWDm9wdnJgYGm/vOA7zYfc7pNMw4z3zu5z73vu9773PvlZCQkJCQkJCQkJCQ\nkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQsAhpNpaQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQ\nkJCQkJCQkJCQkJCQkJCQkJCwCGk2lpCQkJCQkJCQkJCQkJCQkJCQkHjqodPpKDzp6ekUHjZY5WPx\n/Bsgc2UdZJ4kACAuLq68Q6gwkG2m4oKpczW2GTXGpEao9V5RouJCaqpiQ17XrYMadc6MiakDqSnr\nEB8fX+J/EhISEhLKYV/eAUhISEgoxa1bt0r8rEGDBkJcHh4esLOzg8FggJ2dHQAgJycHaWlpOHbs\nmNU8M2fOLPGzpUuXCsXELB+Ly9PTs1iejNi2bZtQTGoEM+dqxIEDB0r87M0337Sah5mnp11TLHz1\n1VclfvbRRx+VG5ex7yyM+Ph4JCUl4eLFi1bzMPvOiIiIEj/r3LlzmfMAXJ2z2jEzJpYOWDxG6PV6\nxMfH48GDB6hevToaN24MjUZ8reXdu3fx2WefITk5Gfn5+dBqtahduzY+/vhjPPPMM1bz5ObmYv/+\n/dDpdEhLS0P16tXh7u6OoUOHolKlSsJxscrH4snMzMTGjRtx/vx55Ofnw97eHi+88AK8vb3h4uIi\nzKdGsHKlVly/fh0RERFITU1FjRo18NJLL6FZs2bCPFJTZY/ff/8dOp3OlHN3d3d079693Lny8vJM\nPPb2yoaf2H1nRkYG/vjjD1Nczz//vCI9sXiYOme14dJoewwtsHjWrl2LLl26KI7BiI8++oj2vPLJ\nJ59g2bJlFC5W+Vg8APDBBx9g06ZNFC41gpmruLg4tGjRgsLFwJYtW+Dl5UXhUqum0tPT4erqSuFS\nW/2tXLkSH3/8saq4AgICVNd3/vjjjxg8eDAhIm7OWW2GeY1h5YrZhpn9FCsups5ZXEydM8vHyjmz\nfCwu5r2iGsHMuU6no90jsMDsz9WqKdZ9ixrrj3XtU+NzmlqvoSwups5Z7ZgZE/OZiMUVGBhY4mdT\npkwR5jt9+nSJn7388stWcfj7+5f42YoVK4Tiee2119C6dWu0bt262Geic48SEmUBgz6/vEOQkLAK\n0mwsISFRYfHFF18AgMmYlJ+fb5pc/eOPP4S4du7cCQB49OgRfv31V/z666+wt7dHnz59hHgmTpxo\nep2cnIzDhw/j3Llz6NSpkxAPwC0fi2vLli2m19HR0fjpp59w584dYeOdESwzH8t8x8w50zTHMofm\n5uYC+Lt8ly9fxuHDh1G3bt1yyxNTU6xFA4W5CkNp/TH0WbgPyc3NxcmTJ3H8+HG0bdtWKBY2l7Hv\nvHPnDg4dOoTo6Gh07txZeACV2XeeOnUKwN/6TE9Px88//wy9Xo+TJ0+WOQ/A1TmrHTNjYumAxQMU\nXF9Wr16NFi1awNnZGRkZGbh27Ro++ugj4UG4BQsWYOrUqWjZsqXpvcuXL2PBggXYsGGD1TyLFi1C\n69atMXPmTLi4uCAjIwOhoaH49NNPsXDhQqGYWOVj5mn+/Pl4/fXX4efnZ3rv119/xbx580zXDRGw\njHwAx4DHzJURDNMcyxi6fft2nD17Fn379kW9evWQmZmJNWvWoH379hgzZozVPGrVFGvRQGEw6o+h\nzS+++AJ5eXnoSNzYygAAIABJREFU378/nJ2dkZmZidDQUJw+fVp4UoXFdeXKFSxbtgwajcakA4PB\ngBkzZqBVq1ZCMTH7zsOHD2PPnj3o0qULXFxckJCQgK+//hpvv/02Bg0aVOY8AE/nrDbMjAngaYGp\nqYSEhBIn00Qm0tLS0kqcRLN2As2IxMREGAwGGAyGYp+JLtZglY/FAxRc00vaNahx48ZCXExjC2tC\nnJkrloGLNbH+yy+/0AwIatUU0zzAqj+WNi9cuGAzB5vr3r172Lt3r8XP3n77bSEuVt+5a9cuWr/C\nzDmrzTCvMaxcMdsws59ixcXUOYuLqXNm+Vg5Z5aPxcW8VwR41wbWPQIz50zzHcscyuzP1aop1n0L\ns/5Y+mRd+9T4nKbWayiLi6lzVjtmxsR8JmJxxcbGIj09HR07dkTnzp1RpUoVoTiKwtfXFw0bNkSX\nLl1QtWpVs8+szZerqyuSkpLQuHFj9OjRQ1jbhXHixAmcPHkSsbGxyM/Px6BBg9C+fXvFfEb88ssv\n2LFjB5KSkrBv3z4sWbIE8+fPt5lXQkJCoqJAmo0lJCQqLD777DMAQFRUFA4fPozU1FRMmjQJ/fv3\nF+b67bffcOzYMeTl5eGVV15BQEAAHBwchHlq1KiB0NBQ6HQ61KhRAwMGDMCsWbOEeQBu+Vhcf/31\nFw4dOoQbN26gXbt28PLyUmzQAHhmPpb5jplzpmmOZQ595513EB8fjx9++AFXrlxBy5YtsX37djRt\n2lSIh5knpqZYiwYKczHqj6HPrl27IiwsDD///DOysrLQvXt3TJkypdjDellzBQcHIzIyEvXq1cPA\ngQMVDygx+05fX19kZ2fj6NGjOHXqFBwdHbFs2TJ07dq1XHgArs5Z7ZgZE0sHLB4AWLNmDYKCguDo\n6Gh6LysrCxMmTBAeAM/MzMRzzz0HvV5veq9FixbIzs4W4rl+/ToCAgJMf1euXBkjR44UNoEBvPIx\n85ScnIxXXnnF7L1evXrhm2++EeIBuEY+lgGPmSuWaY5pMj1y5Ai2b99u9t6gQYPg6elZbnliaoq1\naADg1R9Lm+fOncPWrVvN3mvfvj1Gjx5tNQeba9myZVixYgVq1aplei85ORnTp08Xrj9m3xkcHIwt\nW7ZAq9Wa3hs7diy8vLyE+hYWD8DTOasNM2MCeFpgasrV1RXdunWzOGEsgoyMDERFRVn8THTCMTY2\nFmPGjDFbNGl8LWoAYJWPxQMUnIyzbt06i5+J7iTENLawJsSZuWIZuFgT63/++SdGjhxp9p5Rm8HB\nwUJcatUU0zzAqj+WNpn1x+Kys7ODvb09RQesvjMuLq7E3dNEd05TY5thXmNYuWK2YWbOWXExdc7i\nYuqcWT5WzpnlY3Ex7xUB3rWBdY/AzDnTfMcyhzL7FrVqinXfwqw/lj5Z1z41Pqep9RrK4mLqXI0x\nMZ+JWFzr16/H48ePsX//fgQEBGDSpElC8+pFcfr0aZw9exanT5/GlStX8Pbbb6Nnz55CHHPmzDHF\nNGfOHHz00UeKY0pISMCdO3eg1WpRrVo1VK9eXRFPUWzcuBHBwcEYM2YMKlWqhLi4OAqvhISEREWB\nNBtLSEhUWKxYsQJnzpzBCy+8gIEDB6JOnToACgyr1apVE+IKCAhAtWrV4OjoiOvXr2Pbtm2KHjpe\nfvll1KxZE507d0Zqaiq+++477Nq1yxSvCJjlY3ENGTIEderUQePGjXH79m0cPXoUABQ9fAI8Mx/L\nfMfMOdM0xzKHDhs2DMnJyRgwYIDpITgiIgIRERFCA0jMPDE1xVo0AHDrj6HPnj17QqPRoE+fPqhf\nvz6uXbuGv/76C4D4oB2T6/DhwwAKzB4xMTFmu0GLDLgx+87JkycjNjYWvXr1wuDBg01HrOt0OqHB\nHxYPwNU5qx0zY2LpgMUDFPRH586dK/Z+RkaGEI8RxoFlAMV2ULcWMTExFgc4r1y5IhwPq3zMPN29\nexcjR44slqfU1FRhLqaRj2XAY+aKZZpjmkwTExOLTQ4ZDAYkJiYK8ahVU6xFAwCv/ljavHr1arGJ\nS4PBgGvXrlnNwebKzMxEdna2WX4NBgNycnKEY2L2nUlJSdi/f38xrpSUlHLhAXg6Z7VhZkwATwtM\nTbm4uCg+macwGjZsKHTKzJPQpk0b2s6qrPKxeACgWbNmtONJ1WgKZOaKZeBilc3Nza3YtUop1Kop\npnngaa4/Flft2rVtMi8UBqvvbNSokaIjoi1BjW2GeY1h5YrZhpk5Z8XF1DmLi6lzZvlYOWeWj8XF\nvFcEeNcGFg8z50zzHcscyuxb1Kop1n0Ls/5Y+mRd+9T4nKbWayiLi6lzNcbEfCZicS1cuBBJSUlo\n0qQJFi1ahEaNGpl2z1ayo3BoaChiY2Oh1+vRu3dv/Oc//xHm8PHxQUZGBjp27Ig5c+agcuXKpgWi\nos9o7733Hp577jnTiYm//fYbAOW+BiMqVaqEW7duwc7ODg8ePDCbx5CQkJD4N0CajSUkJCosUlNT\n0axZM2RkZGDPnj1mn4k+bP3yyy/F3svKykJkZKQQT2hoqMX3s7KyhHgAbvlYXLGxsRbfv3r1qlA8\nRrDMfCzzHTPnTNMcyxw6atQoi++LGuaYeWJqirVoAODWH0Ofn3/+ebH3jMYPUTC5LA3WxMXFISws\nTIiH2Xe2atXKtLNk0d0QRPoVFg/A1TmrHTNjYumAxQMAffv2tWga6Nu3rzDXe++9hyFDhgh/ryh2\n7dqFFi1a2MwD8MrHzNOCBQsU7fxtCUwjH8uAx8wVyzTHNJmWdMxot27dhHjUqimAs2gA4NUfS5sb\nN260uNjL19dXiIfJ1bx5c4s77TRr1kw4Jmbf6ePjY/H98ePHlwsPwNM5qw0D3LbH0gJTU7Nnz8at\nW7csftagQQOreVjmCgCKTogpCazysXgAwMPDQ+jfPwlqNAUyc8UycLHK1qhRI5s5jFCrppjmAbXV\nX4cOHWzmYHMtXLiQwgPw+k5XV1c0bNiQwsXMOavNMK8xrFyxrwsssOJi6pzFxdT5p59+SuEBgBEj\nRlB4mOVjcU2ePJkQzd9gXRtYPMycM813LHMosz9Xq6ZY9y3M+mPps1+/foRoeDxAwe6xhZGdnQ2D\nwSC8oRCr3wS411AWF1PnrHbMjImlAyZXdnY2qlatipSUFBw8eNDsMyXG9lWrVqFOnTqws7NDVFQU\n9uzZIzxP+/zzz5teR0dHm30mOjdn/L5xDFhkl/snYf78+Vi6dCkePHiAgIAAzJkzh8IrISEhUVEg\nzcYSEhIVFkVvcrOzsxEZGanIlAQADx8+xJkzZxAWFoazZ8+iRo0aaNOmTbEjZJ8E46DBw4cPERUV\nBZ1Oh5iYGADApk2bhOJhlo+dqxs3bkCn0yE8PBypqal45plnsHjxYmEelpmPZb5j5olpmmOZQ4cO\nHWp6nZOTg6ioKISFheHcuXNCA0tsPQEcTbEWDQDc+mPo093d3fT6+vXr0Ol0CAsLw+3bt/Hdd98J\nxcPkAoCbN2+a6i46Ohrdu3c3GwywBsy+s+hE8bVr16DT6aDT6cqFpzAYOme1Y2ZMAEcHTJ6HDx/i\n448/Fv6eJezevZtiNg4ICKDthsEqHzNP69ato5nTmEY+lgGPmSuWaY5pMv3f//4n3N9aglo1xVo0\nAPDqj6XNZcuW0foWFlfr1q0pR/wC3L5Tp9OVmPfy4AF4Ome1YYDb9lhaYGrKmCfjvXh+fj4iIiKQ\nmpqKP/74w2qezz//vNjChZycHKSlpeHYsWNCMf3555+YOXOmxc9EJ/dY5WPxAMDOnTvx7bffWlzk\noeT4YZaxhTUhzswVy1TGmlh3d3fHgQMHLH4m+uyhVk0xFw6w6o+lTQcHB3z11VcWPxM1WLO4Zs2a\nVazO4uPjkZSUhIsXLwrFxOo7x40bh4iICIufiZqnmDlntRnmNYaVK2YbZvZTrLiYOmdxbdy40ezv\na9euQa/X47nnnhOKByjYoGHkyJFwdXVFaGgoAgMDUbVqVQwfPhzDhg0T4nJxcUFGRgZcXFwQFxeH\nr776Cnq9Ht7e3kJjQczysbhu3ryJ1q1bw9XVFZGRkVi5ciUqVaoEb29vofkmI1jXBtY9AjPnTPMd\nyxzq6emJx48fw8HBAdnZ2Th48CDy8/Pxf//3f3B1dRXiUqumWAsHmPXHvIfNyspC1apVkZSUhK1b\nt0Kv18PDw0OoLbF4gILnR19fX7i6uiI4OBi7du1C9erV0bVrV/z3v/+1mofVbwLAokWLTK/1ej1O\nnToFvV6P7t27w95ezELE4mLqnNWOmTGxdMDk6tixo9nfWq0WtWrVQs+ePYXiMWLz5s1mf2s0GlSv\nXh3Ozs5Wc+Tl5ZnNgWu1WtSsWRNvvPGGcDxeXl5m91J2dnbIz8/HW2+9hbfeekuYz4gWLVpg7dq1\nir8vISEhUdEhzcYSEhIVFo8ePTKZgy9duoTY2Fh4eXnh1VdfFeYaNWoUatasiS5dumDIkCGIiYnB\n6tWrhXkCAwNx+fJlVKlSBR06dEBUVJTiYziY5WNxzZgxAxkZGWjatCnc3d2RkpIidFx0UbDMfCzz\nHTPnAM80xzKHnj59GjqdzqTRy5cvY8WKFcKmJGae2JpiLBowglV/DH3u3bsXkZGRSEtLw7PPPovw\n8HBs2rQJ1atXF46HydW7d2906NABr7/+OubPnw9fX19FK3iZfWd8fDzCwsJMZbx69SpmzJiBGTNm\nlAsPwNU5qx0zY2LpgMUDFF/AYgssHddtnHwUOa773r172Lt3r8XPRHbhB3jlY+YpISGh2C6tRoia\nOJhGPpYBj5krlmmOaTLNyMgwHZFXFCJH5qlVU6xFAwCv/ljaTEtLMx0lWBSiu32wuH755ReaMZTZ\ndyYmJsJgMFhcsCeyswmLB+DpnNWGmTEBPC0wNfXZZ58BAKKionD48GGkpqZi0qRJwjs/7ty5E0DB\ns9Gvv/6KX3/9Ffb29ujTp49wTBMnTjS9Tk5OxuHDh3Hu3Dl06tRJmItVPhYPAGzZssX0Ojo6Gj/9\n9BPu3LmjaAc0pimQZVBj5oplKmMZHvPy8gD8bXa8fPkyDh8+jLp16wqb+NSqKebCAVb9sbRZuA/J\nzc3FyZMncfz4cbRt29ZqDjaXse+8c+cODh06hOjoaHTu3BmDBw8WjonVd/7+++8A/tZ5eno6fv75\nZ+j1epw8eVKIi5lzVpthXmNYuWK2YWY/xYqLqXMW16RJk7B48WK4urriiy++wB9//IG6deuicuXK\nCAgIEOI6deoUJk6cCIPBgFWrViEkJAROTk7w8PAQNhuvW7cO3377LQBg+vTpmDVrFurVqwd/f3/T\n+2VdPhZXSEiIKR/z5s1DUFAQatSogbFjxyoap2YZ+VjmO2bOmeY7ljl0ypQppj5h+vTpaNu2LerX\nrw8/Pz/h53i1aoq1cIBZfyx9BgQEmOYWpk6dimHDhqF+/fqYOXOm0M7JLB4AuHLlClxdXZGXl4dv\nvvkGhw4dgoODA0aMGCGUJ1a/CRSYMNevXw9nZ2fMnTsXBoMB9evXR0hIiPD8OIuLqXNWO2bGxNIB\nk8vSNeTSpUuKdAAUX4AAAPfv38eLL75odl/6JFjaiCEpKQlTpkwR7oMttVXjdcEWs/GiRYvM5q7W\nr19vdfkkJCQkngZIs7GEhESFhbu7O/r06QNvb2/4+fnB29tb8QRk3759ceHCBeh0OqSnpyMrKwt5\neXnCqzevXr0KrVaLli1bws3NDcePH1cUD8AtH4urWrVqyMrKQlZWFjIyMpCfn68oHiNYZj6W+Y6Z\nc6ZpjmUO9fPzQ7du3fDBBx/ghRdewH//+19FEx7MPDE1xVo0AHDrj6HPnTt3okmTJhg0aBDc3d1x\n9epVReZgNtesWbOg0+mwe/duHDt2DMnJyUhISBBe2c/sOwcOHIj+/fvjww8/RIsWLeDt7a1oVwsW\nD8DVOasdM2Ni6YDFAxTs3jRy5Egz04DocV1GsI7rtrOzg729vfCu9JbAKh8zT66urujWrRulfEwj\nH8uAx8wVyzTHNJneunXL4m69gNiOZ2rVFGvRAMCrP5Y2MzIyEBUVZfEzUR2wuJg6YPadsbGxGDNm\njImrsLlMxLjP4gF4Ome1YWZMgDqvVytWrMCZM2fwwgsvYODAgahTpw6AAsOUpd3iS8Jvv/2GY8eO\nIS8vD6+88goCAgLg4OAgFIsRNWrUQGhoKHQ6HWrUqIEBAwZg1qxZirhY5WPxAMBff/2FQ4cO4caN\nG2jXrh28vLzwzDPPCHEYwTQFsgxqzFyxTGUsw+M777yD+Ph4/PDDD7hy5QpatmyJ7du3o2nTpkI8\ngHo1xVw4wKo/lja7du2KsLAw/Pzzz8jKykL37t0xZcoURTsNsriCg4MRGRmJevXqYeDAgTbdU7H6\nTl9fX2RnZ+Po0aM4deoUHB0dsWzZMkW7/DNzzmozzGsMK1fMNszsp1hxMXXO4nrw4AFcXV3x6NEj\n/Pjjj/j5559hZ2dX4mlsT4LBYMDt27dx5swZuLm5wcXFBUCBcUcJF1BgmKpatSpeeuklYQ6AWz4W\nl16vx+PHj3HhwgU0atTINLYlehKjESwjH8t8x8w503zHModqNBo4ODjg/v37uHHjhmn3yv379wvF\nA6hXU6yFA8z6Y5q8NRoNEhMTkZ2dbbp/WrNmjRAHk0er1SIyMhJnz56Fu7u76dnx8ePHQjysftMI\nZ2dnZGZmIjIyEqGhoQAKTN/lxcXUOasdM2Ni6YDJVXizpMIYOXKkcExAyWNQHh4eVptxC2/AVRg7\nduwQjsfS2GtycjIqVaokzAUU3Is/ePAAf/zxh4n78ePHCA8Pl2ZjCQmJfxWk2VhCQqLC4ttvv4VO\np0NQUBDy8/ORkJCAsLAwtGvXzjTIZS2MA3V6vR7R0dHQarX48MMPkZ6eLrQadM2aNdDr9YiJiYFO\np0OlSpUwfvx4PPvss8IDuczysbiMZbh//z50Oh2aN28OLy8vODs7l7hrzpPAMvOxzHfMnDNNcyxz\n6OnTp/Hnn38iLCwMW7duRVxcHFavXo22bduib9++VvOw8wRwNMVaNGCMi1V/DH3u27cPqamp0Ol0\n2LBhA1JSUvDJJ5/Azc0NY8aMKTeufv36mdpsSkqKSRcXL17Enj17rOZh9p2nTp2CTqfDzp07cevW\nLVy9ehUhISFo164d2rRpU+Y8AFfnrHbMjImlAxYPALi5uQnvMFESWMd1165dW3hnpZLAKh8zTy4u\nLop2orIEppGPZcBj5oplmmOaTJs1ayZsSLQEtWqKtWgA4NUfS5sNGzYUPpa7tLmYOmD2nW3atKHs\nBs7iAXg6Z7VhgNv21Hi9Sk1NRbNmzZCRkVHs/kIkhwEBAahWrRocHR1x/fp1bNu2TbEB+uWXX0bN\nmjXRuXNnpKam4rvvvsOuXbsAQHhBBKt8LB4AGDJkCOrUqYPGjRvj9u3bOHr0KAAoyhXTFMgyqDFz\nxTKVsQyPw4YNQ3JyMgYMGGC6t4iIiEBERITw7vJq1RRz4QCr/lja7NmzJzQaDfr06YP69evj2rVr\n+OuvvwCI71TP4jp8+DCAggn+mJgYm+7zWX3n5MmTERsbi169emHw4MEm44FOpxO+p2bmnNVmmNcY\nVq6YbZjZT7HiYuqcxeXk5IQDBw4gJiYGffr0MR0hnp2dLRQPAMydOxfLly+HVqs1LehMSEhQtEjD\nw8MDw4cPR0ZGBubPn2/iqlmzphAPs3wsrilTpmDcuHHIzc3FvHnzABSUzc3NTTgmIxhGPpb5jplz\npvkO4JhD3dzcMGvWLFy/fh0eHh4AChZ8K4lJrZpiLRxg1h9Ln3369MH777+PpKQkTJo0CUDBYjDR\nBbUsHqDgdLLt27dDo9GY+s7ExERhQyer3wSAunXrYu3atbh06RJef/11AAUnh+bk5JQbF1PnrHbM\njImlAybXl19+Wcw4nZKSgtatWwvHBMDixhgpKSlwcnKymmP69OlmMRkMBqSlpaFXr17C8RQde9Vo\nNKhdu7bwfbAR4eHhOHbsGBITE03clSpVUmzOlpCQkKiosDMwtiqRkJCQKGfk5+cjOjoaYWFhpl1f\nRZCTkwNHR8di79+6dQsNGjSwKba8vDxcuHABHTt2VMxha/lKi8uIu3fvol69esLfS0tLg06ng06n\nw61bt3Dx4kVMmjRJ2MxnMBhM5rvz588jOjoab775prD5rjCYeTKa5sLCwhSZ5gCYzKE6nQ7nz59H\nq1atFJlDCyM/Px8XLlxAeHg4fHx8FHOw9QQo1xTw96KBsLAwREVFCS8aKApb66809AkUHCseHh5O\nORZeKVd8fLxp98XC/WhMTAzatWtnU0yMvhMomJAx6vPTTz8td57CsEXnRjDasa0xsXTA1NPnn3+O\nqVOnCn3HWly7dg16vR7PPfec0Pf++usvNGvWjBIDq3zMPGVmZsLZ2dn0d3Z2NgwGg6JdvDw9PWmm\nMhYXM1esmJh5OnToEAYNGmQzj1o1NW7cOGzcuJESl9rqLyIigmYMZXHNnDmTZnxl9p3btm3D6NGj\nVcMD8HTOasPMmACeFpiaKjrxpdFoUKtWLeHren5+vtmCA61WqzimxMREACg2mQZAeMETq3wsHjYK\nG9169OhhthuRqCmwsEGtZcuWAP6uAxGDGjNXRQ1DSk1lPXr0MBkejTugGssmYngsbOworHeg5B2w\nSoJaNfXqq6+aFg4A5jkXNT2y6o+lzfDwcLPvAn/XX0m7hZU2182bN015AQp0UL16dbPrjrVg9Z1P\nWmwrugiLmXNWm2FeY5i5YoHZT7HA1DmLKzMzEwcPHoRGo8HQoUNRuXJl3L17F1euXEGPHj2E4yqK\nuLg46HQ6k5mLwdeiRQur/z2zfKWZq+zsbEREROCVV14R/u60adPQvHlzXLp0Ca1bt8aHH36Ihw8f\nYtSoUdi7d6/VPIsXL0ZWVhauX7+OIUOGwMPDA2lpaRg/frxpIYI1YObpzp07JsPcBx98gOrVqyMx\nMRE6nU74iPuvv/4ap06dMplDBwwYgDt37mDatGnC1/W4uDjY2dmhefPmAGA6Ia5u3bpCPGrVVGxs\nLDZs2ACtVoupU6eiYcOGSEhIwA8//IAJEyZYzcOsP5Y+gYL6AmB6jtXr9cjOzhbuP1k8RZGTk4OI\niAjodDpMnz7dJi5AvN8ECp5pT548CY1Ggx49esDOzg7379/HvXv3hDdbYXIVhS06Z7VjZkyFwdSB\nUi7j/asRxntOpWNxRe8XjebeQYMGWd1ujPevRmi1WrNnNltgyxhXYcybN482TyghURjPeotd7yT+\nvbj+9Xvl+vvSbCwhIVFhcebMGZMJrbBB6bfffhO+wR89erRp4H/ChAnYsGFDsfetwdy5c7Fw4UIA\nQGBgoGkSx9fXF19++aVQTMzysbgK56ZwWUXzVBJYZj6l5jtmzkvThAkoM4cGBwebVlceOXIE/fv3\nBwD873//K7c8MTXFXDRQmvWnRJ+F+5PC9bho0SLMmTNH6PeZXIXrqaTX1oDZdxbWdmGthoSECB0B\nx+IBuDpntWNmTCwdsHgAICkpCdWqVYODgwOys7Nx8OBB5Ofn4//+7//g6uoqxDVp0iQsXrwYrq6u\n+OKLL/DHH3+gbt26qFy5MgICAqzmWb9+PUaOHAlXV1eEhoYiMDAQVatWxfDhw4U1xSofM0+ffvop\nfH194erqiuDgYOzatQvVq1dH165dhY9NZBr5WAY8Zq5YpjmmyfTEiRN48cUX4eLigri4OHz11VfQ\n6/Xw9vbG888/bzWPWjVVFEoXDQC8+mNpMyQkBP369YOrqysiIyOxcuVKVKpUCd7e3sL3ZSyu/Px8\nk/FSr9fj1KlT0Ov16N69u/CJE8y+MzY2Fo0bN0bVqlWRlJSErVu3Qq/Xw8PDQ+j0ChYPwNM5qw0z\nYwJ4WmBqypJR6t69e9BoNFiwYIHVPJ6enmbGLeMOZW+99ZbwpLqHh4cZl0ajQc2aNeHj4yN8Igqr\nfCwewHL5KlWqhLFjxwobLJhGN5ZBjZkrlqmMZXg07nJl/K5Wq0XNmjXxxhtvCMekVk0xFw6w6o+l\nzaI7ghn7llGjRgmPkbC4Zs6cWey9+/fv48UXXxQ+dpjVd+7Zs6eYzmvVqmXapVgEzJyz2gzzGsPK\nFbMNM/spVlxMnTO5CuOvv/5CWFgYdDqd8LgbUNDf6XQ6hIeHIzo6Gt27d8fzzz+PN954Q1E8N27c\nQFhYGCIiInD//n3Ur18fixcvVsQF2F4+FtfDhw9x5swZhIWF4ezZs6hRowbatGmj6HmWaeQrDfMd\nM+e2mu/Y5tDr16+bNiK5ffs2vvvuO0U8RqhFU5bAWDhga/0x9fnw4UNERUVBp9MhJiYGABRtlsPg\nefTokanuLl26hNjYWHh5eeE///kPXnrpJeGY2P1mTk4OoqKiEBYWhnPnzmHHjh3lxlUaOre1HbNi\nYuqAxcUcy7UEJWOwRcfdtm3bhvz8/HIddysJBoPB7PlPQsJWSLOxhLUob7Ox+LniEhISEirBl19+\naTIfzZ492/R606ZNwhPrhdddKDnqyYgbN26YXhc+1vr+/fvCXMzysbiMAzWAeVmVrluxZOYbMmQI\nHj16JMRjyXzXoUOHYisy/wnMnBf+vo+Pj+n18uXLhU1zlsyhdevWxblz54TMxqGhoaY87dixw5T7\nU6dOCZkUmXliaqpwngsbKT/55BPhnDPrj6HPwv1J4Xq8fPmyUCxsLhaYfWdhbRfW6vfffy9kSmLx\nAFyds9oxuz9XG6ZMmYItW7YAKJjwbdu2LerXrw8/Pz/hweAHDx7A1dUVjx49wo8//oiff/4ZdnZ2\nGDVqlBDPqVOnMHHiRBgMBqxatQohISFwcnKCh4eHsKZY5WPm6cqVK3B1dUVeXh6++eYbHDp0CA4O\nDhgxYoTwwJ27uzuysrIoRj4XFxdkZGTYbMBj5mrRokWm17aY5m7evInWrVtTTKbr1q0znQIwffp0\nzJo1C/Xv11gBAAAgAElEQVTq1YO/v7/Q6QBq1RRr0QDAqz+WNgsvgpk3bx6CgoJQo0YNjB07VpHZ\nmMHl5eWF9evXw9nZGXPnzoXBYED9+vUREhKC1atXC8XE7DsDAgJMu1lNnToVw4YNQ/369TFz5kyh\nXaZZPABP56w2zIwJ4GmBqamSDKmi13VLdW28VomajXfu3FnsvXv37mHy5MnCk6Cs8rF4AMvle/To\nEUaPHi1sKqtXr16JRjdR3Lhxo0SDmgiYuVq/fn2x95SYyoyGQCMKGx5F0K1bt2LvJSUlYcqUKcLX\ndbVqysvLi7ZwgFV/LG36+voWe+/evXuYMWOG8PWKxVXSgi0PDw9h4ySr77R0/3bp0iVF1xhmzllt\nhnmNYeWK2YaZ/RQrLqbOWVzx8fEICwtDZGQk0tLScPXqVcyYMQMzZswQigcAevfujQ4dOuD111/H\n/Pnz4evrK7x5gREzZsxARkYGmjZtCnd3d6SkpOCbb74R5mGWj8U1atQo1KxZE126dMGQIUPw559/\nCvcphaHVak3PZLYa+Yy7n9pivmPmvCTDXO/evYW5gAKT8cOHD3Hq1CnF5tC9e/eayvbss8+aTnSs\nXr26cDxq1RRQ8sIBEbDrj6HPwMBAXL58GVWqVEGHDh0QFRUlvLM1kwcoGOvs06cPvL294efnB29v\nb3h5eQnzsPpNoOAUBZ1OZyrj5cuXsWLFCov3M2XFxdQ5qx0zY2LpgMnFHMsFio/BRkdHo06dOkJj\nsGocdyuKLVu24ODBg0hISICrqyucnZ1x4MABxXwSEkYY9PnlHYKEhFWQZmMJCQkJFAxC7t27FwaD\nAffu3TO9TkpKEuJ5+PAh4uPjYTAYzF6LmmfVivT0dNMxfmlpaabXGRkZivhYZj6W+U6tUKM5lAWm\npliLBthg6NO4Olav1xd7LQomV0JCAgIDA2EwGIq9FoHsOyt2TCwdsHiAAkOFg4MD7t+/jxs3bmDt\n2rUAzHcJsxZOTk44cOAAYmJi0KdPH5MBQbSfMRgMuH37Ns6cOQM3Nze4uLgAKDAmiYJVPmaetFot\nIiMjcfbsWbi7u8PBwQEA8PjxY2Eu5oAiy4DHzBXLNMc0mRqvAVeuXEHVqlUV7aoCqFdTrEUDAK/+\nWNrU6/V4/PgxLly4gEaNGpkM+YWNU+XB5ezsjMzMTERGRiI0NBRA8ePlrQGz7wQKNJqYmIjs7Gy8\n+eabAIA1a9aUGw9L56w2zIzJCJYWWDyWjplOSUlB7dq1hXji4+OLvZecnIxKlSoJx2QJ1apVU3R/\nziofiwew3F4fPHigqG9hmgJZBjVmrlimMpbhsaRdkJXsdKZWTTEXDrDqj6XNhg0bFnuvQYMGyM3N\ntZqDzWV87iyMlJQUODk5CcdkCUr6zpJ2izaO44iAmXNmmykKpdcYVq6YbZjZT7HiYuqcxTVw4ED0\n798fH374IVq0aAFvb2/069dPOB4AmDVrFnQ6HXbv3o1jx44hOTkZCQkJwguDgQItGnctzcjIQH6+\nMnMFs3wsrr59++LChQvQ6XRIT09HZmYm8vLyhE/lMIJl5GOZ75g5Z5rvWObQnTt3okmTJhg0aBDc\n3d1x9epVRUZjQL2aYi0cYNYfS59Xr16FVqtFy5Yt4ebmhuPHjyuKh8UDAN9++y10Oh2CgoKQn5+P\nhIQEhIWFoV27dqZxDmvA6jcBwM/PD926dcMHH3yAF154Af/973+FTz1gczF1zmrHzJhYOmByMcdy\nAd4YrNrG3Yri6NGj2LdvHzw9PbFlyxb4+/vbxCchISFR0SDNxhISEhUWcXFx8Pf3h8FgKPZaFD4+\nPqaBQ+Nrg8EgbFRt0aIF1q1bV+y18cgfETDLx+Lq16+fyfha+HXfvn2FY1IjmDlnmuZY5tC7d+9i\n5MiRMBgMuH//vtlrETDzxNQUa9EAwK0/FsaMGWP22mAwKJqIYXItW7bM1F9269bNxNG9e3chHmbf\nGRMTY9L25cuXzV6XBw/A1TmrHTNjYumAxQMAbm5umDVrFq5fv246+i8tLU3RINKqVatw8OBBtGjR\nwjS5mpycDD8/PyGeuXPnYvny5dBqtabdSxISEtCnTx/hmFjlY+Zp2bJl2L59OzQajal8iYmJiibp\nAd6AIsuAx8wVwDHNMY2hHh4eGD58ODIyMjB//nwABfqsWbOmEI9aNcVaNGAEo/5Y2pwyZQrGjRuH\n3NxczJs3D0BB3bm5uZUbV926dbF27VpcunQJr7/+OoCChUU5OTnCMTH7zj59+uD9999HUlISJk2a\nBAC4c+eO8D01iwfg6ZzVhpkxATwtMDWl1WrN/tZoNGjXrh3GjRsnxGO8Xy3MU7t2baxYsUI4JuOx\n7YV3Ma1cuTImT54szMUqH4sHMH/2MHLXqlULCxYsEOZimgJZBjVmrlimMpbhcfr06Wb3FQaDAWlp\naejVq5cQD6BeTTEXDrDqj6VNS32LnZ0dhg8fLsTD5Cq8mB4o0EGtWrWEj5EvKSYlfeeXX35Z7P45\nJSUFrVu3psSkNOesNsO8xrByxWzDzH6KFRdT5ywu4w6vO3fuxK1bt3D16lWEhISgXbt2aNOmjRBX\nv379TEbJlJQUk9Hp4sWL2LNnjxDXrFmzABTsAq/T6dC8eXN4eXnB2dkZX331ldU8zPKxuIxmS71e\nj+joaGi1Wnz44YdIT08XPnkE4Bn5WOY7Zs6Z5juWOXTfvn1ITU2FTqfDhg0bkJKSgk8++QRubm7F\n+op/glo1xVo4wKw/lj7XrFkDvV6PmJgY6HQ6VKpUCePHj8ezzz5r6nfKkgcA2rZta2qz+fn5iI6O\nRlhYGDZu3Ci0mIzVbwIF965//vknwsLCsHXrVsTFxWH16tVo27at8BwBi4upc1Y7ZsbE0gGTiz3m\nzRiDVeO4W1Hk5eXBYDDAwcEBUVFRT8XmYBISEhIisDM8LWclS0hI/OuQmJho9nfhgcUGDRoIcQUG\nBppeF+4W7ezsMGXKFKt5LE0sGPHyyy8LxcQsH4vLuKtG0UuHnZ0d3n77baGYAKBTp05o06aNycDX\nunVr0+vIyEireQYMGIDatWubDHe1atUyvT58+LDVPMych4eHmw3mF+bq3LmzEJenp6fp+0ZTqPH/\nxt2grUFJBmU7OztoNBqreZh5Ympq//79JebJaFSzFsz6Y+jTuNNvUdjZ2aFx48ZC8TC5iq7WLZwv\nEaMFs+9UI5g6Z7VjZkwsHbB4jIiLi4OdnZ3JtJ6ZmYmsrCzUq1dPmOtJSElJQa1ataic1oBVvrLK\nkwi+/vprnDp1yjSgOGDAANy5cwfTpk0T3pHm4MGD2Llzp8mA5+7ujoSEBCxdutS0U4O1YOVq2rRp\naN68OS5duoTWrVvjww8/xMOHDzFq1CiLO5iVhNOnT2PDhg0mY2ibNm2QkJCATZs2mcyG5QE1aioz\nMxMHDx6ERqPB0KFDUblyZdy9exeXL19Gz549hbhY9cfUptqQn5+PkydPQqPRoEePHrCzs0NKSgru\n3bunyATNRFZWFoCCo3WBgljz8/NNO5uUNc/TDpYW2Jo6d+4cYmJikJmZCRcXF7Rr1w7t27cX5nn8\n+DFu3ryJjIwMuLq6okmTJrSdjW0Bq3wsHiNycnKQkZEBFxcXODo6KuIoyehmb29vWiRhLUoyqHXq\n1El44TkrV0UNAkZT2eDBg+Hs7Gw1T0mGx7feekvo2bjws7+dnR20Wi1cXV0V158aNTVz5kyzv40L\nB4YPH4769esLcbHqj6lNNeLevXu4ePGiqe7c3NxQt27dcosnPDzc7G9jvTVr1qycIvob7DZjK9i5\nYrRhdj/Fioup89JoM8nJyQgLC0N4eDg+/fRTm7iMOHz4MF577TUKV0REhPD4a2Ewy8fOldKyGQwG\nk5Hv/PnziI6OxptvvqnIFGg03+l0Opw/fx6tWrVSZKItDFaeChvmjLvaiqKwOTQyMhJ6vV6RObQo\n7t27h/DwcAwZMsQmHrVoqjCMCwfCwsIULRwwglF/paFPoMAYeO7cOZtOAWLyGBEcHGyz6RHg6CA/\nPx8XLlxAeHi4zfecTC6AUz6A146ZMQE8HSjlYo7lssZg1T7uFhsbiyZNmiAxMRG7du3CK6+8IjzG\nLCFhCU3H7izvECQqCG5s9ijX35dmYwkJiQoL4+RJYRiNhaJGlIkTJyI9PR0dO3ZE586dUaVKFdNn\nJe0oYgldunRBw4YN0aVLF9MNsBEfffSRUEzM8rG4Xn/9ddjb26N79+5o0aKFGY+omZMJlvmOmXOm\naY5lDnVzc0Pr1q3h6upa7DMR0zIzT0xNsRYNANz6Y+izXbt2aN26tcXdYko6qrUsuBYtWoSkpCQ0\nadIE3bt3N9Ojpd20SgKz7+zduzeeeeYZi7kV0SeLB+DqnNWOmTGxdMDisQYnT55Ejx49KFyjR48W\nyn1JmDZtGlatWkWIiFe+8syT2gcUi0IkV2o2YpaEjRs3Ktp5sCjU2PYAsUUDFa3+li5dWsxIVd5c\nsbGxwrtdlQRm33ngwAHKMw2LB+DpnNWGAW7bY2lBhGfevHmoWrUqXnzxRTg5OSEnJwdnz55FZmYm\nFi5caPVv7tq1C4cOHULLli3h6OiInJwcXL16FQMGDMCIESOE4v/jjz+wdu1a5OTkQK/XQ6vVwtHR\nERMnTsQLL7wgxMUqH4sHAI4fP47NmzejatWqqFq1KrKzs5GdnY3Ro0cL71LONLqxDGrMXAHqMmKm\np6fju+++MzM7tm3bFu+++67wLnNq1RTAXTjAqD+WNhMSEhAUFISbN28iPz8fWq0WTZs2hbe3t/BC\nYxbX6tWrERcXhxdffNHUd547dw7NmzcXHrdh9Z25ubk4cuRIMVNv3759hZ89mDlntRnmNYaVK2Yb\nZvZTrLiYOmdyWUJgYCCFBwDGjh2LzZs3q4qLWT4WF6tsTCMf03zHzDnLfMc0h06cOBHr16+3mQdQ\nn6aMYC0cYNUfU5+sXKmxv2PGNG/ePNpCFBYXs3ysdqxGHbC5AO5YLsDZuEUN4262nDwrIfEkSLOx\nhLUob7Oxfbn+uoSEhIQN6NevH5KSkuDo6IjOnTujY8eOig0o69evx+PHj7F//34EBARg0qRJim5U\nT58+jbNnz+L06dO4cuUK3n77bcUr2ZjlY3EdPHgQd+/exZEjR7Bjxw6MHTsWgwYNUhQTwDPzGc2T\ntprvmDl3dXUt0TQnitdee41iDt29ezdOnz6N1NRUODs7Y+DAgaaVqiJg5ompqdjY2BIXDYiCWX8M\nfZ44cQInT55EbGws8vPzMWjQIMW72TC55syZY+o758yZg48++qjc+84ZM2YgJiYGeXl5eO6559Cr\nVy9FgxcsHoCrc1Y7ZsbE0gGLxxoEBQXRBslYazfv3btH4QF45SvPPBVdeKDVak1HCTMHFFkGPJFc\nabVavPLKK2bv1apVy9THsMx3TJPpiRMnyjxP/wTmumk/Pz+rr8llVX8sbV68eNFmDjbXkiVLaGZV\nZt+5b98+St/C4gF4Ome1YYDb9lhaEOG5du0aduzYYfZe//79MWrUKKHfPHjwoMVn1pEjRwqbjZcs\nWYL169ebmaJSU1Px3//+V/hYVlb5WDxAQd+/bds2M/Pm48ePMWbMGGFTWYcOHSwa3Ro2bCj8TOri\n4kIxqDFzVdRUlpSUhH379gmbyliGx6lTp2LkyJF45513TMa7s2fPYtq0acI71alVU8yFA6z6Y2lz\n5syZmDt3Llq1amV679KlS5g1axa2b98uVDYWV0REhMV/7+npKRQPwOs7P/74Y3Tu3BmDBg0yM/V+\n/PHHWL16tVBMzJyz2gzzGsPKFbMNM/spVlxMnTO5LOH8+fMUHrWCWT615Uqr1aJDhw7Yv3+/zVx1\n69bFjz/+SDFzMvN07NgxilnV3t4e69ato5jvHj16ZDOHEWrTlBG7d++mmI1Z9cfUp4R1SEhIUCUX\nC8x2/G8AcywXEBuDLQlqGHcbM2aMWTn8/f0Vnc4pISEhUVEhzcYSEhIVFu+//77JKPXll19izJgx\nGDhwoCKuhQsXmoyFixYtQqNGjRAfHw8AQhMxoaGhiI2NhV6vR+/evfGf//xHUTwAt3wsrs2bNyMp\nKQlOTk6YNm0aOnXqBL1eDwBCOwgbwTLzscx3zJwzTXMsc2iDBg3wzDPPmI7AMe4aKQpmnpiaYi0a\nALj1x9BnQkIC7ty5A61Wi2rVqgnvzlJaXD4+PsjIyEDHjh0xZ84cVK5cGadPnwYAvPzyy1bzMPvO\n/v37o06dOtDpdPj999/xzDPPoHv37uXGA3B1zmrHzJhYOmDxWAOmUYq1gp25Ep5VPjXmCeAOKLIM\neGo03zFNpiyoVVNqrD+mOVRtUKsO1Ag1lk+NbU+Ep1OnTvDz80P79u3h5OSE7OxsXLhwAR07dhT6\nzVq1amHnzp3o0KGD2U6DNWvWFA0fWq0WKSkpZvfl9+/fNy2yEQGrfCweAHBycsLvv/9ulquzZ8/C\nyclJmItpCmQZ1Ji5YpnKWIbHzMxM9OjRw2S8c3BwQI8ePfC///1PKB5AvZpiLhxg1R9Lm7m5uahf\nv77Ze/Xr10dubq5QPEyuZ599Fp999lmxvrNJkybCMbH6zqSkpGIG3nbt2uHQoUPCMTFzzmozzGsM\nK1fMNszsp1hxMXXO5GJh+vTpFk+8u3LlijDX3r17i71nMBioCwrLC19++aXFPN28eZP6OywjnzTf\nmcM4N1gYBoMBDx8+LIdoClBWmlIjRPVpHE8uigcPHpQLD1DyaaFXr14V4mH2m8a5gKJcSp7TWVxM\nnbPaMTMmlg7YXE8CcwyvNPhshegY159//omYmBgkJSWZ2mNubi5u3bpVGuFJSEhIqBbSbCwhIVFh\nMWTIEDg4OKBbt24YNmwYMjMzTTd2b7/9thBXdnY2qlatipSUFBw8eNDsM5GdY1etWoU6derAzs4O\nUVFR2LNnj+koDZGdegFu+Vhcx48fN70ODw+HnZ2dqXxKTBUsMx/LfMfMOdM0xzKH9uzZE61bt8Zz\nzz0H4O9dde3s7IRWXDLzxNQUa9EAwK0/hj7fe+89PPfcc3BxcQEA/PbbbwCgqG9hcj3//POm19HR\n0WafieSJ2Xd26dIFjRo1gru7Oxo3boyIiAhERkYCgNBuUiwegKtzVjtmxsTSAYunrFG7dm0Kj9oG\n2th42svHhBpz9bTHpEbzJAvMeNRWNkCd5ZMxqRt+fn64c+cOLl68iMzMTNSpUwevvfYannnmGSGe\nzz77DKGhoTh48CAyMzPh7OyMNm3aYOXKlcIxLVmyxLQLrcFggEajQePGjbF48WJhLlb5WDwAsHLl\nSnz33XcICQkx5crNzQ2fffaZMBfTFMgyqDFzxTKVsQyP3t7eGDt2LFxcXODo6Ijs7GxkZWXhgw8+\nEOIB1Ksp5sIBVv2xtDlz5kx8/PHHePjwIfR6Pezs7ODk5IQZM2YI8TC5Fi5ciKioKJMOnJ2d0atX\nL3Tq1Ek4JlbfOXjwYHh5eaFly5ZwcnJCVlYW4uLiMHjwYOGYmDlntRnmNYaVK2YbZvZTrLiYOmdx\nlWRIUmKY8/X1Ff5OSSjJ9C5af8zysbi6desm9P4/gWXkY5nvyiLnSgxzLHPounXrLL7ftGlT4ZjU\nqinWwgFm/bH0GRUVZfH9V199tVx4AGDnzp3C37EEVr8JFOzMaqnulIyRsbiYOme1Y2ZMLB2wucoS\njDHY8hzj0mg0sLcvsNjZ29vDYDCgcuXKWLZsGS0mCQkJiYoAO0NFnyWQkJD41+JJR0QNHTqU+lsp\nKSmKdty1BczylWWuRNC5c2eTmc/R0RHA3w8aIma+tm3bmpnvjBA13zHz9NVXX5X42UcffSTE5ebm\nZmYONULUiJmYmFjiZw0bNrSaR616etJR8SKLBgBu/bH0WRHBOkpeBOHh4SV+5u7uXuY8bLDacVmC\npQOmnoKCgjB+/HibOM6cOaNoJ7aiyMnJgaOjI5KTk2nGZUb5WDzx8fHCCz7+CZ6ensLHEJc2Fyvn\nAC8mZp5OnDiBnj172syjVk1NnToVn3/+OYVLbfXH7DtZXEuWLMGsWbNs4iiNvnP//v2Ue1kGD1vn\njDZcGm2PoQVRnqioKLRq1crs2So9PR2XL1/GSy+9ZPVvZmZmonLlymZHrefm5uLRo0dwdna2Pngy\nWOVj8bARHByMn3/+uZjRrW/fvsLHNB89ehRbt24tZlDz9PREv379rOZh56qoqaxNmzbo1KmT0KTs\n+fPnsW7dumKGRx8fH3To0EE4pqysLFM8VatWFf4+oF5NPXr0CKGhocVy/tprr6Fy5crCfIz6Y2lT\njbh58yZq165ttlNsVlYWkpOTFRm4WHj8+DGuX79uqrdnn30WDg4O5RYPoN42o8ZcAZx+igWmztXa\nZp6E8phH+TfA09OzRCOfyKYBzPFzNYI5pv+0Q41jzE+7Pp+E8phHkVAf1DiGxxzzBjhjsGoYd/v2\n22+FT8KRkLAGTcdWzIUEEmWPG5s9yvX3pdlYQkLiqcXJkyfRo0cPCtfo0aMpxyFPmzYNq1atIkTE\nLR+LSzRPLDNfWQ2MMHOuxsGDjRs3Uo7rVmPbA7iD3SL1Vxb6XLp06RMH48qLS41954EDB/Dmm2+q\nhgfg6pzVjpkxsbgYPMHBwcJGlJLg4eFB2UGAmWtW+Zh5YhpejWAZAgHbDXjMXBnBMt8x7jXmzp2L\nhQsX2hyLWjXFWjRQGKz6s1WbEyZMwIYNG2yOg8l15MgR9O/fnxARt+8MDAwUPrWgNHkAns5ZbRjg\ntj2WFpTwDB8+HN99912x99955x3s2bPHap4RI0Zg8+bNpkWzQIEJ3svLC7t27RKKyd/fH7Nnz0a1\natVM76WlpeHTTz8VvgdmlY/FAwDvv/8+vvzyy2LlmzRpkqJ2zDa62WpQY+ZKbaayrVu34s033yxW\nd/v374eXl5cQl1o1xVw4wK4/W7X52WefYfz48cXytGHDBuGddllcw4cPR3BwsNmufHl5eRg+fLjF\nY8GfBFbf+dNPP6Fbt27FeE6dOoVBgwYJxcTMOavNMK8xrFwx2zCzn2LFxdQ5k+tJUOtYLms88GmY\nR6lokPMo1kOtmmLNpaix/ljzH3Iepey55DxK2XGxx7wZY7BqGne7evUqGjVqhCpVquDRo0e4efMm\nWrZsSYlN4t8NaTaWsBblbTa2L9dfl5CQkChFBAUF0QY0WOsy7t27R+EBuOVjcYnm6Z8MxdY+gP6T\nYZP10MjM+ZIlS2gPjaxBjRMnTqguT8w1UX5+frSci9RfWejz4sWLNn2/tLjU2Hfu27ePMrDF4gG4\nOme1YzUety7CY+l4ydTUVISEhAgPkhX998bj+0SPLQ0MDLQYk5L8sMrHzJO/v79Frho1agjxPAnG\nAUWG0dhowLPWzMnMVUkwmuZsNaoajaEikzmWjhpNTU1FdHS00G9XNE2tXLmSduwgq/5EtWnJZJCa\nmoqUlBTh32ZyFYVer8fXX38tbAxl9p2WjmRNTU3F8ePHhSYrWDwAT+esNsyMqSQo1QKLR6vV4uHD\nh6hSpYrpvZycHGGzqlarNTMaA4Cjo6OZYdFa3L5928zYBADVqlXD3bt3hbmY5WPwAAWmKEvls3TN\n+CcYjW6tWrUyvZeWloajR48KmwILG9SMRk4lBjVmrvz9/YudXlS5cmVMmzZNyFTGMjweOXIEY8aM\nMXuvWrVqCA0NFTbxqVVT48aNw+bNm83abl5eHj744ANFCwcY9cfS5vnz5y3m6cKFC1ZzsLm0Wi00\nGo3ZexqNRtEu0qy+c+vWrRg4cGAxnq1btwr3K8ycs9oM8xrDyhWzDTP7KVZcTJ0zuZ4EtY7lssYD\nn4Z5lH8Cy8gn51GsA2v8FVCvplhzKcz6Y+mTNf8h51HKnkvOo/C5ymLMGxAbg1XjuFtRBAQEmMzK\nlStXxqeffkrfcEXi3wmDPr+8Q5CQsArSbCwhIfHUgnlTLnLcYVnwAOp8gGGWD+A9gD7tD43MQQ0G\n1Nj2APXWH3Nw8mkFu29RG9RYPjXGJIKuXbuiTZs2piMlDQYDnJyc4O3tLcyl0WgoA0XHjx/H7Nmz\nzfqPKlWqwM3NTZiLVT5mnm7cuFHsCDRHR0fUrFlTmIs5oMgy4DFzZQlKTHNMY+js2bPx1ltvmb1X\npUoV4d1Q1Kop1qKBkqCk/lja3LRpE3x8fMz6lkaNGiEoKEiIh8k1YMAA1K5d2/S3wWBAbm5uMXOK\nNWD2nSNGjChm4nZ0dMScOXPKhQfg6ZzVhpkxATwtMDXl5+eHcePGoVmzZqhevToePHiA69evw9fX\nV4inf//+8PX1Rb9+/VCtWjWkp6fj6NGj6Nu3r3BMTZs2RXBwMPr372/iCg0NVbQTKqt8LB4AePHF\nF7F8+XIMGDDArHzt27cX5mKaAlkGNWauWKYyluHRyckJV65cMduh6cqVK4p22VWrppgLB1j1x9Jm\nrVq18Ouvv6JXr16m93777TdFuxSyuEaNGoUPPvgAXbt2RbVq1ZCWloawsDBFRgZW3+ng4ID79++b\nXedSUlIUmTmZOWe1GeY1hpUrZhtm9lOsuJg6Z3I9CWody2VxqXFMWM6jlA+X2uZRAPVqqjw2j/gn\nyHmUf0ZFH9P/J6ixfGqMSQTsMW/GGKwax92KIjc3F/n5+dBqtcjNzcXjx49t4pOQkJCoaJBmYwkJ\nCQkrUHhi0xawVxerDU97+Z52qLH+1DrYrTaodQBXiRHIEtRYPjXGxORSow5EeLp06YI1a9ZQfnfF\nihUUnsmTJ6Nz584ULlb5mHmaPXv2P+7kbi2YA4osAx4zVyzTHNNkOmzYMHz44YfC3ysKtWqKtWgA\n4NUfS5vvv/8+bacZFlfdunVp+Wb2nf369cP8+fNVwwPwdM5qwwC37bG0wNTUSy+9hG3btuHmzZum\n3WyaNGki/KwwevRo9O7dG2FhYUhMTESNGjXg6+uLJk2aCMe0YMECfP/991i+fDlSU1NRs2ZNdO3a\nFdGo5e8AACAASURBVAsWLBDmYpWPxQMUHOUbFhaG48ePm8rXs2dPvPzyy8JcTFMgy6DGzBXLVMYy\nPC5evBiff/45bt++Db1eD41GgwYNGmDx4sVCPIB6NcVcOMCqP5Y2Fy9ejM2bN2PLli3Iz8+Hvb09\nOnTogCVLlgjxMLkGDhyInj174sKFC0hNTUXjxo3h4eEBZ2dn4ZhYfef8+fPxySefQK/Xm+pNo9Fg\n7ty5wjExc85qM8xrDCtXzDbM7KdYcTF1zuQqK7DmUQB1jlWz8DSX7d8ANdYfOyY5l1J2PMDTPY/C\n5HraY2LpQISLOZYLcMZg1TjuVhTvv/8+hg8fjoYNGyIxMRFjx46l/4aEhISEmmFnUOMdsYSEhAQB\nQUFBGD9+vE0cZ86cQceOHW2OJScnB46OjkhOTqYNuDHKx+KKj49H48aNKbEUhqenJ2VSmcXDzPmS\nJUtsPmbbCFb5Tpw4YfWR3U8CI0+loampU6cWW8GqFGqrv9jYWLRp04YSD4PLeJS8rSiNvnP//v0Y\nOnSoKnhKQ+e2tmNmTCwdsHjYYMVVWtdQtUDJvVRAQABtQHHt2rU0Ax4LrOv27t278e677xIiqlhQ\noqnbt2+jfv36lN9n1V9pa9N4DS0PrtzcXEU7QopA9p1lDyUxsbRQFpoy4uTJk5RjjFNSUhTtZFna\nYJWPxSOKuLg4LF++vJjRbfr06WbGTGtw7949iwY1X19f1KtXjxazaK4yMzNNprIaNWrghRdeEDaV\nZWZmYvPmzThz5oyZ4XHs2LGqNaiVl6aAgmtKWFiYKeddunRRtHAA4NRfWWlTjWCObYgiNzcXDx48\nQPXq1cvsmmMLyrPNVLRcqQ1qG8MD1DWPAvDHA+U8StnzyHkU66FWTbHmUtRYf6y+U86jlB2XnEcp\nHy4lYI7BliYY9y16vd703Ff0hBsJCaVo4sXZbEHi6cfNLZ7l+vuy15OQkHjqEBwcDACUwYyVK1fa\nzAEAPj4+ADgr+5nlY3GxBguKouhub0pha/mYOT9y5AgAbs5mz55t0/eNO5DYOkDGzBMzP2fOnAEA\nyuBYadSfLfmaMGECAFAGx1hcxqPkGWD2nYGBgQBg8wAZiwfg6ojVjlkxsXTA1BPwd/3ZCmZcTB2w\nysfiAZTdS7GMxgBK3WisJFebN2+m/HZJRuOcnBwKP/D3tcFWlLemShrkNl7XRcCqv9LWpvEaWh5c\nJZlOjPeKDJTGNVQtPADvOZTVhgFlMbG0UBaaMkLJ7vCW4OfnR+EBCnZaZIFVPhYPULBLtLVo0aIF\ngoKCsH79enzyySdYv349goKChI3GQMGO2cuWLcPWrVuxfft2bN26FUuXLqWbOUVz5ezsjG7dumHw\n4MHo1q2bmVE1NjbWao7Jkydjy5Yt2L59O7755htMnjyZbjTeuHEjjau8NAUAjRs3xjvvvIPx48fj\nnXfeMTMap6SkCHEx6q+stLl06VLVcSnZAbgkiPadlSpVQp06dYpdcw4cOECLiZlzVptRco0p7VyJ\ntuEngdlPseJi6txWLjXOowC88UA5jyIOOY/yZLDGXwH1aoo1l6K2eRSAN/8h51HKnkvOo5Q9l9Kx\nXOYYbFGoadwtOzsboaGh+PXXX7Fv3z7s3buXFJmEhIRExYB9eQcgISEhoRR6vb7Ye6mpqQgJCRE+\norDovzcYDHj48CE6deokxGPp5js1NVXRMSrM8rG4/P39LfLUqFFDKJ5/QmBgIKZMmWLzA+jcuXOx\ncOFCqx8amTkvif/rr7+mrSqdMGECNmzYYPWgxunTp4u9l5qaiujoaKHfZeapLDS1cuVK7Ny502Ye\ndv2J6NPSg2pqaqrwxCebi3WUPLPvjI+Pt8h1/PhxTJkypcx5AK7OWe2YGRNLBywegFt/rLiYOVej\nzln3Uk+Csd9kwHgNtRbMXD3JNMe43/Dx8cG2bduEvsO6NlQkTSm9rpd2/Ylqk3kNZXGp9V6RdQ1l\n8QA8nTPv75htj6WF0n5OKww1HqV67949Gpcay6eEy2h0K4oDBw7gzTffZISFjRs3Yty4cTbzMHO1\nZMkS4Wu8JSxduhQzZ860mefEiROUHAHlr6mS4OfnR8k5wKs/ljYvXrxoMwebS4195759+2j9CjPn\nrFwxrzGsXDF1oMZ+qjz6OzXOowDqfP6Q8yhyHgXgPvNVNE0x5lLKcx4F4D0fy3mUsudS4xiQGudR\nmFxMHZQE0T5BjeNuRTF9+nS0b98eBw4cwGuvvYZr167h7bfftolTQkJCoiJBmo0lJCQqLLp27Yo2\nbdrAYDDAzs4OBoMBTk5O8Pb2FubSaDSU43eOHz+O2bNnmz3YValSBW5ubsJczPKxuG7cuFFsRbOj\noyNq1qwpHBPAe4hhPXgwc858aGQNasyePbvYLgdVqlTBqlWrhHiYeWJqivnQyKw/hj43bdoEHx8f\ns76lUaNGinayYXLVrVtXdX3niBEjig08Ojo6Ys6cOeXCA3B1zmrHzJhYOmDxANz6Y8XFzLkadc66\nlwK4A4qsaygzV6yJJuYEA+vaoFZNMa/rrPpjaZN5DWVxqfVekXUNZfEAPJ0z7++YbY+lBaamygp2\ndnaq5FIjmOVjmgKZBjUWWAY1puFRjWBqSo0maDVqU4142vtOFtSYJzXGBKg3LmugxnkUQJ3PH3Ie\nxTrIeRTroVZNseZS1DaPAvCej+U8StlzqXEMSI3zKEwupg4ATp+gxnG3okhPT8f48eNx4sQJTJ48\nWT6fSUhI/OsgzcYSEhIVFl26dMGaNWsoXCtWrKDwTJ48GZ07d6ZwMcvH4po9ezYaNmxIiKgArIcY\n1oMHM+fMh0bWoMawYcMoR3Yz88TUFPOhkVl/DH2+//77tElzJhfrKHlm39mvXz/Mnz9fNTwAV+es\ndsyMiaUDFg/ArT9WXMycq1HnrHspgDugyLqGMnPFmmhiTjCwrg1q1RTzus6qP5Y2mddQFpda7xVZ\n11AWD8DTOfP+jtn2WFpgauqfwDgSGeAcX2sE0+zIKh+LB+CWT41g5kptUKM2AW5cFdlc+E9Qo5Fa\nyX1sSajIu9BaA1abUWP51BgTk4upc2u51DiPAqjz+UPOo1gHOY9iPdSqKdZcitrmUQDe87GcRyl7\nLjWOAalxHoXJxdQBwOkT1DjuVhTVq1dHRkYGmjdvjpkzZyIrK6tUfkdCQkJCrbAzPO0juhISEhI2\n4MiRI5SjfuLj49G4cWNCROrEmTNn0LFjR+HvBQQEUB5i1q5dS3vwYCE3N7fEY7ZFsXv3brz77rsU\nrooCJZq6ffs26tevT/l9Zv2Vpj5zcnLg6OioOi7WUfKy7yx7MGNi6YDFYyvi4uKwfft25OTkmCYt\nlAxWZWdn47fffkN2draJ52k6YispKQnff/+9WflEj1xj9ptqvIZOmjSJMtH0yy+/4NVXXyVEZI77\n9++bDZCWdz/M0BTzus6qv9LQ5oULF8zy9PLLL6uCi4HS6DsNBoOJS6PRlCsPQ+dGsNowM6aKANb9\nBvNeynh/npycbLN5WY33ZaVxr+/p6UkzO9jKVRr3sEuWLMGsWbNs5mHl6cSJEzYbHtWuqalTpxbb\nyUwp1FZ/sbGxVh8nX9pcrPFXgNt3AsD+/fsxdOhQQmTK8hQbG4tWrVrh7t27+Omnn9C7d280a9aM\nEg8AWp4A23NVGm2Y0U+x4mLqnMnFAjOmp3k8UM6jFIecR7ENSjXFmkupKPMoAG/+Q86jlD3kPEr5\ncCkBs08wQm3jboWh1+tx8eJFNGvWDE5OTjbzSUg08eLvxC3xdOLmFs9y/X3lsykSEhISKoWlI6WV\nQK/X4+uvv6ZwMSYTjGCVj8m1cuVKRd9jrZYs7QEyJXkq6WEqODhYmKukAbKcnBxhLkuYMGEChYep\nTSWaKmlw7MiRI8JczPorTX36+PiUK5dery/2X0pKCkJCQigxMfvOuXPnqooHUN53WgKrHSuJiaWD\n0tDToUOH8N5772HAgAEYOHCgTRMOCxYswNChQ3Hjxg289dZbcHZ2VsQzffp0xMfHY9OmTbh16xZO\nnjypOCZW+Zh5+uSTT9CgQQMcP34cjRo1wp07d4Q5ivabBoPBpAlRFC7L/fv3ER8fb/pPCRi5Yu3+\nU9hofOHCBYSFheH06dMWj520FsuXL4e/vz9GjBiBWbNmKe6H1aYp43U9Li4OCxYswIwZM+Dv7w9/\nf39hLlb9sbXp7++PkJAQzJ49GwcOHMDWrVsVx8biioiIwLhx4zBq1Ch4eHjYNNnB7Du3bNmCt956\nC126dEH//v2L7ZxU1jwAR+cArw0zYwJ4WmDwlPb9K/P+znh/LmICU/N9WVEw7/WNsKUdFsX48eOt\n+ndlkSvjMy0rZ7Nnz7bp+8ZnIhEDX0XT1JkzZwCAYjRm15+12iwJxmdHhtGYwcUcfwWU9Z2WYBzj\nEjHPGq9NgwYNQvfu3fHuu++iW7duGDx4MABleVq8eDE0Gg2WL1+O2rVrK7p/BYBFixZBr9dj69at\neOONN0zXK4bRWEmuLKE0xoAYO0Az4mLqnMmlxnkUgKcFOY9SHHIexTawxl+B8tcUay6losyjALy5\nFDmPUvZcch6ldLkA3lgucwxWjeNuRaHRaNCuXTubxiklJCQkKiLsyzsACQkJCaWwNBGfmpqK48eP\nC69GGzBggNngqsFgQG5uLgYOHCjEY+lmOTU1FTVq1BDiAbjlY3EVncw1GAx4+PAhOnXqJBTPP2Hu\n3LlYuHChzTwTJkzAhg0brP73zJxbMkSlpqYiJCSEtqrUx8cH27Zts/rf792712JMKSkpQr/LzFNp\na8o42C26s0ZZ1J+IPi0NPqampio6wpHJxTpKntl3WjLZpaamIjo6ulx4AK7OWe2YGRNLByyewtix\nYwd27NiBsWPHYsOGDVi6dKlirvz8fLRv3x729vbo2rUr1q5dq4gnPT0d48ePx4kTJzB58mSMGzdO\ncUys8jHz9PjxYwwaNAg7d+7EsGHD8MMPPyjm2rJlCw4ePIiEhAS4urrC2dkZBw4cUMS1fPlyXLly\nBbGxsaadwJTsCMfMVUREBIKCgpCTkwO9Xg87OztFkzH+/v5wdHTEyZMn8dJLLyEtLU3xLrTR0dHY\nvn07Ro8ejW3btime6FGrphYsWICPP/4YS5cuha+vr6IFSUaw6o+lzbt372Lr1q0YPXo0li9fbtPk\nCYvriy++wOrVq+Hn54fly5dj586dimNi9p1Hjx7Fvn374OnpiS1btig27bB4AJ7OWW2YGRPA0wKD\nh3W/wbyXUuP9OfO+jHmvXxICAwMxZcoUyu6jxvEIaw1qpXEPWxhKn2ktwfgMaq3hkflMVNE0tXLl\nSpuuW0Yw609Um6xnRyYXa/wV4PWdzDEuo2YmTpyIwMBAODg44PHjx5g8ebIQT2FkZGQgMjISzs7O\neP3117F7925FPH/++Sc0Gg3OnDmD77//XpGBhJUrNY4BMeNi6pzFpcZ5FICXczmPIudR/gnlNY8C\nVCxNKblvUds8CsC7R1Djc5par6EsLjmPUj5cAHcsF+CMwapx3M0SmM98EhISEhUF0mwsISFRYTFi\nxIhiA+yOjo6YM2eOMFfdunUpRxDeuHGj2K4njo6OqFmzpjAXs3wsLo1GQzuSFOA9gLIeGpk5Zz7o\nsQY1Nm3aBB8fH7PvNWrUCEFBQUI8zDwxNcUc7GbWH0Ofx48fx+zZs83qrkqVKnBzcxOOh8nVpUsX\nyg6PzL5z9uzZxVY4V6lSBatWrSoXHoCrc1Y7ZsbE0gGLpzD0ej0qVaoEjUaDBw8eKBosNaJnz57I\nyMjAwIH/z965R0VVtX/8yzCggiWiCwnwXmpmr3fl5yVKTdJV5A1BBQHxgoamoiRieUOEek0LvCIC\n4SVRAc3sFTNvlGRJr2QIKiYCokg4XOQ6zvz+YJ3zzgyQc/Z5RkY7n7Vcyxk939lnn+c8Z+/nec7e\n4+Di4oJ+/fox6VhZWaG8vBzdunVDUFAQKisrmdtEdX6U/fTKK6+gvLwcgwcPhqenJywtLZm1KAOK\nVAV4lH1FVXxHWWSqVCpRW1sLS0tLJCUlMa+ya6w2RfXSAEB3/ahs8/Hjx6ioqED79u0RGRmJoqIi\nJh1KLZVKxY/NbGxscPnyZeY2UfpOpVIJtVoNc3NzXL58GdevX29WHYDOzqnuYco2AXS2QKFDNd6g\nHEsZ4/icclxGOdanLGyhikdQ9hXVnJYqRkI5JzJWm6IsHqC6flS2STV3pNSiir8CdL6TMsbFUV5e\njgsXLqBr1664desWysvLmbWWLVuGEydOYO7cuaitrWVeqbdt27bw9vbG6NGjoVKpYG5uLliDqq+M\nMQZE2S5KO6fSMsY8CkDX51IeRX+kPIp+UD5DjdWmqMYtxpZHAejGCMY4TzPWZyiVlpRHaR4tgDaW\nC9DEYI0x7kaZh5aQaAz148fN3QQJCb0wUbO8fiUhISFhBKxdu5Zs+6i6uromt/sRQkZGBv71r38R\ntIj2/Ki0CgsLm9xeiYVRo0Y1OgEdNWoUunXrprfOuHHjGkwaW7ZsCUdHR0Fv9FL2+cKFC8kmehMm\nTGgyqCHEbhMSEkRtY85B2U+UNuXp6Uk26ae8fhT2+cMPP2DUqFEk7aHUooLSd27dupVkyzUqHYDW\nzqnuY2p/bqxcuHAB/fv3x7Vr1xAdHY23334bkydPbu5mAagP4F27dg1du3aFhYUFkwbV+RmqnxQK\nBdq0aQMTExOm493d3XHgwAHMnj0b8+bNw/r16/HNN98waU2bNg1xcXH48MMPMXbsWMTExODYsWOC\ndSj7yt3dHV9//TU8PT2xe/dueHp6Mq1U5uHhgR07duCTTz5Bt27d8MMPPyAxMZGpTUVFRbCysoJC\nocC3334LR0dHpiSKsdrU9u3b4eHhgWPHjuHgwYPo168f1q1bx6RFdf2obFOpVMLU1BRVVVVITU1F\n37590aFDB8E6lFpHjhzB2LFj8dNPP2H37t146623sGDBAqY2cVD4zqysLHTq1AkFBQU4ePAgnJyc\nmAp3qHR0EWPnVPcwZZsAOlswhE2xQjmWMsbxOSWUY/0RI0Y0Wqwxfvx4DBo0SJAWVTyCEqo5LVWM\nhHJORAmlTVHGEai0qGyTau5IqUUVfwXofCdljIujuLgYhw4dQmFhIezt7TFlyhS0a9eO9DeEolar\n8fDhQ1hbW0OpVEKhUGgVSugDVV8ZYwwIoGsXpZ1TaRljHgWg63MpjyLlUTiMLY8CGK9NUY1bjC2P\nAtCNEYxxnmasz1AqLSmP0nxQx3IpYrDGGHejnD9KSDRGR8/Y5m6CxDNCXrx3s/6+VGwsISEhoUFO\nTg7i4+NRVVXFT2g//fRTwTqVlZU4d+4cKisreZ0pU6aQtrU5efDgAY4ePap1fkJXEQLoJqCUwR9j\nxBBBjZKSEjx69Ij/3LFjR1J9oVDYFGWwmxJq+8zIyNDqp//7v/9rdi2qreQN4TvVajWvJZPJmlWH\nyndyUNzHlG2isgMqnadFVFQU5syZI1onNTUVI0aMIGiRcZKcnIwJEyYIOoYyoGioAjwxUBXNURaZ\nNsVff/3V7AUSurDYFCVU18/QtpmVlYVevXoZnRYVku/UD8p7uLnvPUPxxRdfiBqXcaSkpJBtnZmX\nl0c2T6M6PyodAEhPT8eAAQMEHUNZ2GLoQlqWvqKa0z5LMZLmtinK4gGq62do26yqqkKrVq2MSmvf\nvn1kW61T+k4qWGyTw9PTs0EhBLd65FdffaW3zi+//NLkvw0ePJipbdSI6SdDQtUuSjun1GKFKo8C\nPN+5FCmP8nSR8ij6Y4y5FEPYJ1X+Q8qjPF0tKY/SPFr/RITGuIzRd0o8X0jFxhL60tzFxuJGChIS\nEhJGwIkTJ+Dm5gZnZ2eMGzdO1GR0zZo1mDhxInJzczFp0iS0bt2aSWf58uXIy8tDdHQ07t69i9TU\nVOY2UZ4fldaKFStgZ2eHM2fOwMHBAffu3WPS0Q2QqdVqqFQqqFQqQTqa51FSUoK8vDz+DwuUff7L\nL79gzpw58PDwwPTp05kCwZoBsoyMDKSlpeHixYuNbp+mD+Hh4QgMDMS0adOwcuVKrFy5kkmHsp8o\nbIqb4OXk5GDNmjX46KOPEBgYiMDAQOZ2UVw/SvsMDAzEkSNHEBwcjOTkZMTFxQnWMITW5s2bsXHj\nRpiYmCA8PJz57XpK3xkbG4tJkyZh6NChGDt2bIPVP562DkDnOwG6+5iyTVR2QKXzdwQEBJBpXbhw\ngUSHZSvGpqA6P8p+Yllpt1evXrCwsMArr7yCVatWiVq5wMbGBubm5rCxsYGPjw9fzCl0K8amYOmr\nyZMn44UXXoCzszMOHTrEvDqnXC6HiYkJLCwsMHbsWL7QOCsri0mvMZYsWUKi09w21RRRUVGCj6G6\nfoa2zdDQUBIdSq2NGzeS6AC0vnPmzJlGpQPQ2TnVPQzQ3ntUtiBER3Mszv3JyMjAmTNnRLdDpVJh\n9+7donU4WMZ3VOdnyH7i+Pe//y34GMrVR6mKOSn7qqmkpdBkcVNz86qqKsFtagw/Pz/BxxirTTVV\naJySkiJYi+r6GXo16Xnz5jWbFhfz0/zz119/4ciRI2RtYp0b6/Lxxx+T6ADAli1bmI/t0qULgoKC\nsGvXLgQFBaFz586IjY1FTEyMIJ0vv/wSMTExOHv2LGJjY/Hll1/ixx9/xE8//cTcNg6qvmK5h5uC\nxU81hdB2Udo59T1jjHkUgC4eKOVRnoyURxEGVfwVMD6bos6lGFseBaDLf0h5lKevJeVRmkerMShj\nuQBbDFaX5oy7PanQODk5WUxzJCQkJJ4Z5M3dAAkJCQmx7N27F3v37sWsWbOwY8cOUQnLx48fo2/f\nvpDL5XB0dMTWrVuZdMrKyjB37lxcuHABixYtErXiIeX5UWnV1tZi/Pjx2L9/PyZPnozjx48ztwmo\nn4AeO3YM+fn5ePHFF9G6dWumAXl4eDhu3LiBrKwsdO3aFQCYtjOh7PPNmzfjyy+/xJIlSxAeHo79\n+/czawUGBqJVq1ZITU3FoEGDUFpayvQG9dWrVxEfH4+ZM2fiq6++Yk5kUfYTpU2tWbMGy5Ytw8aN\nG7F48WKmJCEH5fWjsM/79+8jLi4OM2fORHh4uKjkCaWWSqXit9+0sbHB5cuXmXQofef333+PxMRE\neHp6IjY2ljlQSqUD0No51X1M2SYqO6DS+TuKiorINcVCueEM1fkZYz8B4O2egiVLlpBoUfbVxo0b\nERQUJFonNDSUrJ+o7NNYberChQskK5QDdNePyjYpfQuV1rVr10h0AOM8P2PcQMwY2wTQ2YIQnWnT\npjV4eaVVq1ZYtWqVoN90dnbW2n5erVajrq4O48aNE6QDoNHx5cOHDwVtFcxBdX5UOgAaFBqo1WpU\nV1dj4MCBgrWa4uOPP8b69etJtPz8/LBjxw69/z9lXzVWMPTw4UMcOXKEZAXLefPmCXq2HD58uNH2\nsLwQ8yzZFPfigNBVyg19/YTa5hdffNFoe1ieCVRajo6O6NWrF78yr1qthoWFBWbPni24TVS+s7EC\ntIcPH+Lq1auC2xQSEoJVq1ZpPSPUajVu3LghWIsjMzMTL730Elq2bAlbW1tkZmbC1NRUsI6ZmRm2\nbdvGf/bx8cHixYsFaVD1FeU9TOmnqNpFaeeUWoBx5lEAuniglEfRHymPoh9U8VfAeG2KKpdibHkU\ngC7/IeVRnr6WlEdpHq3GoI7lUsRgjTXGBdQXLz+Pu4FJSEhI6CIVG0tISDzzqFQqmJmZQSaTQaFQ\nMAWDOUaOHIny8nKMGzcOLi4u6NevH5OOlZUVysvL0a1bNwQFBaGyspK5TZTnR6X1yiuvoLy8HIMH\nD4anpycsLS2Z2wTQTUCpJo3UfU410aMKaiiVStTW1sLS0hJJSUnMb4ZT9hOlTVEGuymvH4V9Pn78\nGBUVFWjfvj0iIyNFTfQptVxdXVFeXg4PDw94eHjgrbfeYtKh9J1KpRJqtRrm5ua4fPkyrl+/3qw6\nAK2dU93HlG2isgMqnb9DdxtaMRhjcIvq/Iy1n4xRi7KvqIrvKPvpebcpSozx+knox/Ns58bYpubi\n7bffJlkd18bGhinh3Ri5ubn4/PPPtb5r1aoVrK2tBWtRnR+VDlC/bS5VX1EWBVIVqFH2FVVRGVVh\naHR0NObNm6d1nIODA9Oq8sZqU5QvDlBdPyrbPHPmDIKDg7WuX8uWLfldFJpDa+jQoYiIiBD8+41B\n5TuDg4MbrLrXsmVLbNq0SXCbuOJ53WeEp6enYC2OoKAgBAYGorKyEq1atcJHH33EpNO2bVuEhoai\nW7du+PPPP2FlZSVYg6qvKO9hSj9F1S5KO6fUAowzjwLQxQOlPIr+SHkU/aCKvwLGa1NUuRRjy6MA\ndPkPKY/y9LWkPErzaDUGZTyJCinGJSEhIdH8SMXGEhISzzwffPABKioq4O/vj/Xr14sK4M6fPx9A\n/UoGYlYd4YKAq1evxrVr1/i3b1mgPD8qrU8++QQA8OGHH0KhUKBNmzbMbQJoiwIpJo2UfU450aMK\nanCJx7Vr1+Lbb79FeHg4kw5lP1HaFGWwm/L6UdhnbGwsTE1NERISgtTUVLi6ujK3h1Jr8uTJAOoT\ntc7Ozsw6lL5zzZo1qKqqwooVK3Dw4EHm4DuVDkBr51T3MWWbqOyASufvoAwizZ07l0RHd6U3MRjj\n6pxituDThTKgSKX1vAcmNYtwxMDST/fv34eNjU2Da0VpU8Z4/ahsk6WgyNBalP39vPrOR48ewdLS\nkszOqe5hwDjvPSE6VMWOe/bsIdEB6ou37O3tSbSozo9KBwA+/fRTMi3KokCqAjXKvqIqKqMqDPXx\n8SFblclYbYryxQGq60dlm4sWLcLgwYNFt4dSi7Joksp3Tp48WdRKlY2ha1Nitp8eNGgQBg0aJLZJ\n2LRpE9LT01FYWIixY8cyrSJM1VeU9zCln6JqF6WdU2oBxplHAejigVIeRZiOlEd5MlTxV8B465yL\nJgAAIABJREFUbYoql2JseRSALv8h5VGevpaUR2kercagjplS6Blj3I3DGGPMEhISEobARC15PAkJ\nCYknEhUVRbK1cmpqKkaMGEHQIuMkOTmZKcCblZWFTp06oaCgAAcPHoSTkxNT4UBRURGsrKygUCjw\n7bffwtHRkbTAorlRKpUwNTVFVVUVUlNT0bdvX3To0IFM/6+//kK7du3I9ChgtSljxJD2mZWVhV69\nehmdFtVW8pLv1B+q+5iyTVR2QKUDAMXFxYILr7gtsH7++WfExcVh0qRJgrdWBtDgHGQyGWxtbTF1\n6lQmn15aWopHjx7xn+3s7ASfH7f6mi4s/XT+/HmMGDEC2dnZOHz4MMaNG0eSHNfE09OTrChk6dKl\nDVZE+zvu3r2r9Vkmk8Ha2hplZWVkxXxU5xcaGoqVK1cKOkZ3+1UTExPY2tpiyJAhoopfT548CWdn\nZyabcnd3x9dff8382/pw4cIFsqJVquunr21u27YNCxYsAFBfXEaxgklkZKTWZ85POTs7i141CWAb\na6Snp+PEiRNa/k7MFr2a7Nu3T3SBBMu27X/HrFmzmIpZV61ahXXr1kEmk4luw9Pw51TjThadEydO\nIC4uDgqFAjKZDC+88AISEhIE/3ZOTg7i4+NRVVXFJ5VYi5UqKytx7tw5VFZW8lpTpkxh0qI6Pyod\nAHjw4AGOHj2qdX4ffvihII2tW7eSFQUmJCRg6tSpJFoAbV+J5YcffsCoUaNINUtKSrR8cMeOHZl0\njM2m6urqYGZmxvT7hoLaNgEgIyNDq59YtpKn1Prll1+wa9cuVFVVQaVSwcTEBPv27WNqD6XvBOrn\nRpyOmOfpf//7X9y9exd2dnaiXoI3ZsT2FcU9rAmVn6JqF6WdU2oZGqo8CvB8xwOlPIphkfIozzaG\nts/mnIc2hZRH0Q8pj/L0tMTEcv8OMTFYivgdB2vc7UkkJSVh4sSJ5LoS/xw6esY2dxMknhHy4r2b\n9ffFZx8kJCQkjBQxq0bocuHCBRIdli3cmoLy/Ki0EhMTmY7r1asXLCws8Morr2DVqlXMEw0bGxuY\nm5vDxsYGPj4+fABC6FaTTUHZ5yzFEXK5HCYmJrCwsMDYsWP5AFlWVhZJm5YsWUKiQ9lPrDbVGFFR\nUWRaLNfPkPYZGhoqWsMQWlRbyVP6zpkzZxqVDkBr51T3MWWbqOyARSckJAQqlQpxcXF4//338e9/\n/xsA2wqPSUlJkMlkOHDgANauXYsdO3YI1gDqEx6jR4/G7NmzMXr0aFRXV6N///5YtmyZYK2FCxci\nICAAmzdvxubNm7FlyxYAws/Py8tL6zO36gRLP0VFRUEmk2H79u0YP348qU/hkqkUhZzcqhZCCo0B\nYPHixfjggw/w6aefYsGCBfjggw/g6+tLes8EBwcL+v+5ubmIjY1FZGQk/weA4EJjADh+/Dj++OMP\nVFZW4o8//sDRo0fx448/YvHixYK1NDl48CAANpuytbVFRUWFqN/ncHV1hbOzM6ZOnQpnZ2e4ublh\n1qxZMDU1JdEHhF+/srIynDp1CsnJyfwfQH/bTEtL4/8eExMj6LebIjs7G61bt8brr7+O1q1b4+rV\nq6irqxNcZLFhwwZMmTIFM2bMwPTp0/mEAEsybs2aNXBxccH8+fP5P1ScPn2a6bjFixdDpVJh06ZN\nWLp0KZYvX07WJtZ1Ae7cuUNSaAzQ+nMqW6C0qb1792Lv3r2wsbHB4cOH0aNHD8EaQL1tTpw4Ebm5\nuZg0aRJat27NpAMAy5cvR15eHqKjo3H37l2kpqYya1GdH5UOAKxYsQJ2dnY4c+YMHBwccO/ePcEa\nuoXGarUaKpUKKpVKsJZmMWdJSQny8vL4PyxQ9tUvv/yCOXPmwMPDQ8vW9UWz0DgjIwNpaWm4ePEi\nLl68yNSe8PBwBAYGYtq0aVi5ciXTGIPD2GyKKzTOycnBmjVr8NFHHyEwMFDUim5irx+1bQYGBuLI\nkSMIDg5GcnIy4uLimHQotTZv3oyNGzfCxMQE4eHh+Ne//sXcJirfGRsbi0mTJmHo0KEYO3asqFXO\nVqxYgePHj0OhUOD48eNYsWIFs5YxQtVXFPcwB6WfomoXpZ1TajWGMeZRALp4oJRHaYiURxEHVfwV\naH6bagqqXIqx5VEAuvyHlEd5+lpSHuXpaYmJ5QKGicGyxu8aQ+x6nDt37tT6zC2UIRUaS0hI/FOQ\nio0lJCSeW1i3RjIklIvJU56fMfYVQDcBpZo0UvYT5aSRKqhBZZ/Gak+UwW7K60dhn5S+xRg3vTDG\n8zPGfgKMt13NRWZmJmQyGdLT03H06FFcunSJWaumpgZbt26Fvb09OnTogFatWjHp3L59G05OTuje\nvTveeOMN3LlzByNGjIBSqRSsVVtbi927d+Ozzz7DZ599JnglxczMTBw6dAgPHjzA4cOHcfjwYRw4\ncKDB6r1CePToEZKTk9G+fXsMHDgQFhYWzFq6UAYUr1y5wnTcCy+8gKSkJGzZsgXJycmwsrJCfHw8\nzp49K1hr165dUKlUOH78OKZMmYK9e/cCEF405+/vDxsbGwwcOJD/w0pNTQ2Cg4Mxffp0BAcHQ6lU\nYunSpWQJHRYKCgowatQouLu7MxXsaNKpUyccOHAACQkJOHDgAOzs7BAREcEXnwuBqujR29sbt2/f\nRl1dHf9HCNyKco8fP+b/zlp4x1FcXAxvb284OTnB29sbDx8+hJubG6qqqgTp3Lx5E4cPH8a+ffuw\nf/9+UauvvfHGG2jdujUcHBz4P83NvXv3IJPJkJ+fj5iYGKYiMK74T/dPaWkpU5s6duyIoKAgHDx4\nkPfrrFD6cypboLQplUoFMzMzyGQyKBQKXL16lUnn8ePH6Nu3L+RyORwdHXHjxg3mNpWVlWHu3Llo\n164dFi1apLU6o1Cozo9KB6gft4wfPx6WlpaYPHmyqKIyyqJAqgI1yr6iKiqjKgy9evUqdu/ejW7d\nuiE+Ph4vvvgikw5gvDZF+eIA1fWjss379+9j7dq1sLe3F7X9O6WWSqXiCxdsbGxw+fJlZi0q3/n9\n998jMTERPXv2xMmTJ9G9e3fmNuXn52PVqlWYPn06Vq1ahfz8fGYtY4SqryjvYUo/RdUuSjun1GoM\nY43lGmOs2lj7Ssqj6Iex5VEA47UpqlyKseVRgOc7P2CMeRRqLSqMsU3PE5QxWDFQx92A+jhQamoq\nH4Otqalhyg1ISEhIPMvIm7sBEhISEoZCzFbPuhjjpIPy/Ki0qPvJ2Cb9lH1OibGd3/N+71HzPJ+j\nMZ7b827nxujPm9OXW1tbw9vbG6NHj4ZKpYK5uTnz70dEROC3336Dk5MTamtr4efnx6Tj4+MDLy8v\nyGQyqFQq+Pj4QKlU4v333xespVarsXTpUnTu3Jn/TsjKozKZDHJ5/ZRQLpdDrVajRYsWCAsLE9wW\njtDQUPz444/w9/dHbW2tqOIfY0QmkyEuLg7dunVDTk4OTExMoFQqBReIAsD58+cxd+5cpKSk4MCB\nA3Bzc4OHh4dgnUGDBvGFmGLp06cP/P390bVrV/z555/o3bs3lEolunbtqtfxy5cvb+CH1Gq1qOK7\nQ4cOMR+rS25uLoqKitC6dWvcu3cPeXl5sLS0ZPIvXNGjWLp37w5fX19Rq9F6eXnx58AlmU1MTPDV\nV18x6Tk7O2PatGl46aWXUFhYCGdnZyiVSgwdOlSQzosvvohNmzZp+SjWbc2vXLmCjIwMAPU2xXJ+\n06dPh4mJCd9X3N9Z7bNnz55wcXHBvHnzUFtby6+OKYSmCkU0VyUVwqBBg5iOawxKfy7WFrh7jdKm\nPvjgA1RUVMDf3x/r16+Hp6cnk87IkSNRXl6OcePGwcXFBf369WPSAQArKyuUl5ejW7duCAoKQmVl\nJbMW1flR6QDAK6+8gvLycgwePBienp6wtLRk1uIK3Tw9PREbGytqFdqrV68iPj4eM2fOxFdffdVg\n9WR9oewrqqKy+/fvIy4uDjNnzkR4eDjz+FWpVKK2thaWlpZISkpiXmEXMF6b0n1xYOvWrcxaVNeP\nyjYfP36MiooKtG/fHpGRkaKKmqi0XF1dUV5eDg8PD3h4eOCtt95ibhOV71QqlVCr1TA3N8fly5dx\n/fp15jbZ29sjJCQEL7/8MnJycmBvb8+sZYxQ9RXlPUzpp6jaRWnnlFqNYawxLiqkPMrT15HyKE9f\nyxjvPWqe53M0xnN73u3cGNvUHFqGiOUC4mKwlPE76rhbUlISEhMTkZ2dzcdjzc3NmfUkJCQknlWk\nYmMJCYnnFspB+dy5c0l0WLe1agxjnMBQFxQZW1GgMfY5Jazb4ejCcm7379+HjY1Ng2tFaVPGev0o\n7JPbSowCSi2hW8k3hTH6TgqdR48ewdLSktTOqe5jyjZR2QGLTkREBB4+fAhra2solUps2bKF+fc7\ndOiAd955h//Mapfjx4/H+PHjG3zv7u4uWGv27NlMbeDo1asXevXqherqakyYMEGUlq4mB4stNRVQ\nvHnzJrOWJmq1GgqFQrAWAERGRuLUqVO4du0a7OzsEBkZCblcjoSEBMFaMpkMK1euRI8ePWBmZoaW\nLVsytSkzMxOurq6wtrbmizBZV/v86KOPcP/+fRQWFuKll17itxpdv369XscvXryY6XefFp9++ili\nY2NRUFDAr8inVCqxevVqwVpURY/Z2dl466234ODgwHT94uPjBf/mk/D29oaHhwcUCgWsrKz4lxIW\nLVokSOfNN98kaxPFee7fv5+gJf9j7dq1Wp9Zirv9/f0BANXV1bhx4waqq6t5O2CBcrtGCn/OIdYW\nuG02KW2Ke44PHjwYgwcPZtaZP38+AGDGjBmiVl4H6sctALB69Wpcu3ZN7xc9GoPq/Kh0AOCTTz4B\nUP9ilEKhQJs2bZi1KIsCqQrUKPuKqqiMqjCUW31q7dq1+Pbbb0WtaGusNkX54gDV9aOyzdjYWJia\nmiIkJASpqalwdXVl0qHUmjx5MoD6F5ycnZ2Z2wPQ+c41a9agqqoKK1aswMGDB0W9xBAeHo709HQU\nFhZi3LhxGDBgALOWMULVV5T3MKWfomoXpZ1TajWGMeZRALp4oDHGhKU8SvNoUUEVfwWEn9/TyKMA\nxhVD56CyT6r8h5RHeXpaUh7FcFqGiuWKicFSxu8MEXebOHEiFixYgG3btpG1U0KCQ6163NxNkJDQ\nCxO1MY7SJSQkJAgoLi4WPFlITEzEhAkT8PPPPyMuLg6TJk3C2LFjBf92UFCQ1meZTAZbW1tMnTqV\nL9oQQmlpqdY2gHZ2dkzn19QAWqjW+fPnMWLECGRnZ+Pw4cMYN24c6SpaHJ6eniSFBUuXLsXnn3+u\n9//X3T5eJpPB2toaZWVlZBPQrKwswdtsN0VoaKig7TSTk5O1PpuYmMDW1hZDhgwRFbA5efIknJ2d\nmWzT3d0dX3/9NfNv68OFCxfIgi2U108f+9y2bRsWLFgAADhz5gzJCiaRkZFanzk/5ezsLHjVlg0b\nNuC3335DixYtRBW6paen48SJE1r+buPGjYJ1GmPfvn2iC0AePnyItm3bkrQHAGbNmoU9e/YwHbtq\n1SqsW7dO1EqYAK0/p7IDKh2gfitCGxsb/nNJSQmsra2ZtBYvXqxVrLxhwwZBAUDNolfddojZBl6T\nlJQUpnGLSqVCVlaW1r3HWvwREhKCVatW8Z+3b9/OF2I9y+g+OzXHVKyF2lVVVbh58yZee+01KJVK\n3Lp1i+zZwgr3LAeAwsJCrF+/nilwmpKSgrS0NFRVVfHfsfrzmJgYnDx5EqampqJ9AiVJSUkNvqMs\n9BQKxfzD09OzybEg6yrJmqSnp5MV2/j5+WHHjh1Mx8bFxSErK0vrOxb7zMzMRO/evfnPOTk5zNuI\nT506FRMmTICFhQX/HYtvyc3NxZkzZ1BRUcF/xyVWhGJIf85qC2ISQvoSEBCATZs2idaJiorCnDlz\nCFoEpKamYsSIESRaVOdHpQPUP2OF2ntWVhY6deqEgoICHDx4EE5OTsxzvaKiIlhZWUGhUODbb7+F\no6MjaeEAZV8JRalUwtTUFFVVVUhNTUXfvn2ZYlJN8ddff6Fdu3YkWs1tU8aIoW2TMq5BpbVx48YG\nYxpWKH2nvsyZMweDBw/GoEGD8K9//Yt/YUsM48ePR2lpKezt7ZGfnw8rKyu0adMGbm5uguycMgZk\naCjvYUo/RdUuSjun0mrOPApAm0uR8ijikPIo2hgqjwKw51KeRh4FoMulPO08CkCfS5HyKGxQ5lKk\nPIrhtShjuVRQxe8Aurgbh+44obKyUktbQoIVhxnRzd0EiWeE/H2+zfr70srGEhISzzwhISFYuXIl\n4uPjkZiYiJEjR2LZsmVMwYykpCRMmjQJBw4cwNq1azF//nymIJlSqYSzszO/BfV3332H/v37Y9my\nZYKDPgsXLkRVVRU/KTMxMcGnn37KdH5eXl5ahQKBgYFMWlFRUXjjjTewfft2eHl5YcOGDUhMTBTc\nnqbgJrNiA2RffPEFPvzwQ0EBMqC+oKyurg6dO3fG7du3YWpqCgsLC4wcOVLw6gy7du3C7NmzceLE\nCcTGxmLChAnw8PBgCrA0VTwgJEAGAMePH0fXrl15+8zJyUGfPn2wf/9+fiUQFg4ePAhnZ2cm27S1\ntUVFRQXJFvCurq4oKytDmzZtUFpaCisrK1haWjKtANrURJ3l+pWVleHnn3/WCgBNmDBBL/tMS0vj\nA2QxMTEkxcbZ2dkYOHAgbweXLl1Cu3bt8OGHH2L37t2CtKi2kl+zZg1CQkJgZWUlWkuX06dPMwXJ\nFi9ejM8//xybN2/G1atX0b59e3z22WckbRLzzt+dO3dEB8gAWn9OZQdUOgCwbNkyredeWFgYPv30\nU0Ea+fn5yMvLw+3bt3Hx4kUAQF1dXYNA15PQfCNfbBKI80cqlUrru/j4eKZxi6enJ15++WWtsYbQ\nYuOysjIoFAr8/vvv/KprtbW1uHTpkuDiNN1kjiZCg4BHjhzBu+++ixYtWgg6Tpe6ujr+73v27IGv\nr6/oVTlatmyJ119/HQBgbm5Olnz5+OOP9V6JWJfff/8dJSUlqKurw/nz57FixQomnbi4OERHRzOv\n1qxJSkoK9u/fT+LzfH19sXXrVrRs2RI1NTXw8/NDTEwMk5ZuYXF6erro9gH/G78KRXP+cevWLfzn\nP/8RPP+IjY0FUO9PfHx8+M9UbNmyRXDR8pEjRzB58mStMaparRa1iun58+d5OxBDWFiY1vns2LGD\neYzQuXNn5Ofni05M+Pv7Y/78+ejZsyezBqU/bwoWWwCans9Swrryqy4XLlwgKzbetWsXWcEc1flR\n6QD/K1YSAvfMfOWVV7SK4lngXkyzsbGBj48P/z1VgRplXwktKuMKHS0sLLTGiFRFH0uWLCF5GQVo\nfptqCsoXB4ReP0PbZmhoKNn1o9K6du0aQWvqofKdM2fO1PvcwsLC8Ouvv+K7777DZ599hlatWmHA\ngAEYNGgQHB0dmX6/U6dOiIiIgJmZGWpra7Fo0SJs27YN06dPF2TnlDGgphDSV38H5T1M6aeo2kVp\n50K1jDGPAtDlUqQ8CjtSHqVxDJVHAdhzKZR5FIAul2IseRSAPpci5VH0x1C5FCmPYngtylguQBOD\npYrfAXRxN4758+dj+fLl6N69O3788Ufs2bMH0dFSkaiEhMQ/B6nYWEJC4pknMzMTMpkM6enpOHr0\nKKZOncqsVVNTg61bt8Le3h4dOnRAq1atmHRu374NJycnmJmZoWPHjti5cydGjBiBrVu3Ctaqra0V\nHfTNzMzEH3/8gQcPHvCTjrq6ugZvnuvLo0ePkJycjPbt22PgwIHkb+uJmcxqcuXKFabjXnjhBa1J\nga+vL6KjozF9+nTBQbLz589j7ty5SElJwYEDB+Dm5gYPDw+mdlEUDwD1dq65GufMmTOxdOlS5nZR\nUFBQgFGjRqFbt26QyWSi3uTt1KkTgoODYW1tjZKSEqxfvx4hISGYNWsWhg0bJkiLctLv7e2NcePG\nMQWA1Go11Go1VCoV/3cuwMIaKCkuLoa3tzcAwMnJCSdPnoSbmxuOHTsmWItqK/k33ngDrVu3hoOD\ng+BjDcW9e/cgk8mQn5+PmJgYuLu7C9bgClR1KS0tZW5Xx44dERQUhH79+vFbi7P0OaU/F2sH3L1G\nYU9paWlIS0tDfn4+H/yvq6tDYWGhIB2gfpWWy5cvo6ysDJcvXwZQX7ixfPlywVocYlc/CQsLQ1BQ\nEIYOHcqvbqZWq5Gdnc2k17ZtW6xdu1ZUmy5duoTTp0+joKCAXwnXzMyM6XnOFfampKSgS5cufDD/\nzz//FJzcNTMzw6JFi9ClSxe4u7szb6usuUX0sWPHmO43XcQWzZ07dw5OTk5azym1Wo1ff/1VcFu4\nwvUlS5YgOjoaFy9exO7du5lt1cLCAosWLdIqhBG68gTnO7t06YKEhAQtn/B///d/TO2qrq7mA9Qt\nWrRATU0Nk05jCC2e5FbF1X1GnDlzhqnYWHf+wRXYCJl/cM8ToN5PaX4WArcirmbiVK1W48aNG4K1\nXnvtNQD1/aKZGD579ixT24B6H7NixQqtuZ4Q+zx16hRSUlJw69Ytftvwuro6rUSoUHJzc+Hn58c8\n/+QYNGgQP55ihdKfU9kC9Xz27zD0ysksGOPWw8bYTwBdoRtAV6BG2VdUBWpUhaHGaJvUUL44QHX9\nqGzTmLbGNgTNsf17u3bt4OzsDGdnZ9y9exfnzp1DTEwM9u7di7S0NKbfLy8vx7lz59CtWzfk5OSg\nrKwMMpkMjx8L216XMgbUFM+zHTwvGGMeBaDLpUh5FHakPErjPO95FIAul2IseRSAPpci5VH0R2wu\nRcqj6A9lLgWgieVqQhGDFRu/04Qq7sYRGhqKDRs2oLy8HD169MD27dtJdCUkJCSeFaRiYwkJiWce\na2treHt7Y/To0VCpVDA3N2fWioiIwG+//QYnJyfU1tbCz8+PScfHxwdeXl6QyWRQqVTw8fGBUqnE\n+++/L1hLrVZj6dKlWhMFoQUIMpmMX9FGLpdDrVajRYsWCAsLE9weoH4Q/eOPP8Lf3x+1tbWYNGkS\nk46xIpPJEBcXxwfyTUxMoFQqtVY1FKK1cuVK9OjRA2ZmZqLewKQoHgCAPn36wN/fny/e6t27N5RK\npd4FWMuXL2+QCGQtIOE4dOgQ87G65ObmoqioCK1bt8a9e/eQl5cHS0tLpgQD1UQdALp37w5fX1/m\n4mAvLy/+HGbOnAmgPiHLmmR0dnbGtGnT8NJLL6GwsBDOzs5QKpUYOnSoYK0333yTqQ26XLlyBRkZ\nGQD+t3Kr0PObPn06TExM+L7i/s5qnz179oSLiwvmzZuH2tpamJmZCdbgClR1GTVqFFObAJBtuUjp\nz8XaARfso7Cnjh07QiaT4ezZsxg2bBjUajXkcjnTioxDhgzBkCFDoFarmbeiB7Rts6SkBDNmzGDe\n2oxbEW3kyJFaq3p4enoytU2hUMDd3R2dOnXivxO6UuSYMWMwZswYfPLJJ1i3bh1TOzi4wt7jx483\nSOoIxcXFBS4uLsjOzkZ8fDyKiorw3nvvYcyYMYIKKbkArlqt1ko6AsKfC1TJS+55Eh0djXnz5mn5\nPaF4eXnxx3E63Ap6rM+Zjz76SNS4h/Od9vb2KC4uRnFxMf9vrMXGAwYMQFBQEF5//XVcuXIF/fr1\nE6xBVTx5/fp19O7dG8HBwVq+t7y8XHCbAJr5h6afun79OrOf4lYZtbGx0Vphi8VHcasgBQQEYMiQ\nIfz3o0ePFqzFIZfLMXHiROYEA7eN/Z07d/h5mVwu51egZMHc3BwRERHMCRTu2imVSri6usLa2pr5\nGUPpz6lsgXo++3c0R3Ha08QYz+951zJGW6BqE2WBsDFeO2PleT4/Yzw3IXa+f/9+XL58Gbdv34aD\ngwOGDBmCiIgIUcVuEREROHToEM6fPw97e3tERERApVIJLsKkjAE1BZVPMNYXGYzxuSBUyxjzKABd\nLkXKozx9pDzKk6HOpVDmUQC6XIox5VEA2lyKlEfRH7G5FCmPoj+UuRQOsbFcTShisGLjd5qIjbvp\nkp6ejsrKSowaNQqnT5/GjRs3+AUTJCQkJP4JmKiNMYIjISEhIQC1Wo2HDx/C2toaSqUSCoWCaWss\nY+XSpUsNvtNMtAvhwIEDmDZtmtgmkdHUZPbmzZuNnveTdDRRq9VQKBQ4ceKE4HbV1NTg1KlTuHv3\nLuzs7DBmzBi0bNmSn7QLoaqqCjdv3sRrr70GpVKJW7duMW9X6ubmhrKyMlHFAxz3799HYWEhXnrp\nJXTo0EHQsQUFBU3+m729PVN7KLl16xZiY2NRUFAAe3t7eHl5oXPnzsjOzhY82UtKSmrwne626fri\n4uKC0tJSODg4iL5+VHA+08rKig+kU5Ceno4BAwaQ6RkTLH6Ao7q6Gjdu3EB1dTWvM3jwYOIWGg+s\ndiCmj3X5/vvvMWbMGBItXVjPj3sucHYAsD/XdeH8HstxulD587y8PHTs2JHp2LCwMOTn56Nr1664\nffs27O3tsWLFClHtqaysxDfffIPTp0/D3d1d72C17vNA00aFrraclZWFa9euYdeuXXyRsFwuR//+\n/ZlWJElKStJ6NlEUCIolMjKywXdiivUpyczMRG5uLjp37ozevXsz63h6ejYonmTZunbXrl1aKz4t\nWLCAX022OSkpKdHyUxQ+4cqVK+jbty/TsdXV1Q18J+sztLH7mWVL7P/+979MyZJnFTH+XBdWW3ga\n89ni4mKSeMKFCxcwcuRIghY19BP6UlpaqrXitp2dneDza2pcRtVPQMPnmBgoVzYWqqX70pBMJoO1\ntTXKysrI+or1WWMonaVLlwrebl2XkydPwtnZmcmm7t+/DxsbmwY2SmlTVH1FqUVl56GhoYK3kze0\nVlZWFnPMTBdW36mLkOt24MABDBkyBN27dxf9u5o05s9ZUCqVePjwIdq2bUsaA+IQa+Nf5+rKAAAg\nAElEQVSPHj2CpaUl6T1M4ac4qNpFaedCtaQ8iv5IeRT9kPIoT+afkkuR8ihsPM95FIA9zi/lUfSH\nKpdiiFiu2BgsVfzOEOzatQu+vr4wNTVFWVkZPv30U4SEhDR3sySeAxxmRD/5P0lIAMjf59usvy8V\nG0tISDzzFBUVaa0iVVJSAmtrayatxYsXY8uWLfznDRs2aK2o9yQ0gzW67aCaDKekpGDs2LFMx6pU\nKmRlZWkFqFkmaNyKbhzbt29nWi3S2EhOTtb6rDlJY53AUBbNUcEl8wCgsLAQ69evZypqSUlJQVpa\nGqqqqvjvWN8EjYmJwcmTJ2Fqamo0AaTGaO7gD7eaKYdMJoOtrS2mTp2qd7DT09OzSZtsrsR8U/j5\n+WHHjh1Mx8bFxSErK0vrOxb75La558jJyWFOHE6dOhUTJkzQ2mKL1bfk5ubizJkzqKio4L9jCf4Y\n0p+z2oHucYGBgYJX2W2Kffv2kWwvCbCfH6UdxMXF4dq1a1r3NIudKxQKJCQkoKKiAgsXLsSFCxdE\nrRihiVh/cO/ePdy7d485qfN3VFRUCF7lJjY2FllZWaL7HKBNXj58+FCrCJO1AKEpkpOTSYK5QpLh\ns2bNgqOjI6ZMmcI8ttclIyMDv/zyi9bYhaoIWkwhLQU//PAD9u7diwcPHiAxMRGhoaFYvXo1k5aX\nlxf69OmjtdoHSz9RjhUpfWdTpKamYsSIEczHf/HFF4JXTnsSAQEB2LRp0xP/35dffgk3NzdyP6mJ\nGH9OaQsZGRmorKzk/R3rSuchISFYuXIl4uPjkZiYiJEjR2LZsmWCdRITEzFhwgT8/PPPiIuLw6RJ\nk5jn6xRjfY6FCxeiqqoKbdu2BVCflGMZT1GOy86fP48RI0YgOzsbhw8fxrhx48hWmeKgLAwVWqA2\ndepU1NXVoXPnzrh9+zZMTU1hYWGBkSNHkhQ8AnQFakILQ3VjJSYmJrC1tcWQIUNExztmzZqFPXv2\nMB3r7u6Or7/+WtTvPwnKFweorp++trlt2zYsWLAAAHDmzBm89dZbon9btwiB81POzs6wtLTUW2fD\nhg347bff0KJFC9ExoPT0dJw4cUIr1ilmlTIOyrmjGBYuXIjq6mq0bduW7ysWP2yofuKKlykQ4w9W\nrVqFdevWiVoFk4PqeUVp51RaxpRHAQyfS5HyKIZDyqMIh2pOJOVR9Efs/ErKowiHKpci5VHYj6XM\npQDscxhDxmDFxu800Tfu1hhFRUV48OABXnvtNVRWVmrZq4QEK1KxsYS+NHexMf3ryxISEhJPmWXL\nlmkNpMPCwgQPpPPz85GXl4fbt2/j4sWLAOq3s9adYD2J/fv3838Xm+TiAgUqlUrru/j4eOYgmaen\nJ15++WWthKOQIFlZWRkUCgV+//135OXlAQBqa2tx6dIlpkmVblBKEyETxyNHjuDdd99FixYtBLdB\nE83tvfbs2QNfX1/RW9t5eXkZbKL38ccfY/369YKP+/3331FSUoK6ujqcP3+eeZXIuLg4REdHk2yr\nk5KSgv3795MkBXx9fbF161a0bNkSNTU18PPzQ0xMjGhdANiyZQtZIImlIEWpVMLZ2Rldu3bFrVu3\n8J///Af9+/fHsmXL9PY3sbGxAOr9iY+PD/+ZBaqt5I8cOYLJkyfjiy++4L/jtnBn5fz587wdiCEs\nLEzrmu/YsQOfffYZk1bnzp2Rn59PEnTw9/fH/PnzmbdjpfTnVHaQmZmJP/74Aw8ePMDhw4cB1Ptl\n3VXi9IFLoHHnxrXp2LFjghPGVOfHQWkHVHa+bNky+Pj4YNu2bTAzM0NsbKzgYmOunzT7l7WfNJ/r\ntra2sLW1FazxJFiLBy5cuEDS5wAaFBqzJkKpCkP/Dq6YTiyhoaF6P0f37NmDn376CRs2bIBcLoer\nq6voorSQkBBs3LiRZPu9xhKFLMXGAQEBDbYvZknqREVFYd++ffDy8oKZmRlycnIEa3DY2dnBzs5O\ntJ+iHCtS+s6m2LVrl17JCi55xs0bOc6cOUNebFxUVKTX/xs+fDg+//xz1NXVYfLkyRg+fDjzb1L6\ncw4qWwgMDESrVq2QmpqKQYMGobS0lLnYODMzEzKZDOnp6Th69CimTp3KpJOUlIRJkybhwIEDWLt2\nLebPn888X9cc6//555/47rvvBI/1OWpra7F7926mdgC04zKOqKgovPHGG9i+fTu8vLywYcMGJCYm\nMutpwj3XKQqNuXma0JUwX3jhBURH/y8p5Ovri+joaEyfPl1wsfGuXbswe/ZsnDhxArGxsZgwYQI8\nPDwEJ3mbSqwLXYH2+PHj6Nq1K2+bOTk56NOnD/bv3681h3va2NraMr081hiurq4oKytDmzZtUFpa\nCisrK1haWmL27NmCtZoqChR6/crKyvDzzz9rFbpNmDBBb9tMS0vji41jYmJIio2zs7MxcOBA3hYu\nXbqEdu3a4cMPPxTkc27evMn7FrGsWbMGISEhsLKyItHjOH36tFEUG9fW1iIqKkq0zurVq7FhwwaS\nflq8eDE+//xzbN68GVevXkX79u2Z4ySaiInB3rlzhySmCNA9ryjtnErLmPIoAF0uRcqjSHmUJ9Hc\neRSAbk5EmUcBDJdLae48CiA+lyLlUYRDlUuR8ihPxhBz9sYQEsvVhDIGq4u+8Tt90DfupsuWLVtQ\nUFCAmzdv4tChQ1i4cKFWPEBCQkLieUcqNpaQkHhmSUtLQ1paGvLz8/mJVV1dHQoLCwVr3b17F5cv\nX0ZZWRkuX74MAJDL5Vi+fDlz+8S+hR0WFoagoCAMHToUr776KoD6SUd2djazZtu2bbF27Vrm4y9d\nuoTTp0+joKCAf4PbzMyMOfjOBaVSUlLQpUsXPlnx559/CgqSmZmZYdGiRejSpQvc3d3RtWtXpva4\nurryfz927BimTJnCpAPQTvTOnTsHJycnraCyWq3Gr7/+KkiHC7guWbIE0dHRuHjxInbv3s1sqxYW\nFli0aBHatWvHfye0OIYLSnfp0gUJCQno3Lkz/2+shQPV1dV8YKRFixaoqakRrEE96acqSLl9+zac\nnJxgZmaGjh078pPqrVu36q1hamrK/93ExETrs1C4N7ltbGwabCUvBG5LtjNnzmglvs+ePcvctrq6\nOqxYsUIrmCHEPk+dOoWUlBTcunULgYGBvKZmolcoubm58PPzIwmwDBo0CG+88QZzYp3Sn1PZgUwm\n47ehk8vlUKvVaNGiBcLCwgS36ejRo5gzZw6mTZumtRLZ321d2BRU58dBaQdi7ZyjsrISw4cPx86d\nOwGwJXm5fpLJZKL7ieq5DkAr2cjx8OFDHDlyhMneKfqcOhFKVRj6NBBqW8OGDcOwYcNQVFSEhIQE\n7Ny5E2+++Sbef/99Jv/Xvn17hIeHixq7cFAlCk1NTfHOO++I9glmZma4e/cuTExMoFAoRD3fr127\nhnfeeUe0TVGMFTkofWdT6Guf169fR+/evREcHIxJkybx35eXl5O3Sd9x+sCBAzFw4EDev+3ZswfD\nhw/HpEmTBBcVUfpzDipbuH//PuLi4jBz5kyEh4fDz8+PuU3W1tbw9vbG6NGjoVKpGhT960tNTQ22\nbt0Ke3t7dOjQQZSN6o71d+7cKXisz6FWq7F06VKt+ZWQuQfluIzj0aNHSE5ORvv27TFw4EDS5xZl\nUeCVK1eYjpPJZIiLi0O3bt2Qk5MDExMTKJVKrWIcfTl//jzmzp2LlJQUHDhwAG5ubvDw8BCsIzax\nzlFTU6O1WuXMmTOxdOlSQW1avnx5o9u2i3mRoaCgAKNGjUK3bt0gk8lErezXqVMnBAcHw9raGiUl\nJVi/fj1CQkIwa9YsDBs2TJAWVVGgt7c3xo0bx1wcqlaroVaroVKp+L9zzzrWAqXi4mJ4e3sDAJyc\nnHDy5Em4ubnh2LFjgnRefPFFbNq0SctHscbguHmxg4MD0/HGjlh/zuHk5ETWT/fu3YNMJkN+fj5i\nYmLg7u4u6Hjd+BhHaWkpc5s6duyIoKAg9OvXjx8Hs9oU1fOKws45XyJWy9jzKIC4XIqUR5HyKBzG\nmkcBxM+JDJFHAcTnUow1jwKIz6VIeRT9oc6lSHmUJ2OIOXtjsL5IQhmDpWpTY7D69fT0dHz11Vfw\n9PSEXC6HUqkka5OEhITEs4BUbCwhIfHM0rFjR8hkMpw9exbDhg2DWq2GXC5nejN8yJAhGDJkCNRq\ntaiV4Litv9RqNUpKSjBjxgzmrYy4LX5GjhyptWqJmCSvQqGAu7s7OnXqxH8n5O3wMWPGYMyYMfjk\nk0+wbt065nZwcEGp48ePN0hcCcHFxQUuLi7Izs5GfHw8ioqK8N5772HMmDGCAgBcEEqtVmsFtwDh\nwWDKiR6XBIqOjsa8efP4iZTQSZCXlxd/DKfh4+MDgH3bp48++khUkQ0XlLa3t0dxcTGKi4v5f2MN\nkg0YMABBQUF4/fXXceXKFfTr10+wBuWkn7IgxcfHB15eXpDJZFCpVPDx8YFSqcT777+vt4amn7p+\n/booP8WhuxKA0C2ouRWeAgICMGTIEP770aNHM7UHqL/vJk6cyByQcnR0xKuvvoo7d+7wwUy5XK61\n3aRQzM3NERERISpwx10/pVIJV1dXWFtbM10/an8O0NhBr169UF1dLXoF1Tlz5gAAxo8frxV4FfMM\n1T2/gIAAJh0KO+AQa+cc48ePh6+vL/Ly8hAQEMBvEcnC5s2btT57eXkJ1qB6rgP193KvXr34+0St\nVsPCwoJplTqAps+pE6FUhaF/B2UQlwUbGxv4+/tDpVLhhx9+wKVLlwSvvg3UJwy//PJLktVaqIon\nr1+/jn79+om+fqtXr8bGjRuhUCiwdu1ara0dhVJTU4OkpCQtO2fZMhgQP1bkoPSdYuGeUe7u7lqr\nlWZmZpL/ltB7r23btpg9ezZmz56N1NRUrFu3DqNGjcK7774r+Lcp/LkmFLbw+PFjVFRUoH379oiM\njGRegQYAIiIi8PDhQ1hbW0OpVGptAy5U57fffoOTkxNqa2tFFUBTjPU5WJ9zHJTjMo7Q0FD8+OOP\n8Pf3R21trdbc6HkgMjISp06dwrVr12BnZ4fIyEjI5XIkJCQI1pLJZFi5ciV69OgBMzMz5ntHbGKd\no0+fPvD39+cLm3r37g2lUimoQGnx4sWi2tAYhw4dItPKzc1FUVERWrdujXv37iEvLw+WlpZMYyCq\nQtru3bvD19dX1MqFXl5e/DlwsTYTExPmGJCzszOmTZuGl156CYWFhXB2doZSqcTQoUMF6bz55ptM\nv98YV65cQUZGBoD/vdQn5Pw0YyQA+L+LKYSnRKw/5xDbT5r07NkTLi4umDdvHmpra2FmZiboeC4W\nqAvL+J5D7A4omlA9ryjsnJv/itUyxjwKQJdLkfIo+iPlUfTDEHkUQNycyBB5FEB8LsVY8yiA+PmV\nlEfRH+pcipRHeTKGmLNTQhmDNSSsMW8rKyskJyejpqYGZ8+eJd9lRUJCQsLYMVE3d9ZQQkJCQiTf\nf/89xowZYxDt9PR0DBgwQPBxVVVVuHnzJqqrq/mBqubETwwFBQWwt7dnPlYXVi1N8vLy0LFjR+bj\nw8LCkJ+fj65du+L27duwt7cXtSVVZWUlvvnmG5w+fRru7u56B6uTkpK0PmsGoVgnawcOHGiwTTor\nSUlJmDhxIv+ZcnLLQmRkZIPvqLdtZyUzMxO5ubno3LkzevfuTaZ75coVpi3SgfqtfTQLUhYsWMC/\nCd1clJSUaPkpVn/Q2FbyLAVA1dXVDXwna3FTY/czy3383//+l6lg/VlFjD+nsgMAyMjIQGVlJW8H\nYoLmmtTU1DBvFalSqZCVlaW1IgOLfd69excZGRladq7p24VAZedAvT/Iz8+Hg4MDrK2tmTQ4SktL\ntfrJzs5OlB73XP/+++8xbdo0QUnohQsXIiIiQtTva5KUlNQgScXa50uXLm2QCGXZNnb8+PHo0aOH\nQYswdccgrISGhgreul2XkydPMhfEc0loTVj7as6cOVixYoVW0JzlOTp58mQ4OjpqXb/mHk9RzWWM\neazYGLpjtadNY76zuLiYXx2KhYqKClhaWjKv1ELlz6lsQalUQi6Xo7KyEqmpqejbty86dOjA1Kai\noiKtxGdJSYno558xk5KSwrR6PtX4h4qmigJv3ryJS5cuMWlpolaroVAocOLECb11dLc15xLYAPsY\ngfPDr732GpRKJW7dusUXFgjBzc0NZWVlzIl1Te7fv4/CwkK89NJLzPcdQDtnoOTWrVuIjY3lY25e\nXl7o3LkzsrOz+RXk9EV3jA6wjfddXFxQWloKBwcH0dePEqVSCYVCASsrK744TCys8dd/Iqz+3JBo\n+j0hVFdX48aNG/yY08TEpFmfMYZGjJ2z9rEuxphHAQyXS5HyKE9GyqM8PYx5fmyIXIqUR2mc5zmP\nAvyzcinGkkcBDJdLAdhjuZQxWF1Y43eUcbfKykocPHgQP/30E4YPH44RI0bg5ZdfFqwjIaGLw4zo\n5m6CxDNC/j7fZv19qdhYQkLiuWPfvn1k22fOnDmT6U3lqVOnYsKECVorlLFOzuLi4nDt2jWtgA3r\ngFyhUCAhIQEVFRVYuHAhLly4IGrVCA7WftLk3r17uHfvnujElS4VFRWCV/GJjY1FVlYWSZ/rIjYp\n8PDhQ60AgtgCLk2Sk5NJ3oDNysrSOxE6a9YsODo6YsqUKWTJ/YyMDPzyyy9aE3XWwJ2xJUJ/+OEH\n7N27Fw8ePEBiYiJCQ0OxevVqJi0vLy/06dOHpLhpxowZJFvJU/rOpkhNTcWIESOYj//iiy+Ytm37\nOwICArBp0ya9/u+XX34JNzc3Uj+piRh/TmUHgYGBaNWqFVJTUzFo0CCUlpZix44dTFq5ubk4c+YM\nKioq+O/E2Pkrr7zCv6VuYmLCZAtTpkzBwoULtexcaDD4yJEjePfdd5kLp3U5duwY3n77bbRq1QrV\n1dVISUmBi4sLk9bChQtRVVWFtm3bAqjvJyGr/zwJluc6JWFhYVAoFAYZI3DF3s3Jd999h6NHj/IB\natYVzyjvPV1mzZqFPXv2kGhx/PXXX1orFOsDVaJQbBKbK5arra1FWVkZ2rRpg9LSUrz44ovMKz6K\nfR6npaXB0dGR6bd1McRYMT09HSdOnNBKMLDcx1Q6gOF8p5j7haJNlLYAaM9n/f39kZqayjyf1R3z\nBAYGMvX54sWLtVZF3rBhg9Zqc/qgWfSqW/QstLCQ893c1s/cd97e3kwvtMyYMQMvv/yylh2wjoW5\nLZY5tm/fzrSiorGh6Wv37NkDX19ffr6uucW4EKiKyqjQfNGnsLAQ69evZy74oJozAEBMTAxOnjwJ\nU1NToyrG1aW5C2l1E/0ymQy2traYOnWq3vNKT0/PJm1SbDwQoIkrcvj5+THNH+Pi4pCVlaX1Hetz\n/fbt29izZw9foD9r1ix06dJFkAa1P9eFtZ+A/21zz5GTk4Pu3bsL1qGMAVHOPwz1vBJj51TjFl2M\nIY8C0NmClEcRh5RH0R+qPAqgfy7FEHNjgC6XYmx5FIAulyLlUdihzqVIeZSGUOVSDBnL1URIDNaY\n426LFi1CZWWlwXIgEv9c7Kftau4mSDwjFBxovkVTAIDm1XMJCQmJZoBbiSgvL4//Tq1W49ixY4KD\nZFwQ0dnZmX+DTcyWeZ07d0Z+fj7Jdtbnz5/H1q1bSSYdy5Ytg4+PD7Zt2wYzMzPExsYKCpJx/aTZ\nv2L6SbNYytbWFra2tkw6TcEaML1w4YLoPm8qKRAfH88cJKMMajRGYmIiSUAiNDRU70n2nj178NNP\nP2HDhg2Qy+VwdXUVvfVhSEgINm7cKGrbJ464uDiySX9AQADMzc21vhM6MY6KisK+ffvg5eUFMzMz\n5OTkMLfHzs4OdnZ2JH6Kait5St/ZFLt27dIrSMYlzy5evKj1/ZkzZ8iLjYVsAT58+HB8/vnnqKur\nw+TJkzF8+HCm36T25wCdHdy/fx9xcXGYOXMmwsPDRW1H7u/vj/nz56Nnz57MGhxt27bFmjVrROs4\nODggMTFRVLGxmZkZFi1ahC5dusDd3V3QFtaNcfjwYb64uGXLljh06BBzsXFtbS12794tqj0cFIUR\nHL/99hu2b9+OyspKWFpaws/PD/379xfcprt37+LDDz8keS6UlZXh559/1gqYCik29vPzg4uLC8aO\nHUu2qlxUVBSioqJEb/1Gee89DZYsWaL32IUrnhQ7BgsKCoK7uzvzSj8c+/fvB1A/zggODoa1tTVK\nSkoQEhLCrCn2efzbb78hKioKTk5OmDhxIl544QXmthhirLhmzRqEhISItvPVq1djw4YNJFslUvpO\nTcSsL0DRJkpbALTns+bm5oLns0D9PZyWlob8/Hx88cUXAIC6ujoUFhYK0snPz0deXh5u377Njxfr\n6uoaFKrpA3cfA+yr3HOEhYUhKCgIQ4cOxauvvgqg3g6ys7OZ9Nq2bYu1a9cytweof94pFAr8/vvv\nfPymtrYWly5dEly8pbuKsCZC57JUL29pFhQfO3ZM8NbhjeHl5WWQorKPP/4Y69evF3zc77//jpKS\nEtTV1eH8+fOiVlCkmjMA9UUt+/fv57dMF4Ovry8fB6qpqYGfnx9iYmJE6wLAli1bSAppWYs1lEol\nnJ2d0bVrV9y6dQv/+c9/0L9/fyxbtkxvfxMbGwug3p/4+Pjwn4VCGX89cuQIJk+ezPtyTuv69etM\nbaOMvwYHByMoKAgvv/wybt68ieDgYMGF8FT+nLqfuLZp2vSOHTvw2WefCdahjAFRzD+onleUdp6Z\nmYk//vgDDx48wOHDhwHUjzfu3r0rSMeY8ygAnS1IeRR2pDyKMKjyKID+uRRDzI0BulyKseVRALpc\nipRHeTJPK5ci5VEaQpVLeVqxXCExWKr4HUAfd6upqTFIHE9CQkLiWUEqNpaQkHhmOXr0KObMmYNp\n06Zh5MiR/PeNrQ72JLjVCmxsbLQC7Z6enkxty83NhZ+fH0mxY11dHVasWEGyNXZlZSWGDx+OnTt3\nAhCefOb6SSaTkfQTVbGUZiCK4+HDhzhy5AhTkIyiz6mTvABtUMOQCLWrYcOGYdiwYSgqKkJCQgJ2\n7tyJN998E++//z7T6pXt27dHeHg4yUSdctJvamqKd955R5RfMDMzw927d2FiYgKFQgFTU1NmrWvX\nruGdd94hs6ePPvpIdDCR0nc2hb72ef36dfTu3RvBwcGYNGkS/315eTl5m4SsWjZw4EAMHDiQ93F7\n9uzB8OHDMWnSJEFBF2p/zkFhB48fP0ZFRQXat2+PyMhIQUFEXQYNGoQ33niDZCVchUIBd3d3dOrU\nif+Opejjr7/+QlRUlKh+cnFxgYuLC7KzsxEfH4+ioiK89957GDNmDJNfUKvV/NZvd+7cEVWcplar\nsXTpUnTu3Jn/jjWorFkY8eeff+K7774TXBjBERYWhq1bt6J9+/b466+/8MEHH+Drr78W3KbCwkIk\nJiaSJKy8vb0xbtw45oDp5s2bcfz4ccyfPx+9e/eGm5ub6JV6+vfvj8zMTK2V11i2BKS495YvX97o\n9vZigvlNIcTmqYonFy5ciIMHDyIyMhJvv/023nvvPVHPvzt37qCoqAitW7dGUVER8vPzmbXEPo/n\nz58PlUqFs2fPIjg4GG3atIGbmxv69OnDpEc9VuRsU+xK4k5OTiQ6gHjfqZvQ4ygtLW22NgH0tiB2\nPgvU+zSZTIazZ89i2LBhUKvVkMvlgote7969i8uXL6OsrAyXL18GAMjlcixfvlxwmzQRu5ot96LO\nyJEj8fnnn/Pfs47xKMY/ly5dwunTp1FQUMCvhmtmZsY8Vwfqi0y7dOnCjxH+/PNPwQUfVPEIrvhL\nrVZrFYMBEFx4TFVUdu7cOTg5OWm1Ra1W49dffxWkw8ValixZgujoaFy8eBG7d+8Wbadi5wycz+vS\npQsSEhK0/BTrlsHV1dV8m1q0aIGamhrBGlQFeNTFGrdv34aTkxPMzMzQsWNHvnBk69atemtozjFM\nTEyYYxGU8dfXXnsNQH2/aG7tfPbsWaa2UcZf6+rq0LNnT5iZmaFHjx687xIClT/X7Kfg4GD+2Xnu\n3DnBbTp16hRSUlJw69YtBAYGAqg/V82XJ4VAGQOimH9QPa8o7Vwmk/EvlsrlcqjVarRo0QJhYWGC\ndIw5jwLQ2YKUR3kyUh7F+BBiW9RzY4Aul2JseRSALpci5VGezNPKpUh5lIZQ5VIo8yh/hxC7oorf\ncb9LlbMwhJ6EhITEs4ZUbCwhIfHMMmfOHADA+PHjtYLKYgb4uoUrAQEBTDrm5uaIiIggCWzJ5XJM\nnDiRZNI4fvx4+Pr6Ii8vDwEBAfw2mELZvHmz1mcvLy8mHapiKUdHR/Tq1Yt/C16tVsPCwgKzZ89m\nahdFn1MneQH6oIYuYorLKLCxsYG/vz9UKhV++OEHXLp0iWl7OpVKhS+//JJkog7QTfqvX7+Ofv36\nibp+q1evxsaNG6FQKLB27VqtbR2FUlNTg6SkJC07F7q6Kkffvn3x3XffaX3HUnxH6TvFwhUruLu7\nY+7c/21FkpmZSf5bLPde27ZtMXv2bMyePRupqalYt24dRo0ahXfffVeQDpU/B+jsIDY2FnK5HCEh\nIUhNTWXefhqov16urq6wtrYWvbVyeHg4czs0adOmDVnyq2fPnvjkk09QWVmJb775BvPnz4e7u7tg\n37lmzRqEhYWhtLQUbdq0YdpSkIP12dsYuoURO3fuFFwYoQm36h03VmChRYsWsLe356+fmGKb7t27\nw9fXl3k1vlatWsHV1RWurq7IyMjAtm3bUFFRgYkTJ8LJyYlJs7KyEidOnND6jsU+Ke69xYsXC/5d\nVoRcR6riSTs7OyxZsgRKpRKnTp1CQEAA7Ozs4O7ujpdfflnoKSAsLAwxMTEoLCyEvb29qOcnxfNY\nJpNh1KhRGDVqFPLz85GQkICIiAjMmTOHefUlqrHilStXcOXKFf6ziYkJ04qTVEee+Z0AACAASURB\nVDqAeN/JFbvqImarZyp/TmkLFPNZe3t72Nvbw9/fn3nsCwBDhgzBkCFDoFarRa+SNn36dP7ZVFJS\nghkzZoget2jOQQEILkrioBj/jBkzBmPGjMEnn3yCdevWidLixoXHjx9HcHAw//3MmTMFa1HFIzT/\n77x580SNDaiKyrixRXR0NObNm8ePe4S2zcvLiz+G0/Dx8QEAZn9HMWfgfJ69vT2Ki4tRXFzM/xtr\nsfGAAQMQFBSE119/HVeuXEG/fv0Ea1AV4FEXa/j4+MDLywsymQwqlQo+Pj5QKpV4//339dbQ9FPX\nr18X7ad046/Lli0TrMFtOR8QEIAhQ4bw348ePVqwFkAbf509ezY8PT0hl8vx+PFjUc9UXX8udEym\n2U+azz2WMYKjoyNeffVV3Llzhy+mkMvlsLGxEawF0Iw5OdtUKpWi5x+UzyuAzs579eqF6upqUauo\nGnMeBaCLB0p5lCcj5VFoeF7yKABtLsWY8igAXS5FyqM8maeVS5HyKA2hyqVQ5lH+DiFzUmOKuxla\nT0JCQuJZw0Td3CNiCQkJCWJqamqYt8FUqVTIysrSWpGBZdJ49+5dZGRkoLq6mp/8TJw4kalNSUlJ\nWp9NTExEBRdLSkqQn58PBwcHWFtbM+uUlpZq9ZPYlfQA8MVS33//PaZNm6Z3gGThwoWIiIgQ/fsc\nSUlJDSY8VNticX3Pwvjx49GjRw+DBRCSkpKY7VST0NBQrcA1CydPnmQO4nIBSk1Y+ykyMrLBd6yT\n/smTJ8PR0dFg27cJpaqqCjdv3tTyU5oJOn3gtpJ/lti1a5dWwOtp05jvLC4u5le+YqWiogKWlpZM\nxQ1i/Tm1HSgUCiQkJKCiogL+/v5ITU0VVSxFRWPbdlM9GyipqKgQvAIBF0Ck4JdffmnwHWsA/sSJ\nE9i7dy9MTU3x+PFjeHh4YOzYsTh8+DDc3d0FaaWnp2P79u2orq5Gq1atMH/+fPTv319wmy5dutTg\nO6G+k8PFxQWlpaVwcHAgC+KWlZUhKSkJ7dq1Exw0N1ZSUlKQlpaGqqoq/jvqBMrSpUsbFHLoC1c8\nmZ2dLaqQFgBu3bqFgwcPonfv3oIKgJ4V6urq8ODBA5J5w/NGY76TQ4gPra6uxo0b/8/emYdFVbZ/\n/AvOAAqxyassKqC5hFumLT+tSBNQXzErVpGdCN6AUtMku1ITFH9dauSWjCGGS0jikqFRpqXXmymi\nchXCG4Ioggz7gKwj8/uDa87LINic59wj2O98/mKOzn2emXnOs9zf+7nvP7n1nZ6eHvMYTDmed0dI\nX6Daz3aHtXR0d3JycvDMM88wvZdifa5m7969uH79usb8zjJ2dl2XRUdH49y5c2TrMnVVBRYSEhJQ\nWloKR0dH3Lx5E3Z2dli5cqWg9qj9EadPn2Y6vJWSkoL8/HzB3zkAHDx4EL6+vkzv7Ur3PT5VAJ0u\nyM/P54Ii+4q8vDyUlJTA3t4eTk5OZHavXbuGyZMn835f973rv/71Ly7bal9SU1OjMU7Z2dnxtkG5\nvmtpaXlg7GSZr6j9r0Lpaf+ppq/3oVevXmUKyH9cYZ2vqPcxubm5aGpq4vo56+GKrvQHHQWg01JE\nHeWvEXUUGqh0FEC4liJERwHotBRRR3k4oo7CH1FH0Y7+qqX0hhAfrBCo/G4iIrrGzjepr5sg8phw\n52DfzdGAGGwsIiLyN6CkpARnzpxBY2Mjd4114+nn54fRo0dzJVT09PSYyl54eHggOjpa4+Qt38Xq\n4cOHMX/+fGaHX08cP34cLi4uGDhwIFpaWpCVlYUFCxbwthMdHY3m5mZYWFgA6PyeWErJPwyWYCkq\nEhISUFdXRyISKhQK/Pbbbxob0L4WBU6ePIljx45xDmrW06CUz153QkJCkJycTGJLTXV1tUYZr4eh\ni01/T6UJtRXl1Jla2traoFAoYGZmhvr6epiamiI9PZ2pPV5eXli4cKHGOMW3b+7cuRPZ2dmCS8mH\nhITghRdegIeHB1nQSE5ODjIzMzWePZbnmMoOoNuxk/WZoWgTVT9QExYWhuDgYOzYsQP79+9HQEAA\n84l1ysMHXZ+1yspK5Ofn4/PPP2ey1RMsnzM5ORm+vr7cvL5//36EhobyvreXlxfS0tJIAo4/++wz\n7u/KykqUlZVhz549gu0KhTIAryeOHj3a5/M7BR4eHmhoaNCYZ6RSKe9A6J6ePTV8n0E/Pz98+eWX\nJNlxdLkua29vR1VVFWxsbEjsUbFs2TJs2rSpT2xR7T2AztL0H374IVJTU5GRkYGXXnqJKTsc0HMG\nVJY1sb+//wPjJut85e/vD1NTUzg4OODmzZtQKBSYOnUq7/0oxfpODeV4XlRUhJSUFJSXl8PGxgaB\ngYEYNWoUbzsRERHYsWMHc0Z4AJDL5RgyZAhu377NXVOpVFi+fDnS0tKY7aoRsm6h/P1CQ0Oxfft2\nwWMn5bqsO0Jt3b17F3fv3oWNjQ2GDh1K0iY1LP4Iqu+8J7KysuDq6sr03traWo3ACMoDH5TrHz79\nQRf7x9zcXFy6dEkjKJDVv/EoDkrx4aeffsK+fftQWVmJjIwMrF+/nrmSSWBgICZMmCA4+IdyfUc5\ndvbE+fPn8eKLL2r1f9W+m640Nzejvr4ep0+f5nVf9f4zKysLDg4OcHR0RHFxMYqLi7F7926t7fTk\nT6qrq4O5uTkOHTrEq029kZiYSFo2ms+a8/PPP4e3tzf5PNAV1vmKsp+vWLECAwcOxPnz5zFt2jTU\n19fjiy++4G2nP+oogHAtRdRRRB1FV1DpKIDutBRd6CiA9lpKf9NRAHotRdRRHr0tUUfRHqo9O6Uv\nF6AZ06n8dwCd301ERNeIwcYi2tLXwcaSPr27iIiICAFRUVGIjIzE2LFjBduysLDAmjVrBNsZNmwY\nMjIyBAUbS6VSxMTEwMHBAT4+PnB0dBTcrm+++YZzihkZGSE9PZ3JSdbW1sbLsf1XdN/E6Ovrw9ra\nGl5eXrycxVeuXMHOnTvR1NQEY2NjREREMGUtLCsrw7vvvkviDA4KCsLcuXM5xysLERERWLBgAVxd\nXbmSqkKQyWSQyWSC2gTQPnuPgiVLlmi9Ab1y5QpkMhnJpj82NhY+Pj5MmYzUHDhwAECn4LJq1SpY\nWlqipqYGcXFxzDbt7e1RWloqqBwZVSn55ORk/Pvf/0Z8fDwkEgk8PT0FZYYEgDVr1iAuLk5wP1+9\nejXi4+MF2wHox86usJ4fpGgTVT9Q09TUhBkzZmDXrl0AhJUmjIyM5P6Wy+W8Bd6udC9BtnbtWmZb\nPcHyOc+ePYuQkBAAnfP62bNnmYKNzc3N0dHRwav0Zm+89957Gq91EVghk8m4MrDaEhAQ8IAwQBls\nnJGRwdthSpX1JSkpCWFhYcjMzERKSgoWLlyIxYsX87YDdM4NXeeZdevWPVAmUBuUSiXc3Ny4oIhT\np04hJiaGqU2DBg1CTEyMhsjF2q8o1mVquv9+6vWrm5sbjI2Ntbbj6ekJhUIBU1NTKBQKmJubw9jY\nGGFhYZg+fbrgdsrlcsE2WG1R7T2AzmyT+vr6yMnJwbFjx+Dl5cVkB+js54sWLeL654EDB5j2gCkp\nKdzflZWVOHz4MHObpFIptm/fzr0ODg5+YDzVBor1nRrK8XzlypX45JNP4ODggOLiYsTGxjIFOLW0\ntAgKNAaAY8eO4a233oKvry9eeukl7npPgvbDiIuLw0cffQQ3Nzcus5JKpcKff/7J3DbK36+9vR0r\nV64UnM2NYl2m/q66Zo5m/a66BhNZW1vD2tqat42/gjXLNcV3rhZOOzo6NK6lpqYyBRtTBYb2Bsv6\npzf49C1d7B/j4uKwYcMGQWXg1ezdu5ckwHDZsmUwMDDQuMbyHMtkMuzfvx+BgYGQSqW4ceMGc5ts\nbW1ha2sreJyiXN9Rjp09kZSUpHWwsdp309rairNnz+Ls2bOQSCR49dVXed9Xvf88ceIEVq1axV3v\nKehCmzZ19yetW7eOd5vy8vLg5OSEX3/9VeP6mTNnSIM0+Kw5Z8yYgc2bN6O9vR1vvvkmZsyYwXxf\nyvkKoO3nFRUV2Lt3LwICArBx40ZEREQw2emPOgogXEsRdRRRR1HTX3UU4O+rpfQ3HQWg11JEHUV7\nqLQUUUfRHiothdKXC9CM6VT+O4DO7yYiIiIi0okYbCwiIvLYM23aNLz88sskp7fr6urg4+ODESNG\ncNdYTktWV1dDJpMJcrIsWLAACxYsQEFBAVJTUyGXy+Hu7o7Zs2czBwOpVCqu9NutW7eYNx0qlQpL\nly6Fvb09d02IU7n7JubkyZOYMmUK3n//faSmpmptJyEhAdu3b4eVlRWqq6vxzjvv4Ouvv+bdnvLy\ncmRkZJAIcqNGjUJoaKggUXzLli04ceIEIiMj4eTkBG9vb0HZiKZMmYK8vDw4ODhw11jKAVI8e8uX\nL38g64tQkb43+PR3yk1/dHQ00tLSsG3bNri4uMDd3Z1ZwLx16xbkcjlMTEwgl8tRWlrKZAfozKYQ\nEREhWEzV19fHrFmzMGvWLK6U/NatW3mXkp8+fTqmT58OuVyOQ4cOYdeuXXjllVfw2muvMfUxdd9k\nLbenxtnZmcQOQDN2dhf11NTX1/dZmwC6fgB0ljoMDQ3F7du3sWzZMkGlALv+bpaWloKy53XNUqWn\np0daWlltky8GBga4ePEiJk2ahKtXr0IqlTLfe968eZgwYQL09fUFZYvoOq43Nzczt+lhnDt3jnew\nsa6DEFiYOnUq97dcLsfFixeZ7Pzyyy8IDw9HVlYWDh48CG9vb+ZgY6p5pqSkBM7OzpBKpRgxYgR2\n7dqlsb7mywcffEAiXlKsy9QUFBRg6tSp3Pr14sWLGDx4MN59911e4sOIESMeCPyIi4tDSEgISbAx\nRcZyVltUew+gcwwPCgrCq6++io6OjgeCr/iQl5cHGxsbGBkZwdraGnl5eUz7q7KyMu7ve/fu4erV\nq8xtsrCwwPr16zFy5EgUFxczizFU6zuAdjwfPnw4rK2tue+cdV01ePBgBAQE4Omnn+Z+M77rFvX8\nMW/ePI1yxf7+/rzsfPTRRwCAIUOGaOxZ+drpCuXvJ5FI8Prrrwu2RbEuU39X+vr6gr8rymCirgG9\nampra3H48GGmYGOK7zwhIQGxsbF4/vnn8dRTTwHoHEsLCgqY7FEFhvZHqPePVlZW2LhxI0lQIFWA\n4YABAzBnzhzBz7FUKkVZWRn09PRQV1cn6IDh9evXMWfOHJI+RbW+oxw7e4LP+uXnn3/G6dOnoVQq\n4ezsjLVr1wpaswDAU089haioKDg6OuLmzZvM+9Du63y+h2wA4D//+Q+cnJywatUqvPHGG9z1hoYG\npjb1Bp8159SpUzF16lRu/E5OTsaMGTPwxhtv8F5PUc5Xaqj6+f3799HY2AgrKyts27aN+UBhf9RR\nAOFaiqijiDqKmv6qowDCn79HqaOobWtDf9VRAFofl6ijaAeVliLqKNpDpaVQ+3IpxnQq/x1A53cT\nEREREelETyVE7RERERHpB3h7e0OhUMDS0pLLAsOnzHNXhJbnURMVFQWJRCI4i1BXmpqa8O233+L0\n6dPw8fHBrFmzeNu4ceMGNm/ejPr6epiZmeG9997D6NGjedvpKRjmueee421HjaenJw4cOACpVIq2\ntjb4+fkhPT0dvr6+OHjwoNZ2vL29sXPnTi5YIzIykqkU7uLFizFv3jzu99PT02PO1rNgwQLU19dj\n2LBhgvsn0Fna89ChQ2hsbMTrr78OZ2dn3jZ6KofD0j8pnr2HiRssz97DEFKmV73pLygoYN70K5VK\n/PDDD/j2229ha2sLHx8fPPnkk7xs3LhxA3v27EF5eTns7OyYS1ADnf3cysqKdJxS097ejsrKSkHO\n3I6ODvz000+c84Uv3cUg1jJ3VHYAmrGzp0yoalic+dTjeVeE9IOamhqUlpZi2LBhgkrCqUvcq1Qq\nGBsbw93dHf/85z+Z7ekSf39/XsIQ0BmgmpSUhJKSEtjb2+Ott95iKh9Ltf7pbmvQoEFcaTlKWMZz\nLy+vB7LVUZYRZ/n9urNy5UokJCTwfl9AQACGDRsGW1tbREVFYdGiRVwWF77cuHEDKSkpKCsrg62t\nLQIDA3nPVQCQmZmJ1NRUSCQSKJVKLF68mPnZo8oADdCuy7qvU9Wv/fz8eNn08PBAXFwcRo4cicLC\nQnz88cf45ptv4OXlRVLamqJvstqi2nsAnaJObW0tLC0toVQqUVdXx2WT5Ut2djaSkpLQ1NSEgQMH\n4q233mKa+7quqY2NjTFnzhxBGYVycnJQXl4Oa2trjcMIfKBc31GO5x4eHmhoaODK1z7xxBMwMDDg\n/Qzqct3S2tpKUnr76tWrePrpp5neS/n7HTlyROO1kD0t1bqsqqpK47n98ccfMXv2bCZbBQUFSEtL\nExRM9Nxzz2HcuHHcfKBSqTBo0CC89tprmDdvHu82HTly5IEAENbvfOnSpdi8eTP3mnUsX7hwIZYs\nWaKzyg6Uc8z69es1DgDwRej+MSIiAp999hlJUOBbb72FlStXathiWVsvXLgQXl5egkp2A/+dj2/f\nvo1Ro0YhKiqK2Y8wd+5cjB07VvA4Rbm+06VvA+DXz2fNmgUzMzMNfyKFL/Du3bu4e/cubGxsmPZ7\nAK0/KSkpCeHh/y3Z+q9//Qs7duxgstUTQseW8+fPIyMjA7NmzcL8+fN5v59qvqLs50qlEhKJBE1N\nTTh//jwmT57M1Bf6o44C0Gspoo7y14g6inZQ6SiA8OfvUeooALuW0l90FIBu7hN1lEdvS9RR+EGx\nZ6f05QI0YzqV/04Nhd9NRETX2Pkm9XUTRB4T7hwM/+v/pEPEYGMRERGRLhw9evSBa1QlISlpbGxk\nOqGqXtAL5dKlSw9cEyJYZWZmYt++fRgwYADu37+PxYsXw9XVFd988w18fHy0tpOTk4OdO3eipaUF\nAwcORGRkJFP5L11uGqlQKBQ4cuQIBg8ezOQ4729kZWXhwoULaG5u5q5RikPAg4ItC+3t7aiqqoKN\njY0gO0VFRUhLS4OTkxNee+01Qbb6A8ePH4eLiwsGDhyIlpYWZGVlMZdJ/zvT09iphu8Y2tLSgj//\n/BMtLS3c2M4yDlOO50VFRUhJSUF5eTlsbGyYHbgRERHYsWMHSebRR8H58+e1LqsLdDqA8/Pzce/e\nPe4aZdBHfyU/Px/jxo0jscUiPus6COHIkSN4/fXXeb2na7ZsfX19zJw5EyEhIbzv3dzcjMLCQowf\nPx5KpRJFRUVk33V/hrJPsZCSkoKsrCxYW1ujvLwcbm5uWLx4MXbs2MGrzKB67Lxz5w4nftnb26Og\noADjx4/n1ab6+nqNscXW1vaBYIm+sEWBXC7HkCFDuNc1NTWCgh4fF/q6n/dEf2wTCyUlJThz5gwa\nGxu5ayyCI+W8XlZWhtzcXG59B4D33HL48GHMnz+fJHAaoF/n9zS2CEEdTPTjjz/C19eXl7geHR2N\nrVu3Crp/VxISElBXV6fhc6Faa6iFY77MmzcPY8aM6VfrH6pnrye+//575kxelMFEVAGGb775Jl54\n4QWSbJFUqNedXccpPv6yCxcu4IUXXtBV83RC98DaviYxMVFQVlQ16oytfY2u1pyNjY0wNjZm9oML\nma900c/r6uq4oMmoqCicP3+eKaCMElFH0Q5RR+l7RB2FDaFaiqij9Iyoo2iHqKNoz+OmpfQ3/i4+\nLpG/D2KwsYi2iMHGIiIiIgKhFATS09O5vysrK5Gfn4/PP/+cuW3dYTkNnJycDF9fX27zuX//foSG\nhjLd38vLC2lpaYIdZZ999hn3d2VlJcrKyrBnzx5BNimg2jT2xtGjR3k7TSmzWFDRPbOYqakppFIp\n75OlPT17avg+g35+fvjyyy9JsggpFAr89ttvGqIAq7O7+++nr68Pa2truLm5wdjYWFA7KVm2bBk2\nbdrUZ7a6j22sWWji4uLw4YcfIjU1FRkZGXjppZfw/vvv87ajblN31OMCn3FYnRm3K0JO9puamsLB\nwQE3b96EQqHA1KlToaenx1ss9PLywsKFCwVnuaIcz728vPDJJ5/AwcEBxcXFWL16NVNWzqCgIKSk\npDC1QVtkMhlXRl0ofOd2Pz8/jB49mivVxfL7q9m4cSNiYmK4NUJiYiI++OAD3nZ++ukn7Nu3D5WV\nlcjIyMD69euxevVqpjb1hpDs8t05d+4cXnrpJV7voQjgAoCTJ0/i2LFjaGpqYhpTdAGVCPowqOaZ\nvnz2APqsJkqlErW1tbCwsICenp6gsuRCiY6ORnNzM5d9Vk9Pj7mMMZUtyn1M9997xYoVzJ+vNzZs\n2PDQ9e2jtgPQjZ2Ua0WWNuXn52PMmDGoqKjAyZMnMXPmTDg6Omr9/mvXrkEmk8HQ0BC+vr5ISkpC\nQ0MDAgMDMWfOHL4fAQDg7u6OyMhIjYzN//M//8PbDuW87uHhgejoaEFZaI8fP47vvvsODg4O8PHx\n4fU99wTVOh+gHad6gjWYiIqYmBi8++67grPZArR7Wgoo1z9Uz15PhISEIDk5mcSWmurqagwePFir\n/0sdYCg0a6j6YFtbWxsUCoWGD6ir/5MPQvehO3fuRHZ2NpydnfH666/jiSeeYGoH0Pl7v/DCC/Dw\n8CA5gJSTk4PMzEyN5446eIvPGiEvLw9OTk4PlADfuHFjj0GefBGyxqD6rnQ5LwgZD4S2i7KfqwkL\nC0NwcDB27NiB/fv3M/9+j5OOAvDvp6KOoj2ijqIdVDoKQKelUOooAN2683HRUQC6/bGoozwIlZYi\n6ijao2sthdWXS+2D7Up/9LuJiFAhBhuLaEtfBxtL+vTuIiIiIgRERkZyf8vlcpw+fZrZlqenp8br\ntWvXMtvqCZbzHWfPnuWy3BkZGeHs2bPMTjJzc3N0dHQIDoR47733NF7r4uQ0wH8TExAQ8MCmkdJJ\nlpGRwXsT2rUUi1wu7/G0v7YkJSUhLCwMmZmZSElJwcKFC7F48WLeduzt7bFq1SquTNq6deuwZcsW\n3naUSiXc3Nzg6OiI4uJinDp1ilcmv64MGjQIMTExGiIea78KCgrC3LlzOcFfCAUFBZg6dSr3GS9e\nvIjBgwfj3Xffxe7du3nZ8vT0hEKhgKmpKRQKBczNzWFsbIywsDBMnz5dUDvlcrmg9wu1pVKpuKw4\nt27dYhrrgE4xTV9fHzk5OTh27Bi8vLyY7ACd/XzRokXcb3fgwAGsWbOGt52ujprKykocPnyYuU1S\nqRTbt2/nXgcHBz8wnmqLvb09SktLNcY7FijH8+HDh8Pa2hpGRkawtrZmyr4GAIMHD0ZAQACefvpp\nbr6iyNzUlXPnzpEFPPLt7xYWFkx9sSf++OMPLtOZkZERfv/9dyY7MpkM+/fvR2BgIKRSKW7cuEHS\nvq6wjAspKSk4deoUBgwYoFFujW+gMdAZABQdHa11sEhvyGQyyGQykjmmN/iKcoGBgToPwqSaZ/ry\n2QM05/WbN28iOzsbixYtYrp/SkoKgoKC8I9//AO5ubn49NNPmQSi0NBQbN++HUZGRmhtbUVERAST\nWNHW1sZ7baJrWxT7mAsXLuDChQsoLS1FYmIigM4MSeXl5YLb153r16/3KzsAWz/vCcq1Ikub4uPj\nkZqaio0bN2LWrFlYsWIFr0C3//3f/0ViYiJqa2sRHByM48ePw8TEBAEBAczBxtOmTcPLL78sODiV\ncl4fNmwYMjIyBO1nFyxYgAULFqCgoACpqamQy+Vwd3fH7NmzmfwAVOt8gHac6i4sqoMZvLy8eJeV\nv3LlCnbu3ImmpiYYGxsjIiKCKbNfeXk5MjIySLLQCt3TRkREYMGCBXB1dYVEItz9T7n+oXr2HhVL\nlizRWny+cuUKZDKZ4ADD2NhY+Pj4YPLkyUzvV3PgwAEAnYEwXX1AcXFxzDaF7kMjIyPR0dGBs2fP\nYtWqVTAzM4O3tzcmTJjA21ZycjL+/e9/Iz4+HhKJBJ6enkyl2tWsWbMGcXFxOl3n81kj/Oc//4GT\nkxNWrVqFN954g7ve0NDA655xcXH46KOP4Ofnx11TqVT4888/ednpyurVqxEfHy/4u6KcF7rTl/MV\nZT9X09TUhBkzZmDXrl0A2D/f46SjAPw/p6ijiDqKmv6mowB0WgqljgLQaSmPi44C0O2PRR3lQai0\nFFFH0R5daymsvlxKH2x3+qPfTUSEClXH/b5ugoiIVojBxiIiIo89XRfhlpaWgk6gdS1nraenBycn\nJ8Ht6wrLSXgDAwNcvHgRkyZNwtWrVyGVSgXdf968eZgwYQL09fWZM0YsX76c+yzNzc2C2vQw+G5i\nqDaNlHTP0NM9IwkffvnlF4SHhyMrKwsHDx6Et7c3k5Ps1q1bkMvlMDExgVwuR2lpKVN7SkpK4Ozs\nDKlUihEjRmDXrl0YMWIEky0A+OCDD0hO5I8aNQqhoaEkZYOqqqoQFBQEAHB2dsb3338Pb29vHD9+\nnLetESNGPOCcjIuLQ0hIiGAnGWVGSxZba9asQUJCAurr62FmZsacEdXS0hJBQUF49dVX0dHRAQMD\nAyY7QKfDzcbGhnPY5OXlMQkEZWVl3N/37t3D1atXmdtkYWGB9evXY+TIkSguLhbkxC0pKUFERIRG\nMAMLlON5SUkJvL29uWwfTzzxBDev8sn24e3tzdyGx4G6ujr4+PhojJesgaFmZmY4cuQIt0YwNTVl\nsiOVSlFWVgY9PT3U1dX1aXbWrnz//fc4cOAAyXhOEcAFAFOmTEFeXh4cHBy4a9Tlh7UV5fLy8vDH\nH3+gsrIS33zzDYDOIMyu4xYVus6c/Kiorq7WmNdPnTrFnE1RKpViy5YtaG1tRW1tLRcIy5eWlhZu\n/WNoaIjW1lYmOyqVCkuXLoW9vT13jVVcoLJFsY8ZPnw49PX1cfbsWe63kkgkGoESIn9NXz/DDQ0N\nyM7OhomJCRYsWMA7Y49EIoGVlRWsrKzg6OjIZbA0NDRkblNeXh48PT1hlvVUXAAAIABJREFUaWmp\ncaCFL5TzenV1NWQyGcmeaOzYsfj444/R1NSEb7/9FpGRkfDx8eFdcp1qnQ/QjlPdgzVOnjyJKVOm\n4P333+d98CMhIQHbt2+HlZUVqqur8c477+Drr7/m3SZDQ0PY2dlx63Mhz53QPe2WLVtw4sQJREZG\nwsnJCd7e3rC1tWVuD+X6h+LZ67qHUSM0eLI3+IjPVAGG0dHRSEtLw7Zt2+Di4gJ3d3dB+z4qHxBA\nsw/V19fHrFmzMGvWLJSWluLQoUPYunUr3nrrLd7BwtOnT8f06dMhl8tx6NAh7Nq1C6+88gpee+01\n3gHt6iB4IcEelKj3Az4+PggP/2/Gory8PF52PvroIwCd33vX8dHf35+5bc7OziTfFcW80Juftb6+\nvk/bRdnPAWDevHkIDQ3F7du3sWzZMri5ufG2ATxeOoraLh9EHUXUUdT0Nx0FoNVSqHQUgE5LeVx0\nFIBufyzqKA9CpaWIOor29FcthdIHKyIiIiLS/xCDjUVERB57AgMDoaenB5VKBWNjY7i7uzPbUmf9\n0BUsJ+TWr1+PpKQkyGQy2NvbCzot+fHHHzO/tytdT3AOGjRIo/xlX0K1aewNlt+vq+NVX18fM2fO\nZL6/vr4+PvzwQ4wZMwZSqZTZoZSQkICUlBSUlZXB1tZWUAbhgIAASCQSKJVKbuPIwuTJk3Hy5EmN\na6xZoAoKCjBz5kwMGzZMUOAAALi5uWHRokWwtrZGeXk53NzcoFQq8fzzz/O2VVJSwjkn7969i9u3\nb8PY2Jjk5Czl6VsWW6NGjdI4ac7K1q1bUVtbC0tLSyiVSo3SVHyJjY3FihUr0NTUhIEDB+KDDz5g\nsrNjxw7ub2NjY7z99tvMbdq0aRNycnJQXl4OV1dXjYwdfDEwMMDWrVs1xjuWZ5lyPFcHOwrlueee\nI7HzMCifGb5Zdjdu3Eh274SEBKSnpyM1NRUODg7MwU2rV6/Ghg0bUFdXh7Vr13KCNCVPPfUU7/c4\nODjg0KFDGiIvq1OSKoCrqakJmZmZGtd0lZnor9DX1+eyFUokEqhUKhgaGiIhIYH8XlTPDOWzx9Kn\nXF1dNeZ1FxcX3jZu374NoDMg5bvvvkNubi4++eQT3Lt3j6mE9zPPPIPY2FhMnDgR165dw9NPP83b\nBtBZWpkKKlsU+xg7OzvY2dkhKipK5/PD36Wf90Rft2n58uXIzMxEeHg42traeM+dFRUV8PPzg0ql\nQk1NDfd3bW0t77aoSUtLY35vVyjndTMzM6xcuVLw+q4rgwYNgre3N7y9vdHY2Mj7/SNHjiRZ5wO0\n49TNmze5YI3hw4dj165dePHFF5nbqg6uUPuWWGCt8tMTQve0AwcOhKenJzw9PZGbm4sdO3agsbER\nr7/+OpydnXm3h3L9Q/HssWY1Y4FvEAlFgKGtrS2WLFkCpVKJH374AcuWLYOtrS18fHzw5JNP8v4M\nCQkJ2LNnD8rLy2FnZydoXKHah6oZNmwYli5divb2dlRWVjLbGTJkCKKiotDR0YGffvoJFy9e5H24\n4tq1a7h27Rr3mqV0+F/BMr50DTQGNH0UfOieiTMwMJDJDkD3XVHMC5cvX+7xOt/fvyuU8xVA088X\nL16MefPmobS0FMOGDWPadwCPl44C8H9mRB1Fe0QdRTuodBSATkuh1FEAOi3lcdFRgL7d+/+ddRSA\nTksRdRTt6a++MgofLHWbeoLK7yYiIiLy/w09lZgbXkREROQvOX/+PF588UWt/39HRwfy8/Nx7949\n7hplGar+Sn5+PsaNG0dmz9/fn1dWosWLF8PKyopUnO3KkSNH8Prrr5PZ40tzczMKCwsxfvx4KJVK\nFBUVkX7f/RHqPsWCUqlEbW0tLCwsoKenx3yqu6ioCCkpKbhz5w7s7OwQGBgIe3t7FBQUYPz48Vrb\nqa+v1xhbbG1tUVVVBSsrK95torKVnJwMX19fDBw4EC0tLdi/fz9TmUK5XI4hQ4Zwr2tqapgFlMeJ\n/tDPu8PSpvz8fIwZMwYVFRU4efIkZs6cCUdHR63ff+3aNchkMhgaGsLX1xdJSUloaGhAYGAgc4n0\n3jh37hzvQKebN28iOTkZ5eXlsLGxQUhIiEZ2N205evRor//Gt8QkJUqlEnV1dbCwsBCU2bimpgbp\n6ekoLy+Hra0tPDw8mJ/jbdu2PXCNVUCJioqCRCLR2RqBEr7rn4MHD8LX15fs/pTzTHdYnr2SkhKc\nOXNGI0hOiJCmntfNzc2ZspDExsb2+m+sfSovLw8lJSWwt7dnzgh26dKlXv+N7z6E0hYVTU1N+Pnn\nn9HU1MSJCh4eHqT3YJn77t+/j7q6Opibm3NjJ4sdyn5O9QxTjuf9kZ6eZZZnuKd5vS/nczVU63Mv\nLy+kpaWRZP/qaWxhHVMyMzOxb98+DBgwAPfv38fixYvh6uqKb775Bj4+Prxs5eTkYOfOnWhpacHA\ngQMRGRmJKVOmMLWrJ44ePdov+oRCocCRI0cwePBgzJ8/v8/aQTmPZmVl4cKFC2hubma28VcsXboU\nmzdvFmSjvb0dVVVVsLGxYbZRVFSEtLQ0ODk54bXXXhPUnv7A8ePH4eLiwo1RWVlZWLBgQV83S+ew\nrBGo9qFA5+GdiooKDB06FEOHDmWyQQnlmrOlpQV//vknWlpauGA51jmGar5S+wHVv11gYCBGjRrF\n1KaIiAjs2LGDpOqPruGrowD/P7UUUUfRLaKO0jf0Nx0FoNsfizpK/6A/9PPu9IWOAjw6LYXFl6tG\nqA+2N/ra7yYioktsvXf2dRNEHhPK0vq28qMYbCwiIvK3RSaT8Sod9TACAgJ4ZWjw8/PD6NGjudIu\nenp6zOVBN27ciJiYGG7zmZiYyHyy9KeffsK+fftQWVmJjIwMrF+/XlAZ1O7w/Z7+Cr6bmLKyMuTm\n5nKOZQBMTq2TJ0/i2LFjXDCDLrKZsAiO6rboimXLlmHTpk2C7fTlswf0HJymhu/mMSUlhcsykJub\ni08//ZR3WV5KoqOj0dzczJ2aZi3hR22r++/E18Hdm50VK1Ywt6k3NmzY8FCB+1HbAWjHTqrnmKVN\n6t/9vffew6xZs5Camor09HSt3+/n54fExETU1tYiODgYx48fh4mJCQICAphKWQPAjz/+iN27d0Mq\nlUKpVCI0NBSzZ89msuXn54fY2Fg8+eSTKCwsxIYNG5gyfYSFhcHR0RGOjo64efMmioqKuBKonp6e\nTG3rDt/+mZKSgqysLAwdOhQVFRVwcXFBcHAw072Dg4O5rGs3btzAwYMHsWfPHiZb/REPDw80NDRw\nZe5MTU0hlUoFZdHvjlBRLisrC66urkzvpZobUlJScOrUKQwYMEBwlQF3d3dERkZqZAyhLrvXl4Fg\nubm5uHTpkkagFIuz29/fH6ampnBwcMDNmzehUCgwdepUpn0Ipa2eYFkrvvPOO5g8eTKOHj2KOXPm\noKioiDlzT3x8PK5cuQJDQ0NB/XPfvn04ceIErK2tUVFRgfnz58PPz4+pTVT9nHJ9Rzme63p/xdKn\nbt26xf0tl8tx+vRppn1217VOZWUl8vPz8fnnn/O28zBY1mVU6/Pw8HDs3LlT0EEkNV2f2crKSpSV\nlfWLNQJlgFpPUO1p+1IIpVz/LF++HG5ubnB0dERxcTFOnTrFZYXmW0rcz88PX375JUkZcYVCgd9+\n+00jiIR1bdD999PX14e1tTXc3NxgbGwsqJ2UUO0dWWxRjVEAEBcXhw8//BCpqanIyMjASy+9hPff\nf5+3nYCAgAeu6conyAeqfejmzZvx559/cuXIn3zySSxdupSpTf7+/g/4J1m+I8o1p5eXFxYuXIhB\ngwZx11ifYar5ysvLC5988gkcHBxQXFyM1atX49ChQ0xtCgoKQkpKCtN7taGvfblUWoqoo4g6iprH\nRUcB6J4/1j5FpaX0Nx0FoNsfizpK/7El6ij/hVpLofTlPgw+YzqV/w54NP5lEREKxGBjEW3p62Bj\nSZ/eXURERESHnDt3jsxJxvdchoWFBdasWUNy7z/++IM7YW5kZITff/+d2ZZMJsP+/fsRGBgIqVSK\nGzdukLRRDev5ld42MXxPS8bExCA6OhqDBw9maocamUwGmUzGOTh1QUZGBm8nWWBgoE4dCHK5nMRO\nXz57QGfpr6lTp3KBfNnZ2Vi0aBHT/aVSKbZs2YLW1lbU1tYiMTGRyQ4AhIaGYvv27TAyMkJraysi\nIiJ4ixVtbW3YvXs3cxt0ZcvAwAAXL17EpEmTcPXqVd6nlC9cuIALFy6gtLSU+47b29tRXl5O0r6u\nXL9+vV/ZAWjLPlE9xyxtamhoQHZ2NkxMTLBgwQLeIppEIoGVlRWsrKzg6OjIZWMwNDTk3RY1MpkM\nqampMDAwQFtbG/z9/ZmDjdvb2zF27FhIpVKMGTMG7e3tzHZWrVrFvQ4ICCALMlbDt3/+8MMPXAlU\nlUoFPz8/5mDj5uZmLnh61KhRSE5OZrIDAHPnzoVCoYCdnR3u3LkDMzMzmJubkzo7+TqE7e3tsWrV\nKlhaWqKmpgbr1q17oCSxtvQmymkr8Knf09HRoXEtNTWVOdiYam74/vvvceDAAZLMW9OmTcPLL78M\nExMTwbZ6g8+6LDY2Fj4+Ppg8eTLJvePi4rBhwwbB5WulUqlGKc7g4GDmMvOUtnqCZa2oUCgQHh6O\nc+fOISYmRtBas7CwkKRk5YkTJzgBR6VSwdfXlznYmKqfU67vKMdzXe+vWPrUsGHDuL8tLS2ZBcvu\nc/jatWuZ7DwMlnWZ0PW5Gj09PcybNw8TJkyAvr6+IGG9+ziiiwoDLMEaAQEBDwSo9XU2xa5lguVy\nOS5evMhkJykpCWFhYcjMzERKSgoWLlyIxYsX87ZDuf4pKSmBs7MzpFIpRowYgV27dvEOMlYzaNAg\nxMTEaPiAWPtVUFAQ5s6dSzJOdfVJFBcX4+LFixg8eDDeffddXmO0p6cnFAoFTE1NoVAoYG5uDmNj\nY4SFhWH69OmC20m1d2SxpVKpcPv2bQwfPhy3bt0StCfOy8uDvr4+cnJycOzYMXh5eTHZsbe3x6JF\ni7jf7cCBA7x9uxUVFThw4AByc3OhVCoBdO5zJ02aBF9fX1hbW/NuF9U+9PLlyxp7KJaxQE3XoNfK\nykocPnyYyQ7lmtPe3h6lpaUaYzkrVPPV8OHDYW1tDSMjI1hbW2usPfgyePBgBAQE4Omnn+YOAFEc\nAlTT175cKi1F1FG0R9RRhEE5h1I9f6x9ikpL6W86CkC3PxZ1lP5jS9RR/gu1lkLpy30YfMZ0Kv8d\n8Gj8yyIiIiL/nxCDjUVERER0QF1dHXx8fDQEE1ZnhpmZGY4cOcJtPk1NTZnbJZVKUVZWBj09PdTV\n1ZFkJ6KAahMzbNgwZGRkCBYJp0yZgry8PI2yhMOHDxfUNiHk5eXhjz/+QGVlJbexam9vR1lZGel9\ndHna/1FSXV3NnaJ3dnbGqVOneJ9QvX37NgDg5ZdfxnfffYfc3Fx88sknuHfvHnM5qpaWFi7jkqGh\nIVpbW3nbUKlUWLp0Kezt7blrrOICpa3169cjKSkJMpkM9vb2vIWY4cOHQ19fH2fPnuV+K4lEgsjI\nvj2V9zjSl8/x8uXLkZmZifDwcLS1tfEWOioqKuDn5weVSoWamhru79raWuY2DRgwAIWFhVwWKCHz\nXlhYGPz9/SGRSHD//n2EhYUx2XnqqacQFRXFOfHHjh3L3CYqLC0tsXfvXowcORJFRUWwtLTEr7/+\nCoD/Cf9//vOf8PHxga2tLcrKygSV6XZwcEBiYiIXLB4TE4MvvviC2V5P8HUI37p1C3K5HCYmJpDL\n5SgtLWW+t1BRLiEhAbGxsXj++efx1FNPAej8PAUFBcxtopobHBwccOjQIQ07rNki8vLy4OnpCUtL\nS51m1tCW6OhopKWlYdu2bXBxcYG7u7ugQGErKyts3LhRcKCUhYUF1q9fz2WrEyL2UtqiwtzcHA0N\nDRg5ciRiY2M1Mk/yxdTUFJs2bdLonx4eHrztGBkZISsri8v8KySzJlU/p1zfUY7n/W1/BXQGIOjp\n6UGlUsHY2Bju7u5MdhYtWsStv/T09ODk5ETZTM4uX4Suz9V8/PHHTO/rieXLl3Ofpbm5mbSMqhqW\nYA3KALWeYBGfu8+Z6nUZX3755ReEh4cjKysLBw8ehLe3N1OAIeX6JygoCAEBAZBIJFAqldzenZUP\nPviAJLPxqFGjEBoaSiKuV1VVafgkvv/+e3h7e+P48eO87IwYMeKBIO+4uDiEhISQBBtT7h352lqz\nZg0SEhJQX18PMzMzQdlCLS0tERQUhFdffRUdHR0wMDBgspOXlwcbGxsuMDQvL4/3/nHfvn1YsGAB\nlixZonH9P//5D/bv349ly5bxblf3fShrQJqpqSn27NnDrVueeOIJJjsANPyR9+7dw9WrV5nsUK45\nS0pKEBERIfgAH0A3X5WUlMDb25vLCv/EE09w6wa+6zxvb2+mNjwuUGkpoo6iPaKOIoy/i44CCNdS\n+quOAtDtj0Ud5e/J46yjAPRaCqUvlwoq/x3Q//zLIiIiIo87YrCxiIjI3xbKE458F/obN24ku3dC\nQgLS09ORmpoKBwcHQSewV69ejQ0bNqCurg5r167FRx99RNZOAFygC1+oNjHV1dWQyWSChaampiZk\nZmZqXKPOusSnf+rr60Mi6ZyyJRIJVCoVDA0NkZCQ0GdtehR2ALY+5erqikWLFsHa2hrl5eVwcXHh\nbWPHjh0ar62trblrrH3hmWeeQWxsLCZOnIhr167h6aef5m2DNbhR17aGDBkiaDyxs7ODnZ0doqKi\n8Nxzz5G1qyf+Lv28N6jaxdKmGTNmYMaMGdzrt99+m9f7T506xfuef0V8fDySk5NRVlYGOzs7xMfH\nM9tydXVlzhbblZUrV6KiogLl5eWwtrZmym71V/DtB2PHjkVDQwOuXbsGABg3bhwuX74MgP987O/v\nD19fX9TW1sLCwoKbv1hoaGjAuXPn4OjoiKKiIigUCmZbvcHXsZyQkICUlBSUlZXB1tZW0PpAqCin\nLj/40ksvYfPmzdx1f39/5jZRzQ12dnaoqqpCVVUVd43VQZ2WlkbSpofB55mxtbXFkiVLoFQq8cMP\nP2DZsmWwtbWFj48PnnzySd737ujowOeffy54/bpp0ybk5OSgvLwcrq6uGlkx+9JWT7DMVVu3bgXQ\nuZ+5fv06HB0dme//yiuvML+3K5s3b8ahQ4dw/vx52NnZaTyHfFm1ahXGjRvHHCClhnJ9Rzme63p/\nxdKnqEr6qisD6BKWzyd0fa7Gzs5OsA01XTNFDho0SKN8aV9CGaDWE2+88Qbv93QNYtfX18fMmTOZ\n7q2vr48PP/wQY8aMgVQqZZ5rKNc/8+bNw7x585jf35XJkyfj5MmTGtf4lPvuSkFBAWbOnIlhw4YJ\nFp/d3Nw0fBJubm5QKpV4/vnnedkpKSnhgrzv3r2L27dvw9jYuF/uafnaGjVqlEZGWyFs3boVtbW1\nsLS0hFKpxGeffcZkJzY2FitWrEBTUxMGDhyIDz74gLeN3oKJx4wZwzvQuLq6GoMHDybbh3722WfI\nysrC9evXYWNjw/w9AZo+M2NjY957fzWUa04DAwNs3bpVYyxnHauo5iuqTHwAHhtfGcBfRwHotBRR\nR9EeUUd5dG16VLZY+5RQLaW/6igA3f5Y1FH6jy1RR/kv1FoKpS/3YfD53qn8dwCd301EREREpBM9\nFeVKQURERKQfce7cOd7OrZs3byI5ORnl5eWwsbFBSEiIRgCIthw9erTXf+Nb8okapVKJuro6WFhY\nMJ/Ir6mpQXp6OsrLy2FrawsPDw/mU8oAsG3btgeusQhEUVFRkEgkJI5lXXPkyBGty6SrOXjwIHx9\nfUnuX19fr5ERztbWFlVVVbCyshJsm+XZKykpwZkzZ9DY2MhdYxUJgc5+XltbC3Nzc51kzGIlLy8P\nJSUlsLe3Z8p6dunSpV7/jW/2CUpbvcG3jHFTUxN+/vlnNDU1cU4H1pPKvZGfn49x48bxes/9+/dR\nV1cHc3NzbtxksUPdzymeY8rx/OTJkzh27Bj3++np6TGXJO8JlrLYlJw8eRLHjx/X+M4pP9/58+fx\n4osvkthi6Z9U5OTkIDMzU+N7Yp2Lq6urkZ6ezgW2vPnmm/jHP/5B1VQAncF0VAFnfFEHC3eFYt1S\nWlrKXKI3MjIS5ubmGD9+PCZMmAAnJycmJ+zatWsxceJETJgwAaNHjxaULaSn70kN1TqPZV3WlaKi\nIqSlpcHJyQmvvfYar/fqqh+ooRwPqGyxrBVv374NmUyG1tZWxMXF4ciRI8xl0mNiYjB69GhMmDAB\nEyZMEDSu9DQXs7Bz504UFhZCqVTCwsIC48ePh6enJ287lOs7yvG8O01NTaRZZFn6VG9QrTdY5vWO\njg7k5+drfOes6/KNGzciJiYGAwcOREtLCxITE5kC53766Sfs27cPlZWVyMjIwPr16wVlIO0JynGK\nZV5fvHgxrKysBPsRdL0WZqG5uRmFhYUYP348lEolioqK+myN+FdQrvX7ci2sRu2TsLCwgJ6eHpP/\nraioCCkpKbhz5w7s7OwQGBgIe3t7FBQUYPz48bxsUfqAKGwlJyfD19eXG6P279+P0NBQ3m0BOktg\nDxkyhHtdU1MjyEepC5qbm3kfaAgPD0dtbS3GjRuHZ599Fs8++yxsbGx433v16tV47rnnMG3aNAwd\nOpT3+/uC/vAM9wTfduXn52PMmDGoqKjAyZMnMXPmTN4H5q5duwaZTAZDQ0P4+voiKSkJDQ0NCAwM\nxJw5c/h+hF7pSx0F6L9aiqij9A/+zjoKwP/5o/YvA/1TSxGqowB0+2NRR+EHhZYi6ijC4dunKH25\nD4PPmE7pv6Pyu4mI6Bpb75193QSRx4SytL6taiAGG4uIiDz2/Pjjj9i9ezekUimUSiVCQ0Mxe/Zs\nJlt+fn6IjY3lyq1v2LCBKZNJWFgYHB0duRLpRUVFcHNzAwCyxeuGDRseGnzREykpKcjKysLQoUNR\nUVEBFxcXBAcH8753cHAwl73txo0bOHjwIPbs2cPbTn/Fw8MDDQ0NXJk7U1NTSKVSpsw2utw0ZmVl\nMWU3iY6ORnNzM5eZQ09PjynTQ0pKCk6dOoUBAwYIzvzj7u6OyMhIjWwh1Kdmjx49qrWDOjY2Fj4+\nPpg8eTLZ/XNzc3Hp0iU0Nzdz1/g6SPz9/WFqagoHBwfcvHkTCoUCU6dOhZ6eHu/SXZS2eiMgIIBX\nf3/nnXcwefJkHD16FHPmzEFRURFztp34+HhcuXIFhoaGgvrnvn37cOLECVhbW6OiogLz58+Hn58f\nU5so+znVc0w5nr/xxhuQyWQapU8py0zy7U9AZz+4evUqDAwMBI9T/fXzUfTz3li2bBk2bdrE6z3u\n7u6Ij4/X+J66lkLtKygDuHqC5buiQqFQ4LffftP4bEIE2cbGRpw7dw5fffUV5HI5Tp8+zdtGRUUF\n8vLycP36dWRnZ6OlpYU5++fy5cvh5uYGR0dHFBcX49SpU4iJiQHAv2/1x0Cw3lBnsxMKy9hCZYty\nrejv749169bh448/xldffYXAwEDs3buXydb9+/dx48YN/P7770hPT2fu59HR0WhpaYGFhQX3+YRk\nTysuLsbZs2chl8thZGTEtB6jXN/pcjxn7ZeUfYq6bRR2/Pz8MHr0aO47F7Iu735/1sM1vr6+2L9/\nPwIDA5Gamko6pqihtMkSLFVWVobc3Fy0tLRwQj3LARRdrxUBfntaANxzoiso1z99OV8BPQdvqeG7\nb09JSeHKkefm5uLTTz/ts8NtAN3ekdIW1RjVk60VK1YImo+7w+J/7Q5r/1apVMjPz0d2djYuX76M\n8vJyODg48MoCm5ubi+zsbGRnZ6OqqgpPPvkknn32WUybNo1XVRVtoPiuANrxoC/HKXW/fu+99zBr\n1iykpqYiPT2d1z39/PyQmJiI2tpaBAcH4/jx4zAxMUFAQAC+/vprvh+hX+oogO61FFFH0R2ijqI9\nVHuZR6GjANqvO/urjgLQ7Y9FHUV7qLQUUUcRDt8+RenLBWjGdCr/nRoKv5uIiK4Rg41FtKWvg43Z\nayCKiIiI9BNkMhlSU1NhYGCAtrY2+Pv7MzvJ2tvbMXbsWEilUowZMwbt7e3MdlatWsW9DggIID8h\nd/36dd7v+eGHH7jNgUqlgp+fH5OTrLm5mXP4jRo1CsnJybxtdGXu3LlQKBSws7PDnTt3YGZmBnNz\nczLxmO+myt7eHqtWrYKlpSVqamqwbt06bNmyheneMpnsgU0jX9QbsY6ODo1rqampTE6ytrY27N69\nm7k9ar7//nscOHAA+vr6gm1NmzYNL7/8MkxMTATb6o2MjAythdno6GikpaVh27ZtcHFxgbu7u+Cy\nunFxcdiwYYMgO1KpVKPUaHBwsEZ5x76yRYVCoUB4eDjOnTuHmJgYQZmtCgsLSUpWnjhxghNwVCoV\nfH19mYONKfs51XNMOZ5PmTIFeXl5GplsqMVLvhQWFvIW83pD15+P5QwoVT/vDblczvs9zs7OMDEx\nYc6sqw0s4rO/v/8DAVyUwcYs3xWVKBcUFIS5c+cKWmt05dtvv8W+ffsQHh4Od3d3JhtDhw7Fb7/9\nhtzcXLi4uGiUBuRLSUkJnJ2dIZVKMWLECOzatYs54JFiXabG09MTCoUCpqamUCgUMDc3h7GxMcLC\nwjB9+nTB9pcsWUIirPZl2UvKtaJSqdQYc+/fv89sa8CAAbh8+TIOHTqEwMBAzJ07l8lOW1sbZDIZ\nczu6I5fLUVNTAxMTE95Z79RQru8oxvNdu3bh7bffxooVK7hrKpUKRUVFTPYo+5SuYXn2LCwssGbN\nGpL7m5mZ4ciRI5g0aRKuXr0KU1NTJjtSqRRlZWXQ09NDXV0duQAKsH1XvQVrsGS4jomJQXR0tOAD\nHo9iLcxnTwsAgYGBOg3CZFn/PApY+lRBQQGmTp3KBbplZ2dj0aIyXxkLAAAgAElEQVRFTPeXSqXY\nsmULWltbUVtbi8TERCY7oaGh2L59O4yMjNDa2oqIiAimgAaqvSOlLQMDA1y8eJEbo1iyKF64cAEX\nLlxAaWkp9x23t7ejvLxccPu6wsf/2tNvXVtby7wea2trg0KhQH19PRobGyGVSnmvYydNmoRJkyYh\nJCQEbW1tOHr0KHbu3Ik7d+7gjz/+YGpXb7D4qnuCcv1KOU7xbVdDQwOys7NhYmKCBQsW4NChQ7zv\nKZFIYGVlBSsrKzg6OnIZFA0NDXnbAvqnjqK2pUstRdRRtEfUUTShnEOp9jKPQkcBtF939lcdBaDb\nH4s6ivZQaSmijvLoofTlAjRjOpX/Tg2F301EREREpBMx2FhEROSxZ8CAASgsLORO0QsRv8LCwuDv\n7w+JRIL79+8jLCyMyc5TTz2FqKgoTqQYO3Ysc5sosbS0xN69ezFy5EgUFRXB0tISv/76KwB+p0L/\n+c9/wsfHB7a2tigrK8P8+fMFtcvBwQGJiYmcozMmJgZffPGFIJtd4esMvnXrFuRyOUxMTCCXy1Fa\nWsp8b4pNY0JCAmJjY/H888/jqaeeAtD5mQoKCpjapFKpsHTpUtjb23PXWE5wOjg44NChQxp2WE8X\n5+XlwdPTE5aWljrLUsYHW1tbLFmyBEqlEj/88AOWLVsGW1tb7uQyC1ZWVti4caOGiM23PJ2FhQXW\nr1+PkSNHori4WNBGndJWb/B99szNzdHQ0ICRI0ciNjZWI0snX0xNTbFp0yaN/slSSszIyAhZWVnc\niXUjIyPmNlH2c6rnmHI8b2pqQmZmpsY1yhKMLIIjVT8AdP/5WKD8fD3Bkgnv2rVryM3NBQDyTDRq\n+jqAqydYvisqUW7UqFEIDQ0lC75TBxgeOHAAW7ZswdmzZ5nszJ49GxKJBIcPH8aZM2eQlJTEZCco\nKAgBAQGQSCRQKpVcpkAWKJ35I0aMeOD3i4uLQ0hICEmw8d+hCBXlWjE4OBi+vr4oLS1FaGgoAgIC\nBLXN09MTZmZmSE1NhUwmw3fffcfbBtVcDACnT5/G9evXNYI6582bx9sO5fqOYjx/8803AXQeGti8\neTNn69atW0xtouxTvdGXz15dXR18fHw0DlSwBoYmJCQgPT0dqampcHBwYLazevVqbNiwAXV1dVi7\ndi0++ugjJjvUUAaeDxs2DBkZGRg0aBB3jeVAUn9aK+bl5eGPP/5AZWUlFzjQ3t6OsrIy0vtQZk3u\n63mvurqaW2M4Ozvj1KlTvMeX27dvAwBefvllfPfdd8jNzcUnn3yCe/fuMZVYbmlp4fafhoaGaG1t\n5W0DoJ2vqGytX78eSUlJkMlksLe3Z3pWhg8fDn19fZw9e5b7rSQSCSIj+y67z5kzZ7Bq1SqN/mxk\nZMT58vjg4+MDfX19TJkyBc8++ywCAwPxxBNP8Lbzyy+/4PLly7h69SqUSiUmTZqElStXYtq0abxt\nPY7oMrv7X7F8+XJkZmYiPDwcbW1tTAdiKioq4OfnB5VKhZqaGu7v2tpapjb1Rx0F6J9aiqijaIeo\no2gP1V5G1FG0h2p/LOoo2kOlpYg6inBY9ldUvlyAzgdL4b8D6PxuIiK6RtXBnmBDRORRIgYbi4iI\nPPbEx8cjOTkZZWVlsLOzQ3x8PLMtV1dXphPO3Vm5ciUqKipQXl4Oa2trWFtbC7bZHZaNwtixY9HQ\n0IBr164BAMaNG4fLly8D4OfY8Pf3h6+vL2pra2FhYQGJRNh00tDQgHPnzsHR0RFFRUVQKBSC7HWH\nr2M5ISEBKSkpKCsrg62traBNHsWmUV3m7aWXXuJEeqDzd2BBiPO3K3Z2dqiqqkJVVRV3jVXsT0tL\nI2nTw2B5ZiQSCebOnYu5c+eiqKgIaWlpcHJywmuvvcbbVkdHBz7//HNBwaqbNm1CTk4OysvL4erq\niqlTp/YLW70RHh7O6/9v3boVQGdQw/Xr1wWdLn7llVeY39uVzZs349ChQzh//jzs7Ow0nkG+rFq1\nCuPGjYOBgYHgdlE9x5TjefexrampSWjzNODbnwC6fgDoPliERXik/Hw9wTJuPooS0SyCMWUAV0+w\nfFdUolxBQQFmzpyJYcOGCXbAR0REYMSIEZg4cSLWr1/PPA6/++67uH//PiwtLeHq6oqJEycy2QGA\nefPmkTl/KZ35JSUl3O939+5d3L59G8bGxmTBUlSBESzBLVS2KNeKrq6umD17NjdfCQkwfPvttzFo\n0CCMHTsW77zzDiZMmMBkh2ouBjqD3GbPno3Ro0cLCvqgXN9RjOdWVlYAgLVr18LOzo67zicza1co\n+1RvsKw3eoJlXt+4cSPJvQHA2NhY0OEMNaNGjUJiYiLq6upgYWGhk8zGLOMUZeB5dXU1ZDKZoH0a\n8GgCi7WdY/T19bl1vUQigUqlgqGhIRISEvqkPdpA9ewBbH3K1dUVixYtgrW1NcrLy+Hi4sLbxo4d\nOzReW1tbc9dY+sczzzyD2NhYTJw4EdeuXcPTTz/N2wZAO19R2RoyZIjgwwt2dnaws7NDVFQUnnvu\nOZJ29QSffh4TE0NWPSU5OVnjEAQrFy9exLPPPou33npL51kwqcYEyvUr5TjFt10zZszQyAr49ttv\n877nqVOneL/nYfRHHQXQvZYi6ijaI+oomlDOoVR7mUehowD8n5v+pqMAdPtjUUfRHiotRdRRhMO3\nT1H6cgGaMZ3KfwfQ+d1ERERERDrRU/V12gARERGRfsTJkydx/PhxjVOglNn4zp8/jxdffJHEVn5+\nPsaNG0diiy85OTnIzMzU+J6EOJKqq6uRnp7OOaXefPNN/OMf/6BoKoDOTeCjCH561JSWljKVNY6M\njIS5uTnGjx+PCRMmwMnJiWnTvnbtWkycOBETJkzA6NGjBQXFqB2BPUEl2h45cgSvv/46iS0WevqM\nVJ+NcjxgsdVbGWO+3L59GzKZDK2trYiLi8ORI0fg5eXF2w7QKfKNHj0aEyZMwIQJEwSNKfX19Rrj\nna2tLZOdnTt3orCwEEqlEhYWFhg/fjxzWchLly71+m98xE3q8bwrfEsvqqHqT4+KDRs2PHQM6w7l\nd/6w7HR8+2lP/byqqooLFBOKTCYTVNKvKyzz+p07dx641jXwjQ9U39WNGzc0RLnAwEDmrC9UtLa2\n4ocffuDEZxcXF6Y1QmtrK+rq6nD37l1YW1tj6NCh5G1l6VO7d+/GxIkTMX78eMHBFkVFRUhJScGd\nO3dgZ2eHwMBA2Nvbo6CgAOPHjxdkGwCWLl3KS5QpKSnBmTNn0NjYyF2LiopiujelLSqys7Oxa9cu\ntLS0YNCgQXjrrbcEZeS7cuUKysvLYWtryxy81RvV1dUaGZi0IScnB1988QWam5sxaNAgREZGkraL\ncq1IOZ73JT/++CN2794NqVQKpVKJ0NBQpjLiN2/eRHJyMsrLy2FjY4OQkBCNzD18OHr0aK//xhqg\n3R2+65aUlBRkZWVh6NChqKiogIuLC1MJcQCoqalBeno69+x5eHgwZXsFgG3btj1wjXWcioqKgkQi\n0SjTzLI28/DwQENDA8zMzFBfXw9TU1NIpVLStSzfPe3Bgwfh6+tLcm+q9Q/lWp96vlIqlaitrYW5\nuTmkUimzHUry8vJQUlICe3t7ODk5Mdmg2jtS2+oJljmmqakJP//8M5qamrjAKMpqLyxzaFZWFi5c\nuICWlhauTdQHEviO573Buka4f/8+6urqYG5uzgVs8LVF/QxTjVNU89XJkydx7Ngxrm/qoupPX67L\ndK2jAHRaiqijaI+oo2hCpaMAdFrKo9BRgL7VUnSpowB0Y4Koo/QMhZYi6ijaQ9WnqH25VD5YKv+d\nrv1uIiJU2Hg+6O8SEemJ8vS+1WvEYGMREZHHnvj4eFy9ehUGBgaChYo33ngDMplMowwO5Qk3lg1D\nfHw8rly5AkNDQ50FXS1btgybNm3S+v+7u7sjPj5e43vqmimwr+jo6EB+fr7GZo8qowjA/3sCaAVH\nhUKB3377TePzsYrOjY2NOHfuHL766ivI5XKcPn2at42Kigrk5eXh+vXryM7ORktLCw4cOMDUnuXL\nl8PNzQ2Ojo4oLi7GqVOnEBMTA4B/36J05nt6ekKhUMDU1BQKhQLm5uYwNjZGWFgYSYl0gC0gpTtC\nnBEUtnx9fbF//37BZYz9/f2xbt06fPzxx/jqq68QGBiIvXv3Mtm6f/8+bty4gd9//x3p6enM/Tw6\nOhotLS2wsLDg+pOQbKjFxcU4e/Ys5HI5jIyMmEvv+fv7w9TUFA4ODrh58yYUCgWmTp0KPT09XjYp\nxvNdu3bh7bffxooVK7hrKpUKv/76K86fP8/LFkDXnx5GXz4zCxYsQFxcHMkc6unpCaVSCXt7e5SU\nlEAqlcLe3p53P42OjkZzczMsLCwAQHA/7wmW75xyXqcK4HoU3xVfKAOu/vWvf+HZZ5/lSsVeunTp\ngSx92rB582YUFhZy8/qTTz6JpUuXMrWpN1j61OXLl3H9+nUUFBRAoVDAwMAAn376KWm7+EK1vnN3\nd0dkZCTXNwH2LJ9UtubOnQuFQgE7OzvcuXMHZmZmMDc3Z1oHe3h4QCaTwcLCAjU1NXj77beRnp7O\nu01AZ+Y0ExMTrp83NjaSZvtk6Zve3t7YsWMHBg8ejOrqarzzzjv4+uuv+7RNj8IW3/0VZZ/y9vZG\namoqV4La39+fKUuYn58fYmNjuXLkGzZsYN6vh4WFwdHRkSshXlRUBDc3NwBgFla7w/f38/Pz4z6P\nSqWCn58f854vODiYK6d848YNHDx4EHv27GGy1R9ZtmwZVq1aBUtLS9TU1GDdunXYsmULky1dBahl\nZWUxZaGkXP9QrvUp577eOHr0qNbzcmxsLHx8fDB58mSSe+fm5uLSpUtobm7mrrGs8aj2jtS2eoJl\njnnnnXcwefJkHD16FHPmzEFRURE+++wz3vem9L/6+fnhyy+/FJyR8WFQzccsdvbt24cTJ07A2toa\nFRUVmD9/Pvz8/Hjfm/IZphynqOYrXesMAP/f73HSUQC2zyfqKNoh6ijaQ6GjAHRaCqWOAtCtOx8X\nHQXo2zn076yjALRaiqijaAdVn6L25VL4YCn9d7r2u4mIUCEGG4toS18HGwur1yIiIiLSDygsLGQW\nmrszZcoU5OXlaWQiGj58OIltgK1kV2FhIb755huyNvSEXC7n9f+dnZ1hYmLCdBqcD3w36/7+/hg9\nejS32dPT0yN1kvH9ngDA3t6eTHAMCgrC3LlzNTazrHz77bfYt28fwsPD4e7uzmRj6NCh+O2335Cb\nmwsXFxeN0oB8KSkpgbOzM6RSKUaMGIFdu3YxO15lMtkDzm5WRowY8cDvFxcXh5CQEDIn2ZIlSwQ7\ntyjPjrHYoipjrFQqNcbc+/fv87ahZsCAAbh8+TIOHTqEwMBAzJ07l8lOW1sbZDIZczu6I5fLUVNT\nAxMTE0HlzaRSKbZv3869Dg4OxnvvvcfbDsV4/uabbwLofI7VWThVKhVu3brFZI+yLHZv9OV5y5df\nfplsDjU1NcWXX37JvQ4JCWEKnGxra8Pu3bsFt4caynn9xIkTvQZw8eFRfFd8Rbmu5RvlcjkuXrzI\nfO+6ujouY6WzszN+/PFHJjuXL1/WEAMXL17M3CZKpk6disbGRhQXF2P8+PGCSgKGhoZi+/btMDIy\nQmtrKyIiIpiCEKjWd9OmTePGF6FQ2XJwcEBiYiIXzBkTE4MvvviCl42Ojg4AgJOTEyoqKmBsbAy5\nXI6xY8cyt6u0tBT79u3jXlP3T9Y5Rp3ZSk9Pj3ye6q95Bvjuryj6lJoBAwagsLCQCxJmDY5pb2/H\n2LFjIZVKMWbMGLS3tzPZUdtatWoV9zogIIAsyJgVS0tL7N27lxP3LC0t8euvvwLgvz5rbm7m5t5R\no0YhOTmZuV2Ugee9wdcfcevWLcjlcpiYmEAul6O0tJT53kL3tGphXz2Gqq+lpqYyBRtTrn8o1/qU\nc19vZGRkaB2cFB0djbS0NGzbtg0uLi5wd3fXyJjNl7i4OGzYsEGQDYBu70htiwqFQoHw8HCcO3cO\nMTExzFleKf2vgwYNQkxMjEZAFHVmYypY1ggnTpzggjNUKhV8fX2Zgo0pn2HKcYpqvtK1zsDC46Sj\nAPz7p6ijiDqKmv6mowB0WgqljgLQaSmPi44C0O2PRR3lQSi1FFFH0Q6qPkXty6XwwVL773TpdxMR\nERH5/4YYbCwiIvLYY2pqik2bNmkspFnL5TU1NSEzM1PjWl87gyk/X2/wLdl07do15ObmAgBplp3u\n8F3sW1hYYM2aNeTtUMNS2opScBw1ahRCQ0NJMgCpN8YHDhzAli1bcPbsWSY7s2fPhkQiweHDh3Hm\nzBkkJSUx2QkKCkJAQAAkEgmUSiWCgoKY7AC0zu6SkhLu97t79y5u374NY2PjPg/u7W/Y2dmhqqoK\nVVVV3DUWh0ZwcDB8fX1RWlqK0NBQBAQECGqXp6cnzMzMkJqaCplMhu+++463DZVKhaVLl2qMwayn\n6E+fPo3r16+jrKwMenp6qKurw7x585hsWVhYYP369Rg5ciSKi4uZHcIU47m6JOnatWthZ2fHXWfN\nGPJ/7J17VJTl2v+/HAZNCRjUHEARA9SA6ZXI3lXtdLu2eNrGuyotPBAqZqB4QNqR6MoTx9wI+mYq\nILDTeN1SYuYRMnWBqzQko70Y3XFMZGCSAYaRkwP+/mDN82N0xua5n2uE2s/nP0bnmnueuZ/nvu7r\ne93XRTWfHgVrq0Jj8L2H9ddc/z4ha6i1tTWXAFRdXc38vSjn+aM+gy+U6zpVAtfjuFZ8RbkH7w99\nEhgLAQEBWLVqFTw9PVFVVYXnnnuOyY6DgwOys7O5amBPPvkk85hMwbp+TpgwAUqlEj/99BOUSiXz\n86Wzs5OrVjdkyBB0dXUx2aHy78rLy7FgwQI4OzsLruJFZautrQ1FRUUYP348qqqqoNFoeNsIDQ3l\nRID4+HjudSHPcTc3N8TFxXFJpv3XLgpYxhYTE4OYmBiunWNMTAzpmCih9F35XiuKOaUnPj4eWVlZ\nqK+vh5ubm8H84sOKFSsQEhICW1tb9PT0YMWKFcxjeuaZZxAZGckdjBGSVG8Kvr/fxIkT0dbWhh9/\n/BEAMGnSJFy7dg0Af//sr3/9K4KDg+Hq6or6+nrMmzeP1/v7Q5l4bgq+1yopKQk5OTlcW3MhsSSh\ne9qkpCRs3LgR//3f/41nnnkGQN/3uXnzJtN4KP0fSl+fcu2jwNXVFVFRUdDpdCgsLER0dDRcXV25\nCql8GTlyJJKTkwUnrFLtHaltGYNljXFyckJbWxuefvppbNy40aCKJR+o468xMTEWrWw8kLGkoUOH\noqCggPP1Wb8n5T1M+ZyiWq8eh87Adx6IOopwRB3FPEQdxTgUWgqljgLQaSmijmIef2QdBaBbj0Ud\nxXyo5pQlYrlCY7CU8bvfU9xNRERE5PeA1f0/gmcmIiLyH01+fv5Dr7322msDMJLfJj09HStXruT1\nnsfx/UJCQnDo0CFSmxTwPZG/ZMkS6HQ6g5PclK3NWa5TZWWlgeAYGhrKJDIBQFBQEFpbWzFmzBhB\nQfjw8HC4u7tDLpfDz8+P+VTwunXr0NPTA2dnZ+5kqo+PD5MtSjZu3PjQa6zB7qqqKuTk5OD27dtw\nc3NDaGgoxo0bh5s3b8LX11foUAHQtO1KSEhAbGwsyXgobbHQ29uL5uZmSKVSQQHhd999F8OGDcPE\niRPh5+cHPz8/pkCSsQqhL7zwAtOYjh49imeffRbe3t4krSVLS0uhVCohk8kMKpuK/DaU696NGzcw\nadIks///mTNnIJfLSaradHZ2orCwkJsHgYGBTJXPKOe5KYqKivDKK6/weg/lup6UlIS6ujougUsm\nkxkkH5vL47hWfNeFRYsWcUKetbU1pk+fjuXLlzN/fmNjI5RKJVxcXDB69GgmG11dXSgoKIBSqYSr\nqysCAwMxZMgQ5jEZg2VOJSYm4vbt27C1teV8ocDAQKbPT0lJwZ07dyCXy/Hjjz9ixIgRBm0QzYXK\nvysrK8OkSZNgZ2fH+72WstXU1IS8vDzOD37jjTcwatQoweOjQL+Guri4MCfVm2LDhg1chZrBAqV/\nx3LvmYLvejyY5xQV+mewTCaDTCYjt8/Xb6FGp9Nxvr6tLXsNjCVLlmDZsmVc4nlWVhZTG+pHQdVe\nmQWqPe2DzyNWH5jS/9m2bRsXi/D29iY9BGgJhO4bqqqq8M9//hM+Pj74n//5H17vDQ8PR1paGknC\nKuXe0ZL7UCFrTG9vLxQKBcaPH49hw4bxfj9l/PXjjx9ufRsZSdvilOp5zuIjqNVqHD16lDuwo08Y\n5gul/0q9T6Nar/rT3t7ONDcfBd975vekowD8tRRRRxF1FD2DTUcB/vhayu9FRwHo9seijvIwVOux\nqKM8fqhjuVQxWEvG70REBiMuCx7eS4qIGEOZRxtj4IuYbCwiIiJiBomJiUY33aYoLS3F6dOnDapp\nsCY71tfXm/w3V1dX3vZaW1sNxuXq6oo7d+5wJyqFkJGRwdyu0Bh8g1K3b99+6DXWk46WvE4DTVdX\nFwoLCzlRIDAwkCmw39XVhZaWFjQ0NEAmkzEnJD0KljmVmZkJuVwOX19fi7ZTpYJPQkptbS0uXLgA\nrVbLvcYqWFHaompjXFJSggMHDqCzsxPDhg3DO++8g+eff55pTADwww8/cMGRyZMnM9sxRlNTk0GF\nKXMoLS3F/v37udPTERER5OOiEhwpn+fR0dFISUkx+/9TzKfvv//e5L/xbQupT+Rsbm5Ga2sr3Nzc\nUFdXB6lUylTl4cSJE1AoFFAqlbCxscGYMWMQFRXF286j4Ds/Ka6X/jp1d3dDo9HA0dERLS0tcHR0\nZG7TeuvWrYeC5UIqGFAkcEVERMDJyQm+vr7w8/ODj48PiTjen4EUL6nWht7eXty4ccPAl2JtyZqT\nk4OzZ8/CxsZGcMWzmpoajB07lhNjhAoW5eXlqK2txbhx4wZcJNy3bx8qKiqg0+kglUrh6+vLVL2b\n2palYVmvNBoNrly5YjA/WarIUNkBDOe5HpZ5TunfUd57wODbX8XHx+P69euws7MT9P3OnDmDEydO\nGHw36gTV4uJi/OlPf+L1nvj4ePzwww8YMmSIRSq+8vXvANo4yeNIPKdaj1mulaWoq6tjOvBG6f80\nNjaivLwcCoUCJSUl6OzsZE4Uf1Scjqq6Zn5+/oAl4lEepDYG5eEDvrYo15hbt24hIyMDXV1diIuL\nQ35+Pt58803edtauXQtvb28uyeaPcpilsrISnp6e0Gg0OHLkCG7dugWZTIbg4GDeMY3+GFvX+ULp\nc1LGACjXq/4ISZKj9sssCV8dBaC75qKOIuoo1FDpKHpbltRSWOfU70lL4Xuwl2p/LOoowuEbqxZ1\nFPOhmlOUsVyAJgY7GONuIiKWRkw2FjGXgU42pjmSKyIiIjIIoaxCo1AoeP3/rVu3Ii4ujqSd4Lp1\n66DT6TBu3DjU1tZCIpFg3LhxsLKy4n3afM2aNejo6IBUKgUAzgZV4KeoqIhpU2VqE8NX2DMWWNa/\nxmcDYunrBLBtGqkqo0RFRWHKlCmYOHEiqqqqsH79enzyySe87ezduxcVFRUYP348qqur4eXlhQ0b\nNvC28yhY5pS/vz8UCgVOnjwJjUYDOzs77Ny5k+nzw8LCsHfvXgwdOhRdXV0IDw9HdnY2ky1TG2M+\nAbLIyEhERESQtFSmtEXVxjgpKQkZGRmQSqVQq9V49913mZMUP/jgA9jb2+Ppp59GaWkpjhw5gqSk\nJCZbxoiKiuK9xiQnJ+OTTz7BiBEj0NTUhNWrV+PIkSNkYwL6KipQrH2sz3NjqFQqXv+fYj5dvnwZ\nAHDt2jU8+eST3HOqra2N99qiT36IiIh4aFwsBAUFwd3dHcXFxbC2tsZTTz3FZOdR8J2fe/bsgYOD\nAzw8PFBTUwONRoOAgABYWVmZHVTUX6fo6Ghs2rQJzs7OUKvViIuLY/oOQN8zwdraGmPGjOFEfyGM\nHj36ITGHbwLXvn37oNVqUVRUhOTkZKhUKpw/f555TMZEudTUVGZ7/Tl+/DjvACzV2hASEgJvb2/O\nF+Yzlx7k3LlzyM3NJWl/WlxcjJMnT8LFxQUNDQ2YN28eFi9ezGSrrKwM33//PTo6OlBZWYlvvvmG\nyS8z5t/p4WMvIiIC1dXVuHjxIlQq1SOF9sdpyxiU+zSW9Wrp0qWYM2eO4L0alR2Abp5T+neU956l\n91csc6qiooLZz+xPRkYGMjIySOaBKdLT03knG1dUVODzzz+30Ij4+3cAsGXLFsTHx5NcqxEjRiA8\nPFywHYAuHmEKlms1f/58tLW1wdHREa2trXBwcIBEIuEtGBvbg7IkG1P6P6NHj8aVK1dQVlaGwMBA\nvPzyy0x2gL7Ko7NmzeJ8/bNnzzL76GfOnMGXX36J9vZ2g7bILInGCxYsgEajgYODAzQaDZycnDB8\n+HCsWLECL730ktl2TCXasRx8NQbV3pHFFuUaExsbix07duDDDz+ERCLBqVOnmJKNU1NTUVlZiX/9\n619Yu3Yt0zzXz5kH205rNBrk5+cjNDTUbFuNjY3Izc1FWVkZdDodAMDW1hbPPvssFi5caPbhyR07\ndiAnJwebN2/G7NmzMXPmTNTW1iI6Oho5OTlmj6c/a9asQWdnJ6RSKXe/sFREpfQ5Kfa0eoSuVwcO\nHMC7775r0PXk/v37qKqqYrIH0N4zxhhIHQWg01JEHcV8RB3FPKh0FMDyWgrrnKLSUgabjgLQ7Y9F\nHUU4fGPVoo5iPlRzijKWC9DEYAdj3E1EREREpA8x2VhEROQPy0AWbp86dSrs7e1JWqQ7ODjg4MGD\n3N/Lly9nTpzs7u5GZmam4DFRQ7WJOXnyJMaPH8+1SK+qqsKsWbN423kc14ll09i/vY9KpTLaksgc\nWlpasGzZMgDAtGnT8PXXXzPZuXbtmoHQuWTJEiY71AQEBBIvmaYAACAASURBVECr1aK6upprScZK\nZ2cn17J0yJAh6OrqYrZFsTF+/vnnueeLUChttbW1oaioiGtjrNFoeL2/t7cXAODj44PGxkYMHz4c\nKpVKUACvrq4Ohw8f5v6mnp+sa4y+TbCVlZVF1qnB2LSEb2tkofMJANavXw+gb83sLwIsXbqUty1T\n42pra2O2NXToUNja2nJVTajhOw8kEgn27t3L/b1s2TLuGvLll19+gUqlgr29PVQqFerq6pjsAH1C\njE6nQ2FhIXJzc9Hb20tecYAlgeurr77C4cOHsXLlSrz66qvMn21pUe7YsWO8k42p1gapVIqtW7cK\nsqHHw8MDR48exbhx47jXXnzxRSZbJ0+e5MSJ+/fvY+HChczJxnFxcUhMTMQTTzzB9H49N2/eREBA\nAOe/lpSUYNGiRUy2VCoV1Go17O3tBbV3pbb1IAO9Vnl6eiIsLEywwEBlB6Cb55T+HeW9Z+n9Fcuc\ncnBwQEpKisH3mz9/Pm87/v7+KC8vh4eHB/fa2LFjedt5FAP5/UzB178D+vaeVHESU7AkS1GLqg/C\ncq3GjRtncHhrx44dTIeRKMVZKv8HAGbMmAFbW1t88cUXuHDhAtLT05ns1NbWYtq0aZBIJHB3d8eB\nAwcM2sHzgfLggLu7+0O/X1xcHJYvX84r2dgULAdfjUG5HvO1RbnG6HQ6g+duT08Pkx0bGxtcu3YN\nR48eRWhoKObMmcPbhr+/PxISEqBSqbiEY41Gg9GjR/P2OQ8fPoygoKCHuuD8+9//xmeffYbo6Giz\n7HR3d6OtrQ3d3d146aWX4OTkBBcXF+ZkOb3NjIwM5vf3h8rnpNzTCl2v3njjDQB9zyh9Ytz9+/fx\nyy+/MNkDaO8ZYwy0f06lpYg6ivmIOop5UOkowB9fSxlsOgpAtz8WdRThsKwzoo5iHhRaCkAbywVo\nYrCDMe4mIiIiItKHmGwsIiLyh4XFKTcF303Hjz/+iLKyMu59+oooLFhbW+Mf//gHnn76aVRXVwv6\nXvfv38eGDRsMnOl169Yx2zNmnwWqTcy9e/ewadMm7u+3336bqf2epa8TwDY/H9z4fPvtt0yfHRAQ\ngFWrVsHT0xNVVVV47rnnmOw4ODggOzsbXl5eqKysfKhyCwWsc2rChAlQKpX46aefoFQqmTeNzz33\nHDZu3Ai5XI4ff/xRUKsmio1xeXk5FixYAGdnZ8FtEylt7d69G3l5ebh06RJcXV2xe/duXu8PDQ3l\ngkbx8fHc60Ked25uboiLi4OXlxcqKiqYWwGagmVsMTExiImJ4dp/xcTEkI6JkoEUnoXOp/5IpVIk\nJCRwa6iQCmBpaWncuNzc3LBnzx4mO59++ilXhWbYsGEkVTEehO/8fPA6CQnmJyUlITs7G0qlEm5u\nboLbzebn5+P48eN4/fXX8ec//1mQLWOwzHW9+Jybm4vU1FRcvHiR6bMHo3hJtTa0tLQgODjYIOGH\npdoZ0Pc8v3PnDu7cucO9xrquDx06FAUFBZzvohfCWBg5ciSSk5MNniss872pqYk7CDFt2jScPXuW\n6fudP38eCoUC9fX1sLKyQktLC+bOncvbDrUtYwzkPg3oS/CePn06xowZI2ieU9kB6OY5pX9Hee9Z\nen/FMqeo1pT29nacPn3a4DWKVutCscSa2R+We08fJ9G/X0ichHJc1KLqg7CMierwFqU4S+X/rFu3\nDj09PXB2dsbMmTMFHQ5eunQp3n77bdja2kKn0wk6WEh5cKC2tpb7/RoaGnDr1i0MHz6cbI81GBMj\n+EK5xixbtgwLFy5EXV0dwsLC8PbbbzOPa8GCBXB0dMShQ4eQkZGBU6dO8Xq/XC7n1gC1Wg0AcHZ2\nZhqLqWTiCRMmmJ1oDAAbN25EVFQUurq6MGPGDLi7u8Pa2lpQBT6qdZ3S56Tc0wpdr/SHR7dt22YQ\ni2Jt+w3Q3jPGGGj/nEpLEXUU8xF1FPOg0lEAy2spQvwDCi1lsOkoAN3+WNRRhMN3fKKOYj5UWgpl\nLBegicEOxribiIiIiEgfVvf/CNEpERERESOEhISQtb28ceMGJk2aZPb/P3PmDORyOUnFns7OThQW\nFkKpVEImkyEwMJC5gpqxE9wvvPCC0CFyFBUV4ZVXXuH9viVLlkCn0wnexCQlJaGuro47kS+TyQyC\nZuZi6esEsM3PRYsWcZtya2trTJ8+HcuXL2f6/MbGRiiVSri4uDzUUt5curq6UFBQAKVSCVdXVwQG\nBmLIkCFMtkzBMqcSExNx+/Zt2Nrawt3dHXK5HIGBgcxjKC8vR21tLcaNGwcfHx9mO0FBQWhtbRW0\nMS4rK8OkSZNgZ2fHPA5L2BqslJaWcvNcSDDYGBs2bODduu1xkJCQgNjYWMF2WJ/nra2tBi3uXF1d\ncefOHdL2iXy5du0aGhoaBM+D3NxcvPXWW7CxsRE0nsuXL0Mul8PBwUGQnUfBMj/194tMJjOoAMOX\nr7/+GtOnTxd8nQBAq9VCoVBAoVCgoKAAWq0Wx48fF2y3P3zX4/DwcG5t8fPzE1R9a+XKlbC3t7eY\nKEfhC+t0Otja8j+jfPv27YdeYxUrtm3bxl1vb29vQQKKWq3G0aNHUV9fDzc3N04sYiE8PBxpaWmC\nEpYBICcnBwUFBZDJZFAqlQgMDGTy744ePYpnn30W3t7egu8/SlvGoNynsa5Xg43+VaAA4IcffoC/\nvz9vO4PVv7P0/opyTg1G0tPTsXLlSl7veVQreldXV162BqN/ZwqWysZU8QiA7lpVVlYiJycH9fX1\ncHV1RWhoKLy8vHiPh2IPCtD6P/rOHg0NDZDJZMzxCGo2btz40GusBweqqqqQk5OD27dvw83NDaGh\noRg3bhxu3rwJX19foUNlmufGoNo7Uttiobe3F83NzZBKpcyJSe+++y53GNTPzw9+fn4kla6p6ejo\nYIoLd3d3o6WlBcOHD8fw4cMFjYFqXaf2Oan2tP+JDKSOAtBpKaKOYj6ijmI+FDoKYHkthXVOUWop\ng0lHAej2x4N1n02JJXUUYHBqKaKOYghlLBegjcFSQBV3ExGxNLI32Isvifxn0fAF7QE/vojJxiIi\nIr9bvv/+e5P/xrd1lD740NzcjNbWVri5uaGurg5SqZR3FQsAOHHiBBQKBZRKJWxsbDBmzJiH2t4J\npampiXeFRqHXTH+duru7odFo4OjoiJaWFjg6OiIvL4/XWPpz69ath8QA1k2MPvgjk8kgk8mYbERE\nRMDJyQm+vr7w8/ODj4+PoEDCYNs01tbW4sKFC9BqtdxrkZGRvO309vZy1Tn1sLabzcnJwdmzZ2Fj\nYyP4hGpNTQ3Gjh3LCU1CBIuysjJ8//336Ojo4F5juVZU7Nu3DxUVFdDpdJBKpfD19WWqOkFtyxRU\nImhGRgbvqjsajQZXrlwxmJ8sVWSo7ACG81wP6zynuo8p7701a9ago6MDUqkUQF/FAiGn3x+EZT5t\n3rwZ27dvJ6nmRiW+FRYW4uDBg5BIJNDpdAgLC8OMGTOYbFHOT2OwiIRLliwxaL0nhPfeew9yuRxy\nuRw+Pj6CkzqNwTeBq6urC4WFhVygNDAwkNlHsLQol5+fj9dee43Xe3JycriqgGVlZdi5cyfTvC8t\nLeXECa1Wi507d2Lbtm287QB9vl15eTkUCgVKSkrQ2dmJ3NxcJluAcb+MBcqkJJ1Oh+bmZjg5OUEi\nkTDZKC0txf79+7mqLxEREcyVhKhsDVZf8dy5c1yLYKVSiR07djC1Ev/4449N/hvfNTkyMhKJiYmw\nsbFBSkoKtFotkpOTeY+J0r+bM2cONBoN3NzccPv2bTg6OsLJyYnp2lPt3SnnlCmo/NfExESjz4lH\nUVpaitOnTxt8P9bnyoIFC6DT6TBu3DjU1tZCIpFg3LhxvP0zS/t3AJuvbwoWf41KVH0c12qgoPR/\ndu3ahYqKCowfPx7V1dXw8vLChg0bSMfLMqcyMzMhl8vh6+tL0iLbkvBN1qDaO1LaolxjSkpKcODA\nAXR2dmLYsGF455138Pzzz/MeE9CXdKBPAmPxfSorK+Hp6QmNRoMjR47g1q1bkMlkCA4OFtRlpz98\n16mamhocPnwYTk5OWLBgAdLS0tDc3IwVK1YwXydT8I1VU/qvpmDZ05qCar2Kjo5GSkoKr/cIvWcG\ns44CWF5LEXUU44g6ym9DuYZS7WUo98YAnZYy2HQUgG5/LOooj9+WqKMIh++coozl6hEag6WK3wF0\ncTcREUsjJhuLmMtAJxvzL1EkIiIiMki4fPkygL6KhU8++SQnVLS1tfEWl/QJCxEREdi9ezfs7OzQ\n3d2NtWvXMo0tKCgI7u7uKC4uhrW1NZ566ikmO48iKiqK9+Zzz549cHBwgIeHB2pqaqDRaBAQEAAr\nKyuzAhv66xQdHY1NmzbB2dkZarUacXFxTN9BT1JSEqytrTFmzBiueggro0ePfuiEeXFxMf70pz+Z\nbWPfvn3QarUoKipCcnIyVCoVzp8/zzQeU5tGygDZ8ePHeW3YIyMjERERgYkTJwr63JCQEHh7e3OV\nXsydR8Y4d+4ccnNzSRICi4uLcfLkSbi4uKChoQHz5s3D4sWLmWzFxcUhMTGRuQpGfygSUiIiIlBd\nXY2LFy9CpVI9smLZ47RlCqozbUVFRbyDZEuXLsWcOXMEVyKisgPQznOq+5hyTN3d3cjMzBRsxxSs\nLagpvhvQ1xI3Pz8fkydP5iq9srRWzszMxKFDhzhfIyQkhDnZmHJ+GiMhIYG3rzFlyhRcvXrV4Dqx\n/gaxsbHIy8vDiRMnUFJSgvnz5zNXQDCVwMW3UmRUVBSmTJmCiRMnoqqqCuvXr2cOcmZnZz8kyrFw\n5swZfPnll2hvbzdo88s30RgAJBIJUlNT0dXVhebmZubWe3l5eWhra0NPTw+ysrKwatUqJjtAn293\n5coVlJWVITAwEC+//DKzrTVr1qCzsxNSqZS7VqzBfFMJgCxCtq2tLUaNGmXwGl//Ljk5GZ988glG\njBiBpqYmrF69GkeOHOE1Dmpbg9VX/Omnn6BWq3Hv3j1cunSJd0Konps3byIgIICrBlZSUoJFixYx\n2YqJicF7772H9vZ2hIeHM89zSv/Ow8Pjob3x/v37mWwJ3YfqoZxTpqDyXxUKBe/3bN26FXFxcSTr\nuoODAw4ePMj9vXz5cuzcuZO3HUv7dwCbr28qWYPlgIyxZCL9a3yew4/jWvFNUDO2B2UR1in9n2vX\nrhmI8kuWLGGy8yhY5pS/vz8UCgVOnjwJjUYDOzs7pnsGAMLCwrB3714MHToUXV1dCA8PR3Z2Nm87\nppI1+FaFo9o7UtqiXGOSkpKQkZEBqVQKtVqNd999lymR74MPPoC9vT2efvpplJaW4siRI0hKSuJl\nY8eOHcjJycHmzZsxe/ZszJw5E7W1tYiOjkZOTg4vW8b88ObmZt7r1ObNm/H++++jra0NISEh2Ldv\nH+zt7bFu3TpmX9EUfGPVlP6rKVj2tKZgebYYQ6VS8X6P0HtmMOsogOW1FFFHMY6oo/w2lGso1V6G\ncm8M0Gkpg01HAej2x6KO8vhtiTqKcPjOKcpYLkATg6WK3wF0cTcRERERkT7EZGMREZHfLevXrwfQ\nJ5r1Fzn01dhYaGtrQ1FREcaPH4+qqiq0tbUx2xo6dChsbW25FpHUsGw+JRIJ9u7dy/29bNky7jry\n4ZdffoFKpYK9vT1UKhXq6up42+jP3r17odPpUFhYiNzcXPT29go6jf0g6enpvIJkAPDVV1/h8OHD\nWLlyJV599VXmz34cm8Zjx47xCpI9//zzmDp1quBqPVKpFFu3bhVkQ4+HhweOHj1q0Er+xRdfZLJ1\n8uRJTpy4f/8+Fi5cyJxsPHLkSCQnJxskDbFWF6NKSFGpVFCr1bC3txfUvpbaljGEtLoXiqenJ8LC\nwgQHf6jsALTznOo+phzT/fv3sWHDBgNb69bRnaxkmU9jx47Fxo0bMXnyZK4Swvz585k+v7m5GVev\nXjWoRsvyPLCxsUFFRQW8vLxQUVEhqPo65fw0BouvUVJSgpKSEu5vfeIrC9HR0Vi4cCFmzJiByspK\nREdHMyVqAHQJXC0tLVi2bBkAYNq0afj666+ZbVGJchkZGcjIyBD03W7dugUAmDp1Kk6dOoWysjJs\n374dd+/eZUrwTkhIQHx8PH7++WdkZWUJbjU5Y8YM2Nra4osvvsCFCxeQnp7OZKe7uxsZGRmCxvJb\nsAjZxuDr3wH//zlpZWUlWKiisDXYfMXe3l4Afb/RwYMH8e233yIzM5PZX2lqauL2ntOmTcPZs2d5\njyktLY37/FGjRuG7777jnqOsayiVf/fg3lij0TDbotqHUs4pUwyk/6r37YS2EAf6Dvr84x//wNNP\nP43q6mrm72Vp/44VysTzkydPYvz48dw+raqqiquexIfHca34JqgFBAQYvNdYVwVzoPR/HBwckJ2d\nDS8vL1RWVuLJJ59ktkVJQEAAtFotqqur4evrC7lczmyrf4veIUOGoKuri8kOVbIG1d6R0hbFGqNf\n1318fNDY2Ijhw4dDpVIxJ5LU1dUZdGhhSYTv7u5GW1sburu78dJLL8HJyQkuLi5MyfkXLlzApk2b\nDPywoUOH4plnnuFlp6urCz4+Pujo6EBPTw/Gjh0LiUTCXT9KWHxGSv/VGIOxsSvLmiz0nhnsOgpg\nWS1F1FHMR9RRDKFcQ6n2MpSxXIBOSxmMOgpAtz8WdZTHa0vUUYTDd05Rx3KFxGAp43eWiLuJiIiI\niIjJxiIiIn8ApFIpEhISOBFNSFu6tLQ05OXl4dKlS3Bzc8OePXuY7Hz66adclZ1hw4aRnHx+EBan\n+sFrxSpYJCUlITs7G0qlEm5ubsxBg/7k5+fj+PHjeP311/HnP/9ZsL3+sAQUp02bBnt7e+Tm5iI1\nNRUXL15k/uzBJs6Wl5djwYIFcHZ2FtTup6WlBcHBwXB3d+deY60O6Obmhjt37uDOnTvca6wb9aFD\nh6KgoIATL/UiHwu9vb3Ys2ePIBt6KBJSzp8/D4VCgfr6elhZWaGlpQVz585lGg+lLVNQiTosdm7e\nvInp06djzJgxguY5lR2Adp5T3ceUY1qxYgXT+8yFZR5QtoWlWOsAID4+HllZWVwb6vj4eGZblPOT\nCpaKgqbo6OjAzJkzAfQFq7OysphtUSVwBQQEYNWqVfD09ERVVRXXXo4VClHO398f5eXl8PDw4F7j\nW3X7wQQImUzGvcZn7utbxQJ99+yvv/7KJSexzs1169ahp6cHzs7OmDlzpqDkn8fhlw1UQkNMTAxi\nYmK4NtQxMTEDbmuw+YqhoaEG8xMANz9ZEsRnzpyJRYsWQSaTQalUIjAwkLeNl156yeDvoKAg3jb6\nQ+nf7d69m9sbu7q6Mlc6B+j2oZRzyhQD6b/++OOPKCsr494r5MDO//7v/6KwsBAKhQIymeyR1cEe\nhaX9O4DtWlEmnt+7dw+bNm3i/n777beZ2iI/jmvFNw704HPy22+/ZfpcSv8nLS0NBQUFUCgUcHV1\nRVpaGrMtU7DexxMmTIBSqcRPP/0EpVLJvC967rnnsHHjRsjlcvz444+YPHkykx2qZA2qvSOlLYo1\nRr+u379/32BPxZqs4+bmhri4OO5QqJubG28bGzduRFRUFLq6ujBjxgy4u7vD2tqaqRru2rVrSar3\nh4aGYsmSJfDw8MD777+PhQsXwtraGm+88YZg2w/C99pT+q+Pg4H0Eaj8ssGoowCW11JEHcV8RB3F\nEMo1lGovQxnLBei0lMGmowB0+2NRR3n8tkQdRTjmzgVLxHL1tlif6ZTxO+q4m4iIiIhIH1b3B+PR\nXhERERGeXLt2DQ0NDXBxcREkeuTm5uKtt94SVGUQ6GtNJpfL4eDgIMjOo9iwYQPv1olAXxtxpVIJ\nmUxmUOWGD19//TWmT58u+Drp0Wq1UCgUUCgUKCgogFarxfHjx0lsA31Vj/gkP4WHh8Pd3R1yuRx+\nfn6CTiobqxz0wgsvMNszBt/v9yA6nY5rdc+H27dvP/QaixgDANu2beOut7e3t6CT3Gq1GkePHuUS\n+fSBBBaMteVhDQrn5OSgoKDAICFl+fLlvGwcPXoUzz77LLy9vQXff5S2TLUxpqKoqAivvPIKmb2B\non+FKwD44Ycf4O/vz2SrrKwMkyZNEnzCnBJjLaj18JkPlp5PQrh+/Trq6+vh6urKnDRAiVqtZn6+\nmUNCQgJiY2N5v6+xsRGNjY1GW3Ly4dChQzh16hRcXV1RX1+PefPmMbfaDgkJMaiWJSSBq7GxEUql\nEi4uLoK+HwDU19fj2rVryM3NhVKpZBLlKNeqwYi+slVDQwNkMpmga/6gXyakEqYp3n77bZLKxkL9\nu8HArVu3HkqQYvUVBys6nQ7Nzc1wcnKCRCIZ6OGQ+nfUUOxDKeYUlb/yW9y4cQOTJk3i9Z4zZ85A\nLpeTVDY2RVNTE6/EosdxvVh8/SVLlkCn05EkniclJaGuro6rnCaTyQySj80lIiICTk5O8PX1hZ+f\nH3x8fMh9db5rQ3/h2NraGtOnT+e9B9VD5f88Dl+fZU4lJibi9u3bsLW15eJBLIdI9JSXl6O2thbj\nxo2Dj48Pk42goCC0trYKTtag3DsOxn0oJfq1Smh8ubu7Gy0tLRg+fDiGDx8uaEwFBQX47rvv0NnZ\nye1lBquvzxqrtiSse1pjsDxbWltbDZ53rq6uuHPnDkaOHEkyJhYGm44CWF5LEXUU8xF1lEfDqqMA\ndFoKpY4C0Gkpg01HAej2x6KO8vgRdRTzGaxayuOIwYqI/BGRvcFe7EHkP4uGLwb2UJ6YbCwiIvK7\nZ/Pmzdi+fTtJixcqUb+wsBAHDx6ERCKBTqdDWFgYZsyYwWRLo9HgypUrBhsFvi2Vfwu+QuiSJUsM\nWgsK5b333oNcLodcLoePjw/J6ef+pKenY+XKlWb//66uLhQWFnIBlsDAQOaN6OMQHPPz8/Haa6+Z\n/f9zcnK4k+FlZWXYuXMn07wvLS3lgtJarRY7d+7Etm3beNsB+oTL8vJyKBQKlJSUoLOzE7m5uUy2\nAOPBfEr4ivR6hCaklJaWYv/+/VzVl4iICOaER0pbixcvfqiNMUvliZycHJw9exY2NjaCT9GfO3eO\na3+sVCqxY8cOptalj6oCFxkZyctWZGQkEhMTYWNjg5SUFGi1WiQnJ/MeEwDs27cPFRUV0Ol0kEql\n8PX1ZarANmfOHGg0Gri5ueH27dtwdHSEk5MT07UPCQmBg4MDPDw8UFNTA41Gg4CAAN7zgWo+AX0B\n888//5xLEJ4/fz5zcu4HH3yA4cOHcxXdtFotkpKSeNuJj4/H9evXYWdnJ3ieb968Ga2trRgyZAgm\nTJgAPz+/h07rm0NtbS0uXLgArVbLvcZ3fuvZtWsXfv75Z676j5eXFzZs2MBkC/j/z02pVMos6AB0\nCVyU14pSlLM0GRkZTBXZHqS4uJh3S9Zdu3ahoqIC48ePFzynampquArQvb29yMzM5OUjmgNVkgWL\nf6dfQ/WwPluobK1evRrW1tYYM2YM/Pz84OfnZ1DRhA+U65Upjh8/TrLPorID8E9ep/TvqMb0KPju\nQynmlL6K6rVr1/Dkk09yz5a2tjamJM7m5ma0trbCzc0NdXV1kEqlOHXqFK8x6Tlx4gQUCgWUSiVs\nbGwwZswYREVFMdkyBd/fj8K/01+r7u5uaDQaODo6oqWlBY6OjsjLy2P6HtSHGfSJtDKZDDKZjNmO\nVqtFUVERPv30U6hUKpw/f57Z1mBKUKP0fyh9fcr9Y01NDcaOHcv5nUISScrKyvD999+jo6ODe431\nelFAtXektmUMyjWGr/9KEX+tqanB4cOH4eTkhAULFiAtLQ3Nzc1YsWIFc9edxYsX4+DBg8yx0tOn\nT2Pu3LlQKBRIS0tDe3s7hgwZgvDwcOYxUcWqKf1XyucU1bNlzZo16OjogFQqBdD3vKPuyMD3nhmM\nOgpAp6WIOopwRB3FECodBaDTUqh1FMCyWspA6SgA3f5Y1FHMh0pLEXUU86HcXxmDJZYLWDYGO5Bx\nNxERSyMmG4uYy0AnG7OrtSIiIiKDhF9++YUkQAYAcrkc+fn5mDx5MpfQwrcNNQBkZmbi0KFDsLOz\nQ3d3N0JCQpiTjZcuXYo5c+Ywt+oyh4SEBF7O9JQpU3D16lWD6yTkN4iNjUVeXh5OnDiBkpIS5mSw\n0tJSnD592iAwkpiYyHsDExUVhSlTpmDixImoqqrC+vXrmTfX+/bt4wTH5ORkQYLjmTNn8OWXX6K9\nvZ0LIHz66ae8AmQAIJFIkJqaiq6uLjQ3NzO33svLy0NbWxt6enqQlZWFVatWMdkBgNGjR+PKlSso\nKytDYGAgXn75ZWZba9asQWdnJ6RSKXedqIP5UVFRTBtQW1tbjBo1yuA1Phvj5ORkfPLJJxgxYgSa\nmpqwevVqHDlyhPc4qG1RtTE+d+4ccnNzSZ7pP/30E9RqNe7du4dLly4Zra5gDjdv3kRAQABX6ayk\npASLFi1ishUTE4P33nsP7e3tCA8PFzTPIyIiUF1djYsXL0KlUqG+vp7JjoeHB3bv3s2tV2vXrsX+\n/fuZbEkkEuzdu5f7e9myZVi/fj1vO5RtsaOjoxEcHIy//OUvqKysRHR0NLKzs5ls1dXVGQhErBV2\nKyoqmBNrHiQuLg5qtRpFRUX45ptvUFFRwZRsHBkZiYiICJJWpdeuXTMIsLJeJ8D0us7CvXv38Nln\nnwlO4KK8Vrt37+ZEOWtra7i5uTEJafPnz0dbWxscHR3R2toKBwcHSCQS0iTMoqIikmTj9PR03gFq\nyjmVkpKC8PBwWFlZITk5GfPmzWO2ZUrI5ptoTOXfUa6hVLb27t0LnU6HwsJC5Obmore3l3lOUq5X\npjh27BiJWEFlB+DfApXSv6Ma06Pguw+lmFN632T58uUGezx9EoG56AX9iIiIh+YmK0FBQXB3d0dx\ncTGsra3x1FNPMdsyBd/fj8K/01+r6OhobNq0Cc7OEZWR8QAAIABJREFUzlCr1YiLi+Nlpz9JSUkP\nJZ4LwVg3BhZR9auvvsLhw4excuVKvPrqq8zjMZWgRpVozFecpfR/KH19yrWvuLgYJ0+ehIuLCxoa\nGjBv3jwsXryYyVZcXBwSExPxxBNPCBoTVbIG1d6R2pYxKNcYvv4rRfx18+bNeP/999HW1oaQkBDs\n27cP9vb2WLduHfN6PGzYMKxdu9YgUYvPnuif//wn5s6di6SkJHz00UcYPXo0NBoNVq5cyTwmqlg1\n5T1M+ZyiGld3dzcyMzMFj+dR8L1nBqOOAtBpKaKOYj6ijmIeVDoKQKelUOoogOW1lIHSUQC6/bGo\no5gPlZYi6ijmQ7m/MgZLLBegjcE+yEDG3URERERE+hCTjUVERH73jB07Fhs3bsTkyZO5Sgjz589n\nstXc3IyrV68atPdgSWqxsbFBRUUFvLy8UFFRIagiiqenJ8LCwsgCgcbg60yXlJSgpKSE+1tIK3Kg\nT3RcuHAhZsyYISgZbOvWrYiLixMcUGxpacGyZcsAANOmTcPXX38tyB6V4JiRkYGMjAzm73fr1i0A\nwNSpU3Hq1CmUlZVh+/btuHv3LlNQMiEhAfHx8fj555+RlZUluNLAjBkzYGtriy+++AIXLlxAeno6\nk53u7m5kZGQIGstvQbkB5bsx1rdGs7KyEjwOKlstLS0IDg4W3MbYw8MDR48eNahQ9+KLL/Ky0dvb\nC6AvkHnw4EF8++23yMzMZG4p19TUxCWfTJs2DWfPnuU9prS0NO7zR40ahe+++457jgo5Za5SqaBW\nq2Fvb89cEbWtrQ1FRUUYP348qqqqoNFomMcjlUqRkJDAVbRlfVZRzScA6Ojo4CozeHp6Iisri8kO\n0FctLy4uDl5eXqisrGSunufg4ICUlBSDec7qtwB9a/Lly5fh7+/P3AL1+eefx9SpU2Fvb888Dj0O\nDg7Izs7mrtOTTz7JbGvLli2Ij48nEQqpErgorxWVKDdu3DiD5K0dO3YgNTVV8PgsActaQzmn/v73\nvyM2NhYqlQq7d+9mrnQO0AnZQv07PRRrqCVs5efn4/jx43j99dfx5z//mckGQLte/Z5g8V8ofcVH\n2aeAZXxUc+pBv4Wl2hbw8Nxsa2tjHhMADB06FLa2tujq6kJLS4sgW8bg+/tR+XdAX4KTSqWCvb09\nVCoV6urqmG1RHmYwBYuoOm3aNNjb2yM3Nxepqam4ePEi02dbOkGN7x6U0v+h9PUp16uTJ09ySSP3\n79/HwoULmZONR44cieTkZObkUD2UB18p9o6WsPUglGsMXyjir11dXfDx8UFHRwd6enowduxYSCQS\nLk7BSkxMDHP10ieeeAIlJSXw9vZGZWUl7O3tUVNTI2g8VLFqynuY8jlFNa779+9jw4YNBnYoKw0C\n/O+ZwaijAHRaiqijmI+oozwaah0FoNVSqHQUwPJaykDqKADd/ljUUcxDqJYi6ij8odxfGYN1vlPG\nYC3JQO4/RERERH7PiMnGIiIiv3tYW74ZgzUg9iDx8fHIysri2kfFx8cz27p58yamT5+OMWPGCG6H\nQwVVizQ9HR0dmDlzJgBhyWD6oLLQFukBAQFYtWoVPD09UVVVxZy8pYdKcPT390d5eTnXegbgVzHi\nwQQmmUzGvcZn7uvb4AJ9G81ff/2VCyqyzs1169ahp6cHzs7OmDlzJuRyOZMd/ZgGWzCfipiYGMTE\nxHAtu2JiYgaFrcTERJJAvpubG+7cuYM7d+5wr/ENkoWGhhrMTwDc/GQJ5s+cOROLFi2CTCaDUqlE\nYGAgbxsPVpoNCgribeNBzp8/D4VCgfr6elhZWaGlpQVz587lbWf37t3Iy8vDpUuX4OrqKqhCR0pK\nCkpLS6FUKjFz5kwEBAQw2aGaTwAwb948BAcHw9XVFfX19YKEiuTkZO77zZkzh3lteDAxSsjz5ObN\nm2hvb4ezszMn8rEkq5aXl2PBggVwdnYW7GukpaWhoKAACoUCLi4uXLt6FvTrp9B1XQ9FAhfltaIS\n5SiTt0wxkFUe+s8pV1dXpjnV33fp6emBQqHAmjVrALD7LlRCtlD/Tg/FGkptS6vVwsPDA7NmzUJ+\nfj4OHTqE48ePM42Jcr0yBdU8p7xf+Nqi9O+oxkQJ5ZxKSUnBtWvX0NDQgFmzZjGv62lpadzcdHNz\nw549e5jsAH2+6o0bN3D37l0MGzaMpDrjg/CtjEvl3wF91Yizs7OhVCrh5uYmOP5ClXhuCr5zPTw8\nHO7u7pDL5UhISBCUhPk49rR8oPR/WNsfG4Ny7Rs6dCgKCgq4w01C2tL39vZiz549glvbUxx8Bej2\njtS2jDGQayhF/DU0NBRLliyBh4cH3n//fSxcuBDW1tZ44403eNnpz3/913/hzJkzBq/xqWydmJiI\njIwMVFdXY/v27Rg2bBieeeYZQc9gqlg15T1M+ZyiGteKFSuYPp8PfOf5YNRRADotRdRRzEfUUR4N\nlY4C0GsplDqKfkyW9DsHMpGPan8s6ijmI1RLEXUU/lBqKRRYIgb7IAO5ZxARERER6cPqvvgEFRER\nETHg+vXrqK+vh6urKyZPnjzQw4Farbb4ib+EhATExsbyek9jYyMaGxuNthvly6FDh3Dq1CkuGWze\nvHlMLbJDQkIMThYLqRTQ2NgIpVIJFxcXQd+vv+Do5+cnSHA01r6IMrA7kOgTvxoaGiCTyQRd8/4V\nNYC+eTBlyhShQzRgw4YNvNukmyIkJIQ88Py4Wb169UNtjPsHKH/v6HQ6NDc3w8nJCRKJZKCHAwA4\nevQonn32WXh7ewuqnv84uHHjBiZNmmT2/6eeT/rfTyqVci0rKeH7/R5c10+fPs0s0KempkIul0Mu\nlwt6bpaVlWHSpEmCK9Q/iqamJt5VI/XrOgCDtpcsGEvg0idvCEGn0zHPq5SUFFRWVnKi3NNPP43o\n6GjediorK5GTk8P5r6GhofDy8mIak6nfqaioCK+88gqTzf6kp6fzbsva29vL/XZ6qNd1FoKCgtDa\n2ipYyKby7zo7Ow2Smn744Qf4+/vztkNp67333uOeUT4+PoKTrixNfn4+77a6lrCjX7MGmsdx7/Hd\nh1LOqc2bN2P79u2CRbnc3Fy89dZbJP7Y5cuXIZfL4eDgINiWRqPBlStXDH4/qjajAH//BwC+/vpr\nTJ8+neRaabVaKBQKKBQKFBQUQKvVMieem4LvPq2rqwuFhYVcolRgYCCzb/XgnhYAXnjhBSZbxhC6\nBxXi/5SWlnKJSFqtFjt37sS2bduYbG3bto2LtXh7ewtKZlGr1Th69Cj3++mTFlmgWttzcnJQUFBg\nkKyxfPly3nYo945Uth7HGkPlv4pYDkr/9XHsafny/fffm/w3vvN9sO6JRB3FPEQdxTxEHcU8KHUU\nwPJaiqijGPJH11GAwael/JF1FMDyc4ollmtp/ihxNxERY8jeoC+wIfLHpOGLgStKAIjJxiIiIn8A\n1Go1Pv/8cy6wNX/+fOag0gcffIDhw4dzSR9arRZJSUm87cTHx+P69euws7MTfIp+8+bNaG1txZAh\nQzBhwgT4+fk9dLrTXGpra3HhwgVotVruNT7VMPTs2rULP//8M9fixcvLCxs2bGAakx6KZLAzZ85A\nLpcLPpFPdZ0AWsHR0mRkZOCdd94RbKe4uJh3u9ldu3ahoqIC48ePFzynampquKoFvb29yMzMZN4M\nW1qkB/htjHNycnD27FmDoAjrs4XSFgCSNsZz5syBRqOBm5sbbt++DUdHRzg5OZFWIjl+/DjJb0hl\nBwDefvtt3gH90tJS7N+/n6uoEBERQSrssIyJ0pal22IP5O8XHh6ODz/8EDY2NoiLi4OnpyfWr1/P\n9NnV1dVchUAXFxcsX77coGqLuezbtw8VFRXQ6XSQSqXw9fXFggULmMZkCoo5pdFomBOwqBK4cnJy\nuCTlsrIy7Ny5U5DQQSXKUREdHY27d+9i6tSpmDVrFu8EcT1lZWU4cOAAOjo6cODAAaSnp2P16tVM\nthYvXgxvb2+upaCVlRV5dUeWYD4VmZmZkMvl8PX1FdT2OTIyEomJibCxsUFKSgq0Wi1z9UgqW2q1\nGnl5eVAqlYL3aaZgebZ88803OHz4MH799VccO3YMCQkJ2LJlC+/PPnPmDL788ku0t7cLPhCxfv16\n7Nq1C6mpqfjXv/6FkSNHYufOnbztUPp3lPce1f6Kck5R+TqUgndhYSEOHjwIiUQCnU6HsLAwzJgx\ng8nW66+/jjlz5hi0Y6Vc21mu35IlS3D48GGSz38chxn4iqqrVq3ClClT8PTTT6Oqqgrff/89U8cJ\nAIiIiICTkxN8fX3h5+cHHx8f0jgCX3GW0v/ZuHEjZs+ejZ6eHmRlZWHVqlXMMa7GxkaUl5dDoVCg\npKQEnZ2dyM3NZbIFAK2trQZ7f1dXV2ZbxmA5fEeRrEG5d6SyRbnG9F/7hMRgz507h1mzZgEAlEol\nduzYwfse1h8kVSgUSEtLQ3t7O4YMGYLw8HDeFWU//fRTvPbaa3jyyScNXtdoNMjPz0doaKhZdq5f\nv479+/dj7NixCAwMRFpaGmxsbBAeHo6XX36Z15j0fPzxxyb/jc/6Tum/Uu5pqWJTISEhcHBwgIeH\nB2pqaqDRaBAQEMA036numcGoowB0Woqoo5iPqKMIg0pHAfhrKZQ6CkCnpQw2HQWg2x+LOsrgsSXq\nKMahmFOUsdxHwScGSxW/A+jibiIiluap12gO6Ij88VHlC9tTCIW+tJeIiIjIYyY6OhrBwcH4y1/+\ngsrKSkRHRyM7O5vJVl1dnYH4xXIqHAAqKiqQl5fH9N4HiYuLg1qtRlFREb755htUVFQwB8kiIyMR\nEREhuB3rtWvXDDYrrNdJT2lpKU6fPm0QiGA5aX7v3j189tlnUCqVsLGxwZgxYxAVFcXbDtV1AoCo\nqChMmTIFEydORFVVFdavX88sOM6fPx9tbW1wdHREa2srHBwcIJFIyAIIRUVFJEGy9PR03snGlHMq\nJSUF4eHhsLKyQnJyMubNm8dsa+nSpQ+J9KyYSkjhEyA7d+4ccnNzSdoiUdoCaNoYe3h4YPfu3bCz\ns0N3dzfWrl2L/fv3k4xPz7Fjx0gCW1R2ALZWTcnJyfjkk08wYsQINDU1YfXq1Thy5AjJeFjHRGnL\n0m2xB/L3S0xMRGxsLLRaLbZs2cJcgRboE9JiY2Ph6emJiooKbNq0iWk9iIiIQHV1NS5evAiVSoX6\n+nrmMZmCZR4kJSXhgw8+AND3zDp06BBzklJ7eztWrlwpOIFLIpEgNTUVXV1daG5uFtQyj1KUM0Z0\ndDRSUlJ4vSclJQXd3d0oLi7Gli1boNFoMHv2bAQFBfFKhE1KSkJ6ejoiIiIgkUhw9epV5gC1VCrF\n1q1bmd5rLgkJCbyD+VRJFv7+/lAoFDh58iQ0Gg3s7OyYgt0xMTF477330N7eLih5hNJWdHQ0Fi5c\niBkzZgjep5mC5dmSkZGBzz77DKGhoZBIJKisrGT67IyMDGRkZJD4iQ0NDbC2tkZdXR2ys7MRHBzM\nZIfSv6O896j2V5RzauzYsdi4cSMmT57Micbz58/nbUculyM/Px+TJ0/mkj34tGjuT2ZmJg4dOsT5\nwiEhIczJxp6enggLC7NYO1WWe2/KlCm4evWqwbViHV9sbCzy8vJw4sQJlJSUCEqWMhWP4Jtk0dLS\nwrUdnjZtGr7++mum8QB9SXNarRZFRUVITk6GSqXC+fPneduh2IMCtP5PQkIC4uPj8fPPPyMrK0tQ\nEtHo0aNx5coVlJWVITAwUNDat2bNGnR2dkIqlXLX6qOPPmK2Z4yoqCje/oatrS1GjRpl8BrfZA3K\nvSOVLco1hmrt++mnn6BWq3Hv3j1cunTJaFXM3+Kf//wn5s6di6SkJHz00UcYPXo0NBoNVq5cyfs6\n+fv7IyEhASqViks41mg0GD16NBYvXmy2neTkZOzZswdqtRphYWE4duwYhg0bhrCwMOZ75ubNmwgI\nCMD48eNRU1ODkpISLFq0iLcdSv+Vck9LFZuSSCTYu3cv9/eyZcuYDxpT3TODUUcB6LQUUUcxH1FH\nEQaVjgLw11Ko5xSVljLYdBSAzkcQdZTBY0vUUYxDMacoY7mPgk8Mlip+B9DF3URERERE+hCTjUVE\nRH73dHR0cJUnPD09kZWVxWzLzc0NcXFx8PLyQmVlJdzc3JjsODg4ICUlxaBVCYtwqaekpASXL1+G\nv78/126Sheeffx5Tp04VVDUN6Pt+2dnZ3HV6sMoGX7Zs2YL4+HjBgYigoCC4u7ujuLgY1tbWeOqp\np5jsUF0ngFZwHDduHDZt2gRnZ2eo1Wrs2LEDqampgsdIDcuGmHJO/f3vf0dsbCxUKhV2794tqIIe\npUhPkZDi4eGBo0ePGjxbXnzxxQG3pdVq4eHhgVmzZiE/Px+HDh1iamPc1taGoqIijB8/HlVVVdBo\nNEzj+b3B2u5X/77+bQ+pENKCWChU82mw8be//Y27rjY2Nvj3v/+N9PR0AGBOZLh37x4mTJgAiUSC\nCRMm4N69e8zjU6lUUKvVsLe3F9Sq0hQsc2rKlCmIjY1FR0cH3N3dcfDgQebPF5rAdevWLQDA1KlT\ncerUKZSVlWH79u24e/cu8zpDKcoZQ6VS8X6PWq1GYWEhLl26hCeeeAKLFi2CtbU11qxZwyRCW1lZ\nobu7G729vbzfq6elpQXBwcFwd3fnXqNO/mF5hlIlWQQEBECr1aK6uhq+vr6Qy+W83p+WlsbdX6NG\njcJ3332HkpISlJSU8K52RmkL6NunzZw5E4DwfZopWJ4tEokE9fX1sLKyQktLC3MbTX9/f5SXlxtU\nlGdNMp04cSKCgoLw7rvvoru7m7l6JaV/R3nvUe2vKOcU3wqTpmhubsbVq1cN2g+ztmi2sbFBRUUF\nvLy8UFFRIajF682bNzF9+nSMGTNGcLclKvTPEz1CqoFTJp5v3boVcXFxguMRAQEBWLVqFVfhUUjs\nBgC++uorHD58GCtXrsSrr77KZEPoHpTS/1m0aBH3zL5//z5+/fVXLlYiZG7OmDEDtra2+OKLL3Dh\nwgXOv+ZLd3c3MjIymMdhDlR7NpZkDcq9I4UtyjVG6Nqn91OjoqJw8OBBfPvtt8jMzGTyMZ544gmU\nlJTA29sblZWVsLe3R01NDW87QN9hFv16olarAYBp32FtbY1Ro0Zh1KhRmDt3LhcrFdLWvKmpiat2\nPm3aNJw9e5bXNaf2OfVQ7WmpYlNSqRQJCQlcRVsh6wzVPTMYdRSAVksRdRTzEHWUwQPftZR6TlFp\nKYNNRwHo9seijjJ4EHWUh6HWUihiuY+Cz/Wnit8BdHE3EREREZE+xGRjERGR3z3z5s1DcHAwXF1d\nUV9fzyzCAH0nHEtLS6FUKjFnzhzmgNSDJweFbDZu3ryJ9vZ2ODs7cyIm64nu8vJyLFiwAM7OzoIE\nx7S0NBQUFEChUMDFxQVpaWlM49Ezbdo02NvbC27bBQBDhw6Fra0turq60NLSwmSD6joBtILjL7/8\nApVKBXt7e6hUKtTV1THbMgb1JpsP/eeUq6sr05zqL1729PRAoVBgzZo1ANjFS0qRniIhxc3NDXfu\n3MGdO3e411gDW5S2tm7dyrUxfvPNN5nbGO/evRt5eXm4dOkSXF1dBVXMMgXVPB/oE+sxMTGIiYnh\n2n/FxMSQjYd1TKZ45plneP1/qvn0KAbi+7FWMHoUK1asQEhICGxtbdHT04MVK1Yw2Tl//jwUCoVB\n8G7u3LmkYx05cqTZ//fbb78FAAwbNgwuLi64evUq3nzzTZSWljI/p4QmcD3oe8lkMu411qQySlHO\nGCz+5/bt2zFr1iykpKTgiSee4F7v6uriZSc6Ohrh4eGoqqpCZGSkoKQB1lbKlkZokkV/JkyYAKVS\niZ9++glKpZKXnQcrdQUFBTGNgdoWAPz1r3812KcJ6TZhCpbn+ZYtW5CYmIiWlhZs27YNmzdvZvrs\n9vZ2nD592uA11ufBtm3bDP5mTcCk9O8SExPJKjdR7a8o5xTfqlimYP3NjREfH4+srCyudXR8fDyz\nrZycHEGHLn8Lvv4dABw6dIjs8ykTz/VrsdB4RHR0NBobG6FUKrFkyRKMHj1akD19nCQ3Nxepqam4\nePEibxtC96CU/k9ubi6v/28O69atQ09PD5ydnTFz5kzeB3b6c//+fWzYsMEgiUSI/2KMgUpEoNw7\nUtmiXGOErn2hoaEGifAAuGQ3vutxYmIiMjIyUF1dje3bt2PYsGF45plnBK8VQp7nM2bMQHd3N+zs\n7BAbGwsA6OzsxIQJE5htzpw5E4sWLYJMJoNSqURgYCCv91P7nADtnpYqNpWSksLpDDNnzkRAQACT\nHYDunhmMOgpAp6WIOgo/RB2Fnd+7jgLQaymDTUcB6PbHoo4yeGyJOsrDUM0pylguFVTxO4Au7iYi\nIiIi0ofV/YH0iEVERESI0Ol0aG5uhlQq5dpxUnLjxg1MmjTJ7P+vVqsNAsGnT59mDnCmpqZyGwWh\nYlVZWRkmTZokqE3lo2hqasKIESN4vy8kJMQgsM9a4ejTTz/FjRs3cPfuXQwbNgwTJ07kkkCEoNPp\nBM0rveDo4uIi6DesrKxETk4O6uvr4erqitDQUHh5efG2Y+p3KioqwiuvvMI8Pj3p6em8W8729vZy\nv52eKVOmCB7LYMJYC06+glNnZ6dBsOCHH36Av78/03gobanVauTl5UGpVMLV1VVQG2NLk5+fT5Jc\nItSOfs0aaCjvvdraWly4cAFarZZ7LTIykredxzGfWH4/qu9nCtY1lIKjR4/i2Wefhbe3t6AKAUBf\na98rV64YzCm+ldc+/vhjk//Ges2rq6sNEriWLVtmkQrOfHjrrbeg0WhIRDljhISEkCZ2DRSlpaWc\nyKjVarFz586HAsRCSUhI4JIvzCUnJwcFBQUGSRbLly/n/dmJiYm4ffs2bG1t4e7uDrlczjthYzBD\ntU8bjL5iZmYm5HI5fH19BR8a2Lx5M7Zv3y44iYTSv1u9ejWsra0xZswY+Pn5wc/PzyAJjw+U+1Cq\nOaVWq/H5559zeysh/sb169c5O5MnT2YeEyWbN29Ga2srhgwZggkTJsDPz4+pjTi1/9PY2IjGxkaM\nHj1a0N740KFDOHXqlEHiOWsLaX08Qh8iZ41HUF6r8PBwbk3w8/Nj9lko9qCPi+LiYl4txAFwyVEN\nDQ2QyWSC5lT/6uRA3zygXmc2bNiAXbt2CbbzR/DxKNeYPyqVlZXw9PSERqPBkSNHcOvWLchkMgQH\nBw/YvrE/+vXYyclpUFSGo9zTWhq+OgNAe88MNh0FoNNSRB3FfEQdxTwsraMA/LWUwbg3pobKh6Xa\nH4s6ysDaEnWUR/N7mlMAWwyWAqq4m4iIpXnqNeExA5H/DFT5Gwb088VkYxERkT8sx48f553cYoq3\n336bV9AmPDwcH374IWxsbBAXFwdPT0/miobV1dXIzs7mgizLly83ONHLh3379qGiogI6nQ5SqRS+\nvr5YsGABky1j8L1OptBoNHBwcOD9vsuXL0MulzO9tz85OTlccK2srAw7d+5kFnIsnZzGQnR0NO7e\nvYupU6di1qxZzCJFWVkZDhw4gI6ODhw4cADp6elYvXo1k63FixfD29uba41lZWVFfnKWJdhNmfBG\nkZASGRmJxMRE2NjYICUlBVqtlrniI6WtZcuWYeHChfD09ERlZSX+7//+j7mNsTFYni3ffPMNDh8+\njF9//RXHjh1DQkICtmzZwvuzz5w5gy+//BLt7e2CgvhAX2XbXbt2ITU1Ff/6178wcuRI7Ny5k8lW\nTk4Ozp49ayCisSQpUt57r776KiIiIgyCfyxVHijnE+XvR/X9TMEyz8+cOYMTJ04YBDlZvl9paSn2\n79/PVXiIiIhgTpZ6/fXXMWfOHINWh5S+xmAlIyMD77zzjiAbQkS51tZWg3ng6uqKO3fumF1RWl/R\nprm5Ga2trXBzc0NdXR2kUilOnTrFezz97z09rPfexo0bMXv2bPT09CArKwurVq1iSpgD+trBZ2Rk\noLOzE/Hx8cjPz8ebb77JZAugSbKoqanB2LFjOfGEOjmCyj9nsVVaWorTp08bzE3WJDfK9ar/Giok\n0f/atWtQKBS4efMmNBoN7OzsmNd1qt+J0r8D+uZ4YWEhcnNz0dvby3wggmofSjmnli1bhuDgYK79\nMKu/8cEHH2D48OFcBTatVoukpCSmMcXHx+P69euws7MjOYSiVqtRVFSEb775BkOGDGFqt07p/+za\ntQs///wz107ey8sLGzawB8apkqXOnDkDuVwuuEIg5bXq6upCYWEhd0gqMDDQYslOQqDwf/SwPAd3\n7dqFiooKjB8/XvCcqqmp4WJtvb29yMzM5H2IWg/F4btHwTdZg2rvSG2Lao2ZM2cONBoN3NzccPv2\nbTg6OsLJyYnsIB+f+PL169exf/9+jB07FoGBgUhLS4ONjQ3Cw8Px8ssv8/rcpUuXIicnB2vXrsXs\n2bPh4+OD2tpaZGdnIycnh+GbGCc6OhopKSkktqhi8SzPA8o9LeW4KO1Q3TPGGEgdBaDTUkQdxXxE\nHcU8qHQUgE5LeRw6CsBfSxlsOor+cyn2x6KOYj5UsXhRRzEfqjlFGcsFaGKwVPE7gDY+KiJiScRk\nYxFzGehkY/pjqyIiIiKDhGPHjpEFyfiey0hMTERsbCy0Wi22bNnCdGpaz+bNmxEbGwtPT09UVFRg\n06ZNzM50REQEqqurcfHiRahUKtTX1zOPyxis51eSkpLwwQcfAADOnTuHQ4cO4fDhw7zttLe3Y+XK\nlZBIJNDpdAgLC8OMGTN425FIJEhNTUVXVxeam5sFtSCKjIxEREQEJk6cyGzjt+ArDKSkpKC7uxvF\nxcXYsmULNBoNZs+ejaCgIF7Bm6SkJKSnpyMiIgISiQRXr15lTjaWSqXYunUr03vNJSEhgfdm8ubN\nmwgICMD48eNRU1ODkpISLFq0iOnz/f39oVBFAmYpAAAgAElEQVQocPLkSeaElJiYGLz33ntob29n\nEqssZYuyjbExWJ4tGRkZ+OyzzxAaGgqJRILKykqmz87IyEBGRoZB4iQrDQ0NsLa2Rl1dHbKzsxEc\nHMxs69y5c8jNzRV8Epvy3nv++ee5NtRCoJxPlL8f1fczBes8p/h+ycnJ+OSTTzBixAg0NTVh9erV\nOHLkCJMtT09PhIWFWbRKQGJiotEqJ4+COoHrQYqKingn21CJcmvWrEFHRwcXoLayssJHH31kdqIx\n8P9bm0dERGD37t2ws7NDd3c31q5dy3s8AO29l5CQgPj4ePz888/IysoSlGwVGxuLHTt24MMPP4RE\nIsGpU6cEJRvb2tpi1KhRBq/xFeqLi4tx8uRJuLi4oKGhAfPmzcPixYuZx/QgA9n2csuWLYiPjyeZ\nB5TrFdUaGhAQAK1Wi+rqavj6+kIulzPbGjt2LDZu3IjJkydzAtj8+fN526H074C+hLbjx4/j9ddf\nf6i9NR+o9qGUc6qjowOzZs0CIMzfqKurM9i7slbXBYCKigrk5eUxv/9BSkpKcPnyZfj7+zO3oab0\nf65du2aw9gq5VpSJ5/fu3cNnn30GpVIJGxsbjBkzBlFRUbztUF6rqKgoTJkyBRMnTkRVVRXWr1/P\n1AZ+/vz5aGtrg6OjI1pbW+Hg4ACJRELmB7H4P6ZgWa8o51RKSgrCw8NhZWWF5ORkzJs3j9nW0qVL\nHzp8x4KpZA2+VeGo1j1qW1RrjIeHx0P+6/79+wWPTw+f+HJycjL27NkDtVqNsLAwHDt2DMOGDUNY\nWBjvNbm7uxttbW3o7u7GSy+9BCcnJ7i4uDA9Cx6FSqUis0UVi2d5HlDuaSnHRWmH6p4xxkDqKACd\nliLqKOYj6ijmQaWjAHRayuPQUQD+Wspg01EAuv2xqKPws0URDxR1FPOhmlOUsVyAJgZLufegiruJ\niIiIiPQhJhuLiIiIEPK3v/2Na2NlY2ODf//730hPTwcApipCQJ/wNWHCBEgkEkyYMAH37t0TNEaV\nSgW1Wg17e3vy9uH6786XKVOmIDY2Fh0dHXB3d8fBgweZ7GRmZuLQoUOcwBASEsIrSHbr1i0AwNSp\nU3Hq1CmUlZVh+/btuHv3LnPbGUsnpwH8hQG1Wo3CwkJcunQJTzzxBBYtWgRra2usWbOG6cSrlZUV\nuru70dvby/u9elpaWhAcHAx3d3fuNdZ7xhQsgZampiYuEWzatGk4e/Ys8wljIQkpaWlp3P01atQo\nfPfddygpKUFJSQnv09OUtvT89a9/RXBwsEEbY0pYni0SiQT19fX/j71zj4uqWv//ZwbxQuQRTBMG\n/KooKBe/kJf6pcGxNMzUXmkaqKioCSSeY2KSwCvTuMgxBE6mchE4B+UUmqjhJdS8oKnEpagXeEEg\nRQYRAXG4D8zvD16zvzMIOHvtZ5Q6+/1X7NzPrL332nut9Xye9TyQSCSora1lzhTp5OSEgoICrUwo\nlpaWTLZsbGwwd+5ceHl5oaWlRVCp0REjRiA1NVWrbCZL36R89woKCrBgwQKYmpoKCuak7E+Uz4/q\n+rqDpZ9TXp/69zXLiLNw/fp1TJs2DRYWFnq5TwBQWFjI+xzqAC4KqES5lpYWxMfHk7Tp0aNHuHDh\nAkaNGoXi4mI8evSIyQ5F31RnWwY6xvD79+/D09MTgLAMeprtaGtrY7LTE3yF+vT0dC4QQqVSwd3d\nnTTYmHV+TmHLxcUFxsbGgrOFArTjFdUYCgDW1taQy+X49ddfIZfLme1MnDiR6Tw1+pjfKRQKjBgx\nAq6urkhLS0NycjIOHz7M3EaKdShln5o9e7bWfGPOnDlMdmQyGYKDg7kMyTKZjLlNAwcOREREhFbf\nZBW/rl+/joaGBpiamiIrKwtZWVlMAWqU85+BAwciMTGRu1fPP/88kx2ANvB87ty5GD58OC5evAip\nVIqhQ4cy2aG8V7W1tdyY5+LigtOnTzPZ+Z//+R8EBgbC1NQU1dXV+PzzzxEZGclkqzdC2ae++OIL\nBAQEoLKyEtHR0YJKD1NtvqMS/CnHPSpblGPMo0ePkJmZiZEjR6K4uBh1dXVMdiiQSqUYMmQIhgwZ\nglmzZnHfE5a1/6ZNm/DRRx+hubkZ06dPx/DhwyGVSskC/NVQzhWpYG0T1Zr2SfafBdTzst4CtZYi\n6ii6I+ooukGtowDCtZSnoaMA/LWU3qKjAHTrY1FH4Q+Vr1rUUXSHqk9R6gwAjQ+Wch0j1O8mIiIi\nIqKNGGwsIiLyp4XSqThu3Did/h1Lea8nsWrVKnh4eKBPnz5oa2vDqlWrmG2dOXMGhYWFWgvHWbNm\nkbWVTwY9ALh8+TIAwMjICGZmZsjKysLChQuRm5vLtGAwMDBAUVERRo8ejaKiIt6L4s7i67Bhw7hj\nrFmS9B2cBvB3IGzduhWurq6IiIjAgAEDuOPNzc287Pj5+cHb2xvFxcXw9fUVVK5LSHlnffLmm29i\n0aJFGDZsGORyOWbMmCHIHmtASudy8XPnzmVuA6UtNR4eHnB3dycpY9wVLN/zzZs3IywsDLW1tdiy\nZQuCgoKYfruhoQHHjx/XOsb6PdiyZYvW30LKNslkMlRVVaGqqoo7xvLdDAsLI8tAGxgYiLFjxwou\n8UzZnyifH9X1dQffMRSguz5/f3/4+/tzJWf9/f1521CTlJQkKDhDX1AGcHUFn+8UtSinUqmwfv16\nrWtjHZOjoqJw4MABXLhwATKZDP/85z+Z7FD0TXW2ZUrUpQXLysqwcuVKLF26lPw3+NK/f39kZGRw\ngVL9+/cntf8sMxv/8ssvyM/P585lLZ8J0I5XlGPo3bt30adPHwwfPlxQZmO+WSo7o4/53WeffQYH\nBwc4ODhg4cKFgvom1TqUsk8tWbIEbm5ugucb4eHhyM3NhVwux1tvvcWcQRjAY1kKhQQ1HT9+HA4O\nDvD09MSLL77IbIdy/hMVFYWMjAwUFhbCzMwMUVFRzLYoA8+Bjm9xnz590NzcjNraWiYb33zzjdbf\nSqWSuT0TJkzAhx9+CCsrKxQXFzP3q9u3b6OyshLGxsaorKxEWVkZc5u6gnKMee2113ifo9mnzM3N\nmfqU5uamtrY2FBYWYu3atQDYNzdRbb6jEvypxj1KW5RjTHR0NA4cOIDz58/D3NxcUFbNruDTz6dP\nn46Wlhb07dsXAQEBAICmpiZYW1vz/l0HBwfEx8ejpaUFtbW1eO655/Dcc8/xtvMknuVckdIO5ZqW\nsl1doavOoAnlO9MVz0JHAei1FFFH0R1RR9ENKh0FoNNSRB3lyVCtj0UdhT9UvmpRR9Edqj5FqaMA\nND5YynWMUL+biIiIiIg2EpU+tviKiIiI9ALS0tJ4Tx5///13nD17FgqFgjvm6+tL1qYHDx5g8ODB\nZPb4kpqaivHjx2PMmDGCdqfW1dXh6tWrWiVLWUqt7dy5s9v/x3LfS0pKkJCQgPLycshkMnh6epJn\nHRCKUqkkdyB4eHgwlV3vTeTm5nICqkKhwPbt2x9zKAglNDSUE3v4oFQqUVNTg0GDBgnaQd1VQIpQ\np1tvgaqMcXt7O65du6ZlZ9KkSSRtZCU+Ph4ODg6ws7MTnFkjKCgIW7duJXFKNTU1aYlLeXl5cHJy\n4m1nzZo1kEqlsLCwgL29Pezt7bUCFvmwe/duFBUVQalUwsTEBHZ2dliwYAFvO5RlsSmfH9X1Xb58\nGY6OjhgwYACampqQl5fH7CRTiy9q7ty5IyjjAAVBQUF4+PAh+vXrB2tra9jb2z/mnBcKy7iXlpam\n9bdEIiErEwt0lBHXNUhm06ZN3f4/lr6elZX12LHJkyfztqPm3r17qKiowLBhwwQFqGnS0NAAIyMj\nEltqLl68iKlTp/I+r729nXPAU4kEmvDtn9XV1UhNTeXmr2pxlS8JCQlwdXUVlFVVTVFRESwsLNC/\nf380Nzfj9u3bGDNmjGC7dXV1GDhwINO5lONVZ1i/naWlpbC0tOT6k5D11Z07dxAXF4fm5mYEBwcj\nLS2Nd3lJaqqrq3HgwAHI5XKYm5vjvffeY95MQrUO7YyQPtUdhw8fJhkfrl27hrFjx/I6p7q6Wuse\nHz9+nDmopaSkBImJiZDL5TAzM8OKFSu0AhZ1hWr+0xMsfhIPDw+t7PdCAs///e9/c2sQIyMj2NjY\ncFnZ+JCUlMSdl5+fj+3btwtap9+7d497fqzj8a1bt5CUlITy8nKYm5tj2bJlTKXpu3tGfOY/avLz\n8xETE4PGxkbExMQgNjaWqYQ40DvXj5R0NWdkmStSrR0pbVGOMfqGxb9MQWlpKfbt24dBgwZhwYIF\niIqKQk1NDVatWkWama2qqopp42tXCLlX6vlUb4Dq20KpM+j7nemNOgrwbLUUUUd59og6Stc8DR0F\nYNNSRB3lyfyZdRSAzhcv6ii6Q6mlaELhy6X2wQrRPnqj301EpCuGvrvjWTdB5A9CZdr6Z/r7YrCx\niIjIH54TJ07gyJEjaGhoECwyzZkzBz4+PlrOTdYAoK5YunQp77adOHECR48e1VoosF5fbm4u9uzZ\nw2V58PHxgaOjI2878+bNw1tvvaVVypFacOyNxMXF8S5XSC04Pnz4UKsvmJub6ywMqDP21NTU4OHD\nh5DJZCgrK4OJiQmOHTvGuy2a754a1r65adMmzJw5E21tbUhISMCHH37IHJymXjQ2NTUhJCREL4tG\nliAEyoCUzrB8WyhtzZkz57EyxprlpHRl8eLFGDNmDGdHIpEwZ3lISkrCyZMnYWBgICgbRk5ODgoL\nC3H9+nXU1dWhb9++2L59O1ObKJ+Tr68vwsLCYGBggIiICCgUCubMFkqlEqdOnUJKSgra29sFZQ0p\nKSnBuXPnUFlZif79+zM9P6r+BNA+P4Dm+joLG0KEjo0bNyI0NBQGBgZITEzEjz/+iPj4eN52NN8X\nNUL6QXV1NTIzM/HDDz+gX79+5OUcn2UAF9W3hRIfHx8MGjQIdnZ2sLe3h62tLXNmjB07dqCoqAgj\nR45ESUkJRo8ejfXrhTstKL9/QmzqywGvCYtQ39X8ji8XLlzAqVOnUFlZicmTJ2PmzJnMgcdU36lt\n27bhk08+AQB8//33SE5Oxr59+5jaBNCOV5qw9s99+/YhPT0dZmZmqKiowOzZs7F48WKmNnh4eODz\nzz/Hp59+in//+99YtmwZ/vWvfzHZ6gqWa1RnobGyssKtW7fwn//8h7lUMNU6lLpPdQXV94rFjre3\nNz799FMYGBggODgYVlZWzBn/Fi9ejICAAFhZWaGoqAhhYWHM7wzF/KcnKO65kMDzS5cuwcHBQXDg\n+v79+1FZWYnm5mbU1NTA39+fORDsaQRw8cHPzw/19fVwdnaGq6uroMCvRYsWITY2Fj4+PkhOThb0\nvaNcP3YHy7yTKiCMKliDcu1IZYtyjOkOvt+WH374Afv27cP9+/dx6NAhhIaGYvPmzaRt8vPzQ0RE\nhE7/dsmSJdi4cSMePXqELVu2YPfu3TA2Nsbf//53fP3117x/Ozg4GAEBAUhOTsahQ4fw2muvYcOG\nDbztAHS++HXr1mHHjh2IjIzEb7/9hhdeeIF5vU65pqX6tlDqDFTvzB9JRwH4v8eijtJ7EHWUx6HS\nUih1FED/Wkpv01GAZ7vm+zPrKACdL17UUXSHUkvRROgz0IcPVkib9O13ExGhQgw2FtGVZx1sTLsl\nUEREROQZEBcXh7i4OK2JNCsTJ06Es7Oz4OyH3cGyv4Py+sLDw7Fr1y4MHjwYDx48wJo1a5gc1FZW\nVli5cqVessFpEhYW1mP2v86EhITg559/Rt++ffUSAJSZmcnbSWZoaIjIyEhOcBRSznHt2rVobGzk\nnLgSiQT/+Mc/dM5Aoi5H7uPjg+joaPTt2xctLS3429/+xtQeyr4ZGhqKkJAQ3Lx5EwkJCYLKBwUE\nBHCLRkNDQxw7dow82PjQoUO8nWQXL14kC0jpzLMue0lVxtjExASfffaZIBtqvv/+e6SkpAj+Tk2Y\nMAEKhQIlJSWws7MTVCLd0tISmzZtgqOjI+ckfe+995hs+fv7Y8OGDWhoaIC3tzemTJnC3K60tDQc\nPnwY8+bNe6x8N18qKytRXV0NY2Nj5owolGWxKZ8fQHN9SqUSCoUCxsbGqKurQ2trK3N7lixZgvXr\n16O+vh4zZ85kCjQG6N4XNdnZ2bh06RKcnJwElZMPCQlBXl4e+vXrpzWu8w34ADrGhs4BXCzBxtT3\nqiv4inK7d++GQqFAZmYmwsPDUVlZiTNnzjD9dk5OjtbcacmSJbzOj4mJgZeXFzZu3MgdU6lUKC4u\nZmpPT7CWhuzsgGelO6Geb6Dx2rVr0dTUBBMTE84OS4C+s7MznJ2dUV5ejtDQUMTGxmL8+PFYtGgR\npk2bxstWa2sr2traYGBggNbWVrS0tPBuD9CRVScgIACNjY0YPnw49u7dy2RHjdDxKjg4GEFBQVrz\nL5VKhZs3bzK1Jz09nVtLqVQquLu7M8/tlEqlVnaWtrY2JjvdwfK+NDY24s033wTQsf5LSEhg/n2q\ndSh1n9InLPc8LCwMAQEBUCgU2Lx5M1MGWjWtra2wtraGoaEhrK2tBc03KOY/PcFyrygDzxsaGrB6\n9WoYGhpCqVRi5cqVmD59us7n37lzB0DHd/jYsWPIz8/H1q1bUV9fzxxs7OvrCx8fH9jY2DCd/yT4\nBDwCQEREBFpaWnDx4kVs3rwZdXV1mDlzJubOncvsP5NIJGhpaUF7ezvT+QDt+rE7QkNDeQva169f\nx4QJEzBy5EiUlpYiOzsbixYt4v3bTk5OKCwsRHp6uqBgDcq1I5UtyjGmO/h+W+Li4rB//34sW7YM\nhoaGuHXrFnmbKisrdf63zc3NsLW1RWNjI9ra2mBpaQlDQ0Pmd6agoABSqRS5ubk4cuSIID8ZlT+w\noqICUqkUZWVlSExMhJubG7MtynUa1beFUmegemf+SDoKwPYeizqKbog6Ss9Q6ygAXf+k1FEA/Wsp\nvU1HAei0FFFHeRwqX7yoo+iO0D6lL1+uEB8stf8O0L/fTUSEClW72DdF/hiIwcYiIiJ/eJycnFBQ\nUKBVEpS1jEZBQQFXulgfThbNUue6Qnl9mm2QSCTMi+rr169j2rRpsLCw0GtWv8LCQl7/vqioCAcO\nHCBvBwv6EBxbWlqYA8k0efToES5cuIBRo0ahuLgYjx49YrJD0TfVWQKAjsXi/fv34enpCYA9A0lv\nXTRSBqR0huXbQmnrl19+QX5+PgBhZYxra2vh5uamtfOaNSPqiBEjkJqaqlXKijXDirW1NeRyOX79\n9VfI5XJmOxSlTqOiorhnNGTIEFy5cgXZ2dnIzs5m2v2uUCgwYsQIuLq6Ii0tDcnJyTh8+DBT286c\nOYPCwkKUl5dDIpGgtraWKZiTqj+poXp+VNfn5+cHLy8vbhxmyRp78OBB7r9lMhmuXr0KiUSCgwcP\nMjleKd+X69evo6GhAaampsjKykJWVhZ27drFZKuoqEjrWoVAFcBFea+6g0WU++6777Bv3z6sXr0a\nc+bMYf7tgQMHIjExEaNHj8atW7fw/PPP8zp//vz5ADoyMu7Y0bELX6VS4fbt28xtooRyMwOVUNjS\n0oK4uDjB7dm7dy+uXLmCIUOGYMGCBYiMjIRKpcLKlSt5Bxt7enrCzc0NMpkMd+/exYoVK3idf/ny\nZQCAkZERzMzMkJWVhYULFyI3N5f5faEYr4KCggAAUqn0sczNLPTv3x8ZGRnc+6JZlpMvy5cvh7u7\nO8rKyrBy5UosXbqU2VZXsMzv3n77bbi5ucHc3Bzl5eWYPXs2SRtY1qH66FPd8SwKwH388cfc/TEw\nMMCNGzcQGxsLgH0uvGrVKnh4eKBPnz5oa2vDqlWrmOxQzX96gqV/Ugaex8fHIzk5mQsi8fDw4BVs\n3HmeM2zYMO4Ya+YmfQdw8Ql4BDoqRJw6dQrnz5/HgAEDsGjRIkilUqxdu5Z3Zk0/Pz94e3ujuLgY\nvr6+gjIRU64fu4Plm/DgwQMuM6OLiwtOnjzJ9K0SGqxBuXakXodSjzFdwffbYmhoqPWto86iyLdN\ny5Ytw5IlSzBixAhs3LgR7u7ukEql3HybL6ampli+fDneeOMNtLe3CwpOo/JV29jYYO7cufDy8kJL\nSwsMDQ2Z20S5TqP6tlDqDFTvzB9JRwH4v8eijqI7oo6iG1Q6CiC8f+pDRwF6p5aiTx0FoNNSRB2l\nayh88aKOojtC+5S+fLlCfLDU/jtA/343ERERkf82xGBjERGRPzwNDQ04fvy41jFWQScwMBBjx44V\nvBu4O3TdOa0J5fX5+/vD39+fK//l7+/PZCcpKYnZ0aNPBg4ciIiICK1FMetu167g41TUh+CoDkrT\nvD6WRXFUVBQOHDiACxcuQCaT4Z///CdTeyj6pjpLACXq0oL6XDSyOJgpA1Io2kNpq3NJu7q6Oqbf\nDgsLI8v0IZPJUFVVhaqqKu4Yi2MrLCwMd+/eRZ8+fTB8+HBBmXH5Zrvsis5l8ebOnSvI3meffQYH\nBwc4ODhg4cKFgvrlgwcPMH36dIwZM0aQMEvVnwDa50d1fRMnThQsLGn+vrW1NaytrQXZo3pfAOD4\n8eNwcHCAp6cnXnzxRUHtohjXqQO4KO8VJWoHbkpKCiIjI3Hu3DkmO1FRUcjIyEBhYSHMzc0RFRXF\n63z1XHfLli2QyWTccb5ZbHThtdde430O5WYGKiGban43atQoLF269LEgDT6ZK9W4urpixowZXMlS\nvmNzTk4O998SiQQvv/wyd4z1faEcryIjI7X+XrZsGZOdHTt2IDU1FRcvXoRMJuNEGRaE3vMnwTK/\n8/DwgLu7O9emPn3YXYhC16H66FPdMW/ePBI748aN0/nfrlu3juQ3NXnzzTe5DIhCoJr/9AQfP4k+\nAs8NDAxQVFSE0aNHo6ioiPd1Ci0F2xW9bSP81q1b4erqioiICAwYMIA73tzczPu3J0yYwJyFujOs\n5Y/1zZtvvolFixZh2LBhkMvlmDFjBrMtIcEalGtH6nUo5RjTHXzHvs2bNyMsLAy1tbXYsmULF+Tw\nrNo0e/ZsrYBSV1dXQb/95ZdfoqamBqamplAqlbzn+ZpQ+aq3bNmi9beQTcaU6zQq3xSlzkD1zvyR\ndBSAv5Yi6ii6I+ooukGlowDC+6c+dBRA/1pKb9NRWNtEZefPrKOo20Xhixd1FN0R2qf05cul8MFS\n+e8A/fvdRERERP7bkKieRcoOEREREULi4+Ph4OAAOzs7wVlfdu/ejaKiIiiVSpiYmMDOzg4LFizg\nbefy5ctwdHTEgAED0NTUhLy8PObFmXoSrubOnTuCduRTEBQUhIcPH6Jfv36wtraGvb39Yws3Cjw8\nPB5bKPVEWlqa1t8SiYQ0uCUzM5MpsIWKrKysx45NnjyZyda9e/dQUVGBYcOGCQ4GU9PQ0AAjIyMS\nW2ouXryIqVOn8j6vvb1dr4vGtLQ03g6P6upqpKamory8HDKZjBOP+ZCQkABXV1etRT8rRUVFsLCw\nQP/+/dHc3Izbt29jzJgxTLaoyhivWbMGUqkUFhYWsLe3h729vZZTWAis387S0lJYWlpy/UmI8+fO\nnTuIi4tDc3MzgoODkZaWRlqWjoXq6mocOHAAcrkc5ubmeO+995hFkNzcXOzZs4cTYnx8fODo6Mjb\nDmVZbMrnR3V9nYmOjhaU0Y2CpqYmLQdpXl4enJycmGyVlJQgMTERcrkcZmZmWLFihVYwJh86j+sA\nf2fz3bt3u/1/Qr6lKpWKExWoxxm+8x9vb2/OgW9vby+o9F5zczMyMjIgl8shk8kwY8YMvYrHupCf\nn4+YmBg0NjYiJiYGsbGxWLNmzTNtE4AuS9SyCKGd53cSiQSTJk3S+fyesqhQzYP3799PmkWIBcrx\nKiUlBW5ubiTv7sOHD1FfX8/9bW5uzmSnc3+SSqUYNmwYFi5cyDxXV499rOTm5uL48eNa16ePoMpn\nxYkTJ3DkyBE0NDQI2nzw+++/4+zZs1AoFNwxX19fyqbiwYMHGDx4MK9zTpw4gaNHj2o9P5bro5z/\n1NXV4erVq1pt4vud2rlzZ7f/j/W+l5SUICEhgVuneXp6ChpLOxMXF8e7YkFnlEolaTAm37kGJZrv\nnhrWAMPc3Fy89NJLADoyjW3fvv2x4EWhhIaGIiAggPd5SqUSNTU1GDRoEHO21q6CNYQELvcmKMeY\n9vZ2XLt2TcsWn7nU06Sqqkrn4Mnjx49j1qxZKCwsRFRUFBoaGtCvXz94e3szZfurrKzE0KFDub+r\nq6uZ51JUvvigoCBs3bqVZE5Guaal8k1R6QwA3TvTG3UUgE5LEXUUUUdR09t1FIBeS2HVUQD9ainP\nSkcB6LQUUUfRHSpfvKij6A6lltLboPTf6cPvJiKiD4a8s/1ZN0HkD8L9Ix8/098Xg41FRET+8OTk\n5KCwsBDXr19HXV0d+vbti+3b2QfikpISnDt3DpWVlejfvz9TAFBn544QIWfjxo0IDQ2FgYEBEhMT\n8eOPPzKXgEpKSsLJkye1Fnis2XGqq6uRmZmJH374Af369SMvVQkA165dw9ixY3m1SXNxp3bM80Xz\nPumrvBmL4Ojj44NBgwbBzs4O9vb2sLW1ZQoA2rFjB4qKijBy5EiUlJRg9OjRWL9+PW87nVm6dKmg\nLCRUNilFK6ogBDVCA1IuXLiAU6dOobKyEpMnT8bMmTOZnWWU36kzZ87gzJkzXBnjDz/8EP369WOy\npVQqcerUKaSkpKC9vZ3s3WPtn/v27UN6ejrMzMxQUVGB2bNnMwdceXh44PPPP8enn36Kf//731i2\nbBn+9a9/MdnqDr7Xqc5eYWVlhVu3buE///kP71LIat5//33s2rULgwcPxoMHD7BmzRqu5B0fKPsT\n5fMTen0FBQWwtbXlMvKpCQ8PZy65FhoaitzcXPTr10/QeOXr64uwsDAYGBggIiICCoWCOVPc4sWL\nERAQACsrKxQVFSEsLIzsPdYMKKGCb4824w4AACAASURBVABXUlISjh49irKyMvzlL3+BsbFxl0HR\nQuAryjU3N+PUqVOcCCMkQPiDDz7A1KlTMWLECJSWluLSpUtcJmgheHt7Y8+ePUznLlq0CLGxsfDx\n8UFycjLpt1NIu6iE+tLSUi4gv729HfHx8Vi9erXO56tL32ZkZGDEiBHc/K6kpIT3mkEdhKIuYwt0\nCPYff/wxvvnmG162ANo5NeV4RRVkt3btWjQ1NcHExIS7PtY10ccffwxXV1eMHDkSxcXFOHnyJN59\n913ExMTwauu6deuwY8cOREZG4rfffsMLL7zAvDaeM2cOQkJCMGjQIO6YZolWPlCtQyn71Lx58xAX\nF6d1fSxC6Jw5c+Dj46MV2E2dbZllHkt1fVTzO3Wb3nrrLa02sQYl/ZFgeX5JSUlYvnw5gI5NN9u3\nb2f+bnW1BtU14FFdrrumpgYPHz6ETCZDWVkZTExMcOzYMab2UPVNoEMwnjlzJtra2pCQkIAPP/yQ\nOYBLHdDQ1NSEkJAQvQQ0HD58mFcgF+XGya6g9OHwtUU5xixevBhjxozhbEkkEiZfLuUYExwcjICA\nACQnJ+PQoUN47bXXsGHDBl421HPeZcuW4R//+AdefPFF1NXVYfXq1Uzf4c7PaOPGjczzFipfPGUf\npFzTAnS+KQqdAaB7Z3qjjgLQ+ShFHUXUUdT0dh0FoNdSWO1RaSm9TUcB6LQUUUfRHSpfvKij6A5l\nn9JEiM+Uyh7lJlkqv5uIiL4Rg41FdOVZBxvT16cSERERecpMmDABCoUCJSUlsLOzE1QiHegQ2aur\nq2FsbMyczUapVEKhUMDY2Bh1dXVobW1lbs+SJUuwfv161NfXY+bMmcwOMqBjV2NKSgrJLsDs7Gxc\nunQJTk5OggN/QkJCkJeX91iwFB8HGQAEBATg008/hYGBAYKDg2FlZcXkJKO8T92RmZnJ20m2e/du\nKBQKZGZmIjw8HJWVlThz5gzv387JydFyPCxZsoTX+TExMfDy8sLGjRu5YyqVCsXFxbzb8iRY9kRt\n3rz5MQc8K3FxcY8JoaxQBKQ4OzvD2dkZ5eXlCA0NRWxsLMaPH49FixZh2rRpvGy1traira0NBgYG\naG1tRUtLC6/zAf2UMU5LS8Phw4cxb948/PWvf+V9fnBwMIKCgrScWCqVCjdv3mRqT3p6OufoUalU\ncHd3Zw5WVSqVWlkB2tramOz0BN93prGxkSuxbWVlhYSEBEG/r84gI5FIeLdFH/2J8vkBwq7vxo0b\nsLW1RWBgoFaJ9kePHjG35+bNmzh48CDz+Wr8/f2xYcMGNDQ0wNvbG1OmTGG21draCmtraxgaGsLa\n2lrQHKgzUVFR5JtaPvroI142T58+jUOHDsHDwwNJSUlaYyFfuhPl+Gb/+eijjzBp0iTY2NiguLgY\n69ate6wMqa6oVCquJJ2LiwsuXLjA6/yu+mNNTQ0ePHjA1B5NJBIJWlpa0N7ezvvcb7/9FvPnz0d0\ndDR3TKVS4caNG8ztcXJyQmFhIdLT0wUJ9REREfD29oZEIkF4eLhWuWxdUAfqpaenIzAwkDvOUvr0\nyJEj+OCDD+Du7q7VD3vKEN4TlHNqyvHKwcEBaWlpcHR05DKFsmTtaWlpQVxcHHM7NCktLYWLiwsM\nDQ1haWmJ2NhYTJ06FV999RUvOxUVFZBKpSgrK0NiYiLc3NyY2+Ti4gJjY2NYWFgw21BD1Rco+5ST\nkxMKCgq0su+z9IOJEyfC2dlZcHbAnmBZE1FdHyBs/qOJlZUVVq5cqdd1dlhYWJeZ53siJCQEP//8\nM/r27au3IBm+GBoaIjIyEs3NzaipqdEav/iwdu1aNDY2csHw6jWorplV1eW6fXx8EB0djb59+6Kl\npQV/+9vfmNoD0PbN0NBQhISE4ObNm0hISBBUjSEgIIALaDA0NMSxY8fIg40PHTrEK9j44sWLZBsn\nu4IyBw1fW5RjjImJCT777DPBdijHmIKCAkilUuTm5uLIkSNMfWnAgAHIzs7GmDFjcOvWLRgbG6O0\ntJS3nStXruDKlSsoKyvjviWtra2Qy+W8bamh8sVbWlpi06ZNcHR05AI633vvPSZblGtaQLhvSg2F\nzgDQvTO9UUcB6LQUUUfRHVFH0Q2hOgrw9LQU1nGdSkvpbToKQKeliDqK7lD54kUd5clQ9SlqXy6l\nD5bKfwfQ+d1ERERERDoQg41FRET+FFhbW0Mul+PXX3+FXC5nXpydOXMGhYWFKC8vh0QiQW1tLZOT\nxc/PD15eXtwigWW3s+YEXyaT4erVq5BIJDh48CCz43XEiBFITU3VKqfDcq+uX7+OhoYGmJqaIisr\nC1lZWcxBLUBHGSKKYKmwsDAEBARAoVBg8+bNGD16NJMdqvukD7777jvs27cPq1evxpw5c5hsDBw4\nEImJiRg9ejRu3bqF559/ntf58+fPB9BRMnjHjh0AOhaLt2/fZmoPNZSiFaUQShGQsnfvXly5cgVD\nhgzBggULEBkZCZVKhZUrV/IONvb09ISbmxtkMhnu3r2LFStW8G5PTk4O998SiQQvv/wyd4zlnVEo\nFBgxYgRcXV2RlpaG5ORk3hlfg4KCAHSUQeqccYCF/v37IyMjg3tfNMty8mX58uVwd3dHWVkZVq5c\nyRQI9iQ0y0Xqwttvvw03NzeYm5ujvLycd5CbJv7+/vD39+fKf/n7+/M6n7o/AbTPT+j1qQML3Nzc\ntLKWFhQUMLdp4MCBiIiI0Bqv+MwRoqKiuD4zZMgQXLlyBdnZ2cjOzmbOSLRq1Sp4eHigT58+aGtr\nw6pVq3jbUDu7XV1duWAYoc7u7uDrzFUqlVCpVOjbty9ycnIEBatSiXK1tbXw9PQE0DEGnj59mreN\njz/+GBKJBA8fPsS7777LZXngG7Szd+9eeHl5ad1XCwsLQdmR/fz84O3tjeLiYvj6+jL1TTs7OwDA\n2bNnERgYyLXv/PnzzO2iEuq/+OILBAQEoLKyEtHR0cwlGMeNGwdfX1+MHDkSpaWlsLW15W1DLeDO\nmjVLq2Q86xhKOaemHK9qamq4NYwalsxN6nWe5vWxfjs9PT2xbNkySKVStLe3w9PTE0qlEu+88w4v\nOzY2Npg7dy68vLzQ0tICQ0NDpvYAwC+//IL8/HwA/1eSmnXDB1VfoOxTDQ0NOH78uNYxln5QUFDA\nlfXVV6Aq3/kdQHd9Quc/mly/fh3Tpk2DhYWF3u5VYWEh73OKioq4LPH6gM9cQ51Z3tnZGceOHUN+\nfj62bt2K+vp6pvGhpaVFUKCVmkePHuHChQsYNWoUiouLBW2Wo+ib6ozLQMf9vX//PjcXYu1TTyOg\ngS/UGyc7w/JtobJFOcbU1tbCzc1NK8srS0AS5RhjamqK5cuX44033kB7eztTIHxYWBji4uJQUlKC\nrVu3wsjICOPGjeP9vlhaWkIqleLcuXN49dVXoVKp0KdPH/j4+PBukyYUvviJEycKagOgnzUthW8K\noNMZANp3prfpKIBwLUXUUfgj6ii6IVRHAf57tJTepqMAdFqKqKPoDpUvXtRRngxVn6L25VL6YKn8\ndwCd301EREREpAOJinILu4iIiMgzICwsDHfv3kWfPn0wfPhwODg4YMaMGUy2UlNTMX78eIwZM4a8\nPCFfeirJ/e677zLZ3Llz52PHfH19eduJjIyEg4MDHBwc8OKLLzK1RZO///3vGD58OHOwlDpABugQ\nrn766Se4uLgAYBMYqO5TT7CWfykvL0dOTg5SUlIgl8tx7tw53jaam5uRkZEBuVwOc3NzzJgxg6ms\nTufybP/5z3/g7u7O205PxMbG8iolDnTcW03hUYgDvqusWKyL2dWrV8PY2FhQQMrZs2cxderUxwJH\n1GXP+dLe3s6VZNVnBgpd2bBhA/dtsbW1FRQY2rk08OnTpzF9+nTedqqrq5Gamory8nLIZDIumIQV\nfd9zlm+LUqnk2qTeIf5ngfr59Ta6mivwmSNoOuo6M3nyZKY2UUJZprA7+JbMu3btGoYPH467d+/i\nm2++gYuLC+9MxGo2bdqE//3f/xUsykVERODWrVuwsrJCcXExRo0aBT8/P142espcy6fEZGpqKnkW\nQEoyMzO1nteXX36JtWvXMtuTy+U4f/48fv31V/Tt2xebN2/W+VzNQKm2tjYUFhbC3t4eAHugVEVF\nBSoqKmBmZkYyR1fT3NzMNFeknlP3tvGq8zdUIpFg0qRJz6g1XaOeC1NQV1eHgQMHMp1L1Rco+1R8\nfDwcHBxgZ2cnKCtxfn4+xo4dKyij6pNYv349F5igK52f/Z07d5jFfio6l+vWBywlf4X6I55E57Gn\nJ3rKysyyDqVYgwIda6sDBw5ALpdDJpPhvffew+DBg3nb6YqGhgYYGRmR2BJCRkYG4uPjUVZWhnHj\nxuH999/nMpdRwXcuu3z5cixatIgL1ti/fz+SkpKeWXv0aUvIGHPnzp3H1tYsJdIpxxiVSoWamhqY\nmppCqVSitrZW54zi+oLVJ9IVlL54oehjTUvlm9KnzsD6zog6iu6IOopuiDqK7uhbS2HRUQA6LaW3\n6SgArZYi6ii6QemLF3WUp4O+fLnUPlgRkf8WhrzDv3KiyH8n9498/Ex/Xww2FhER+cNTWloKS0tL\nboIvxLmVm5uLPXv2cLsJfXx84OjoKLiN0dHRzNkUKGlqatJadObl5cHJyYm3nZKSEiQmJkIul8PM\nzAwrVqzQ2rHMF6HBUlQBMp1RqVTcrkvqxSwfwVGNt7c35wi2t7dnLk+n6SSTyWSYMWOGXsVxXcjP\nz0dMTAwaGxsRExOD2NhYrFmz5pm2CaALQgCEBaT0tCudTxnWnti/fz9zlqSkpCScPHkSBgYGgrKU\nVVdXcyK2ubk53nvvPWZnVEpKCtzc3Eje3YcPH6K+vp7729zcnMlOZ6erVCrFsGHDsHDhQkGCg3r8\nYyE3NxfHjx/Xuj5WR7BmP1DD0g+o+pMaqudHdX2dEfLulZeXP3aM9fqoOHHiBI4ePap1z1k3fHTm\n559/JpmXacISwPXLL7+gqqoKLi4uuHfvHvNcg1KUu3fvHjcvowwyFUJ1dbVWP2ANcjtx4gSOHDmC\nhoYG7hhrn8rPz4e9vT3J2NCbgiwA2jG0MxkZGeQBV3yhHK9++umnx46xBAmXlpZya6D29nbEx8cz\nibsA3bczKCgIW7duJenj27ZtwyeffAKgIxN7cnIy9u3bx2SLah1KSU5ODgoLC3H9+nXU1dWhb9++\n2L6dv0N/9+7dKCoqglKphImJCezs7LBgwQKmNl2+fBmOjo4YMGAAmpqakJeXx5wZbuPGjQgNDYWB\ngQESExPx448/MmW4pZz/BAUF4eHDh+jXrx+sra1hb2+PV199lclWd7AIxp39ERKJhGmNRT2HpaCr\nIDzW4Lt79+6hoqICw4YNI51rsASIP4mLFy9i6tSpvM/Td0BDWloaL18XVbBGQkICXF1dBfnH1BQV\nFcHCwgL9+/dHc3Mzbt++jTFjxvC2QznGrFmzBlKpFBYWFrC3t4e9vb1WcBIrQjZpdA5iYtls8fPP\nP2PPnj2wtLTEjBkzEBUVBQMDA3h7e2PKlClM7dJEyDqUyhd/584dxMXFobm5GcHBwUhLS+sVGxep\n5tWUOgPVO/NH0FGA3qGliDoKP0Qd5ekh6ihPRt9aiqij9AyFL17UUdhsCV2HUvlyARofLJX/DtCv\nZiEiQokYbCyiK8862PjPseVGRETkv5qLFy8iPT0dZmZmqKiowOzZs5kXeuHh4di1axcGDx6MBw8e\nYM2aNVzJQl0oKCiAra0tLl++rHX87NmzzA6y0NBQ5Obmol+/foIXChs2bEBYWBgMDAwQEREBhULB\n5CQLCgpCQEAArKysUFRUhMDAQEEiWmeHWG5uLq/zn+QIe/DgAa+sO0lJSTh69CjKysrwl7/8BcbG\nxj1mSHiSra4WeixZEKOjo3Hq1CmUl5dDKpVCJpMxObd8fX0xdepU2NjYoLS0FL6+voLKm6vx9vbG\nnj17mM7dtm0bYmNj4ePjA0NDQ2RlZZE5yYS0y8nJCYWFhUhPTxcUhAAAQ4cOfSwgRdeFcWtrK4CO\nYJ8RI0Zg5MiRKCkpQUlJCW8HmVr0UpfoBTocwkePHmX+dn7//fdISUkR7JDy8/ODu7s7pk+fjlu3\nbsHPzw+JiYlMtk6cOIFFixYJag8ArF27Fk1NTTAxMeHeYZZMH0DHzndXV1eMHDkSxcXFOHnyJJyc\nnLBhwwbeQRHr1q3Djh07EBkZid9++w0vvPACU9/cvHkzQkJCMGjQIN7ndoaqH1DZAWifn9B2tbe3\nP3aspqYG3377LfO7FxkZyZUZvX//Purr60nLgLMEf8TFxSEuLo6kTzU3N+PUqVNaGWRYqa2tRWpq\nKhQKBdauXYvMzEy8/vrrvAONg4KCMHjwYFy6dAlvvPEGAgMDmTPMdQ4s1vwu8+H333/H2bNnoVAo\nurX9tAkPD8fNmzdx7do1TtRjzXZH2ae2bduGlJQUwXYAwN3dnUyo74rOWY+ehJ+fH9zc3EjGUE3U\ncxaWYGPN7M2VlZUwMDDAyZMnmdpBOV5dunSJ++/79++jvLyc6V5FRETA29sbEokE4eHhgkpoUvXz\n27dvkwmEkyZNQkBAABobGzF8+HDs3buX2RbVOpSyT02YMAEKhQIlJSWws7ODg4MDkx0fHx+UlJTg\n3LlzqKys7HIjkK7s2rWL+1b2798fu3btYg42XrJkCdavX4/6+nrMnDmTKdAYoJ2XBQcHo7q6GpmZ\nmfjhhx9QVFREHmwcGBjI+xwXFxctYf748eNMv015r7ojLi4OH3zwgc7/PjExEYMGDYKdnR3s7e1h\na2vL9Ls7duxAUVERtw4dPXo07xL3MTEx8PLywsaNG7ljKpUKxcXFTG3qidjYWN7BxpTBA5obpTQz\nBPLNrmlqagp3d3euTU1NTUztGT16NPbs2YPKykpMnjwZM2fOZA4o27JlC/ed6tevH7Zu3co0x6Mc\nY7766isolUqcOnUKKSkpaG9vJwn0DwwMZA5A2LBhg9a527Zt470ODQ8Pxz//+U9UV1dj5cqVOHTo\nEIyMjLBy5Upewcb68AFR+eIDAgLw+eef49NPP4WhoSGOHTtGHmzMsqal8k0J1Rk0oXpnepOOAtBr\nKaKO8mREHYUf+tJRAHbNQp86ipB29RYdBaDTUkQdhT9UvnhRR3n6tih9uQCND5bKfwfQ+pdFRERE\nRMRgYxERkT8B6enpnCNLpVLB3d2deaEHgBMv1cE7fLhx4wZsbW0RGBiIefPmcccfPXrE3J6bN2/i\n4MGDzOdr4u/vjw0bNqChoUFQJozW1lZYW1vD0NAQ1tbW3OKdiqioKNIdhR999BEve6dPn8ahQ4fg\n4eGBpKQkLTGML5SLxo8++giTJk2CjY0NiouLsW7dOuzatYu3HZVKhWXLlgHoEFYvXLjA6/yu+mNN\nTQ0ePHjAuy2dkUgkaGlp6TIo70l8++23mD9/PqKjo7ljKpUKN27cYG4PVRACICwgRZ0dLT09XUtA\nX7p0Ke92HDlyBB988AHc3d21nLU9ZbZ4EiNGjEBqaqpW9iCWwIjGxkYumMnKygoJCQnMbXJwcEBa\nWhocHR25klYsO7FbWloQFxfH3A5NSktL4eLiAkNDQ1haWnIi+FdffcXbVkVFBaRSKcrKypCYmAg3\nNzemNrm4uMDY2BgWFhZM52tC1Q+o7AC0z09ou1555RWMHTuWc7SqVCoYGRlh1apVzG3q7BhldeJ3\nB0sRHCcnJxQUFGhl6mHNguDr64spU6bA2tpasKizYcMGeHp6YteuXTA0NERSUhJef/113nbu3LmD\n4OBg5OXlAWC7R93BGtDg6+sLHx8f2NjYkLVFKL/99huSk5M5cV+I8EXZp6ytrQVlqdOEUqjvitDQ\nUF79obGxEa6urgDYx1BXV1et0pkqlQqtra146623eNsC8JioEBERwWQHoB2v1q1bp/U3azDZF198\ngYCAAFRWViI6OlpQJmmqfm5paYlNmzbB0dGRC4DnU1YZABfsYWRkBDMzM2RlZWHhwoXIzc1lHo+p\n1qGUfQro+CbI5XL8+uuvkMvlzNdXWVmJ6upqGBsbM2dNAzoEVYVCAWNjY9TV1TGtszXXajKZDFev\nXoVEIsHBgwd59wWAdl4GANnZ2bh06RKcnJzw0ksvMdsJCQlBXl7eY8FEfDZpqAkICMCnn34KAwMD\nBAcHw8rKCrNmzeJth/pedUVmZiavYOPdu3dDoVAgMzMT4eHhqKysxJkzZ3j/bk5OjlZg1JIlS3jb\nmD9/PoCOTVLqzV4qlQq3b9/mbetJsMzPKIMHqIRsqmANZ2dnODs7o7y8HKGhoYiNjcX48eOxaNEi\nTJs2jZet1tZWtLW1wcDAAK2trWhpaeF1vj7GGKAj0+fhw4cxb948/PWvf+V1bnBwMIKCgrTmcSqV\nCjdv3uTdjitXruDKlSsoKyvjfFOtra2Qy+W8bUmlUgwZMgRDhgzBrFmzuEzJnUvBPwl9+ICofPFK\npVJrvtPW1sbcpu5g+R5Q+qaE6AwA/TvTm3QUgF5LEXUU4Yg6ijZCdRRAf1qKEB0FoNdSeouOAtBp\nKaKOwh8qX7yoozx9W5S+XIDGB0vlvwNo/csiIvpE1U6/JhIR0QdisLGIiMgfnv79+yMjIwOjR4/G\nrVu3tMpb8cXf3x/+/v5c+S9/f39e56t3xbq5uWmV0C0oKGBu08CBAxEREaG1UOArEkZFRXHOvyFD\nhuDKlSvIzs5GdnY2U5aAVatWwcPDA3369EFbWxtzoJTaoa8Z2MDq0O8Jvs5OpVIJlUqFvn37Iicn\nR1CwKuWisba2Fp6engA6FranT5/mdf7HH38MiUSChw8f4t133+V2BfPd1b937154eXlp3VcLCwtB\nu/r9/Pzg7e2N4uJi+Pr6MvVLOzs7AB3ZLwIDA7n2nT9/nrldAF0QAkVAyrhx4+Dr64uRI0eitLSU\nKTOVWpyeNWsWAgICuOMeHh68bamRyWSoqqpCVVUVd4zlPr399ttwc3ODubk5ysvLBWUIrKmpQVZW\nllbZNRZnhEqlwvr167XeYdZM9Z6enli2bBmkUina29vh6ekJpVKJd955h7ctGxsbzJ07F15eXmhp\naeEtOKr55ZdfkJ+fDwBaWbdYoOoHVHYA2ucntF0vv/wyvvzyS6bf7g5NQaCxsRFFRUWk9tVzBz40\nNDQ8lhGQ1RGoUqmwfPlyAOyijma7pkyZgpiYGM42C+bm5ti5cydqa2uxf/9+JgczZUADAEycOBHO\nzs6Cy1RSolQq0dLSgueeew5paWnMWZsB2j5148YNrFixAoMHD4ZUKhWU6YpaqO8M3z7aeQydM2cO\n798cOnSooKwlndEUVRsbG7nxhgXK8Uo9J1a3i+8Yqpldt62tDYWFhVi7di0A9rKXVP184sSJTL+v\nSU5ODvffEokEL7/8MneM73hMvQ6l7FNhYWG4e/cu+vTpw5VYZuHMmTMoLCxEeXk5JBIJamtrmQJV\ngY41kZeXFxewwzdzLACtLOvW1tawtrZmaosaynnZ9evX0dDQAFNTU26ezhL0AQBFRUVkwURhYWEI\nCAiAQqHA5s2bMXr0aCY7lPeKku+++w779u3D6tWrmcYGoMMvlZiYyPndnn/+ed421D6fLVu2aGVV\npChlTQFl8ACVkE0VrLF3715cuXIFQ4YMwYIFCxAZGQmVSoWVK1fyDjb29PSEm5sbZDIZ7t69ixUr\nVvA6n3KMUaNQKDBixAi4uroiLS0NycnJPZZP70xQUBCAjuBezXkQi4/E0tISUqkU586dw6uvvgqV\nSoU+ffrAx8eHt63p06ejpaUFffv25Xw3TU1NvL/r+vABUfnily9fDnd3d5SVlWHlypVMG+qfBMua\nlso3JVRnAOjfmd6kowD0WoqoowhH1FE6oNJRAHothUJHAfSjpfQmHQUQrqWIOgp/qHzxoo7y9G1R\n+nIBGh+sUP+dJpT+ZRERERERQKKiTMUkIiIi8gyorq5GamoqysvLIZPJsGDBAkFZpXobXZWd4lt6\nUXOR2JnJkyfzbhM1Hh4ejzn0KQMd+JbMu3btGoYPH467d+/im2++gYuLC1O5LgDYuXPnY8dYS5tH\nRETg1q1bsLKyQnFxMUaNGgU/Pz+dz+9pxzWfEpqpqankZQ0pyczM1HpeX375JRcAwpeughBmzJjB\ny0ZXASn29vYA2AJSKioqUFFRATMzM7z44ou8z++O5uZm9OvXj8weK0qlkitJr95J/yzp/P2USCS8\nyrY9LdQOLqHU1dVh4MCBTOc2NTVpCVV5eXlMJSYpoXx+vf36jIyMMHbsWNL3hmU87twXWTIYqB2J\nJSUlUCqVWqJOamoqL1tq9u3bh7Nnz6K4uBgvvfQSnJycmLLyqVQqnDlzBiUlJRg5ciSmT5/O1B6A\nbv7z/vvvo66uDqampoJLxVJRWVmJQYMGoba2FseOHcMrr7yCcePGkdhuaGiAkZERiS0hLF++HIsW\nLeKE+v379yMpKYnMPkt/UCqVqK2txaBBg5i+Ba2trYIc953RXMcYGRlh8uTJMDExIbEtZLzSnBMb\nGRmRtYmS3tLPhUK9DqXsU6WlpbC0tOTmnZpBunxITU3F+PHjMWbMGGYbvRnK+U9kZCQcHBzg4OAg\neB3z97//HcOHDxcUTKQpXDY0NOCnn36Ci4sLADBlj1WjUqm4YA2KzHyasIwN5eXlyMnJQUpKCuRy\nOc6dO8f7d5ubm5GRkQG5XA5zc3PMmDGjV6wduyM2NlYraE0XPDw8uP4gNHhg06ZNjx1jEbJXr14N\nY2NjwcEaZ8+exdSpUx8b49WlwfnS3t7OfTup+zgLGzZs4L4ttra2zMGTVVVVWhUeTp8+zTzXF3Lu\n00KID4jSF6/v/sS6xuptvikqRB3lyYg6iqijAHQ6CvDfo6X0Rh0F0I+WIuoo3fNH0FJEHaVr9OnL\nZUWf/rs/i99N5M/HC3O2PesmffMgigAAIABJREFUiPxBqPruk2f6+2KwsYiIyJ+Chw8for6+nvvb\n3NycyU5SUhJOnjypJRJSBGvs37+fOdNZeXn5Y8dYr4+KEydO4OjRo1r3nLJc188//wxHR0cye+vX\nr+fKdOrKL7/8gqqqKri4uODevXu8nUjdIbRszL179yCXy8kDTVmprq7W6ges13bixAkcOXIEDQ0N\n3DHWPpWfnw97e3sSkYIqCIGK6upqHDhwgBN533vvPTJRICMjgyu9xRdNR2BlZSUMDAxw8uRJ3nZy\nc3Nx/PhxrT7Furv4p59+euwYi2OrtLSUy0jV3t6O+Ph43sK1GspvZ1BQELZu3Sq4n2/btg2ffNKx\nIPn++++RnJyMffv2Mdny9fVFWFgYDAwMEBERAYVCgfDwcN52qPoTQPv8qK4vLy8Pu3fvRkNDA557\n7jl4e3uTOxMfPHiAwYMH6/zvExIS4OrqSjLWbdy4EaGhoTAwMEBiYiJ+/PFHxMfH87JBKepoUl1d\njbKyMlhYWDB/OzMyMnDlyhU0NjZyx1i/U5QBDZoolUpmkeH8+fNcoBXQ8S0VKgqox1Aq+Iqf+kLf\nQn1oaKhW5pwnkZ2djZiYGDQ1NcHIyAirV6/GhAkTmH67tLQUCQkJ3JxzxYoVWtkZnwWU4xUVdXV1\nuHr1qta4TpWhk7Wf37lzB3FxcWhubkZwcDDS0tKYhW3NtXFv2chAyb59+5Ceng4zMzNUVFRg9uzZ\nTGv23Nxc7Nmzh8vq5+PjQ7aWjY6OZs5UFhoaitzcXPTr10/Q86Oa/wBASUkJEhMTSb4tFMFE1PON\npKQkHD16FGVlZfjLX/4CY2PjLtsphM7BIE/C29ubC/awt7fHyJEjmX5XM9hYJpNhxowZTJn9umvj\nnj17mM7Nz89HTEwMGhsbERMTg9jYWMHlfimIj4+Hg4MD7OzsBFWeEBqs0VN2X6rxitXfSTnGUPlJ\nUlJS4ObmppeAVyF+4e7w8/NDRESEzv/+999/x9mzZ6FQKLhjrEF8AI0vvnNgvlQqxbBhw7Bw4UJB\nPk+h6w8q3xSlzkD5zvR2HUVth+WdEXUU4Yg6in6h0FIodRSATkvpbToKoD8tRdRRuofKFy/qKLpD\nqaWoofbl9kZ6i39ZRKQzYrCxiK4862Dj3rHNSUREREQAa9euRVNTE0xMTDhnG2sWmu+//x4pKSnM\ni4729vbHjtXU1ODbb79ldipHRkZyZVTv37+P+vp6HDhwgMlWd/CdVMfFxSEuLg6DBg0i+f3m5mac\nOnVKK0sOC7W1tUhNTYVCocDatWuRmZmJ119/nbeDLCgoCIMHD8alS5fwxhtvIDAwkCxTXWBgIPMC\nhloYEEp4eDhu3ryJa9eucaIlayYFyj61bds2pKSkCLYDABcvXiQJQuiJa9euYezYsTr9Wz8/P7i5\nuWH69Om4desW/Pz8kJiYKLgNascPq5Os8/3mI3hpsnnzZoSEhJD0g0uXLnH/ff/+fZSXlzPdq4iI\nCHh7e0MikSA8PFxQSTLKfn779m0SEXTSpEkICAhAY2Mjhg8fjr179zLb8vf3x4YNG9DQ0ABvb29M\nmTKFyQ5Vf1KfS/X8qK5v27Zt+Oqrr/DCCy/gwYMHWLNmDb7++mvmdnXFRx99xGusGT16NPbs2YPK\nykpMnjwZM2fOZBaHlixZgvXr16O+vh4zZ87kHWgM/F+AT0tLC06dOoXy8nJB8wPg/4Jo1aICaxDt\nv/71L+zdu1dQuVk1moHGAJgDjZOSkrB8+XIAHSLR9u3bmcfjvXv3agUbf/3110z3ad26ddixYwci\nIyPx22+/YciQIbzn5zExMfDy8sLGjRu5YyqVCsXFxbzboyYkJAR5eXmCg+8AwNTUFO7u7pzw0dTU\nxGRHHRza1NSEkJAQLjiUT6Ax0PFtiYuLg4mJCaqrq+Hl5cW8ZggMDMSmTZswevRoFBUVITAwkDTI\nlMWhTzleUbF8+XLMnDlTkABD3c8DAgLw+eef49NPP4WhoSGOHTvGHGwsdG2sC1TiDoud9PR0bvxV\nqVRwd3dnmueHh4dj165dGDx4MPO4XlBQAFtbW1y+fFnr+NmzZ5mDjW/evImDBw8ynasJ1fwH6Fhn\nBwQEwMrKSvC3pXNgcW5uLm8bT5rr8N28dfr0aRw6dAgeHh5ISkrSeq/50l1QGd9MgdHR0dxcSiqV\nQiaTMQUJ+/r6YurUqbCxsUFpaSl8fX15l/7uqj/W1NTgwYMHvNujZtu2bYiNjYWPjw8MDQ2RlZVF\nFmwsJAjayckJhYWFSE9PR11dHfr27Yvt27fztjN06NDHgjX4zMtaW1sBdATEjBgxAiNHjkRJSQlK\nSkp4BxursyBrllNWqVQ4evQo07eTcozx8/ODu7u7YD/JiRMnsGjRIkFtob5PT/otPvj6+sLHxwc2\nNjaCf5vKF69UKuHq6spVsjl58iScnJywYcMG3uuZzuuPF154gem9A+h8U5T9nMpWb9JRAHotRdRR\ndEfUUZ4+VFoKdZ+i0lJ6m44C6EdLEXWUnqHyxYs6iu5Q9SkKX64mlD5YIejDvywiIiIiIgYbi4iI\n/AloaWlBXFwcia0RI0YgNTVVq0Th//t//0/n81955RWMHTuWmzirVCoYGRlh1apVzG3q7BhldZT2\nBN8k905OTigoKNDKQiRkl7mvry+mTJkCa2trZuEK6Cid6OnpiV27dsHQ0BBJSUl4/fXXedu5c+cO\ngoODkZeXB4D//QGA4OBgBAUFaTlUVCoVbt68yduWGkphgILffvsNycnJnJNViKhH2aesra0FZz5Q\nQxWE0BOhoaE6O04bGxvh6uoKALCyskJCQgLv33N1ddUKcFOpVGhtbcVbb73F25YaTeG4sbER+fn5\nTHZcXFxgbGwMCwsL5raoWbdundbfrDv7v/jiCwQEBKCyshLR0dGCsh9Q9nNLS0ts2rQJjo6OXKYI\nPqWj1cEsRkZGMDMzQ1ZWFhYuXIjc3Fxe4x4AREVFcbvnhwwZgitXriA7OxvZ2dlMATJU/QmgeX7U\n1wf8X0lt9VyBGr42nZ2d4ezsjPLycoSGhiI2Nhbjx4/HokWLMG3aNJ1saD43mUyGq1evQiKR4ODB\ng7zLmqtZt24dJk2aBGtraxQXF2PdunXYtWsXky2qIFojIyP87W9/0wo+Yv2+BAcHIyAgAMnJyTh0\n6BBee+01bNiwgbcdQ0NDREZGorm5GTU1NYiOjuZt49tvv8W3336LmzdvYvHixdxclvUbVVFRAalU\nirKyMiQmJsLNzY23jfnz5wPoEAnVgqdKpcLt27eZ2gQARUVFJMF3AJ1QLzQ4VC3Q29ra4t69e3ju\nuedQWVkpaL7Y2toKGxsbGBoawtramgtWooLPN4pyvKLGysoKq1atEiRaUfdzpVKp9d62tbUxt03o\n2lgXqMZAFjv9+/dHRkYGRo8ejVu3bgnaRKKeJ7CO6zdu3ICtrS0CAwMxb9487vijR4+Y2zRw4EBE\nRERoPT8+47E+5j+tra2wtrbWy7clKiqKPCsR381bSqUSKpUKffv2RU5ODm7cuMH821RBZR999BEm\nTZoEGxsbQXMplUqFZcuWAehYs124cIG3jb1798LLy0vrHbGwsGDy/XRGIpGgpaWly6C1J/Htt99i\n/vz5WvMnlUol6PlNmDABCoUCJSUlsLOzg4ODA5MdocEaCxYsANDh1wgMDOSOL126lHdbjhw5gg8+\n+ADu7u5aQe89ZQjvCcoxprGxkQv4YfWTAICDgwPS0tLg6OjIVQnhOxemvk89wbf898SJE+Hs7Cwo\n27YaKl98aWkpXFxcYGhoCEtLS8TGxmLq1Kn46quveNuiWH+oofJNUfZzKlu9SUcB6LUUUUfRHVFH\nefpQaSnUfYpKS+ltOgogXEsRdRT+UGkpoo6iO1R9inIuBdD6YIWgD/+yiIiIiIgYbCwiIvInQKVS\nYf369VqOLdZJuUwmQ1VVFaqqqrhjfBYLL7/8Mr788kum3+4OTcGjsbERRUVFpPYB/g7qhoYGHD9+\nXOuYkAWoSqXiMvKxClfqdk2ZMgUxMTGcXRbMzc2xc+dO1NbWYv/+/UwL9qCgIAAdAWWaO9Q9PDyY\n2gTQCgMUKJVKtLS04LnnnkNaWppW5ha+UPapGzduYMWKFRg8eDCkUqmgHbOUQQjdwaefvv3223Bz\nc4O5uTnKy8sxZ84c3r83dOhQ5oyX3aFZFm3o0KGIiopisvPLL79wzhC10MAaNPDxxx9z37bGxkYY\nGhryOl+z/FRbWxsKCwuxdu1aAOxlISn7+cSJE5nOU5OTk8P9t0Qiwcsvv8wd4+ske/XVV7X+njt3\nrqC2UfQnyudHfX3+/v7w9/fnyq37+/sLstcVfMf1vXv34sqVKxgyZAgWLFiAyMhIqFQqrFy5Uudg\nY83nZm1tDWtra15t6Ira2lp4enoC6JgfnD59mreNroJoAWD48OHM7fL39ycZDwoKCiCVSpGbm4sj\nR47wzj6qHnednZ1x7Ngx5OfnY+vWraivr+ftzJ8/fz7mz58PDw8PkjHCxsYGc+fOhZeXF1paWnh/\ng4H/y/y8ZcsWreyTLGW/1c5tocF3mlAJ9UKDQ5ctW8YJ8yEhIdxxvt8BTVatWgUPDw/06dMHbW1t\ngjZOdgWftlGOV9Rcv34d06ZNg4WFBXOWFsp+DnRkW3Z3d0dZWRlWrlzJFFCmRujaWBeE9FOhdnbs\n2IHU1FRcvHgRMpmMdxY3NRTjuvp5u7m5aZWYLSgoYGoTAPz1r39lPhegn/8ANN8WdTCKpvAvNBil\nO/j6Ez777DM0Njbik08+wTfffCMoszFVUJnQuZR6TfXw4UO8++67XPZRluzInp6ezN+27vDz84O3\ntzeKi4vh6+vL5Au0s7MD0JFJPDAwkHvu58+fF9Q2a2tryOVy/Prrr5DL5UzPjypYY9y4cfD19cXI\nkSNRWloKW1tb3jY++OADAMCsWbO0qi+w+rgox5jOfhLWDHo1NTXIyspCVlYWd4zvep36PvUE329U\nQUEBFixYAFNTU8HZ5ah88Z6enli2bBmkUina29vh6ekJpVKJd955h7ctivWHGirfFGU/p7LVm3QU\ngF5LEXUUfu0SdZSnC5WWQt2nqLSU3qajAMK1FFFH0R1qLUXUUXSHqk9RzaX04YMVArXfTURERESk\nA4lKH6m0RERERJ4imk5goGOyz5KpDugof6y5CM7Ly4OTk5Og9glF8/qMjIwwduxYLsMGFXwDS9SL\nVzWsO5/Vi9iSkhIolUot4So1NZW3vX379uHs2bMoLi7GSy+9BCcnJyxZsoS3HZVKhTNnzqCkpAQj\nR45kLmsOAFVVVVq7n0+fPs1s7/3330ddXR2JMEBBZWUlBg0ahNraWhw7dgyvvPIKxo0bR2K7oaEB\nRkZGJLaEUF1djdTUVJSXl0Mmk3HCDCV83z+lUona2loMGjSI6VvQ2toqSHR5mtTV1WHgwIFM52pm\nDjIyMhJU4lxf9JZ+LvLnY/369byCps6ePYupU6c+9m1QlwF+VkRERODWrVuwsrJCcXExRo0aBT8/\nPyZbVEG0O3fufOwYaylOX19fKBQKvPHGG1i8eDGWLl2Kffv26Xz+pk2buv1/rA74srIykqwonek8\nd3zapKWldfv/3n33XSabq1evhrGxsWChPiMjA/Hx8SgrK8O4cePw/vvvM5fj/KNA9T7+mTh9+jRe\nf/11ktKe7e3tqKmpgYmJCYk9fULVF1jtPHz4EPX19dzf5ubmgtvSWygvL3/s2J/p+jo/c318V/iW\nSQc6RP+qqiq4uLjg3r17WmImH6jmG0LnUj1lY2W9NqBjna357lFUJRJKZmamVibaL7/8kguQ4EtY\nWBju3r2LPn36YPjw4XBwcOBV5r6rYA17e3sA7BtfKyoqUFFRATMzM7z44otMNrqiubkZ/fr1I7PH\nilKp5MY+ap8pBfq4T539jU8TSl+8vqBcf7D6pnq7zgCIOgoLoo6ijaij6I6+tJTe4l/ujToKIExL\nEXWU3kNv6ef/TbDOpfThg6WA0u8mIqJPXpiz7Vk3QeQPQtV3nzzT3xeDjUVERP7wlJaWcqVU2tvb\nER8fr5UNiA++vr4ICwuDgYEBIiIioFAoEB4ezttOXl4edu/ejYaGBjz33HPw9vYmd7Y9ePBAq4S3\nLiQkJMDV1VWQKAQAGzduRGhoKAwMDJCYmIgff/wR8fHxvO3oQ7iqrq7mAmVYnRkZGRm4cuUKGhsb\nuWNCdofrC6VSyeQwPX/+vFYp+Z9++kmwKKAWdahgEXb1hb6DEEJDQ7Uy3vREdnY2YmJi0NTUBCMj\nI6xevRoTJkxg+t3S0lIkJCRALpfDzMwMK1as0CpLRQHf57ht2zZ88knH5Pj7779HcnIyr8A7fVBX\nV4erV69q9QGqXc9C+vmdO3cQFxeH5uZmBAcHIy0tjXdWVABISkrCyZMnYWBgoDfnO9X7TPlduHbt\nGsaOHUtii2+71Bn51OzevRs+Pj5Mv3358mU4OjpiwIABaGpqQl5eHlN2o6CgIGzdulWvzjY/Pz9E\nRETwPu/evXvcd0pIYIS+gmiFoFKpUFNTA1NTU078eFYBA2pyc3Nx/PhxrW9eb5sDeXt7Y8+ePczn\n//zzzygvL4eZmZmg+TmlUN/bgkNjYmLg5eXF/f31118zlU8sKiqChYUF+vfvj+bmZty+fRtjxoyh\nbCrCwsJ6DLzvCqq5MOXmgyVLlpDMeTrfC6lUimHDhmHhwoW8v6GawW6VlZUwMDDAyZMnmdrV2tqK\njIwM1NbWYuHChSgsLMT48eOfmR0AWLt2LZqammBiYsLNgf7xj3/wtqM5l1JDNZfav38/c+lhdUCK\nSqXC/fv3UV9fjwMHDpC0C2Cbl504cQJHjx7VGmOo5nY///wzHB0dSWyp4bt5KygoCIMHD8alS5dw\n8OBBLP//7J17XE3p/sc/XXa6GIeQqeQ6k+sZdTDjdVzCYaJzxkFEdA8VMh01TOUglDrk8kJNJaIk\nUWFcK4Ph/IZQNKaGkoaKdtRGuuy9a//+6LXW7J2YvZ717Klx1vsv1sz+7sfaz1rP9/l+vs/36+aG\nhIQEKmPh09qali9Fi4iICBQVFeHnn39G//79AYA4Ufzs2bM4ceIE6urq2Gukcyo/Px/Dhw+nsg6X\nlpbCwsKCXduV3w/tQXV1NY4ePYonT57AzMwMc+bMoZb8k5mZSXRIiuYaQ8t/vXHjxhvXSH27X375\nBRcvXkRtbS17jdRH2LRpE4KCgpCYmIj09HSMHz8eAQEBnO205S+R+vm0YvE01wWae1pasSlaOgNA\n75npiDoKoHktRdBR2kbQUX4bTegoAF0tRdBR3g4tLUXQUdRHU1qKoKO0ry1S+MZgab6DacXdBAQ0\njZBsLKAu7Z1s3PGOeQsICAhwJDIyEt7e3tDS0kJERARxuzygpQVqQEAA6urq4O3tjbFjxxLZCQ8P\nx549e9CjRw88f/4cy5YtQ0pKCvG42uJf//oX543CRx99hG+++QZisRiffvoppk2bRhSMcnJywsqV\nK/H69WtMmzaNKEAG/BoIk0qlyMrKQkVFBczMzDhVfFGG2XgwwTHSjceBAwcQHx9PpdUTLVEAaNnM\nMm3S8vPzsWXLFiJRLj4+XmWDlpKSQnSf/Pz8sG3bNmzfvh13795Fz549OQv0TDKLcotZhUKBkpIS\nzuNhCA0NRV5eHjp16sR7008rCQH4NajR0NCA0NBQNqjBJUAWHh6OuLg4dOvWDdXV1fDy8iJOGggO\nDkZgYCA++ugjFBcXIzg4mHpwhOuZttGjRyMoKAj19fXo06cP4uPjqY6HBDc3N0ybNo1XAFgT8zwo\nKAgbN27E2rVrIRKJcPr0aaIg2fnz55GcnKzR5DZaZxtpnpEMCwujFmxTd1wvX76ERCLBjz/+yLZK\nlEqlyMnJIU42joqKYtcBfX19REVFESUbP3r0SOMJjmKxmOhzvXr1YhNjSJMZgJZqYkx7c+Y3I32f\n00JLS4v1WV69ekU90TguLo5t5awu69evx6ZNm9C1a1eqYyGBabunTE1NDZ4/f05s09/fH927d0e/\nfv1w+/ZtJCYmckokU8bExOQNoZ7En+poCd5NTU24evUqlixZAoVCAZlMhkuXLhElG4eEhLDvqE6d\nOmHDhg3UK48WFhZy/gwtX1hZpBSLxW8koHNh9OjRyMnJgZWVFSuCk7yX5XI5bG1t2Upn586dg7W1\nNQICAjjf++TkZJW/kxwYYfD398e4cePw7bffYuHChYiMjMSBAwfazQ7QsgbHxcURfVYZGr5Uc3Pz\nG9dqamqQlpZGnGy8ZcuWd/6dLyR+WVxcHOLi4qisMY2NjcjKymKTJ0ljCAAgkUiQmpqK2tpa+Pr6\n4sqVK5g8eTLn9eHx48fYtGkT8vLyAND1XYODg4l8V5oJj7S4e/cuEhMTWfF72bJlxLZozqnw8PA3\n3nukXL16FadOnYKpqSmePn2Kf/zjH8TPcltwPTjp7++P+fPnY8qUKXjw4AH8/f2xf/9+3uNg/B8S\n/5zmGrNu3TqEhobyngf//e9/2T9XVVWhoqKC+D4tX74cPj4+GDRoEK8xAUBBQQG0tbWRm5uLEydO\nEO37AajsOcViMS5cuEA8JlqxeJrPMM09La3YFC2dAaD3zHREHQXQvJYi6ChvIugo6kFr7wjw11I0\nEV8G6GkpHU1HAehpKYKOoj58tRRBR6G3h2zvepM0YrA038G04m4CAgICAi0IycYCAgJ/eLZu3Yqg\noCCIxWLs3LmT6BT2jh072OoAPXv2xLVr13Dz5k3cvHmTqB0y8KuTylQTog2JzQkTJmDChAmoqKhA\nWFgYYmNj8cknn2DBggWYNGnSb35eOenD3Nwc169fh5aWFo4dO4Y5c+ZwHg+Dn58fRo8eDUtLS5SU\nlMDPzw9RUVGc7dDaeBgaGmLFihUqFQ9Ikz5oiQIAIBKJsH37djQ2NqKmpgY7d+7k9Pm0tDSkpaWh\nqKgICxcuZIM+pBWSnj59Cm1tbZSVlWH//v1ESSj29vYAWkRQZqOpUCjw6NEjojEBLVX02kpQIoFW\nEgLAL6jBJCAMHToUlZWVMDIyglgs5iVcyWQyDBo0CCKRCJaWlpDJZMS23oa6bZZ++OEHAC3Pnqmp\nKXJycuDg4IDc3FyixEmaDBw4EIsWLeIVeNDEPJfL5SrPblNTE5Gdfv36ITU1FX379mWv0b7ntFqX\n0rID0A22qTuunJwcXLhwAeXl5ewaJxKJeCUeyOVy1NbWonPnznj58iXxc2xhYYHAwEBYWVmxldf4\nrOttwff345PMALQk0QYEBGDz5s3w8/NDZmYmr/HQoLXQ1KNHD6rJYFeuXFE72ZhZZyZMmIDOnTt3\niCrQ8fHx8PLyUnlee/fujdjYWGKbEolERZh3d3cntkVLqKeVIEODjIwMpKen4969e3B1dYVCoYCe\nnh4mT55MZE8mk6GpqQk6OjqQyWSQSqWUR8wN2r5w6/WS8WdIYPaezN5RS0uLKLGwtLQUNjY2EIlE\nsLCwQGxsLMaNG4c9e/ZwtqXsT9fX1yM/P5+zDYaamho4ODjg1KlTAMjXYVp2mM+uXLlSxQci2fvT\n8KXGjBmDwYMHs7+9QqGAoaEhFi1axHk8DMp7xfr6ehQXFxPbaguSdd3a2hoFBQUqVcBIn7/ly5dj\n7NixsLS0RGlpKZYvX068PgQEBMDd3R1RUVEQiURISEggeu+ZmZlh9+7dkEgkOHToENFaynTAUPYP\nFQoFioqKONsC6CY80kIul0MqlcLIyAgZGRnsITwSaM4pS0tLXhWklTl16hSbJKdQKODo6Eg12Zjr\nwcn6+nrY2toCaNnf7tu3j/N32traqhyMYw4kTZ8+nbMtgO4aY2NjQ8V/9fPzU/k7n8Nfo0aNYv1q\nvhgbG8PNzQ1/+9vf0NzcDD09PSI7yvfH2NiY1+FbGrF4gO4zTGNPSys2pQmdgdYz01F1FECzWoqg\no7yJoKO8G9p7R4C/lqKJ+DJAT0vpKDoKQF9LEXQU9eGrpQg6Cj39g6YtEvjEYDXxDqYVdxMQEBAQ\naEFINhYQEPjDotw+rKmpCYWFhfD19QXAvW3pX//6V5W/z5gxg9fYVq9ejdWrV6O+vh6GhoZYvXo1\nL3ttQbJRiI+Px7Vr19CzZ0/MnTsX27dvh0KhgKenp1pBMuXWj5aWlrC0tOQ8hraQSCTsRsPGxgbZ\n2dmcPt/WxgMA+vTpQzym1atXUzmRT0MUYMS3CRMm4PTp08jPz8eGDRvw+vVrTkFhe3t72Nvbw9nZ\nmUpVuUGDBmHGjBnw8vKCVCqFSCTibIMRq0JCQlSqQ5C0VmKCYl26dEFkZKTKpp80iEsrCQHgF9Rw\ndXVlN8GhoaHsdT4Bg0WLFsHZ2Rm6urpoamrilczwNtQN5t+6dYv9s5aWFj777DP2WnsHye7du4dJ\nkyahd+/exNUdaM5zBjc3Nzg6OqKsrAyenp5wcXEhsmNubo5nz57h2bNn7DXa97wjVjamibrjmjJl\nCqZMmYK1a9diw4YNVL7b398fXl5e7Pth5cqVRHZGjRpFZTzvgsvvRzuZAWh5544YMQK6uroYM2YM\nUeIdbWgc2qGF8jpz584d9np7Bl7d3d2ptFpURiqVYtmyZRgwYABKSkogk8lY0ZHr+k4ryYJWggwN\nZs2ahVmzZmHp0qVEgnVr3N3dMX/+fJibm6O8vBweHh4URqkKl3cLbV9YeT+qra2t1n7qbdCq+Ozu\n7g5XV1doa2ujubkZ7u7ukMvl+Oc//8nZlvLez8TEBDt27CAel5WVFQIDA1FZWYmIiAhYWVm1qx0A\nb/i+pH41DV/qs88+w65du4i+/20oj8HQ0JBTFVR1IPHL6urqcObMGZVrpMkoCoWCrVZnY2OD77//\nnsgOM66xY8ciJiaGtU1CWFgYLly4gE6dOqFXr15EyaVr1qwB0PJOUX4vODs7E42JZsIjLZh1NyQk\nBKdPn0ZERASxLZpz6v5RHExXAAAgAElEQVT9+/Dw8ED37t2hra3Nq0OSvr4+MjMz8dFHH+HBgwdU\nYkvKcJ2jf//73zF//nyYmZmhoqICX3zxBefvNDExodqdgOYac+fOHTbxkk/iwFdffcWuBfX19UQx\nLoaCggLMnTsXxsbGvDtu7dq1CzU1NTA2NoZcLie+V8r+vpGREdE8oBmLB+g+wzT2tLRiU7R1BoD/\nM9ORdRRA81qKoKP8iqCjqAftvSPAX0uhHV+mraV0FB0FoK+lCDqK+vDVUgQd5f2pbMwnBquJdzDt\nTmsCAppCQXggQkDg90ZL0d4rjYCAgIAAEStXruTccuTixYsYN27cG4EMsVgMExMTmsPjRGRkJB48\neICBAweipKQEAwYMgL+/P2c7tDYeu3fvfuMaaatRhUKhIgpIJBLObdIDAwPf+t9IgvBlZWUaSWhh\nggftRUZGxlv/26xZs4hstm6HraWlRdymJzMzE3v37kVZWRmGDBmCefPmEVfo7GgUFxejd+/e0NfX\nR2NjIx49eoSPP/64vYfV4cjOzsbkyZOptWdqbm5GTU0NunXr1iFaPslkMmRmZkIikcDBwQGFhYX4\n5JNP2s3OuwgLC+Pcem/nzp3w9fXtEPf6j0R9fT0MDAzw7Nkztdc/moFEhujoaDg5OeHkyZM4cuQI\nrKysqCV9k7Ju3Trk5eXBy8sLU6dOhaenJ9V/tybuY3tRXV2N169fs38nrWTRel1X5tNPP1XLRltC\n/fDhwwGQJVk4Ozuz9vhW1mDWBeWqUu0NzbVKLBajqqoKw4YNY98tXFvJA0B5eTlRC2QBfhQWFuLh\nw4fo168fhg4d2u52SktL2UqKTPX8JUuWcLbT0NCgklyRl5cHa2tr4nFpmufPn3N6R+zbtw+2trZU\nnpnW+0WSKrJMMuDDhw8hl8vRv39/lJSUQE9PD6mpqUTjSkpKwsWLF1FSUoK//OUvsLa2hpOTE2c7\nmZmZuHbtGurr69lrpElzrf2m7OxsTJkyhbOdefPm4eXLl1QSHjUBsz7Qoq6uDoaGhtTskVJdXY3U\n1FRUVFTA3NycTTqlBYmPx8SjunbtyrYN5oJMJuOVfPt78vLlS3Tp0oXz58rLy9k/GxoaUp2bfGgd\ns62urqY6nzoSHeUZFnj/EHSUNxF0FPXQlI4CvH9aiqCjqIego6iHoKO0jy2a0IjBCvE7gf9FutuF\n/vb/JCAA4PmZ4Hb9fiHZWEBA4L2FRHh+Gy4uLpxEf6b1JUN0dDR8fHyIvvuHH36AlZUVDAwM0NDQ\ngLy8POLTkmvWrMGGDRs0tpny9/dXaYvChcrKSjx58gSmpqbo1asXkQ1NBn9oQFtIIyU3NxdnzpxR\nSdrh0x5SE3h7e+Obb74h/vzt27dRUVEBU1NTXmI/rSQEho4U1IiJiYGXlxf795SUFOKqmq0D1LQT\n3DZv3vzOYHFbXL58WaUd4I0bN4gCnDSD5k5OTkhKSiL6bGta3w9tbW18+OGHcHBw4PQOVU6aE4vF\n0NHRwblz54jGtGLFCowbNw7p6elISUmBq6srDhw40G52gDd/P+Y+2drawsjIiJMtWvM6NjYWixYt\nwpkzZ5CQkICZM2cSJbS0xc6dO4mqhtB6XtqCqw8FdOxkhsePHyMuLg4NDQ0IDQ1FRkYGr9aeytAW\nmq5cuYLx48dz+kzr6h7MM+Pm5sbLr87MzCQWhiIiIlBUVISff/4Z/fv3B0BejaKjBuBpkJKSgqys\nLFRVVeHYsWPw9/cnrpSanp6OmTNn4vr16zhw4ABmzZrFtl/nw6FDh4jbyO/YsQPl5eUoLi7G0aNH\n4eXlhfj4eCJbbfkUNH3h48ePU6/KrS5nz57FyZMnVfx82tXJSd7rBQUFKonBTIIEV2jZAQBfX194\ne3tDS0sLERER+Mc//oG5c+dytrN8+XJs3rwZOjo6iIyMRG1tLXGl1ry8PERHR6Ourg5GRkbw9vam\nnrjM9ff7/vvvkZWVBbFYjE8//RTTpk0jFvtWrVqFsLAw6OjoYP/+/fi///s/7N27l5MN5WTA1vAR\nIaurq9l4AmkS38KFCxEfH0+9ii1N5HI5UaIpTV/Rz88P27Ztw/bt23H37l307NkT//nPf4hstYbk\n/aQpXrx4ofIuNjMzo2ab68HJmzdvIiYmBg0NDTA0NMSSJUswcuRIou8uLS3Fvn372Pidh4cHGzOh\nAclvGB4ejq+//hoAcP78eSQmJlLbd5NC09dofU9WrVpF7ZkBgLi4OCxevJjTZ16+fInr16+rzHEa\nvg+fZ5jZpzU2NmLTpk289mkJCQk4d+4cdHR0NHJQg+a7ipat9tRRAHpaiqCjqI+go6jH/4KOAtDR\nUgQdRT3eZx0FoKelCDpK+9hShk8sF6ATg9V0/E5AoCMiJBsLqEt7Jxtzjy4KCAgI/EEICwujFrhT\n91zGy5cvIZFI8OOPP7Itm6RSKXJycoiTjaOiotjNpr6+PqKiooiDZI8ePdLoxlwsFhN/tlevXuzG\njnQT09jYiPXr16O+vp79zWgG4EloLaT16NEDW7ZsofodXIWB9evXY9OmTejatSvVcZDAtOtSpqam\nBs+fPye26e/vj+7du6Nfv364ffs2EhMTOVevYIiMjHwjCYGUjhScbGpqwtWrV7FkyRIoFArIZDJc\nunSJOEgmk8nQ1NQEHR0dyGQySKVSquMtLCzk/Jn4+HiVIFlKSgpRkExZhBWLxe88kf1bjB49Gjk5\nObCysmJFftJ3slwuh62tLVvN7dy5c7C2tkZAQACnAGVycrLK30mFDqDl2XVwcMCpU6cAkLfqomUH\naGndNnLkSPTv3x8PHz5ETk4Ounfvji+//JJzcoulpSV2794NKysrth0myXr8/fffY8mSJcjMzMTh\nw4cxb948zsnGTLLVDz/8oHL94sWLRMnGNJ4Xpg2aMjU1NUS/H5NoTCsYDNATBoKCgrBx40asXbsW\nIpEIp0+fJhaxJRIJUlNTUVtbC19fX1y5cgWTJ0/mbOdtYjjXRGMA6Nu3LxYsWMC+W5KSkrB48WIE\nBgYiJSWFsz3gV5GJNEB99+5dJCYmsqL1smXLiOwALT7CuHHj8O2332LhwoWIjIykEoBXhq9QTyoU\nnjp1CklJSXB2doaenh5evHhBPIaMjAzMnj0bhw8fRkhICHx8fDglGzPVvpj9ENDyLj958iRxsnFu\nbi4OHjzIti6Vy+VEdgCo7MvEYjEuXLhAbKstmGTt9iAuLg5xcXEa9fNJ3uvh4eEqe/NvvvmGaE9E\nyw4AbN26FUFBQRCLxdi5cydxgunq1asREBCAuro6eHt7Y+zYsUR2gJZ/3549e9CjRw88f/4cy5Yt\nI373vg2uv9+ECRMwYcIEVFRUICwsDLGxsfjkk0+wYMECtVqIK+Pk5ISVK1fi9evXmDZtGmdfDPg1\noVgqlSIrKwsVFRUwMzPD1KlTOdtiYMR1Zg6QiuuGhoZYsWKFSuVo0v3epk2bEBQUhMTERKSnp2P8\n+PEICAjgbCchIQFubm4AgPz8fGzZsoUomYHW3goAnj59Cm1tbZSVlWH//v1E/hjj161atYq9plAo\nUFJSQjQmAAgNDUVeXh46derEO7nQ19cXDQ0N6NatG2uLJDb1tkNuXDu0hIeHIy4uDt26dUN1dTW8\nvLxw9OhRzuMBgODgYAQGBuKjjz5CcXExgoODqSZhkqwxo0ePRlBQEOrr69GnTx/iw0g0oeFrXLt2\nDdeuXUNZWRm715LJZHjy5Am1cQItBxS5Jhu7ublh2rRpxImAmniGae7Tzp8/j+TkZI3F0Dtii/T2\n0FEA+lqKoKOoj6CjqMf7rqMA9LQUQUdRj/dZRwHoaSmCjtI+thj4xnIBOjFYTcfvBAQEBATIEZKN\nBQQE3ltoBu7UrTKXk5ODCxcuoLy8HFFRUQBaEmZIRXWgZSNUW1uLzp074+XLl5DJZMS2LCwsEBgY\nqJIoNWfOHGJ7raFRjY/PJmb9+vUICAjA5s2b4efnh8zMTN7j4QsNIe23UFcYaG5uBtAiGHfu3LlD\nVC+Ij4+Hl5eXyvPau3dvxMbGEtuUSCQqG313d3diW7SSEABg3bp1CA0NbffgZEZGBtLT03Hv3j24\nurpCoVBAT0+PKMGNwd3dHfPnz4e5uTnKy8vh4eFBccTcSEtLQ1paGoqKirBw4UJW3OXaopmhtSjR\nOrmTCzdv3sTNmzehpaXFjotUzCktLYWNjQ1EIhEsLCwQGxuLcePGYc+ePZzsKAeq6+vrkZ+fTzQe\nALCyskJgYCAqKysREREBKyurdrUDtLSgZhIsbGxscP78ecybNw8nT57kbIsRUm/fvs1eIxGttLW1\nERQUBEtLS4hEIqLqd/fv38fQoUMRHByM2bNns9dfvXrFyQ7N5+XixYsIDg5WeZ/r6+tjyJAhnG0x\nKAeDHz58iLNnzxIFg2kKA3K5XOX+NDU1cbbBEBAQAHd3d0RFRUEkEiEhIYHoXUxTDP/pp59gamoK\nfX19fPjhhyrVhNXB1tZWpc0pc7+nT59OPCa5XA6pVAojIyNkZGSoJLByRRMB+NaoK9SnpaXB3t5e\nJVFfoVDg/v37RN+rr6+PGzduAACKiopgYGBAZAdoEZ737NkDc3Nz9OrVi7OtEydOYPHixXB0dFRJ\nen9XRdLfomvXrjh+/DgaGxtx6dIlXv6Usg9sbGzcYapg0sDa2hoFBQUqVSZJfaC3wWXPl5WVhczM\nTJSUlLAJRTKZTEU0/j3tAKrViJqamlBYWAhfX18A4JQwt2PHDtZOz549ce3aNdbXIzn4w8C8yxl/\nkTZc9+zx8fG4du0aevbsiblz52L79u1QKBTw9PRUO9lY2d80NzfH9evXoaWlhWPHjhHHI/z8/DB6\n9GhYWlqipKQEfn5+bAyGKzTF9dWrV1OpbFxQUABtbW3k5ubixIkTxAlzIpEI27dvR2NjI2pqato8\nHPYuaO+tAGDQoEGYMWMGvLy8IJVKibpZ2NvbAwB++eUXNhlGoVDg0aNHxOMqLi5uM4mHBKlUiri4\nON52+CZPMjGgoUOHorKyEkZGRhCLxRg0aBDxmGQyGQYNGgSRSARLS0teMcq24PKOYvbmhoaGMDU1\nRU5ODhwcHJCbm0ucXEgLGr6GhYUFtLW1cenSJfz1r3+FQqGArq4ucTELmgwcOBCLFi0i3n9o4hmm\nuU/r168fUlNT0bdvX/YazTlFs5sNLVvtoaMA9LUUQUdRH0FHeTf/KzoKQE9LEXQU9XifdRSAnpYi\n6Ci/ny1NxHIBOjHY9zl+JyAgIPBHR0g2FhAQEFADdZ3gKVOmYMqUKVi7di02bNhA5bv9/f3h5eXF\nbqpWrlxJbGvUqFFUxvQ2uG4WaG9impqaMGLECOjq6mLMmDGcN4uagIaQRgtXV1d2Ht25c4e9zmej\nzhd3d3fqld+kUimWLVuGAQMGoKSkBDKZjBVV1RX+aSUhKGNjY9MhgpOzZs3CrFmzsHTpUmJBvjW2\ntraYOnWqxlqbcXm32Nvbw97enloLMuW5oK2tzbmCmzI0W6K5u7vD1dUV2traaG5uhru7O+RyOf75\nz39yssMIJgBgYmKCHTt2EI/J398fhYWFGD9+PPr166fS5rw97AAtc9PR0RGmpqZ48uQJbG1tIZfL\n8dlnn3G2RdLyrS1iYmJQXFyMYcOGQSqVYu3atZxtMO/N+fPnq7QkLCgo4GSH5vOyYsUK4sSct9E6\nGBwTE8M5GExbGHBzc4OjoyPKysrg6ekJFxcXIjsAUFdXh7FjxyImJgYAucBLUwwPCgrCqlWrUFdX\nB0NDQwQGBkIul6vd+tLExITquw74tWp2SEgITp8+jYiICGJbNIP5b0Pd33HYsGEA3kzUv3z5MtH3\nbt68GbGxsdDX10dqaio2btxIZAcAdu3ahby8PNjY2EAqlcLb25vT5xnx1s7OTqX6orOzM/GYwsPD\nkZqaiqFDh6K0tJRXVSNln9jIyAhffPEFsa220ESCqLrU1dXhzJkzKtdoV4Di8u8bM2YMhgwZgkeP\nHrF+uK6uLkxMTDh9Jy07wJvViEj561//qvL3GTNm8La5evVqrF69GvX19TA0NMTq1at522yN8v5b\nHQYMGAAXF5c39rFcqjgp+5uWlpawtLTkNIa2kEgkbCKEjY0NsrOzOdtoS1wHgD59+hCNacSIETh7\n9qzKNVL/0djYGG5ubvjb3/6G5uZm6Onpcfo8czBnwoQJOH36NPLz87Fhwwa8fv2aU+IH7b0V0LKe\nK0MSi2DmcUhICFvtGgBRbIFJGujSpQsiIyNV/CnSpDImdqdsi+QQAt/kSeX1LjT011asfBLcFi1a\nxHYZaGpqwqJFi4httQWXNebWrVvsn7W0tPDZZ5+x19o72ZiGr2Fubg5zc3MsX76c+j5LGRK/5d69\ne5g0aRJ69+5NVAmc5jPMQHOfZm5ujmfPnuHZs2fsNZpzqiNWNqYJlzHR1lIEHUV9BB3l3fyv6CgA\nfy1F0FG48T7rKAA9LUXQUX4/W5qI5QJ0YrCajt8JCAgICJCjpeiIu1EBAQEBCoSFhXFuLbhz5074\n+vpqtEXW+0h9fT0MDAzw7NkzTuIlzU0sAERHR8PJyQknT57EkSNHYGVlRS3pmxZMEJ4mtO9je1Fd\nXa1SnYz0BPW7WjN9+umnRDZp4OzszP72fE5jNzc3o6amRqU9b0fj0KFDxFVIxGIxqqqqMGzYMPbd\nQtKSvry8XEW0EtA8BQUFKsGsBw8eYODAge1mh0Eul7MBXKbtGglttevmmvgBtFShnThxIjp16kQ8\nFtqUlZVRDeDn5+ejrq6ODXCTCrNnzpxBUlISGwx2cnLC559/jmPHjnGucENLGFAoFFAoFFREgaSk\nJFy8eBElJSX4y1/+Amtrazg5OXG2s3v37jeu0UqOZ97D6iKTyTQqCDL3nQ+FhYV4+PAh+vfvz6vy\n9tvg6pdduXJFpfrvrl27WGGOC9nZ2Zg0aZKK+MEXZr4D5O0qlWlsbCR+92nCh9YUGRkZmDVrllr/\nL1ONui1oJBYxBwf4wvfZu337NpXkflp23gWJ39kR+eGHH2BlZQUDAwM0NDQgLy+PaD1es2YNNmzY\n0OFiJJGRkayPWFJSggEDBsDf35/IVkfcTzO+hrGxMeRyOSQSCadYS2Bg4Fv/G8kBBNq+YkciIyPj\nrf9N3Xd5a1rHJLS0tIje6ZmZmdi7dy/KysowZMgQzJs3j1cr445EcXExevfuDX19fTQ2NuLRo0f4\n+OOP23tYfwj4xFvaorUv+nuSnZ2NyZMnU1tjmHiZJpK3SJDJZMjMzIREIoGDgwMKCwvxySeftLut\nthB0lN8PQUdRH0FHeTu0dBSgY2optHQUoONrKYKO8r8JTf2Dry1NxnI1HYNVB03H3QQEaNPdLvS3\n/ycBAQDPzwS36/cLycYCAgJ/eFonWGhra+PDDz+Era0tjIyMONmiFWyIjY3FokWLcObMGSQkJGDm\nzJlEySNtsXPnTuK2rJcvX1ZpD3rjxg0qzrSLiwvRZl/TCSmkPH78GHFxcWhoaEBoaCgyMjKI25ZK\nJBKkpqaitrYWvr6+uHLlCq82S23BVRhoXd2DeWbc3Nx4CeuZmZnEwldERASKiopU2rWTPouaDsAD\n7ZeEkJKSgqysLFRVVeHYsWPw9/fHrl27iGylp6dj5syZuH79Og4cOIBZs2bB1taWkw2xWAwTExOV\nlvYKhQJfffUVjhw5wnlMO3bsQHl5OYqLi3H06FF4eXkhPj6esx2gbYGdZmW/48ePa6SahLqcPXsW\nJ0+eVAks06ysQfJeb/2Zr776Clu2bOH93aR2ACA3NxdnzpxRuU+k82Dp0qUYNWoUm9Ry48YNouTV\nw4cP48qVKzAwMMDUqVMxadIkaonHpAHq/Px8xMTEoL6+HjExMYiNjcWyZcuIxrBq1SoYGBjg6tWr\nGDVqFF68eIFvvvmGyFZHxMHBAUeOHKEmeFVXV7MJPHxaTCrz+PFjXkKTMqQ+3oMHD5CYmIj6+no2\nWfU///kP0Rj8/Pywbds2bN++HXfv3kXPnj2Jbb18+RLXr19XeSfQfpdzFerz8/MxfPhw3iK9k5MT\nkpKSeNlgSEhIwMmTJ1FWVoYuXbqgc+fOOH78OG+7fHzF1nNx1apVxPPg7NmzOHjwIHR1dSGXy+Hs\n7Aw7OzvOdr777jskJSWhqqoK6enpCAsLw7p16zjZYCrh3Lp1Cx988AH69++Phw8f4tWrV1T2paTP\nMPDms9ejRw/i9biqqgonTpxQOYhCsqelZedd8LlnfO1s2rQJa9asYf8eHR0NHx8fou9vHdsgjXXQ\nuh/vwt/fn1OlZIbKyko8efIEpqam6NWrF/H3d/REWhoHbfhC06fWJN7e3rz8ztu3b6OiogKmpqaw\ntrYmtlNaWop+/foB+LXFvbpdIlrT0ZInY2Ji4OXlxf49JSWFqM09rXfUu9i8efM7E+9bo6mYqTJx\ncXFsB4jfgna8JTs7G3v37oVIJIJcLoenpyemTJnC2Q5A77AjTf+19W/NxDodHBw4rxHKVRnFYjF0\ndHRw7tw5zmNasWIFxo0bh/T0dKSkpMDV1RUHDhzgbIemrY6oowCa01IEHUXzCDoKOaT7Y5o6CqB5\nLaU9D3PS0lIEHYU/7amlvM86Ck1bNGO5AJ0YLI34nabjbgICtBGSjQXUpb2TjclLewkICAh0EO7d\nu4eRI0eyDmJOTg66d++OL7/8Env37uVky9LSErt374aVlRVbFYyk+s/333+PJUuWIDMzE4cPH8a8\nefM4B8iY04g//PCDyvWLFy8SB8ni4+NVgmQpKSmcgmRM+yRlampqiFu2MQEyWgFhWqJHUFAQNm7c\niLVr10IkEuH06dPEQbKAgAC4u7sjKioKIpEICQkJxEGyhIQEnDt3Djo6OiptCrlWIOnbty8WLFiA\n/v37o6SkBElJSVi8eDECAwORkpJCNDZGQCNNILl79y4SExPZjTFpkhvQIlaPGzcO3377LRYuXIjI\nyEjiYP7bCAsL4x2QIBFCT506haSkJDg7O0NPTw8vXrwg/v6MjAzMnj0bhw8fRkhICHx8fDgHyU6c\nOIHFixfD0dFRZR6Wl5cTjSk3NxcHDx5k27LK5XIiOwBUEjPEYjEuXLhAbKstmCBjexEXF4e4uDh0\n7dpVI/a5vNezsrKQmZmJkpISrFq1CkBLoFo5kPR72lFm3bp1CA0NpXKfJBIJPDw8AJC36wYAR0dH\nODo6QiwWY8OGDQgODsbEiRPh4eGBYcOGqWWjubn5jWs1NTVIS0sjSjYODw9HbGwsfHx8IBKJkJOT\nQ/werqysxIEDB+Di4oKIiAh4e3sT2QGAvLw8REdHs+3kvb29iRM/AgICsHHjRrbC45o1a7B161bO\ndrp27Yrm5mYq1WO9vb0RFRVFLcmYITg4mPMaxfhQzLMHtLwHSkpKiMawfv16BAQEYPPmzfDz80Nm\nZiaRHQB4+vQptLW1UVZWhv379xP5dgxubm6YPn06lXfC20RVrhXBwsPDkZyczHs8o0ePRk5ODqys\nrNgq7qRJSdnZ2UhPT4ezszMSEhJU5gUppL5iQUEBfvrpJ1YcBFrWhoqKCuKxJCQk4NChQ9DV1YVU\nKiVONo6Li8OhQ4fg6uoKkUiEBw8ecLbh5+cHAPDw8FA5wOLm5sbJDu1nGKD77H399dewt7dHXFwc\nnJyccPPmzXa18y5o1WTgYufly5eQSCT48ccfWfFZKpUiJyeHONlYLpejtrYWnTt3xsuXLyGTyYjs\nWFhYIDAwUCVGMmfOHCJbb0MsFhN9rlevXmy8gM9hhsbGRqxfv56aqEoDmsn+bcEl4RFoWdc3bdqk\nsb0HV5j1QJmamho8f/6c2Ka/vz+6d++Ofv364fbt20hMTMS2bduIbEVGRsLb2xtaWlqIiIjAP/7x\nDyI7HS3Ju6mpCVevXsWSJUugUCggk8lw6dIlovVBJpOhqakJOjo6kMlkkEql1MdbWFjI6f/nGzNV\nhytXrqj97NGOt8TFxSExMRF6enqs/0OabDxy5Ej2z2Kx+J1VMd8FTf9VLpfD1taWjXWeO3cO1tbW\nCAgI4JxI0to3JzkQA7S8lxwcHHDq1CkA/HwMWrY6oo4C8NdSBB1F0FFa05F1FICflkJTRwE0r6W0\nl44C0NNSBB2FP+2ppbyPOgptWwDdWC5AJwZLI35HK+4mICAgIKCKkGwsICDwh+fZs2esU2hjY4Pz\n589j3rx5OHnyJGdbTLWY27dvs9dIgmTa2toICgqCpaUlRCIR9PX1Odu4f/8+hg4diuDgYMyePZu9\n/urVK8620tLSkJaWhqKiIixcuJANsHCtenfx4kUEBwerbJ709fV5tz9RDgg/fPgQZ8+e5RwQpil6\nyOVylXvT1NTE2QZDXV0dxo4di5iYGAD8Asvnz59HcnIy72o2P/30E0xNTaGvr48PP/xQ5RS8Otja\n2qq0eWPu9/Tp04nHJJfLIZVKYWRkhIyMDJUT3lyhGcx/G1xspqWlwd7eXiXIrFAocP/+fc7fq6+v\nz7b9KSoq4tTavjWNjY3Ys2cPzM3N0atXLyJbjEhmZ2enklzl7OxMNKauXbvi+PHjaGxsxKVLl3gF\nIpSrkxkbG2u8ItvvjbW1NQoKCtiKWQC/lnmt4VK1dcyYMRgyZAgePXrEiji6urowMTHh9J207Chj\nY2ODzp07U6lWN3LkSCxdupStbPyXv/yFyM758+eRlZWF2tpajB8/HiEhIVAoFPjyyy9x6NAhtWyM\nGTMGgwcPZtdzhUIBQ0NDLFq0iGhMDFpaWpBKpW0mM6tLU1MTamtr0aNHD+zevZs4gQhoScLcs2cP\nevTogefPn2PZsmXEYk5lZSX7ntPX10dlZSWRHS0tLdjZ2bGVaLW0tIgTkhoaGnit6UwFTOUEc4VC\ngaKiIs627O3tAQC//PILm1ijUCjw6NEjorE1NTVhxIgR0NXVxZgxY7Bnzx4iOwAwaNAgzJgxA15e\nXpBKpbyqOQ0cOKr66ZUAACAASURBVBCenp5UKgPSElUtLS2pVKO+efMmbt68yb4T+LQZlcvlUCgU\n0NPTw61btzj7LDR9RW1tbTb5RFdXFwqFAp06dUJ4eDhnWwx9+vTB5cuXWcHYwsKC9T25/A4ikQgV\nFRXQ0tKCRCLhdQihW7duCAsLw4ABA/Dw4UPOLV5pP8MA3WdPKpXCzs4OycnJsLe3Z/309rLze8DF\nl8rJycGFCxdQXl7Oil8ikYi4nS7QkjTg5eXFvhNWrlxJZGfUqFHEY1AXvt0C+B58pS2q0oBmsn9b\nqJvwyPiEEyZMoOZT0yA+Ph5eXl4q+/LevXsjNjaW2KZEIlFJKHR3dye2tXXrVgQFBUEsFmPnzp3E\nB8toHpzkS0ZGBtLT03Hv3j24urqyfgJpEpi7uzvmz58Pc3NzlJeXs4c62wNaMVPa0I636OjooLi4\nGB999BGKi4t5+S2tY+WtEzzVhab/WlpaChsbG4hEIlhYWCA2Nhbjxo0j2ocoH2ior69Hfn4+0Zis\nrKwQGBiIyspKREREwMrKisgOTVsdUUcB+Gspgo4i6Cit6Sg6CkBfS6GpowCa11LaS0cB6Gkpgo7y\nx+Z91FFo2wLoxnIBOjFYWvE7gH/cTUBAQEBAFSHZWEBA4A+Pra0tHB0dYWpqiidPnsDW1hZyuRyf\nffYZZ1skLd/aIiYmBsXFxRg2bBikUinWrl3L2QZzynP+/Pkq7RYLCgo427K3t4e9vT3v9mYrVqyg\nXtUDeDMgHBMTwykgTFv0cHNzg6OjI8rKyuDp6flGuywu2NnZwdPTE48fP4a/vz/nE8/K9OvXD6mp\nqejbty97jSSIGxQUhFWrVqGurg6GhoYIDAyEXC5Xu62niYkJ9fYyTAApJCQEp0+fRkREBLEtmsF8\nGjCVSlsHmS9fvszZ1ubNmxEbGwt9fX2kpqZi48aNxOPatWsX8vLyYGNjA6lUyqv6aOsqjlyroTCE\nh4cjNTUVQ4cORWlpKa+qTa6urqxgZWRkhC+++ILYVltoIomdC3V1dThz5ozKNZpVrrj8+z744AN8\n8MEHCAwMhLm5OfF30rKjzJ07d1hhkK946e/vz7brdnJyIm7XXVVVhdWrV6Nnz54q1//973+rbeOz\nzz4javv3NlauXAlvb2+UlJRg+fLlvFrSJyQkQFdXF5s2bcLVq1cxd+5cXmNjApLM80xK7969sXv3\nbvz5z3/GnTt3YGZmRmSHxKd7G927d4eLi4tKJSgu937NmjUAWu5R6zbUXGGEr5CQEJXnj7TqyPjx\n4/Hq1SvY2dlhxowZvNbikJAQlb/zET3u3buHSZMmoXfv3irVjUigJarev38fHh4e6N69O5vATjIm\nmr4ZU+Hz66+/xpEjRzhXNqbpKw4ePBiDBw9GQ0MDtSo4urq6KtXpRSIRm+DJZS1dt24dNm/eDIlE\ngpCQEPaZJCEyMhK3bt3C06dPYWtry/lAC+1nmLGlDJ9n7+OPP8arV68wevRoODs7c27TTdvOu+Cb\nAMLAZc2aMmUKpkyZgrVr12LDhg1Uvn/UqFHE7zdlZs2aRWE074bLvdLEwVfaoioNaCb780F5T3Xn\nzh32Oh+fmgbu7u7UK6NJpVIsW7YMAwYMQElJCWQyGRunUNc/W7BgAZts0NTUhMLCQvj6+gIA0fNI\n8+AkX2bNmoVZs2Zh6dKlKhXBSLG1tcXUqVNRU1ODbt26UTkI1hp13y20YqY0x6QMrXhLaGgo9u3b\nh4qKCpibmyM0lLw9r/Jc19bWxqRJk4js0Lzf7u7ucHV1hba2Npqbm+Hu7g65XI5//vOfnG0pJ2Kb\nmJiw7be54u/vj8LCQowfPx79+vXD0KFDiezQtNURdRSAv5Yi6CiCjtKajqKjAPS1FJo6CtCxtBSa\nOgpAT0sRdBT+tKeW8j7qKLRtAXRjuQCdGCyt+B3AP+4mICAgIKCKlqK9MyUEBAQEKCCXy9kANVP5\nigSpVIqsrCxUVFTAzMwMU6dOhZ6eHmc758+fx8SJE9GpUyfisWiCsrIyaiJFfn4+6urq2I0UaeUC\nADhz5gySkpLYgLCTkxM+//xzHDt2jNOJelqih0KhgEKhoCZ6VFdXs/eeT6v03bt3v3GNRmC3vr6e\n02lsmUymUbGTue98KCwsxMOHD9G/f39qCQPKhIWFcW6TfuXKFZUWWbt27WKFR3XJzs7GpEmTeFWg\naQ0z3wHydpWtIW1jzAQd/ghkZGSonXzBVFBoC1rCAxP05gPfZ6+qqgonTpxQWRtIklZp2aHN5cuX\nVVpo3rhxg/fvR+N9R4vq6mo0NDSwzyFpMm51dTVSU1Px9OlTmJmZYc6cOcRrX25uLqKjo9HQ0AAD\nAwP4+PjA2tqayFZzczMuXLiA0tJS9O3bF1OmTNFIUgMX2mo3/Omnn3K28+zZM5XEq+zsbOKWyEBL\ny8SqqioMGzaMs4+gTE1NDRoaGtDc3MxrTnVUMjMzsXfvXpSVlWHIkCGYN28ecVVNGlRUVLxxjdY9\nz83N5RSE15SvSHP/0dGQSCRITU1FbW0tfH19ceXKFSLBPzs7G5MnT6byfluzZg02bNhAxZayjyeR\nSPCnP/2JyOejZQd4c2/FtKC2tbXllMS8c+dO+Pr6tvua8lvs3LmTyJ/ShP/DwKwxrdexd6GJZMDo\n6Gg4OTnh5MmTOHLkCKysrIiSvh8/foy4uDg0NDQgNDQUGRkZxG3EW0N7n/R7JFWqC+nekaG6ulql\nVTBplbK2/DIGEv+MBs7OzuzvzvfgZHNzM2pqajpsBa9Dhw7xqubelv/6888/Y/DgwWrbKC8vp3bo\n9W20jgupwy+//IKLFy+itraWvUYzyVNAcxQUFKgkBT948AADBw5sd1sdTUcBOqaWIugo6iHoKL+N\nJrUUWnFFTWop7aWjAPS1FEFHIUddLUXQUdrX1vscy6UVdxMQ0DTG0+gUIRB4/6k+R68wEglCsrGA\ngMAfntzcXJw5c0ZFXCA9lbh06VKMGjWKbZF+48YNoqDL4cOHceXKFRgYGGDq1KmYNGkStWAZnwB8\nfn4+YmJiUF9fj5iYGMTGxmLZsmWc7axatQoGBga4evUqRo0ahRcvXuCbb74hGlNHxMHBAUeOHKGy\nWff29kZUVJRGxGcaLbcBwMXFhUiwevDgARITE1FfX89uYklbyfv5+WHbtm3Yvn077t69i549exLb\nevnyJa5fv67yTiCtekRTMM7Pz8fw4cN5zQUnJyckJSURf16ZhIQEnDx5EmVlZejSpQs6d+6M48eP\n87bb3NyM+fPnIzU1lfNnW8/FVatWEc+Ds2fP4uDBg9DV1YVcLoezszPs7Ow42/nuu++QlJSEqqoq\npKenIywsDOvWreNkg6mCc+vWLXzwwQdsq8NXr15RE/lJn+PWz16PHj2wZcsWojF4enrC3t4ecXFx\ncHJyws2bN4nWY1p22sLb25t4vWp9j/39/VVaLasLzXuel5eH6Oho1NXVwcjICN7e3kTJuK6urhg+\nfLiKYEIqwjg5OcHNzY2d5wcOHCCe5w0NDSgqKlJJguYbWOYrDNBM+uiI7NixA+Xl5SguLsbRo0fh\n5eWF+Ph4znZozilNQpp8x8Ak7miqIh8XvvrqK/bPVVVVeP36NY4ePUrFNukaU1pain379uHJkycw\nNTWFh4eHSttKLtDcf2zatEmlCnF0dDR8fHw420lISMC5c+ego6PDu1L2okWL4O7ujqioKBw6dIj4\nntP0FUnH0Ba09lc092m+vr4YOXIku17l5OTAxsYGWVlZnKpL0UzajI2NxaJFi3DmzBkkJCRg5syZ\ncHJy4mSDSUZq3dI+IiKCyNen5f+oY1sdNH3wlQ/Ozs7YuHEj1q5di4MHD8LV1RUHDhwgsqVpIZRr\nwmPrKoVMcr6bmxunZM7W8Nk7Ai3zuqioSKWlOenzKJPJkJmZCYlEAgcHBxQWFuKTTz4hsvU2uCa/\n0iIlJQVZWVmoqqrCsWPH4O/vT9wlJT09HTNnzsT169dx4MABzJo1i1PlSbFYDBMTE5WW7wqFAl99\n9RWOHDlCNCZa/mtgYOAb10j3odnZ2di7dy9EIhHkcjk8PT2JDwN+8cUX8PHxUUloIUlUDA0Nxe3b\nt6Gnp8fbb3kbx48fp151XF3Onj2LkydPqsQCae/TuK5brf//r776injvT8tWR9RRAM1pKYKOonkE\nHUV9aGkpNHUUgJ6W0tF0FIDe/ljQUdSHr5Yi6CjtZ0vTsVySGCyt+B1AL+4mIKBphGRjAXVp72Rj\n8mOrAgICAh2EdevWITQ0FF27duVtSyKRwMPDA0BLu0Ll9hxccHR0hKOjI8RiMTZs2IDg4GBMnDgR\nHh4ebCug36K5ufmNazU1NUhLSyMOkoWHhyM2NhY+Pj4QiUTIyckhCpJVVlbiwIEDcHFxQUREBK+2\nQcCvyVL19fUwNDQkTpYKCAjAxo0bYWBggIaGBqxZswZbt27lbKdr165obm6mcuK5oaFBY8knwcHB\nnDZDMTEx8PLyUmmFrVAoUFJSQvT969evR0BAADZv3gw/Pz9kZmYS2QGAp0+fQltbG2VlZdi/fz+n\nSgytcXNzw/Tp06m8E4KCgljBWCQS4fTp08RBsvDwcCQnJ/Maz+jRo5GTkwMrKyu2+gjp/MrOzkZ6\nejqcnZ2RkJDAuUU6QK+NcUFBAX766SdW/ARaxN62qjSqS0JCAg4dOgRdXV1IpVLiIFlcXBwOHToE\nV1dXiEQiPHjwgLMNPz8/AICHh4eK8OLm5sbZFu3nmOazJ5VKYWdnh+TkZNjb2+PUqVPtZictLQ32\n9vZsa0Gg5T7dv3+fyFZaWhqKioqwcOFCVhDo06cPZ1sA3XseHh6OPXv2oEePHnj+/DmWLVuGlJQU\nznbMzMxgZmbGu6oDAHTp0gUTJ06Erq4uLCws2GeaBBcXF8ycOVNlXKTJxrSEgYSEBPbPVVVVSEtL\nIxoPANy8eROxsbFsZZzFixcT/fs2bdqEoKAgJCYmIj09HePHj0dAQADRmHJzc3Hw4EE4OzuzIgMJ\nNOcUDd6WfHfx4kXiZGNaQn1oaCjy8vLQqVMnXokfrQUOEsGDCeIrr+8KhQJFRUWcbQEtvmpgYCA+\n+ugjFBcXIzg4mDiphcb+4+XLl5BIJPjxxx/ZJCepVIqcnBwiseL8+fNITk6m4uvX1dVh7NixiImJ\nAUDeYpSmr2hhYYHAwEBYWVmx+6I5c+YQ2aK1v6K5T3v27Bnri9nY2OD8+fOYN28eTp48ycmOpaUl\ndu/erXKfSKvVff/991iyZAkyMzNx+PBhzJs3j3Oy8f379zF06FAEBwdj9uzZ7PVXr15xstOW/6Ol\npUWUpKHsjzHU1NQQzXMm0bh1UiCT/Org4IBevXpxssn41wwpKSlE/plcLle5P01NTZxtMAQEBLBC\nqEgkQkJCAlGy8dsORXCtrNq3b18sWLAA/fv3R0lJCZKSkrB48WIEBgaq7XvS2jsqc/fuXSQmJrJC\nMUl8i8Hf3x/jxo3Dt99+i4ULFyIyMpI4WfxthIWF8RK0SQ9Onjp1CklJSXB2doaenh5evHhBPIaM\njAzMnj0bhw8fRkhICHx8fDglG584cQKLFy+Go6OjyjwsLy8nHhMt/1XZFxCLxbhw4QLxmOLi4pCY\nmAg9PT02HkGabDxq1ChMmDABnTt3Jh4PADYZW5MwyejtQVxcHOLi4qjEAt+GuutWVlYWMjMzUVJS\nwsZuZDKZyr5BXWjaAjqmjgLw11IEHUXQUX6L9tZRAHpaCs24IkBPS+loOgpAb38s6Cjqw1dLEXSU\n9rNFK5ZLIwZLO34H0Iu7CQgICAi0ICQbCwgI/OGxsbFB586dqbS1GjlyJJYuXcqeyOfSLliZ8+fP\nIysrC7W1tRg/fjxCQkKgUCjw5Zdfqi2wjxkzBoMHD2YFIYVCAUNDQyxatIhoTMpoaWlBKpW2GYhT\nh6amJtTW1qJHjx7YvXs3xGIxr/HQSpaqrKxkT13q6+ujsrKSaDxaWlqws7NjT09raWkRnwru3r07\nXFxcVMRn0tObysFRksQPe3t7AC0tGLdt28baefToESc7DE1NTRgxYgR0dXUxZswY7Nmzh8gOAAwa\nNAgzZsyAl5cXpFIpr2pVAwcOhKenJ5XgJE3B2NLSkncVhZs3b+LmzZvsO4FPRU25XA6FQgE9PT3c\nunWLKAnTxMSEyolybW1tNuCnq6sLhUKBTp06ITw8nNhmnz59cPnyZVYQt7CwYAMTXH4DkUiEiooK\naGlpQSKR8Aqed+vWDWFhYRgwYAAePnxI1MKW9nNM89n7+OOP8erVK4wePRrOzs6cWpDTtsOIURcv\nXkRwcDAbPLp8+TJnW/b29rC3t6dWuZDmPQd+DZIz7wUSCgsLMW3aNF7BxAULFkBLSwvV1dWwsbFB\n79698fjxY15iRd++fVFWVkYlYZWGMABAJXj/+vVr3L59m3hMERERiI2NRbdu3VBdXY0lS5YQJWcX\nFBRAW1sbubm5OHHiBK+W7V27dsXx48fR2NiIS5cuEf9+NOYUTWgl3ylDS6gvLi7mlZTPsGPHDraa\nVH19PYqLiznbYKqFtF7fnZ2dicYkk8kwaNAgiEQiWFpaQiaTEdkB6Ow/cnJycOHCBZSXl7OilUgk\nIk5A6NevH1JTU9G3b1/2GmmSqZ2dHTw9PfH48WP4+/tzStxShqavOGrUKKLPtQWt/RXNfZqtrS0c\nHR1hamqKJ0+ewNbWFnK5HJ999hknO0ylSeX1gHQeaGtrIygoCJaWlhCJRNDX1+dsg0nymj9/PpYs\nWcJeLygo4GSHpv/T2h8DWvbrfFo0y+Vy2NraspWuzp49C2trawQEBHAab1NTE65evYolS5awgv+l\nS5eIhGM3Nzc4OjqirKwMnp6eb1QD5gItIZTWoYiffvoJpqam0NfXx4cffqhSSVhdaO0dlZHL5ZBK\npTAyMkJGRoZKtVyu1NTUwMHBgRXnNSE+q2uT5sFJoOV5Y1pSFxUVcW7/rkxjYyP27NkDc3Nz9OrV\ni7OtxYsXA2hZ95RbqpP6GgA9/1U5rmxsbMwrMVxHRwfFxcXsgSs+cYSCggLMnTsXxsbGvA6mdenS\nBZGRkSp+C+khoo6ItbU1CgoKVLpo0Khiqoy6lVvHjBmDIUOG4NGjR2wMWFdXFyYmJpy/k6YtoGPq\nKAB/LUXQUQQdhaGj6igAPS2FdlyRlpbS0XQUgN7+WNBR1IeWliLoKL+/LVqxXBoxWNrxO4Be3E1A\nQEBAoAUthXBsQ0BA4A8O7XbWlZWVbKtfrhVxGJKSkmBra4uePXuqXOfSMtHX15e4reHbuHnzJnbs\n2IGSkhIMHz4cS5YsIRKR5XI5dHV1UVdXh6tXr2LEiBHE9woA5s2bh+joaBgbG6O6uho+Pj5E7RMD\nAwNhbm6OP//5z7hz5w7Ky8sRERHB2U5bFVXMzc052wFaNkWt+fTTT4lstRZ6SYXf1vPw8OHDcHR0\n5GwnOjoaTk5O+Pbbb5GSkgIrKyts2ECnvQfzLJMwY8YMvHjxAr179+bdGjIzMxN79+5FWVkZhgwZ\ngnnz5uHzzz8nsrVgwQJUVVWhe/fubPCVdstKLvz888/o06cPysvLceTIEdjY2HCucEW7jTHpXGyL\ntlqgMnCpPPngwQNs27YNjx8/xsCBA7F8+XIMHDiQeFy3bt3C06dPYWpqykuIofUct4bPs6f8WYlE\ngj/96U9EtmjZAd5sEb1r1y74+voS2SorK6MiyLWGzz3Pzc19o6INybyys7ODpaWlSrIAaes2mjg4\nOGDz5s0q4zIzMyOyNX/+fBw+fBiLFi2Cl5cXNm7ciG+//ZazHeV3i6GhIaZPn06ckPfvf/8bCxcu\nxIABA9gqgcw6ykXkWb58OWpra/G3v/0NCxcuhIuLC3GbyLq6OqSmpqK0tBT9+vWDg4MDUZC5o86p\n2NhYleS7pUuXErf63bp1K2bPnq2S0MDld2MSjK9cuYI+ffrwTvxQ9jkNDQ0xePBgVoDiy+3bt2Fl\nZcX5c5mZmdi3bx90dXXR1NQEd3d3Yj9KLpdDR0cH9fX1vPcfa9eupeKz7t69+41rfFpMVldXs2uN\nsbExn6F1OGjtr2ju04CWeVVTU4Nu3bpRe174wBwUGDZsGORyOUpKStSOH2gKGv7Pd999R1SV913M\nnTsXycnJEIlEkEqlWLhwIY4ePQpHR0ccPnxYLRsZGRlIT0/HvXv32AQlPT09TJ48mUjEVCgUUCgU\n7Jzik7CRlJSEixcvsslb1tbWnKtcAy1+y4gRI3gfimC6MdTV1cHQ0BCLFy+GtbU1vv/+e7V/W9p7\nR6Cl+mzXrl0hkUhw+vRpNimPhMjISDx79gy5ubmYPHkyRCIRVq5cSXW86sZwmL3ezJkzVRL1N2/e\njIyMDM7fW1VVhdjYWNa/W7x4MXGiYmVlJfLy8mBjYwMdHR1cv36dcxyhLRobG9GpUyeiz9LyX5n4\nskKhgJGREb744gv8/e9/JxrTw4cPsW/fPlRUVMDc3Bzu7u6cE/Rp09bcmTVrFtXvoHVAl4S2YkC0\n9x9c/32kPrQmbXVEHQXgr6UIOoqgo7Smo+kogOa0FD5xRYCeliLoKO/mf0FHAehqKYKO8vvaoh3L\npRGDpRW/Y3if424C7w/G0+jNeYH3m+pza9v1+4VkYwEBAQElLl++DBsbG/bvN27cIG7XzcAITR2F\n6upqNDQ0sBsQkqSd6upqpKam4unTpzAzM8OcOXN4OeZMslRDQwMMDAzg4+ND1P6rubkZFy5cQGlp\nKfr27YspU6ZorPVWe/Ds2TOVVkvZ2dnEbRjFYjGqqqowbNgwtn07CTU1NWhoaEBzczPxfOroNDc3\nUxGMadBWOyxa9zw3N5c4aFNaWop9+/axAoOHh4dK8hUX8vPzUVdXxwqqpJXhOiISiQSpqamora2F\nr68vrly5Qpx4kZ2djcmTJ/Oek2vWrMGGDRuozG0HBwccOXKEV4Cbph3a0JznHR0mkYQEb29vREVF\nUZlTTk5O6NGjB5UgZ2thYPz48So+X3vwtgpuXAVfJrHJ2NgYcrkcEolExV/gwooVK/Dxxx9j+PDh\nGD58+Btir7rcuXMHw4cPp9JKtTWZmZnEghVN+Ar170oWIkn8EIvFKolD1dXVnP1zpuphW/DdE/GF\n5nqlKfhUXtLEPpQvjx8/RlxcHBobG7Fp0yZkZGTwqpze0cjNzcWZM2dU2pCTrDFSqRRZWVmoqKiA\nmZkZpk6dCj09PaIxnT9/HhMnTiROuHsXhw4dIkqgzc/PR0xMDOrr6xETE4PY2FiiFuLK9mj4+mfO\nnEFSUhK0tbXR3NwMJycnfP755zh27BjnqsR8Dp4oQ9uHpSGE0j4UwcAnhvDgwQMkJiaivr6enQek\nFRCVoRF7KywsxMOHD9G/f39elbffRlhYmEo139+C1sHJ7OxsTJo0iapfxiTXA2TtyFvDx7/jm2TV\n0fk9kmhpkZGRoZYf+3v4nHz2tMrwebdUVVXhxIkTKuse1yqtmrBFC035rx1JSxF0lD8uHVFHAd5/\nLaUj6SiA5rQUQUfRPIKO8vvb0mQstyPQEeNuAgJtISQbC6hLeycbt3/ZDgEBAQHKeHt745tvviH6\nbHx8vIqzmZKSQuRs+vn5Ydu2bdi+fTvu3r2LHj16YMuWLURjysvLQ3R0NOrq6mBkZARvb2+iABIA\nuLq6Yvjw4SoBERKhacWKFXBzc8PUqVPx8OFDfPnll7wqVwwdOhQrVqxgg3dyuZzIjra2NqZOnaoi\nepBAs8oDUwGICUQtXryYeAPTOnGINEC2Y8cOlJeXo7i4GEePHsXy5csRHx/P2Q6t+aRpdu7cSRyA\np5WEQIvt27ezf66qqsLr169x9OhRKrZ37NhBPM+Dg4MRGBjItggNDg4mqjawatUqGBgY4OrVqxg1\nahRevHhBHCRj2uYxREdHw8fHh7OdhIQEnDt3Djo6OrwrZQcEBMDd3R1RUVEQiURISEggDpIlJCQQ\nvwOUefToEbXgb9euXdHc3Mw7IEXLDkD396M1z2lCa563xtvbm/h90NDQQG1OJSUlobKyEs+ePcPQ\noUNRX19PbIupYPHxxx9jzZo1cHFxIUo2Tk9Px8yZM3H9+nUcOHAAs2fPJk6MoFX1S0tLixUrX716\nRZxoDLSsMw8ePMDdu3exYsUKiMViXLhwgbOdiIgIJCcnE4/jbTQ3N2Pv3r3E97x1ZUbS6lQA/99P\nORHj9u3bqKiogKmpKbGfHxAQoPLchoeHc07e+u9//wugpXrMBx98gP79++Phw4d49eoV0b83JiYG\nXl5e7N9TUlI4JwEy0FyvFixYwFYurKqqgo6ODs6dO8fbbnBwMPG7k9Y+lCZBQUHYuHEj1q5dC5FI\nhNOnT79Xycbr1q1DaGgounbtysuOn58fRo0aBUtLS5SUlMDPz484cbW6uhr/+te/YGBggKlTp2LS\npEmcE4/bavFdU1ODtLQ0omTj8PBwxMbGwsfHByKRCDk5OcTJxjR9fTs7O9jZ2b1xneQdQyPRGKDr\nwzKHt/hWW2q9P2faIfPFy8uL+H23fv16BAQEYPPmzfDz80NmZibxOFrH3nr27EmcuPzy5UuUlZVB\nKpXi3r17uHfvHmbOnElkizms0dDQgNDQUPawBpdEYwD405/+hObmZnb9I+3QQmvvyNg6efIkysrK\n0KVLF3Tu3BnHjx/nZZOvf+fq6qoyH1etWkU0D86ePYuDBw9CV1cXcrkczs7Obb5n1CE0NBS3b9+G\nnp4e732o8v6O1Dd/Fy4uLpyf5++++w5JSUmoqqpCeno6wsLCsG7dOrUPzNH2OduCz56WVlz/66+/\nhr29PeLi4uDk5ISbN28SjYe2LWU6go4C0Lvngo6iPoKOoh60dBTg/ddSOpqOAmhOSxF0lLdDKxYv\n6Ci/vy3asVwaMVia8buOGHcTEBAQ+CMjJBsLCAj8YUlLS4O9vT127tzJXlMoFLh//z6RrbS0NBQV\nFWHhwoVsRGSZIgAAIABJREFUgKVPnz5EY3v69Cm0tbVRVlaG/fv3E4vqQIu4t2fPHvTo0QPPnz/H\nsmXLkJKSQmTLzMwMZmZmvCs7dOnSBRMnToSuri4sLCzYNtCkuLi4YObMmSrjInHyaYkeCQkJ7J+r\nqqqQlpbG2QZDREQEYmNj0a1bN1RXV2PJkiXE92vTpk0ICgpCYmIi0tPTMX78eAQEBHC2k5ubi4MH\nD8LZ2ZkVUUigNZ9oUVBQgKFDh+KHH35QuX7x4kXiZGNaSQhAi9iUl5eHTp06EQdaWgfaSQLvTPDI\n1taWDbwqFAoUFRVxtsUgk8kwaNAgiEQiWFpaQiaTEdmprKzEgQMH4OLigoiICHh7e3O28fLlS0gk\nEvz444+smC6VSpGTk0MUJDt//jySk5OpBJLq6uowduxYxMTEAACvYP7o0aORk5MDKysrtu03yRgt\nLCwQGBgIKysrNiA1Z84cojFpaWnBzs4Ow4cPZ1vckYi8tOwAdH8/WvOcBrTmOZMIuGrVKvaaQqFA\nSUkJ8di6d+8OFxcXlTlF+g5WFnWOHTsGX19fzqKOsp/IIJFIiJ+/jIwMzJ49G4cPH0ZISAh8fHyI\nEyMYIbS+vh6Ghobw8fEhao1L85Cbjo4Obt26hdTUVLi6umL69OlEdiwtLXlVeQWgsk4BLXNTJpMR\njwmg65e1hlSo9/f3R/fu3dGvXz/cvn0biYmJ2LZtm9qfv3btGq5du4aysjJ2vstkMjx58oTzWPz8\n/AAAHh4eKsl3bm5unG01NTXh6tWrWLJkCfvbXbp0iXhfRHO9ai2eREZGcvo840spJ26S+lK096E0\nkcvlKs9wU1NTO46GPjY2NujcuTN69+7Ny45EIoGHhwdrMzs7m9iWo6MjHB0dIRaLsWHDBgQHB2Pi\nxInw8PDAsGHD1LIxZswYDB48mN1vKBQKGBoaYtGiRcTjAlr8M6lU2mYys7rQ8PUZWq+hfJKJAgIC\nsHHjRhgYGKChoQFr1qzB1q1bOduh6cPSPLylDNdDEZrwFZuamjBixAjo6upizJgx2LNnD7EtmrE3\nNzc3TJ8+ncren9ZhjfDwcCqCP629I9BSGS49PR3Ozs5ISEhQmRvqQNO/KygowE8//YSqqirWn5PJ\nZG1WMVSHhIQEHDp0CLq6upBKpbySjZmkNBoor1PGxsbEyU1vg2RfFBcXh0OHDsHV1RUikQgPHjzg\n9HmaPqcm3lO03i1SqRR2dnZITk6Gvb09Tp06RTwmvrY6so4C0Lvngo6iPoKOoh60dBTg/9k786io\nruxtvxSUEjQEgkEFRESjBDCRDCZpJdgOQVmJLZCgiMwKqECMYBywVZyCXxokcYqgAQRRSKSMEo04\ngEE7ikzaaYkIODBIARaFIMVY9f3BqvujaE1zzz1YFfs+a7maKru2J5db5+y93333fv61FE3TUQDu\nWgqvo7CHVi6e11GevS0audze0NjTuebvAM3Ou/Hw8PD8meGLjXl4eP60KMW27OxsREREMA7ixYsX\nWdtydXWFq6srPD09qXRQmDBhAubOnYvAwEB0dHRAKBRysqcMfJRiISklJSWYPXs2cUJD+RShRCKB\ng4MDzMzMUFlZyTmBMHr0aFRVVXFOtHAVPZT0FiYeP36M4uJi4jVZWVlBLBZjyJAhqKurg5WVFSPQ\nsg1ob968CYFAgMLCQvz444/EncUMDAxw/PhxtLe3Iycnh/j3x/V+ok1paSmsra0REREBFxcX5v3m\n5mZim7SKEAAwxXJciI2NZbpFyGQylJWVsbahfErd2NhYZb/z9PQkXtfixYuZpGt3dzdxMUN3dzda\nWlowbNgw7N69G3V1daxt5OXl4fz586iurmZEK6FQSNTJDQAsLCyQnp6O0aNHM+9x6cDm7++PyspK\nhIWFwdHRkcgO0PNkeH5+PnMukHYOIe3o+SQ2bKAzsoWWHYDu7095nwuFQnR1dWHJkiW0lskaWve5\nq6srAODevXtMcaNCocD9+/eJ1zZ//nziz/alt6ijra1NJOr09RMBQFdXl3g0dnt7O/bs2QNTU1MM\nHz6c0/hMWkIozUIbAPj000/x0ksvITk5GfHx8fjpp59Y2ygtLYWfnx+MjIyYRDdbYajvOUUDGn4Z\nTaEe6ClU7J0s9/X1ZfX5UaNGQSAQICcnh9nfdHR0OHU5NzQ0xPbt22FpaYk7d+7AyMiI1edFIhEy\nMjJw69YteHt7Q6FQYNCgQcRdaAC651Vvf0wmk+HGjRusPq/0pQQCAWdfinYcShMfHx+4u7ujqqoK\n/v7+8PLyUveSqHL9+nXmd8/Fl3rrrbewbNkyjB07FhUVFcTjdIEeYfbs2bNoaWmBvb09IiMjoVAo\n8Nlnn/V7D3333Xexa9cu4jX0ZeXKlQgKCkJFRQWCg4M5jWyn4esroVlMJBaLmfNcV1cXYrGYyA5N\nH5brw1u0HooYCF/R3t4ezc3NcHJywty5c4ketFJCM/c2duxY+Pv7UynypvWwBi3Bn1bsCPT8tynP\n9YKCAtb+D03/TiAQMAUjOjo6UCgUGDx4MKKioojsmZub4+LFixgzZgwqKiowatQopvCG7e9AX18f\n0dHRKnEoaTGKt7c387sbMmQIPv74YyI7T4Nk5LZQKERNTQ20tLQglUqJO+lx9TmBgdmnaO0tr776\nKpqbm/HOO+/A09MTQ4YMIV4TV1uarKMAdPdzXkfpH7yO0j9o6SjA86+laJqOAnDXUngdhT20cvG8\njvLsbdHI5faGxp7ONX8HaHbejYeHh+fPjJaCS7TFw8PDowHk5ubC3t6eeb1r1y7i0YJVVVVUguG+\nKAMYEgoLC/+jYw+pgOnk5ITx48erFMaoe5QRALi5ueHLL79UWZeJiQlrOwsWLMCRI0ewePFiBAYG\nYsuWLTh58iRrO2vXrmV+1tPTw5w5c4gDyaclHkgC2uDgYLS0tGDGjBnw8PCAl5cXUlJSWK+ptbUV\n6enpuHv3LiwsLODm5kaU5NLU+ykuLg4BAQHM62XLlhGPxqUxCk4ZEOfm5sLc3JyT2JSXl8f8rKen\nBysrK0Zc40pxcTEnoZcGXV1d0NbWhkwmw6VLl/DGG29g+PDhRLY2bNiAzZs3c17T7t27/+M9LiPu\nJBIJc9ZwHYvM898ZiN+fclSllpYW0VlFE1r3+e+//w4rKyvm9ZEjR+Du7s7ZLldCQ0Mxffp0pKam\nYtmyZRCJRE/sVPxHXLhwgVOBY1/EYjGKiorg4OAAbW1tXL16VcUPZcP8+fOxb98+vPzyy5BIJFi6\ndCnS0tJY29m4cSOKiooQGBiIWbNmwd/fnzh5GhgYCD09PUyYMAG2trawtbWl0pWGhM7OTs4P7PWF\nhl+m/L7MmzdPRaj/8ssvIRKJiNakr68PS0tLVFRUoKmpielMxaaw7Ny5c9RGpAM9Y61ra2sxcuRI\n4tiDiw82kPT+Penp6WHy5MkwNDRkbaehoUGlOyOX38FAxaFckcvlaGxshKGh4YB0WX1eEIvFePDg\nAUaOHEnsuwJASkoKHB0d8corr6i83/ecftbQ8n+6urqgo6OD1tZWzr4+rTMU6In/TU1NMXHiRFy/\nfh3V1dXYsWMHkS1a9I77lEyePJm1nb6CKqnASttXbGxsRFtbG+RyOVWfmkvube7cuWhqaoKZmRmn\nDnoAkJWVhQMHDqCqqgqvvfYa5s+fTzQJY+HChaivr6cm+NPg999/h7m5Oaqrq5GWlgYHBwdWvvBA\n+He0YpfeucC+sM11PckndHZ2Zr2mZwHJvlBeXo6YmBhUVlZi7NixCA4OxtixY4n+fRo+JzCwMS3p\n3tL7c1KpFC+99BLxHkXL1p9BRwHIrzmvo/QfXkfpH7R0FEBz7ylaWoqm6SjAwGkpvI7ydGjm4nkd\n5c8NjT2dVv4O0Ny8Gw9PX16eTWc/5nn+kfxM78EVEvhiYx4eHp5e3L17F9999x0jFPr5+cHCwkLd\nyxowWltbiZIjQUFB2Lt3LzXBedGiRRg2bBjnREtf0cPe3h4ODg5U1qgJKBQKNDY24uWXX0ZXVxek\nUqlKgUN/CQ0NxauvvsoUEfUVs/vL9evXYWtrS9zB5I/IysoiHkuvafxR4RFbsamurg7GxsbMa4lE\nwjrRcu3ataf+HcnYPeD/xlYqOXr0KFFnzfXr12Pz5s0aXczCpbPUxYsXVfaka9euEV9zWlRWViI+\nPh7t7e3YunUrRCIRcbcPTUUsFqOhoQHW1tZoa2sj7kTr7e0NW1tblc+TJEuV17ytrQ3btm3TiGsu\nk8lU/rvEYjFxgvrGjRvYv38/ZDIZ9u/fj7i4OCxfvpzIVmtrK9LS0vDPf/4TU6ZMwdSpUzFu3Dgi\nW5oITSG0N1wKbWjS3d0NqVQKAwMDTr5CeXk5kpOTIZPJmMJe0tGCNKEl1D+poEwJm8Ky1tZWXLx4\nEa2trcx1Iu2g97+AWCxm9jrS/S41NRULFiyg4rdwvc8Hwr/rW3QlEAgwYsQIuLm5sb5mDx8+JOpW\nOFB2nkRQUBC+/fZb1p8bKP9OWeRNSlFREfbt24fW1lYMGTIEQUFBsLOzY22Hlv8D9MQu6enpqK2t\nhYmJCT755BNi0Vh5hip9u6VLlxL99wE9RfXnz5/H3bt3MXr0aMycOZPoe02jwII2NB+KqKurQ319\nPWxsbP7Dd2QDzXtKk9GkhzV6d51UQqvAu7CwkMh/pZ1/vXHjhooPRDrN5s9EfHw8q2k7WVlZuHLl\nCmQyGfOeuovcpFIp0tPT0dLSgpCQEOTm5hI/KHru3DlMnz6dyveNVm7Kzc0NaWlpVGIzmrZoweso\n/YPXUdSDpukowMBpKbyO8nS4aim8jsIdUi2F11HUA61cLk1o5O8Azc0v8/D0hS825ukv6i42ptMK\nj4eHh0eNJCYm4ueff4a2tjbn7iMRERFYu3Ytxo0bh7KyMkRERKi9a4hy/KWSffv2cRqL3JugoCAi\n8autrY1qEJuSkqJSDNY78c0GZQeLV199FevXr4eXlxdRkiwjIwPz5s3D1atXkZSUBBcXF+KEjVLk\nVRYSLV26lPipZy0tLSYZ0tzcTJQgA4CdO3eivLwcv/32G0JDQ1FXV4fz58+ztrNjxw6kpqYSreGP\nkMvlOHDgAPE1z8/PR1xcHJMEDggIoDbiiKQIoXcirLi4GDU1NRg5ciSRGB4eHq7ynY2KimIdEF++\nfBlAT/eYF198EWPGjMGdO3fQ3NxM1OWqu7sbly5dQkBAABQKBTo7O5GTk0OUJLt//z61vUU5rlCh\nUKC+vh7a2tr4+eefOduNiIggLho4ePCgyp509OhRtSfJ1q1bhy1btmDDhg0QCoX46aefnqskWWxs\nLKqrq1FWVobvv/8ewcHBOHjwIJEtExMTmJiYcB53SPOax8XFYfHixTh16hQSExMxb948LFq0iLWd\n4OBgLFmyBO+99x7S09ORk5ND3I00KioKcXFxWLp0KYRCIfLy8oiLjdesWYPW1lYYGhri3//+N27e\nvKn2JCCtaw4Ab775JuLj4zmviaZIT4uUlBRkZmZixIgREIvF+Oijj4jHMG7atAnh4eH48ssvsWLF\nCmRlZRGv68KFC0hJSUF9fT0yMjKwfft2bNy4kcjWSy+9BLlczpxbpB3B7OzskJWVBalUCjc3N5SU\nlOD1119nbWfVqlV44403cPz4ccyePRsVFRVqLzbu61M7OztzGn1Ji5iYGJSVlTE+0Lhx47By5UrW\ndk6fPo2FCxdSWRPX+5y2fwf0dEpydHRkxsn//PPPsLOzQ3h4OGub27dvx+PHj/HBBx/A0dGRuGCY\nhp1jx47B1dVVpVO+QqFAaWkp0Zpo+ncrVqxATEwMdu7cid9++w3Dhg3DV199RWQrKioKe/bswbBh\nw/Dw4UMsX74cR48eZW2Hlv8D9BRr+Pj4YNasWbhz5w4+++wz4vvT2toaoaGhTMflrq4u4nUJBALM\nmjULCoWC07j1xMRE5uf6+nocO3aM2JYyplUW9S5ZsoTovuqbMyAtNNZEn3qg+frrr1lNGOhNYWEh\nTp06hcePHzPvqbOoc+fOnczP9fX1ePz4Mb7//nsqtmNjY4niY5r51y+++AIvvPACLl26hLfffhtN\nTU1ExcYDmX9V4uXlRe0hhNzcXFbFxklJSTh48CB0dXU5/9u0cvHh4eHw9fXF3r17IRQKkZiYSBzH\nJCYmUpvyQSs3ZWBgALlcTqVYh5YtXkchh9dRngyvo/SfgdBSuOoowMBpKerWUQDuWgqvo3CHVEvh\ndZRnD81cLkAnB0srfwfQzS/z8AwkCnm3upfAw9Mv+GJjHh6ePz1nzpxBamoqlcCqs7MTEyZMgFAo\nxPjx49HZ2UlhhWQ8evQIUqkU//rXv1BZWQkA6OjoQF5eHuskmfJp2S+++IJ5T6FQoKKigmhtRkZG\n8PLywqRJk5gkJ6kIA6gKVz/88ANCQkJYCVdPGqkulUqJhUKRSAQXFxccOXIEkZGRWLp0KXHChpbI\nC9ATn7W1tVFQUID09HR4e3tjzpw5ROsZP348py6vAODo6KiS7FMmWUjXBPQk7uLi4mBoaAiJRIKA\ngABmBFd/oV2EAABhYWEwMjKChYUFiouLkZycjJiYmH599sqVK7hy5QqqqqqYNXV2duLBgwes17Fi\nxQoAgJ+fn0oxoY+PD2tbIpEIGRkZuHXrFry9vaFQKDBo0CBicWjUqFFYu3atyt5CWijVN3kbHR3N\n6vNKgaJ3QkWhUOD27dus13Ls2DEcO3YMt2/fhoeHB7M3mZubs7ZFm66uLpXvcHf38xXIFhYW4tCh\nQ/D09ISOjg6nQpSSkhLMnj2bc2EEzWv+yy+/ICAgAFlZWThy5Ajmz59PVPi6b98+bNq0CVu3boWL\niwtxoXFvtLS00NHRAblcTmyjvb0dBw4c4LwWmtC65gA9UY6mSE+LzMxMxt9RKBRwd3cnTlB3d3fj\njTfegI6ODt577z3s2bOHeF3x8fE4fPgwvL29IRQKUV5eTmwrKiqKilAYFhaGqVOn4uTJk/Dw8EB0\ndDSSkpJY23n06BECAgKQm5uL0NBQVsUnA8WTfGpNKDYuKChQKYQg/Q5PnDgRIpEIkyZNYkaxkvrF\nXO9zmv6dkrt378LBwQFCoRCjRo1CXFwcpk6dSvQdjI6ORkdHBy5duoSNGzfi0aNHmD17NubOnYuh\nQ4c+Uzs2NjYAgOzsbERERDB+2cWLF1n9Nw2Ef1dbWwuBQICqqiokJCQQic69UeZIlMIxCbT8HwDQ\n19fHtGnToKOjg1GjRrGO0Xrj5eWFefPmqayLVHxOTEzEiRMnUFVVBX19fQwdOhTHjx9nbad399jH\njx+juLiYaD0AnZgW6Ilp1q1bh+TkZGRkZMDe3h7h4eGs7WiiT02LmzdvwtraGr/++qvK+9nZ2cR5\nro0bN2Lbtm0wMDDgtLZt27ahqKgIgwcP5lQU2DdvRJJHUsbHvXM4pPExQDf/KhaLkZSUBC8vL+zY\nsQNBQUGsPk8z//rfUOeQUT09PYSGhqo8qENaBE8rF9/a2oopU6Zg//79ALhdn3feeQd5eXkqfhnp\n+mjlprS0tODk5ARbW1sIBAJoaWkRPzxLyxavo/x3eB2FHbyO0n+4aikDoaMA3P1OTdNRAHpaCq+j\n9B9aWgqvo6gPmrlcgE4Ollb+DqCbX+bh4eHh4YuNeXh4ngMsLCyQnp6O0aNHM++RjstbvHgxPD09\nIRQK0dXVpVaRPi8vD+fPn0d1dTUTyAqFQiLn3tXVFQBw7949JihXKBS4f/8+0drmz59P9Lmn0Vu4\n0tbWZi1c9RWKAUBXVxevvfYa0Xra29uxZ88emJqaYvjw4cTjQZXQEHkBuuLzp59+ipdeegnJycmI\nj4/HTz/9xNpGaWkp/Pz8YGRkxCS62QpfxsbGxN2snoaVlRXEYjGGDBmCuro6WFlZMcVu/U2m0ypC\n6I1UKlVJ1Pj6+vb7s6NGjYJAIEBOTg6zv+no6HASvgwNDbF9+3ZYWlrizp07RJ3hnJ2d4ezsjGXL\nllEpTqTVgRqASlJUJpPhxo0brD6v7IQiEAhU7lFPT0/Wa3F1dYWrqys8PT2p3+9c8fHxgbu7O6qq\nquDv7w8vLy91L4kqBgYGOH78ONrb25GTk8NJ8O/o6IBIJFI5E0iKWmhec4FAgHXr1mH8+PEQCoXE\nXapSU1PR3t6O1atX49ChQzA3NyfuCrVy5UoEBQWhoqICwcHBRCJabGwsc2auXLlSxcfjIsrRgNY1\nB+iJcjRFelro6uoiKysL48aNQ3l5OafrZG9vj+bmZjg5OWHu3LnEnY2AHl+6pqYGWlpakEqlnDqD\n0XjoCgAaGxvh5uaGzMxMAOS/PwMDAzQ3N8PS0hJr165Fa2srp3XRgLZPTQt9fX0kJCQw9+eLL75I\nZKexsRF5eXnIy8tj3iMt2lHe53PmzOF0n9Pw75T4+vrC29sbAoEAcrkcvr6+6Orqwt/+9jfWtiQS\nCc6ePYuLFy/ihRdewMKFCyEQCBASEoKEhIRnakfZxS0sLEzlHGcr8g6EfzdhwgTMnTsXgYGB6Ojo\ngFAoJLa1evVqrF69mukMt3r1aiI7NPwfZacsiUQCBwcHmJmZobKykpNfNnr0aFRVVVEpWD137hwy\nMjLg6emJxMREleIiNvSOh/T09FTGI7OFRkwL9BTSCgQCFBYW4scffyTuvKWJPjUtSktLYW1tjYiI\nCLi4uDDvNzc3E9t0cHDA0KFDYWZmxmltykIyrih9a6AnNi4rK2NtQxkf983hkMTHwP/lX3V0dNDd\n3Y3FixcT2QF6CgdaWlowbNgw7N69G3V1daw+TzP/+t9Q/h5oQOIzrl69mkpnY1q5eCcnJ/j7+6Oy\nshJhYWGcHkrLz89Hfn4+E0dqaWkRd5GmlZvasIHeWFtatngd5b/D6yjs4HWU/sNVSxkIHQXg7ndq\nmo4C0NdSeB3lv0NLS+F1FPVBM5cL0MnB0srfAfTybjw8PDw8PWgpNEGJ5OHh4eHA7t27/+O94OBg\nYnsSiYQZxamlpQUTExMuy+PMhg0bsHnzZiq2fv/9d0ZcBYAjR47A3d2dim0uhIaGYvr06UhNTcWy\nZcsgEome+JT907hw4QLVDn5isRhFRUVwcHCAtrY2rl69Cnt7eyJbhYWFKuO/goKC8OabbxLZ2rhx\nI4qKihAYGIhZs2bB39+fKOAODAyEnp4eJkyYAFtbW9ja2nLuuENKZ2cnJxH9STwtgUEiNOTm5qr8\n7nft2kU8Jt3T0xP6+vqwtLRERUUFmpqaGFG1v8Vz586dozYWEuh5Mri2thYjR44kvi81FZFIxPys\np6eHyZMnw9DQkLWdhoYGla4RXH4HVVVVnAXngUAul6OxsRGGhoacuts8fPiQU1ETbTtATxFmeno6\n7t69CwsLC7i5uam9i5pyRDeNa64sFrCxsUFXVxcqKipUzvn+curUKTg5OQHo6dLw7bffcvKluNK7\ncK8vkydPfoYr+U+U19zW1hadnZ3E1xwA3Nzc4ODggJaWFqxevRoeHh5E3epSUlKQnZ2NiooKvPnm\nm7Czs+PU6YEGEokE6enpqKmpgampKT799FNmhCkJjY2NaGtrg1wu5+Sfl5eXIyYmBpWVlRg7diyC\ng4MxduxYIlsLFy5EfX09p4eugJ6OMQ0NDSgsLMT06dMhFAqJRwICPXt6SUkJxowZo/b9jqZPTZP2\n9nZkZWXhwYMHGDlyJD788EMMHjxY3cuihib6dytWrICjoyOmTZumUoBw8uRJfPzxx8/cDk0G0r9T\n5iQ0CeV4ZXXj5uaGL7/8UuU+ID0bFixYgCNHjmDx4sUIDAzEli1bcPLkSVpLJYJWTBscHIyWlhbM\nmDEDHh4e8PLyQkpKCuv10PSpr1+/DltbW04P/AwEcXFxCAgIYF5zKQTx9PRkvrskRY/Kgo/c3FyY\nm5urFAWSdKzr7Vvr6enBysqK6fzKleLiYrUL9V1dXdDW1oZMJsOlS5fwxhtvYPjw4azt0My/Pg2a\nhTN981X/DZr5c5q2JBIJc5ZyiRd4+gevo/QfXkfpH7yO8uwYCB0FoOd3apqOAtDVUjQxzqYFLR0F\noKel8DrKs7dFO5dLIwf7vOfveHiehOGHG9W9BJ4/CY1ZkWr99/liYx4enucCsViMhoYGWFtbo62t\njfgJam9vb9ja2qp8niThVllZifj4eLS1tWHbtm0QiUTEHWRoIpPJVP7bxGIxUQL+xo0b2L9/P2Qy\nGfbv34+4uDgsX76ceF2tra1IS0vDP//5T0yZMgVTp07FuHHjiO39r6AJ4nN3dzekUikMDAw4iYXl\n5eVITk6GTCZjnn4nHS1Ikxs3bjAjCrlCo3iutbUVFy9eRGtrK3OdSMdj0SQjIwPz5s3D1atXkZSU\nBGdnZ40Yky4Wi5l9jmSvA3o6vi5YsIDKPUDjPr927dpT/46kI9jatWtVXgsEAowYMQJubm6sr1lY\nWBgeP36MDz74AI6OjsRJLlp2lBQVFTEJKTs7O062aODm5oa0tDQq+/eZM2cwbdo0Kkk2Gt8XAPD3\n98eYMWMwY8YMTJ48WeMKSWhw/fp1NDQ0YNq0aaitrYWpqSmRHZqinCaK9E1NTXj8+DHzmlR4puWf\nAz3nuo2NjcbdlyUlJbhz5w7GjBlD3FEqKCgIe/fupXJe0Y5llA9ZAOTjrJWjWZVkZWURj+elxZPO\nZNLunMpxzUqOHj1K1H1LKpUiPT0dLS0tCAkJQW5uLnExwenTp3HixAmV7zFph8CzZ89ixowZnO9P\nWnYAIDExET///DO0tbWZuIrkgYG7d+/iu+++Y3wNPz8/WFhYcF4fV5RjbJXs27eP01QUJV5eXsT3\nAc19atGiRRg2bJjK2UDaWfz333+Hubk5qqurkZaWBnt7ezg4OLC20zcmcnFxUfs+pXzA7eWXX0ZX\nVxekUqmK+N9fQkND8eqrrzJFNq+88grxmhYuXPgfo5ppoQlnAw16F3z0xdnZmbW9uro6GBsbM68l\nEgmCU3SdAAAgAElEQVRrf5F2HErr3AN6Oult3ryZyt5Ci6ysLFy5cgUymYx5j3SPOnfuHA4cOMB0\nj/X39ycq2mlvb8fZs2eZApJZs2Zh0KBBRGvqC+m0j4sXL6rst9euXVNrp3MlSl+4vb0dW7du1Zi8\nPi00TUcBNFNL4XWU5wtN0FEAOloKr6P0vwmBJmopz7OOAtDTUngdRT22aOVyAc3LwdKMP3h4BhK+\n2Jinv6i72FhzMjA8PDw8hMTGxuIf//gH1q9fj+7ubk5P45uYmMDExASmpqbMHxLWrVsHPz8/1NbW\nQigUEo9WAnq6q8jlcmRmZuKTTz4h6kKjJDg4GFeuXAEApKenIzKS7BCKiorCjh07mKep/yj47w9r\n1qzB5cuXYWBggH//+9+Ii4vjZI8rNK95RkYG5HI5fv31VwQFBSErK4vYllQqRVxcHGJiYtDZ2Yns\n7GxiWzRISUmBh4cHtmzZgkWLFhGJ80o2bdoEZ2dn3Lt3Dy4uLhg6dCixrQsXLsDPzw8ff/wxOjs7\nie9zoOdepyVY2dnZob6+Hrdv34adnR10dXUxefJkVgmyVatWobKyEgcPHkRNTQ0uXbpEZW1cEYlE\nEAgEOHLkCCIjI7F//351LwkxMTGIjIzEmTNnEBkZyYw+ZMvp06ep3QM07vPLly/j8uXL+Oabb5CQ\nkICcnBwkJCTgm2++IVpTV1cXZsyYgcWLF2P69Oloa2uDnZ0dwsPDWduKjo7GN998gxEjRmDjxo3w\n8vJCamoqWlpa1GIH6Em2nT59GlKpFKdPn+bULZQWBgYGzDhCrkgkEnz++ecICwvDzz//jPb2diI7\nMTEx2LRpE/N92blzJ/GaDh48CE9PT5SUlCAkJIR4FLmmsn79ely4cAH79u2DtrY2IiIiiG0NHz4c\ns2fPhq6uLnR0dDBlyhQiO0FBQTAwMMDrr7+uMYXGISEhCA8PR2xsLHbu3InY2FhiW7T8c6DnXNeU\nJLeSR48eoaqqCh0dHbh16xaOHz9OZKetrY3aeUUrlklMTISLiwveffddfPjhhyrj6dny448/qrzO\nzMwktkUL5Zl8+fJlHD9+nLgDZnd3Ny5dugSFQgG5XI729nbk5OQQ2QoPD4eNjQ0KCgogFAqRmJhI\nZAcA4uPjsXXrViQkJDB/SElKSqJyf9KyA/Q8sJOamorDhw8z/0tCREQE3NzcsGvXLri5uXE6F2jw\n6NEj3L9/H//6179QWVmJyspKlJeXs47Zlf78F198wfxZtWoVKioqiNdGc59KSUnB2rVrsWjRImzf\nvh1///vfiW1ZWVlBT08Pr776KtavX4+DBw8S2ekbE3377bfEayoqKkJAQAA8PT0RGBiI4uJiIjta\nWlqMb9Dc3ExUaAwAO3fuhKOjIxobGxEaGooZM2YQ2QGA8ePHo7KykvjzT0Mul+PAgQPEn8/Pz0dA\nQAAWLVqEgIAA5OfnU1tbUFAQq/+/csy2s7MzxowZg8GDB8PCwoKo0BjAf8R2UVFRrG3QjENpnnsA\ncP/+fSp7y8KFC+Hh4YGFCxdi1qxZmD17NrGtpKQkfPHFF/jyyy+ZP6TEx8fj0KFDSE5ORlJSEuLj\n44nsfP7556ivr8eECRNQV1eHFStWEK+pL6RnX9/99ujRozSWwxmlL/zgwQPOeX1NQxN1FIBe/MHr\nKM8eXkfpP7S0FJo6CkBPS9E0HQXQTC3ledZRAHpaCq+jPHtbNHO5gGblYGnHHzw8PDw8AJ15WTw8\nPDxqpLCwEIcOHYKnpyd0dHTQ1dVFbKukpASzZ8/mPBa0q6tLpaNDd3c3sa1ffvkFAQEByMrKwpEj\nRzB//nzi0dj79u3Dpk2bsHXrVri4uBAL4kq0tLTQ0dHBuWiqvb2dkyhEG5rXXCQSwcXFhUkeLF26\nlLjTTnh4OHx9fbF3716meIDm2DO2ZGZmMkKAQqGAu7s7PDw8iGx1d3fjjTfegI6ODt577z3s2bOH\neF3x8fE4fPgwvL29IRQKUV5eTmxLKYSSdGjpS1hYGKZOnYqTJ0/Cw8MD0dHRSEpKYmXj0aNHCAgI\nQG5uLkJDQ7FkyRLO66JBe3s79uzZA1NTUwwfPpy4KwpNCgoKVJK2pN/hiRMnQiQSYdKkScyoWdL7\ngcZ9rhQE/fz8VPZwHx8fojXdvXsXDg4OEAqFGDVqFOLi4jB16lSitUkkEpw9exYXL17ECy+8gIUL\nF0IgECAkJIRVgRItO0CPuBAdHc289vX1ZfX5gUBLSwtOTk5Mtw8tLS3iDiTu7u5wd3dHXV0dNm/e\njIiICEybNg1+fn6wsbHptx1a3xclTU1NePToEeRyOfT19TnZ0jQqKyuxdetWFBUVAQC4DApKTEzE\niRMnUFVVBX19fQwdOpSo0JRm8RYtOjo6iAsh+kLLPwfonuvbtm1DUVERBg8ezKkrqo+PD+bMmcN5\nFKuRkRG8vLwwadIkJpnPZrxob2jFMufOnUNGRgY8PT2RmJhI9PDBsWPHcOzYMdy+fRseHh7MtX7r\nrbeI1kSTvkU6JIVEIpEIGRkZuHXrFry9vaFQKDBo0CBiH7+1tRVTpkxhBEsue5SdnR1u3ryp0qWX\n9LvzzjvvIC8vT8WfItm3aNkBAAsLC6Snp2P06NHMe++//z5rO52dnZgwYQKEQiHGjx+Pzs5OovXQ\nIi8vD+fPn0d1dTXjKwqFQtZxmrKT+L179xixWaFQ4P79+8Rro7lPxcbGorq6GmVlZfjhhx8QEhLC\nukj4SSPHpVIp8feGZkwUFRWFPXv2YNiwYXj48CGWL19OVIS3YsUKxMTEYOfOnfjtt98wbNgwfPXV\nV6ztaGtro6CgAOnp6fD29sacOXNY21BSWloKPz8/GBkZMb4w2/PT0dFRpXBaoVCgs7OT07p27NiB\nuLg4GBoaQiKRICAgAD/88AMrG8ou/L3vLYVCgdLSUqI1hYWFwcjICBYWFiguLkZycjKr4o8rV67g\nypUrqKqqYtbU2dmJBw8esF4LrTiU9rkH9JxNa9euVdlbSLoW9u243TuOZIuenh5CQ0NVOsuRFhxr\na2ujrKwM48aNQ1lZGXHRhlQqZeJhBwcHnDt3jrUNZdf83meKQqHA7du3Wdl5kn8HAObm5qzXNBDQ\nzOtrGpqoowD0rjmvozx7eB2l/9DSUmjqKAA9LUXTdBRAM7WU51lHAehpKbyO8uxt0czlAnT3BC4M\nRPzBw8PDw8MXG/Pw8DwHGBgY4Pjx48yTaFyE+o6ODohEIpUAj2Scio+PD9zd3VFVVQV/f394eXkR\nr0kgEGDdunUYP348hEIhdHV1iW2lpqaivb0dq1evxqFDh2Bubk40em/lypUICgpCRUUFgoODOQmE\nWlpaUCgUWLlypYrQS2qTBjSvOc3kAc3iARro6uoiKysL48aNQ3l5OafrZG9vj+bmZjg5OWHu3LmY\nNGkSsS2hUIiamhpoaWlBKpVyenqWhhCqpLGxEW5ubkwnPpLfn4GBAZqbm2FpaYm1a9eitbWVaC20\n2bVrF4qKiuDg4ICOjg7WnZsGAn19fSQkJDD354svvkhkp7GxEXl5eSqdR0hFQuV9PmfOHM73uaGh\nIbZv3w5LS0vcuXOHeDyWr68vvL29IRAIIJfL4evri66uLvztb39jbWvz5s1wdHREdHS0yl7Httsu\nLTtAz7m+fPlyWFpaoqKiAp2dnYzQrq5zZsOGDdRsnTlzBmfPnkVLSwvs7e0RGRkJhUKBzz77jNVe\nRev7AvTcU5MmTcLMmTOpdsvSFExMTLB79240NTXh8OHDMDMzI7ZFoxAToFu8RQuavh0t/xyge64r\nC9y4MnbsWPj7+3MuGJ8/fz7ntSihFct0dXUxSfyCggKiYitXV1e4urrC09MTycnJROsYKFatWsWM\n4pXJZBAKhaxtKDtXLlu2jHMBAwA4OTnB398flZWVCAsL4zSOtbW1FadOnVJ5j9QHys/PV+kSqqWl\nhUOHDqnNDgCYmpqioaEBDQ0NzHskxcaLFy+Gp6cnM95e3QL2zJkzMXPmTGzYsAGbN28mtqMs5IyM\njFTpVDhv3jximzT3qd7FUtra2kTFUtnZ2YiIiFCJy3R1dfHaa68RrYl2TKQ8F5Q5ExJqa2shEAhQ\nVVWFhIQETmNiP/30U7z00ktITk5GfHw8cdfJvgWdJBgbG1M/E6ysrCAWizFkyBDU1dXBysqKKQjr\n7xmtfNiv77118eJFojVxfXBy1KhREAgEyMnJYfY3HR0dLF26lGg9APc4lPa5BwBvv/02FTu9/TqZ\nTIYbN25wsrd69WpOeTIl27Ztw3fffYeamhqYmppi27ZtRHbeeustLFu2DGPHjkVFRQXefPNN1jbW\nr18PoOc70fs76OnpycqOJvt3AN28vqahiToKQO+a8zrKs4fXUfoPLS2Fpo4C0NNSNE1HATRTS3me\ndRSAnpbC6yjP3hbt84XmnsCFgYg/eHh4eHgALYUmeNg8PDw8HGhtbUV6ejru3r0LCwsLuLm5UXmi\nngsKhQIKhQKNjY0wNDTkVDwgk8lQVlYGGxsbdHV1oaKiAlZWVkS2Tp06BScnJwA94v+3337LaVwa\nV/5obBjbkUg0UV5zW1tbdHZ2crrmYrGYSR5oa2vj6tWrsLe3J7KVkpKC7OxsRhSws7Pj3H2SCxKJ\nBOnp6Yzg8emnn3Ia397Y2Ii2tjbI5XJoaWnBxMSEyE55eTliYmJQWVmJsWPHIjg4GGPHjiVeFy2i\no6PR0NCAwsJCTJ8+HUKhECtXriSyJZfLUVJSgjFjxqh9v+uNcu8DyLvM0aK9vR1ZWVl48OABRo4c\niQ8//BCDBw9W65poU1BQgNraWowcOZJIKKTN2bNnMWPGDM6/e1p2APrnTF1dHerr62FjYwOZTKb2\n7hMpKSlwdHTEK6+8ovL+77//zurc+l/4vtBCoVDg/PnzuHPnDiwsLDBz5kym2JAtCxYswJEjR7B4\n8WIEBgZiy5YtOHnyJGs7T7rP1elHAXTXdP36ddja2mrM6D1lIUpubi7Mzc1VkvAkXfTmzp2LpqYm\nmJmZceqQTBNasczvv/8Oc3NzVFdXIy0tDQ4ODsR+sFgshrGxMfH3bSCorq5mftbT04OhoaEaV/N/\nSCQSVFVVwczMjJNv3pfW1laN8jtpIBaL0dDQAGtra7S1tRGf6xKJBG1tbcx3mDSO0UT6+jtisRjD\nhw9X44p6CA0NxfTp05Gamoply5ZBJBI9sVPxH3HhwgWN7WZUWFiIffv2QSaTQU9PD0FBQUT+/saN\nG1FUVITAwEDMmjUL/v7+RIV9gYGB0NPTw4QJE2BrawtbW1tOBWrd3d2QSqUwMDAgOt+Vo+hp8rRi\nSZKHGnJzc1XOu127diEkJIRoTfr6+syDk01NTUwhHxvh/9y5c0QFck9D0+JQWohEIuZnPT09TJ48\nmfhs371793+8p878qxKxWMzEfFz28oaGBpXu4qT3mNJf0UTkcjlnX/jhw4fEBU0DZUsTdRSAXvzB\n6yjPHl5H6T80tRRaOgqgmVoKTR0F0EwthddRni2a5r/S1D9o2dLE/DIPz/8ihh9uVPcSeP4kNGZF\nqvXf54uNeXh4nguKioqYQMjOzk7dy4GbmxvS0tKoiOFnzpzBtGnTqAV3YrGYEQhJE8v+/v4YM2YM\nZsyYgcmTJ2tM8QdNrl+/joaGBkybNg21tbUq3ZxIoJU8GKjiAVKamprw+PFj5jVpYsvb2xu2trYq\nQjZpAvfGjRuwsbHRyPuypKQEd+7cwZgxY4g6ZgUFBWHv3r1UkhCVlZWIj49HW1sbtm3bBpFIBDc3\nNyJbiYmJOHHiBKqqqqCvr4+hQ4fi+PHjrO0ox84qycrKIh6XR4tr1679x3uknVr279+PwMBA5vXR\no0eJu4tJpVKkp6ejpaUFISEhyM3NJSqWOH36NE6cOKHyPSbtELho0SKkpKQQfXYg7CgpLi5GTU0N\nTExMOHVB6D2u+/vvv0dgYCDrcd1AT9GA0j9QFiWRXvPeKEU5noHl66+/RkhICJV9+LvvvsOCBQuo\nFGI+zyxcuJBKF0QlXAucehei9MXZ2ZnL0jhx48YN7N+/HzKZDPv370dcXByWL19OZItmLNObwsJC\nYlFnwYIFzMjZ55Hw8HBs2bIFL7zwAtra2rB+/Xr84x//YG3n4sWLcHBwYF5fu3aN2G/pi5eXF6fz\nikYcStMOrXOdZhxD0z+Pi4vD4sWLcerUKSQmJmLevHlEBRb+/v5YsmQJ3nvvPaSnpyMnJ4e4GxDN\nfaq1tRVpaWn45z//iSlTpmDq1KkYN24ckS1a0LrmA4nS91QnKSkpyMzMxIgRIyAWi/HRRx8RjRAH\neopjkpOTIZPJmHzL//t//4/mcom4ceMGbG1tB0TwV8JG+G9tbcXFixfR2trKXCeSB6RokpGRgXnz\n5uHq1atISkqCs7Mzp278tKB1xrS3t+Ps2bNMQdmsWbMwaNAgIlvbtm1DcXExBg0axOnBtHv37iE7\nOxstLS3Me6TnVWpqKhYsWMD5HqfxHX5SzkYJqQ+0du1aldcCgQAjRoyAm5sbq/siLCwMjx8/xgcf\nfABHR0dOxcI0bWmajgLQiz94HUU98DpK/6GhpdCMPwDN1VK46igAPS2F11H6Dy0thddR1GOLNlxz\nsDShlXfj4Rlo+GJjnv6i7mJj9T4qxcPDw0OBsLAwnD59GlKpFKdPn+b0hCstDAwMmHGLXJFIJPj8\n888RFhaGn3/+mWiMipKYmBhs2rQJZ86cQWRkJHbu3Elk5+DBg/D09ERJSQlCQkKIx35rKuvXr8eF\nCxewb98+aGtrIyIigthWYmIiXFxc8O677+LDDz+Ei4sLsa2goCAYGBjg9ddf14gEWUhICMLDwxEb\nG4udO3ciNjaW2JaJiQlMTExgamrK/CElKiqKWuC6bds2fPLJJ/Dw8MDChQuJRVAAePToEaqqqtDR\n0YFbt24RJZHa2tqoPem+bt06+Pn5oba2FkKhkHgMLtDTxSYjIwMTJkzAmTNniLsf/PjjjyqvlaPS\n1Mnly5eZP8ePHycuruju7salS5egUCggl8uZkZWkhIeHw8bGBgUFBRAKhUhMTCSyEx8fj61btyIh\nIYH5Q8o777yDvLw8dHR0QC6XE5+DtOwAwJo1a5CZmQmpVIrMzEysWbOG2FZhYSG++uorDB06FDo6\nOkTjuoGec0F5rb/66iu8++67xGtasWIF5HI5oqOjsXLlSqxatYrYFk//yM/Pp7YPd3d34/PPP8eB\nAwfw9ttvExdh5ufnIyAgAJ6enggICPhDwf3PyPjx41FZWUnFVkpKCjw8PLBlyxYsWrSIqFBDOX7P\n2dkZY8aMweDBg2FhYUGt0JhtZ04lUVFR2LFjB9Pt8Y8KlP4bNGOZ3nDxFUeMGKFSHPO8IRaLGbFY\nV1cXYrGYyE7fYlmSAm3lqOEvvviC+bNq1SpUVFQQrQn4zzg0JiZGrXYAeuc6zTiGpn/+yy+/QCAQ\nICsrC0eOHEFGRgaRnX379uHEiRP46KOP0NLSwmnsKM19as2aNbh8+TIMDAzw73//G3FxccS2aEHr\nmgM9hZhyuRy//vorgoKCkJWVRWRHKpUiLi4OMTEx6OzsRHZ2NvGaaJGZmYmjR48iNjYWqampRFMd\nlGzatAnOzs64d+8eXFxcMHToUGJbFy5cgJ+fHz7++GN0dnYiMpJctImKiqLiL9rZ2aG+vh63b9+G\nnZ0ddHV1MXnyZNYdxlatWoXKykocPHgQNTU1uHTpEue1cUUkEkEgEODIkSOIjIxkzh51EhMTg8jI\nSCpnzOeff476+npMmDABdXV1WLFiBbEt5UMxhw8fRmpqKvEEjODgYBgbG+Ott95i/pBy+vRpKvc4\nje+wMl/zzTffICEhATk5OUhISMA333xDvK6uri7MmDEDixcvxvTp09HW1gY7OzuEh4ezshMdHY1v\nvvkGI0aMwMaNG+Hl5YXU1FQin5aWLU3UUQB68Qevozx7eB2l/9DSUmjGHwA9LUXTdBSAnpbC6yj9\nh4aWwuso6rNFExo5WJrQyrvx8PDw8PSgo+4F8PDw8HBFKpUiOjqaee3r66vG1fSgpaUFJycnppOJ\nlpYWcXcVd3d3uLu7o66uDps3b0ZERASmTZsGPz8/2NjYsLJVUFCg4tBz6bLT1NSER48eQS6XQ19f\nn9iOJlJZWYmtW7eiqKgIAMBlCIAyeeDp6YnExEROCUWahaY06OjoQHx8PBVbJSUlmD17NpUxVsqi\npFGjRnG2VVZWxoxL54qPjw/mzJnDadyskZERvLy8MGnSJCYJyGZ8am+6urpUrlF3dzfxurq6uqBQ\nKDBo0CAUFBSgtLSU1eePHTuGY8eO4fbt2/Dw8GC69XARv2jRVxT88ssvWdsQiUTIyMjArVu34O3t\nzVwrLmObW1tbMWXKFEaUJd2n7OzscPPmTVhYWDDvkX538vPzkZ+fz7wm7dhLyw7QM5a195P9XM49\nAwMDHD9+nElwkn6Xa2pqmJ8fP36M4uJi4jXV1tZCIBCgqqoKCQkJxB0eePrP+PHjsXv3bpV9+P33\n3yeytWTJEixZsgQPHz7Evn37sHbtWsb3YMOOHTsQFxcHQ0NDSCQSBAQEUDu7NIHS0lL4+fnByMiI\n8atJE9TKAiegZ990d3cnFsDCwsJgZGQECwsLFBcXIzk5mVVRys2bN2FtbY1ff/1V5f3s7Gzisx3o\n2TOVAgMXG1xima1bt2L9+vVwdHRkRmwrFArcvn2beE3V1dWYPn06LC0tOd8HmoiZmRl2796NiRMn\n4vr166w7XD3JlwIAc3Nz1mtRdke6d+8ec08rFArcv3+ftS0ltOJQmvEsrXOdZhxD0z8XCARYt24d\nxo8fD6FQCF1dXSI7qampaG9vx+rVq3Ho0CGYm5tj5syZxOsC6OxT7e3tOHDgAKd10IbWNQd64gcX\nFxemEHPp0qVEncrCw8Ph6+uLvXv3MsI6lxiEBrq6usjKysK4ceNQXl7O6Tp1d3fjjTfegI6ODt57\n7z3s2bOH2FZ8fDwOHz4Mb29vCIVClJeXE9uilZMICwvD1KlTcfLkSXh4eCA6OhpJSUms7Tx69AgB\nAQHIzc1FaGgolixZwmldNGhvb8eePXtgamqK4cOHq3RnVBc0zxipVMrkpx0cHHDu3DliW/r6+oiO\njsbo0aOZ90g6U7/99tv44IMPOBXlK5k4cSJEIhEmTZoEHZ0eiZHkfqfxHVbmbPz8/FQKmnx8fFjb\nUnL37l04ODhAKBRi1KhRiIuLw9SpU1mvTyKR4OzZs7h48SJeeOEFLFy4EAKBACEhIawLlGjZ0kQd\nBaCnpfA6yrOH11H6Dy0thWb8AdDzWzRNRwHoaSm8jtJ/uGopvI6iXls0oZmDpQHXvBsPz7NCISc/\nY3h4niV8sTEPD8+fno6ODixfvhyWlpaoqKhAZ2cn0xGMi1DPhQ0bNlCzdebMGZw9exYtLS2wt7dH\nZGQkFAoFPvvsM9YCu76+PhISEhhR58UXXyRak6+vLyZNmoSZM2dy6s6hqZiYmGD37t1oamrC4cOH\nYWZmRmyLa/KgNzQLTWmgUCiwcuVKFcGDdD0dHR0QiUQqAhPpuEMaRUnKxBgtUQcAxo4dC39/f06J\nzvnz5xN/ti8+Pj5wd3dHVVUV/P394eXlRWxr06ZNkMlkWLNmDdLS0lgng11dXeHq6gpPT08kJycT\nr2MgWLVqFTPGUSaTQSgUsrah7IC5bNkyTt3geuPk5AR/f39UVlYiLCyMeORsa2srTp06pfIeSUE1\nAGq/O5r3gKmpKbZu3cqce1y7pqenp8Pa2hp3794lvk697wE9PT2VkXBsmTBhAubOnYvAwEB0dHQQ\n3Z887DA0NAQAlSJx0mLjX375BdnZ2aiuroa1tTXxvW9lZQWxWIwhQ4agrq4OVlZWTAGXpolrJKSm\nplKzRbPAiatQX1paCmtra0RERKh0bGpubiZaT1hYGIKCglBRUYHg4GBOPiLXWGb9+vUAAGNjY5X7\n2tPTk9jm999/z2lNms62bdtw/vx5lJaWwsrKivUYXJq+lLJAPDIyUuXcnDdvHrFNWnEoLTsAvXOd\nZhxD0z/fv38/ysrKYGNjg46ODuLvtbGxMbPXvf/++/j222+Ji41XrlzJeZ+KjY2FlpYW1ViUFspr\nbmtry+maA/QKMWkJ6zSJiYlBeno6Ll26BFNTU07dY+3t7dHc3AwnJyfMnTsXkyZNIrYlFApRU1MD\nLS0tSKVSTh3+aD0o1djYCDc3N6ZTHenvz8DAAM3NzbC0tMTatWvR2tpKZIcmu3btQlFRERwcHNDR\n0YGgoCB1L4nqGfPWW29h2bJlGDt2LCoqKognmADAtGnTiD/bm5s3b+LTTz/Fyy+/zBQmkT641djY\niLy8PJUO9STnqPI7PGfOHM7fYUNDQ2zfvh2Wlpa4c+cOjIyMiG35+vrC29sbAoEAcrkcvr6+6Orq\nwt/+9jdWdjZv3gxHR0dER0er7OMk3XZp2dJEHQWgp6XwOsqzh9dR+g8t/5Vm/AFw91s0VUcB6Gkp\nvI7Sf7hqKbyOol5bNKGZg6UB17wbDw8PD48qWgpNyDLy8PDwcOCPRm+yHS0IAHV1daivr4eNjQ1k\nMpnau2ukpKTA0dERr7zyisr7v//+O6ysrFjZam9vR1ZWFh48eICRI0fiww8/xODBg2ku97lAoVDg\n/PnzuHPnDiwsLDBz5kwmQGbLd999hwULFqC6uhppaWlwcHCAvb09ka0n3esk9zgtaK7n+vXrsLW1\npTKyiwYikeipf0c6Jn3u3LloamqCmZkZZ2GHBgqFAgqFAo2NjTA0NKRakFZYWEgkponFYhgbGxN/\n3waC6upq5mc9PT2m0FATkEgkqKqqgpmZGbWRgK2trZw6Y4jFYojFYgwfPhzDhw9Xux2g535Unntc\nRN6+aIKP0Bfl3qJuNM2X0lS+++47zJw5k6jzaG+eVsCpKZ0saNDd3Q2pVAoDAwNOvoJEIkF6epCp\nbmwAACAASURBVDry8/Pxzjvv4C9/+QsmTpxIZMvT0xP6+vqMUN/U1MQIfGwEw7i4OAQEBDCvaQoq\nmkZxcTGnIpL/BZT+GUD2sIDSL6DBuXPnMH36dCo+Iq04lHY8W1RUxNiys7MjtkMLmv75mTNnMG3a\nNCrxPk2/jCu08z+0uX79OhoaGjBt2jTU1tYSP+gmFouZQkxtbW1cvXqVKI+QkpKC7OxsptjRzs6O\nU2dGWjQ1NeHx48fMay5dpRobG9HW1ga5XA4tLS1iW+Xl5YiJiUFlZSXGjh2L4OBg4rHWtIiOjkZD\nQwMKCwsxffp0CIVCrFy5ktieXC5HSUkJxowZQ60bIle4nns0oX3GiMVixpa6987/FQoKClBbW0s9\n9ifl7NmzmDFjBpV7m5YtXkfpP7yO0j94HaX/0FoTr6M8e3gdpf9oqpbyPOsotG3RgmYOliaaFH/w\n8DwJg5nr1b0Enj8J0nNb1frv88XGPDw8zwXFxcWoqamBiYkJJwE7NjYW1dXVKCsrw/fff4/AwEAc\nPHiQtR1PT08myFMGwzSKPZTBLM/A8vXXXyMkJIRKoBEfH4/8/HwYGBjgr3/9K+zt7TFkyBAKq3y+\nWLhwIdXOhbSKkoD/2180oQjhxo0b2L9/P2QyGfbv34+4uDgsX76cyJabmxvS0tIGJCHl5eVFtOct\nWLCAGa30PBIeHo4tW7bghRdeQFtbG9avX49//OMfRLYuXrwIBwcH5vW1a9c4dbFQQvq7A3q6lN2+\nfZvpJDRu3DgiMZyWnYGG9FplZGRg3rx5uHr1KpKSkuDi4kI0FpsmUqkU6enpaGlpQUhICHJzc4nH\n09HypTQViUSCH374gTkXXF1dmS6gPANDSkoKMjMzMWLECIjFYnz00UfEY/dCQ0PR2trK+NOk43kB\nzSt4O336NA4dOgQdHR10dXXB09MTTk5ORLa4xjLXrl176t+RnlWnTp1CUlISpFIpBAIBXnzxRaSn\npxPZogXNszgxMREnTpxAVVUV9PX1MXToUBw/fpy1nfLyciQnJ0MmkzHiCek9vmjRIqSkpBB9ti91\ndXUwNjZmXkskEiKBj5YdoKcbuJGRESwsLHD37l00NDRw6rBKA5r++ZEjR5Cbm4sXXngBs2bNwl//\n+leiApm+ftmrr76Kzz//nGhN/v7+GDNmDGbMmIHJkydrTIEELdavXw8jIyNcvnwZP/zwA3x8fJCY\nmMjJJg0hdCCEdS6EhISgra0NhoaGzBlDuk95e3vD1tZWpbiNtEPVjRs3YGNjo3H3ZUlJCe7cuYMx\nY8bgtddeI7IRFBSEvXv3UslxVVZWIj4+Hm1tbdi2bRtEIhHc3NxY26F17gE948RdXV2Z11lZWWqP\nr+7du4fs7Gy0tLQw79HunsYldu/N8ePHWU8veJKvR+ID7d+/X2XSz9GjR7FgwQLWdgC6Me3p06dx\n4sQJlYciSK41TV+Kpi1N01GAgdFSeB3l2cDrKM8e2joKQE9L0SQdBaCnpfA6yrOH11HUY4smNHOw\nNKAZf/DwDCR8sTFPf1F3sbGOWv91Hh4eHgqsWbMGQ4cOhaWlJQoLC3H06FFERUUR2SosLMShQ4fg\n6enJCPUk9BaU6uvrcezYMSI7ALBixQrExMRg586d+O233zBs2DB89dVXxPZ4/jv5+fnUnmhcsmQJ\nlixZgocPH2Lfvn1Yu3YtioqKiNcVFxfHdIpYsmQJlaBYExg/fjwqKysxatQozrZoFiX1LkIoLi5G\ncnIytSKEr7/+mvWotKioKMTFxWHp0qUQCoXIy8sjLjY2MDCAXC7nlEDcunUr1q9fD0dHR6bYTqFQ\n4Pbt20T2RowYgZaWFgwdOpR4TZqMWCxmhHBdXV2IxWJiWwcPHlRJkh09epTVfqAU9XqPalMoFKio\nqCBeU0FBgUqXCdKuabTs0EI5UrQ3jY2NxGOMRSIRXFxccOTIEURGRmLp0qVqF8PDw8Ph6+uLvXv3\nQigUIjExkViYpeVLaSqhoaHw8fHBjBkzcOfOHaJxrLQpKirCvn37IJPJoKenh6VLlz5X3WMzMzMZ\nAUWhUMDd3Z34XG9vb8eBAweorMvOzg5ZWVmQSqVwc3NDSUkJXn/9ddZ2lP6dsiNKQEAA3n77bdZ2\nEhMTcfjwYejo6KCjo4NTsTHXWOby5csAevbzF198EWPGjMGdO3fQ3NxMPN4xJSUFKSkp8PPzw7ff\nfks8qpImXM/i3pw7dw4ZGRnw9PREYmIi61GqSjZt2oTw8HB8+eWXWLFiBbKysojsAD1FQ3l5eZg0\naRJ0dHrSh6QxUnh4uIoIFxUVRSQy0bID9BQlRUdHM699fX2J7NCEhn+uxN3dHe7u7qirq8PmzZsR\nERGBadOmwc/PDzY2Nv22Q9MvO3jwIO7du4fz588jOTkZQ4cOVavYSJvKykps3bqVife59PegJYQq\ni0w1ochYSUdHB+Lj46nYMjExgYmJCZUuvVFRUdQKd7Zt24aioiIMHjyYUze+R48eoaqqCh0dHbh1\n6xZu3brFuigUANra2qjluNatW4ctW7Zgw4YNEAqF+Omnn4iKjWmdewDw448/qhQbZ2Zmqj2+Cg4O\nxtKlSzFhwoQB+zdo9RBSPgzLBqWvB/T4ijU1NUhISGBlo7u7G5cuXUJAQAAUCgU6OzuRk5NDXGxM\nM6aNj49HfHw8DAwMiD6vhKYvRcuWJuooAD0thddRnj28jvLsoamjAPS0FE3TUQB6Wgqvozx7eB1F\nPbZoQjMHSwOa8QcPDw8PD19szMPD8xxQVVWl8mQ/F0fawMAAx48fR3t7O3JycoiTijU1NczPjx8/\nRnFxMfGaamtrIRAIUFVVhYSEBOKkK0//GT9+PHbv3o1JkyYxCYT333+fyNYvv/yC7OxsVFdXw9ra\nmrjAAgB27NiBuLg4GBoaQiKRICAgAD/88AOxPU2itLQUfn5+MDIygkAg4DQai2ZREo0ihJs3b8La\n2hq//vqryvvZ2dlESTKg5yngjo4OyOVyos8rbTg5OcHW1pa55mzF/vXre56wNDY2Vrm3PT09idZU\nXV2N6dOnw9LSkvN9oImYmZlh9+7dmDhxIq5fv0404vfYsWM4duwYbt++DQ8PD0ZgNDc3Z2VHKcbe\nu3ePSfwqFArcv3+f9ZqU6OvrIyEhAePGjUN5eTlefPFFtdqhRXZ2NiIiIlTEXF1dXeLOYu3t7diz\nZw9MTU0xfPhwtY8ZBXrGvk2ZMgX79+8HwE24puVLaSr6+vqYNm0adHR0MGrUKI04h6OiorBnzx4M\nGzYMDx8+xPLly5+r7ia6urrIyspi9gRdXV1iWwqFAitXrsTo0aOZ90jP4rCwMEydOhUnT56Eh4cH\noqOjkZSUxNoOLf/O3NwcOTk5sLS0REVFBUaNGoXKykoAYC1Cco1lVqxYAQDw8/PD3r17mfd9fHxY\n2emNXC6HUCiEQCCAVCrFb7/9RmyLK086i7W0tDiJvV1dXVAoFBg0aBAKCgpQWlpKZKe7uxtvvPEG\ndHR08N5772HPnj3Ea8rPz0d+fj60tLSIO8xduXIFV65cQVVVFfPwTmdnJx48eKAWO73p6OjA8uXL\nme9MZ2cnY5t0X+AKDf9cyZkzZ3D27Fm0tLTA3t4ekZGRUCgUrB+Soe2XNTU14dGjR5DL5dDX1+dk\nS9MwMTHB7t270dTUhMOHD8PMzIzYFi0hlGaRKS1onsUlJSWYPXs2lWJjmoU7ZWVlVHxEHx8fzJkz\nh7M/bWRkBC8vL5UcF+k17+rqUrlG3d3dxHa4nntPO4/feustojXR5O2338YHH3wwoAVA6hybrvT1\nlLB9CEwkEiEjIwO3bt2Ct7c3cy+QFgcDdGNaOzs73Lx5ExYWFsx7JHuD0pdSwqVbLy1bmqijAPS0\nFF5HefbwOsqzh6aOAtDTUjRVRwG4aym8jvLs4XUU9diiCc24jwa08m48PDw8PD3wxcY8PDx/ekxN\nTbF161bGkTY1NSW2FRUVhfT0dFhbW+Pu3bvEHbN6i+p6enoqI+HYMmHCBMydOxeBgYHo6OiAUCgk\ntsXTP5RjXXonNkmTZGVlZfD19WUdwD4JKysriMViDBkyBHV1dbCysmISJJomILKF5ugvmkVJNIoQ\nSktLYW1tjYiICLi4uDDvNzc3s15PWFgYgoKCUFFRgeDgYE7B+YYNG4g/25e+yd+wsDAiO99//z2N\n5Wgs27Ztw/nz51FaWgorKyuiMaqurq5wdXWFp6cnp6S7soNCZGSkyrlJ0ilLSWxsLLKyslBSUoKR\nI0ciNjZWrXZoERoaSrX7ya5du1BUVAQHBwd0dHQgKCiImm1SnJyc4O/vj8rKSoSFhcHR0ZHYFi1f\nSlO5c+cOHBwcYGZmhsrKSrz00ktYuHCh2pP6Sj9AWRT4PBETE4P09HRcunQJpqamnDrjLF68mNq6\nGhsb4ebmhszMTADkBQ20/DsdHR2cP38e58+fBwAIhUImJmH7PaQVyxgaGmL79u3MKEcjIyMiOwCw\nfPlytLS0IDg4GFu2bCEW5GhA6yzuzaZNmyCTybBmzRqkpaURFxba29ujubkZc+bMwdy5czl1Oafx\n3zZq1CgIBALk5OQw8ZSOjg6WLl2qFju9CQkJYX62t7cntkMTmv55fX09Vq9ejVdeeUXl/b///e+s\n7ND0y3x9fTFp0iTMnDnzPwrVnge2b9+O8+fPY/DgwTA2NsbChQuJbdESQmkWmdKC5lnc0dEBkUik\n8vAeqd9Oo3BHWcSkr6+P6OhoFWH9k08+Yb2msWPHwt/fn3O+Z/78+Zw+3xsfHx+4u7ujqqoK/v7+\n8PLyIrJD49wbiPOYFjdv3sSnn36Kl19+mVN36z+Cls9PYmfVqlVMsbNMJmOdq3Z2doazszOWLVum\n4ndygWZM29railOnTqm8RxLX0rwvadnSRB0FoBd/8DrKs4fXUZ49NHUUgJ6Womk6CkBPS+F1lGcP\nr6OoxxZNaMZ9NKCVd+Ph4eHh6UFL8bwpkTw8PP+TFBYW4sGDBxg5ciTefPNNanaVY5Y0CWWSWt3U\n1dWhvr4eNjY2GnmdnkeeVlTBpTOGJtHd3Q2pVAoDAwNOI6kkEgnS09ORn5+Pd955B3/5y18wceJE\nIlt5eXlP/bvJkyezshUXF4eAgADmNU1RRV1cu3btqX/3vIymGwgUCgUj6JEmuKuqqjh1S1Ny7tw5\nTJ8+nUqiva6uDsbGxsxriURCNLKZlp2B4MaNG2htbWV+f6QCiiYikUiY+4rm9eZ9hIGnsLAQ+/bt\ng0wmg56eHoKCgqj6w5pAU1MTHj9+zLwm6WhCm+joaDQ0NKCwsBDTp0+HUCjEypUrWduh5d/JZDKU\nlZWhra2N2aPY+ioDQUFBAWpra6nEacr4w9raGm1tbWrfW6qrqzkVaPwRz9veee7cOcycOVNj7Cgp\nLi5GTU0NTExMOBVma3ps3NjYyBSC8AwcX3/9NUJCQqj41d999x0WLFiA6upqpKWlwcHBgago/knx\nrCacDbS4fv06bG1tOeUPaCISiZ76d87OzqztzZ07F01NTTAzMxuwglW2KGNZ5b5Cq2CrsLCQ2E8Q\ni8UwNjbWiFzpQJCVlYUrV65AJpMx79F8oFMkErG+P6urq5mf9fT0NOaMGaiYtrW1lbiDulgshlgs\nxvDhwzF8+HBO66Bli9dRnj2a7is+j/A6Sv+hpaXwOsofw+soZPA6yrO19b8Efx7zaCoGM9erewk8\nfxKk57aq9d/ni415eHh4/gAvLy+i5ENGRgbmzZuHq1evIikpCS4uLvjwww8HYIXskEqlSE9PR0tL\nC0JCQpCbm0s0oi42NhbV1dUoKyvD999/j8DAQBw8eHAAVqweJBIJfvjhB9TU1GDkyJFwdXVlnl7l\nGRhSUlKQmfn/2Xv3qKjq/f//CcwYktpwWZFyUdTFMdQjVng6p9N3zPCYnmoRnlCBQbwNkGB5OfYR\nyfISaqVpAiaIDgKhxO0U6ZFUUHGZykXtpGlc9AwXB5CbMNzm8vuDNfsHaifmPW/c2+n9WKu1mG3z\n5DWw2fv1ej9f+/XOxTPPPAOVSoXXX3+daLsuoHcKqVqt5swOU7Yf7unpQV5eHpqbm+Hn54fr16/j\nj3/8I5EWDY4dO4ZDhw5BJBJBo9FAJpNhzpw5RFoymYxbcCfdGtvwlHRxcTGGDx8ONzc3VFZW4t69\ne0RPix89ehRJSUlobm6GpaUlhg8fjvT0dKN1aHL69GlIpVLu9aVLl4gXABUKBb755htUVVVhxIgR\nGDZsGHJycoi0ysvLkZycjI6ODm7BjeQ8DwwM7LeFpincf89cu3YtUUy0dABAqVQiISEBnZ2d+Pjj\nj5GdnQ0/Pz8irbVr12Lo0KEoLCzECy+8gJaWFnz55ZdG68THx2Pp0qU4evQoFAoFfHx8iLcupfX5\nGhoaYG9vj/b2dpw7dw5eXl7UFiVJcykGw0BERAQ6Oztha2vL3a9Irwm0uX79OiorK+Hm5oZnn32W\n11j8/Pzg4+PTrxGCdMqKEGuZvvVHRkYG5HI57/XHunXrHjhGq/mH9Nq5b9++fpPgDh8+LIjto9Vq\nNU6fPt3vgR2SKZ+0dADg//7v/zBs2DBu8lZbWxu2bdtmtA7N2phGfm7gvffew86dO/H555/jP//5\nDxwcHPDpp58SaTEGBs3pqgkJCSgqKoJEIsErr7yCl19+GU8++SQVbXPC39+f6nQ/mo07hocZRo4c\nialTp1KKkIyrV69i37596OjowL59+xAfH4/ly5cTafn5+eHIkSPUm/dMqRnmz5/Pbf8udHJycozO\nzwICApCYmGjSrl1A73rSv/71L+4eKoSGuzVr1mDz5s0YOnQoOjs7ERUVhc8++4xIi+bazf2Qnp87\nd+7EL7/8wu3yMX78eKKHE2lrDRam/B0Lsf5gPsrAYD7Ko4emjwLQ81KE5qMA9LwU5qMMHFr3Y+aj\n8KP1e4J5FgyhwpqNGQOF72ZjEa/fncFgMASCYTufvjQ1NRFvSZednQ1fX1+kpaVh48aNCAsL432B\nDOhdxF20aBHi4uIgFouhUCiIFslKSkpw6NAhyGQyrlA3J1asWIHg4GC8+uqrqKysxLvvvsv79BgA\nKC0t7Te5MCwszKQJXEIiNzeXM4f0ej0WLFhAvEjW1dWF/fv3U4lr9erV+Otf/4pvv/0WAQEB2LFj\nB5KSkoi0ioqKEB8fz01EkcvleOGFF4zSUCgUSE1NhUgkQnd3t0nNxgqFgvu6vr4emZmZRmsYtj9e\nvHhxv+kCwcHBRDGlpKQgJSUFixcvxpdffkl1Wg8piYmJ/RbIDh8+TGxYnThxAllZWZDJZFAoFCZt\n1fTRRx9hzZo12Lp1K9577z3k5eUR6Xh5eeHixYvw9PSESNRbGhj7dP4PP/yAH374AVVVVdz9tKen\nB7W1tbzo9CUyMhKbN2/Ghg0bIBaL8d133xE3G6tUKiQlJSEoKAjbt29HaGgokc6ZM2cgl8uRl5eH\ntLQ0zJs3j7jZmNbnW7lyJZKTk7Fp0ya4ubkhKSnJ6MYN2rkUY+AI0ZilSXd3NxISEvgO4wFaW1tR\nVVWF7u5u3LhxAzdu3CBq7j116hRSUlJQX1+PrKwsREdH48MPPzRaZ/To0aiqqiKeutYXIdYyfesP\nKysrQdQfYWFh3Nd1dXU4efKk0Ro0r51arRaFhYWQy+XQ6/Xo6elBQUGBIJqN//nPf2LKlCnIycnB\na6+9hoqKCqImYVo6QO90o75GIem9mGZtTCM/N3Dnzh1YWlqiqqoKBw8eFMR5YO64u7sjJiYGnp6e\nXKMq6S4Yy5Ytw7Jly3D37l3s3bsX69atQ2lpqdE6hhrUMLVp2bJlZjU5zd3dHUqlEi4uLiZr0Wzc\nWb16Nezt7TFmzBhcvnwZycnJ2Llzp8kx7t69m2j7723btiE+Ph5hYWEQi8W4ePEicbOxRCKBTqcj\nbsbesmULoqKiMGvWLK4ZTa/X45dffiHSA4BnnnkGbW1tGDZsGLHGo8KQtxuDjY0NVqxYAXt7e+4Y\nyVpJQkICEhISIJFIjH7vYKFSqbiJctbW1lCpVMRaNNZuDA9t9V2r0ev1qKioIIqpuLi433oyaa5B\nW8tUBqP2F2L9wXyUgcF8lEcPTR8FoOelCM1HAeh5KcxHGTi0vBTmozxaLXOGeRYMBoMxOLBmYwaD\nwQCQn5+P9evX90sura2tiSeUdXV1ITY2Fk5OTnB0dBTMVhxqtRovvfQS9u3bBwDEybREIkFOTg66\nurpQUFAgqIVqGowYMQLTp0+HSCSCi4sLMjIy+A4JQK9BFBsbCwcHB9y9exfLly9/bKa3/BbW1tbI\ny8vD+PHjUV5ebtLEFr1ej1WrVmH06NHcMRJDDugtOv38/JCbm8tpk7J9+3bEx8fD1tYWjY2NkMvl\nRp9brq6uKCgo4Cawubi4QKlUAoDRBmtNTQ33dXt7Oy5fvmzU+/tia2uL6OhobsJKXxPMGHQ6HcRi\nMSwtLdHc3Iz//Oc/xDGZSmZmJjIzM/HLL78gICCAm1pgipGt0Wig1+sxZMgQFBcX4+bNm8RaWq0W\nU6ZMgUgkwosvvojY2FginaKiIhQVFcHCwoJ4MoOLiwssLS1RUFDANVSIRKJ+TViPUqcvGo2m3+9M\nq9USa2m1WrS1tcHBwQExMTGoq6sj0rG0tERkZCTc3d0hFotNut7R+nxtbW2ora2FpaUlwsLCUFhY\naLQG7VyKMXCEaMzShOZ9nSbBwcGYPXu2yXlwQkICUlNTsXDhQojFYpSXlxPp3L59G6GhoVTqDiHW\nMkKsP/puw2lnZ0c0EYXWtTM7OxtZWVm4ceMGFi5cyOUbJA0Rg0FrayvkcjnOnj2LFStWYNmyZbzq\nAICTkxO2bNnC1R9OTk5EOjTPTZr5+R/+8Ae8+eabCAkJQXd3N8RiMbEWY2AYpsH1/b2RNhufOXMG\n+fn5qK6uhoeHB/HEZBo1qJC5efMmFi9eDHt7e1haWsLCwoK4wYlm405zczN27NjBvV60aJFR7792\n7Ro8PDxw/vz5fsfz8/NNyoEsLCzQ3d0NnU5nksacOXMwadIk7mduzOS0qKjeKU1PP/10v/P617a7\nHwjV1dWYMWMGxo4da/J5IFTef/99kycbT506FdeuXcOYMWO4YzQa9U3B2dkZMTExmDx5Mq5cuYJR\no0YZrfGwtRugd/3MWObOnQugN682PCCg1+vx3//+12gtoHd9+eDBg1yuMXz4cCId2lqmMhi1vxDr\nD+ajDAzmozx6aPooAL01F6H5KAA9L4X5KL8NbS+F+SiPVsucYZ4Fg8FgDA4WevbYBoPBYODUqVNU\njViVSoXS0lJIpVJYWVnhwoULePnll6npk5KSkoL8/HxUVFTgueeew9SpU4kmIajVaqSnp+PWrVsY\nM2YM/Pz8qExREwqzZ89Ga2srnJ2doVQq8dRTT8HW1pZ3w2LevHnYu3cv7Ozs0NjYiLCwMBw5coS3\neGjS2NiI9PR01NTUwMnJCW+//Tbs7OyItC5evPjAsWnTphFp7dixAw0NDSgpKcGMGTMgFouJtyn8\n4IMPEBAQwC1upaSkYNOmTQAG/gT0w7brNmDs0+t9tWxsbDB79myiCQEGiouLcefOHYwcORLPPfcc\nkcbZs2cxdepUXL9+HYmJiZg5cyZn9vAFze2Qf/75Z7i6uqK6uhpHjhyBVColvjfs3bsXgYGB+Oab\nb3DkyBF4enpy5xNfnDhxAt7e3oLRAYDjx48jMTERVVVVePbZZzFv3jziJkyNRgORSAS1Wo3CwkJM\nmTIFjo6ORut0dHSgrKwMkyZNQk9PDyoqKjBhwgSimGh9vuzsbBw/fhzh4eFwd3fHJ598wjUCDBTa\nuRRj4Pj5+UEqlaKtrQ3vv/8+AgICzKrBguZ9nSb//Oc/sX37dqOnmNxPUFAQoqOjERkZiS+++AIr\nV67EwYMHjdYJDAyEg4NDP2OedLKNEGsZIdYfhq1U9Xo9nnzySbzxxhv4+9//bpQG7WvnO++8029K\nklCIiIhAdHQ0PvvsM3R3d+O///0v0XWKlo6BkpIS1NbWmpS/0jw3aefnfTGYoYzHgwMHDsDb25uo\nWa4vNGrQ3wvBwcHw9/fnGndSU1P7TbEzBplMhhEjRnA/95aWFm6i20Cad3JycuDj44MZM2bA19eX\nO56dnU00Rb+4uBiff/45KioqMGnSJOLpgEBvY+/9kD6s0ZfLly+bzcTJ/wXJ+kJMTMwDx8LDw43+\n3g9bT+J7CqJOp8PJkydx69YtjB49Gt7e3sTXJtprN31r9LS0NCxYsMBona6uLuTl5XG5xt/+9jc8\n8cQTRDHR1DKVwaj9hVh/MB9lYDAf5dFD00cB6K25CM1HAeh5KcxHGTi07sfMR+FHyxxhngXjceOp\nGZF8h8B4TGg5Fc3r92fNxgwGg3EfV69ehVqt5p5yI51EI1QaGxtRVVUFZ2dnkxYh+mLYkpMxuJSU\nlPTb/is0NJR4MUKItLS0oL29nXtNMtFkMLh+/ToqKyvh5uZm0tOuvzapx5gnoA1Nip2dndw1SggN\nVzSpq6tDfX09PDw80NnZyfu1pbq6mop5+jDM7dqpVqtx+vTpfvdQkq3NaekY0Ol0aGpqgq2trUlN\nFefPn4enpyeGDh2Kzs5OlJaWEucIV65cQUNDA6ZPn447d+4Qn2N6vR56vZ7K56OJuedSQkOIxuzv\ngTfffBMtLS1wdnbmmvhIzNTy8nLs3LkTSqUS48aNQ3h4OMaNG0cUk0qlQkNDAzw8PLh80ZwQaq5o\nbly6dOlX/41k+9O+6HQ6XL9+HW5ubiadn7R0BgNzy++am5uRnp6OtrY2RERE4OzZsyYZdYZcf+LE\niWb3s2psbERGRgZqamowcuRIzJ07Fw4ODrzGRKMGFTparRbNzc2QSCSwsrIi1jE07hQVFcHLywt/\n+ctfMHnyZCKthzXtGDCmfo+Pj4dcLudeC/WBEmMYzHvM40B2djbeeusto97T1dWF77//07RBEgAA\nIABJREFUnmsqmzlzJoYMGWL0996/fz8mT56MiRMnYtiwYUa/fzAx1LUA+YMQhrVuGpw4cQIzZsww\nub6uq6vD008/zb1ubGwkXounqUUTc6/9mY/y+MJ8FH4Qko8CmL+XIjQfBRg8L8Xcrp00/Q/aXgqD\nweAX1mzMGCis2ZjBYDBMRKlUIiEhAZ2dnfj444+RnZ0NPz8/Iq21a9di6NChKCwsxAsvvICWlhZ8\n+eWXRuvEx8dj6dKlOHr0KBQKBXx8fIiefAfofr6GhgbY29ujvb0d586dg5eXF5WFsqCgILMxqhj8\nEBERgc7OTtja2nINO8ZsxTlYtLa24sKFC/0W73x8fHiLx8/PDz4+Pv2aKkjjycrKgo+PDy5cuICk\npCT4+voST3ylxa5du1BdXY2ysjJkZGRALpcjMTGR15gGc/qPKdfOffv2ISQkhHt9+PBhzJ8/n0pc\npCxfvhxTpkxBTk4OXnvtNVRUVGDXrl286QC9WxY///zzmD17NnHznoH7JzOQTmqIioqCvb09zp07\nh4yMDAQHBxNPTfPz88ORI0eoTypMTU0l3jaaVi4lNGhOlh8saJj0jEfP1atXMXHiRJMapAC691Ba\ntQzNOkaIueKxY8dw6NAhiEQiaDQayGQyzJkzh9eY1qxZg82bN3MPxkRFReGzzz4zSsNwzy0uLsbw\n4cPh5uaGyspK3Lt3j3hCUWhoKOLi4ky+NtHSGUxMye+EmJ8vXboUixYtQlxcHFJTU036fH2vU19/\n/TVCQkJ4z/VpEhgYiODgYO5v5uDBg2a104AQSUlJQW5uLp555hmoVCq8/vrrxDnsihUroFarYWtr\nCwAm3Wd6enqQl5eH5uZm+Pn54fr16/jjH/9IpEUDmvcrw1R/AETbRw/GPebo0aNISkpCc3MzLC0t\nMXz4cKSnpxNp0eLYsWP417/+xTV9mNLg/84778DLy4ub7njp0iWipvPi4mJcv34dN27cQGtrK4YM\nGYJPP/2UKKbTp09DKpVyry9dukTULK5QKPDNN9+gqqoKI0aMwLBhw5CTk0MUU3l5OZKTk9HR0cHV\nRKR/w4GBgUhJSSF6b1/uv2euXbuWOCZaWkL0UQBh1h/MR2EIFSHWxoDwfBSAnpcixDpNiD4KMHhe\nCvNRHo0Wg8HgH9ZszBgofDcbi3j97gwGg0GByMhIbN68GRs2bIBYLMZ3331HvIikUqmQlJSEoKAg\nbN++HaGhoUQ6Z86cgVwuR15eHtLS0jBv3jziZmOan2/lypVITk7Gpk2b4ObmhqSkJHz11VcDfv/u\n3bsfONbU1AT23MqjQYiLGrTo7u5GQkIC32E8QHBwMGbPng2JRGKy1qlTp5CSkoL6+npkZWUhOjoa\nH374oVEao0ePRlVVFZUJbtnZ2fD19UVaWho2btyIsLAw3s+nkpISHDp0CDKZDFZWVtBoNLzGAwBh\nYWHc13V1dUTb1tK+dmq1WhQWFkIul0Ov16OnpwcFBQW8L5K1trZCLpfj7NmzWLFiBZYtW8arDtC7\nBXVJSQm+/vpr3Lp1C5MmTSJuPNZoNGhra8OwYcPQ2tqKnp4eopiUSiW2bNmC0tJSADDpHiqRSKDT\n6YibFHU63QPHmpqakJmZSdyoQSuXEhqGa8GePXswa9YsuLm5oaKiAsePH+c5MromPYOc3bt3D2hr\n9PvZtm2bUfn4r0HzHkqrlqFZxwgxV1QoFEhNTYVIJEJ3d7cgmo1VKhU37cfa2hoqlcpojffeew8A\nsHjx4n7NTMHBwcRxdXZ2UmkQpqVDg8GojYWYn6vVarz00kvYt28fANPylr7XKUPTozkxYsQITJ8+\nHSKRCC4uLsjIyOA7JJSWlvab6hcWFgZPT0++w6JGbm4uDh8+DKD33FywYAFxDtvV1YX9+/dTiWv1\n6tX461//im+//RYBAQHYsWMHkpKSjNYpKipCfHw81Go1bGxsIJfLibbspnm/6vuQZH19PTIzM416\n/2DcY1JSUpCSkoLFixfjyy+/FMSDgAkJCUhISKCyltTc3IxFixYBAKRSKU6cOEGk8/zzz6OtrQ2V\nlZWYOHEi8eRuAEhMTOzXbHz48GGiZuMTJ04gKysLMpkMCoUCa9euJY7po48+wpo1a7B161a89957\nyMvLI9by8vLCxYsX4enpCZGo10I1Jv/44Ycf8MMPP6CqqorLF3p6elBbW2t0LDS1AGH6KIAw6w/m\nozzeMB/l0SM0HwWg56UIsU4Too8CmO6lMB+FXy0Gg8FgMAYKazZmMBiPPRqNBi4uLtxrrVZLrKXV\natHW1gYHBwfExMSgrq6OSMfS0hKRkZFwd3eHWCyGtbU1cUw0P19bWxtqa2thaWmJsLAwFBYWGvX+\n/Px8rF+/vl9hZ21tbdKWSIyBI8RFDVro9XqsWrUKo0eP5o6RNOzQZty4cViyZAmVpoaEhASkpqZi\n4cKFEIvFKC8vN1rj9u3bCA0NpbJlVFdXF2JjY+Hk5ARHR0dBbEMlkUiQk5ODrq4uFBQUUFmcNJW+\n23Da2dkRPUFP89qZnZ2NrKws3LhxAwsXLoRer8eQIUNM2s6aFhKJBPfu3cPYsWOxbt06qNVqXnWA\n3olkdnZ2kEgk0Gq1aGxsRFpaGjo7O7FlyxajtFavXt1vCsKqVauIYho1ahRiYmLQ0tKC1NRUk7Z6\ntbCwwJw5czBp0iRYWloaPc3kxRdfxIQJE7hJKHq9HjY2Nli6dClxTLRyKaHh6uoKoPc6LJVKIRaL\n4erqKgiDh6ZJz/htrl27Bg8PD5w/f77f8fz8fKLcxd3dHUqlsl++TwLNeyitWoZGHbNr1y7u+iS0\nXNHV1RWnT5/mHj5wcXGBUqkEAJN/n6Q4OzsjJiYGkydPxpUrV0zaTtfW1hbR0dEYO3YsKisrYW9v\nT6xlb2+PoKAgeHp6cg/IkPz+aOnQYDBqYyHm53PmzMGSJUugVCqxevVqzJo1i1hLiLk+TSorKyGV\nSuHs7AylUomnnnoK/v7+sLCw4G3C8bZt2xAbGwsHBwfcvXsXy5cv55pzzQFra2vk5eVh/PjxKC8v\nN2ntjeZ9pqmpCX5+fsjNzeW0Sdi+fTvi4+Nha2uLxsZGyOVyoiZ2V1dXFBQUcJNxTblf1dTUcF+3\nt7fj8uXLRscD0L3H6HQ6iMViWFpaorm5Gf/5z3+ItWgxdepUXLt2DWPGjOGOkeYGzz//PN555x2M\nGzcOFRUVeO6554jjcnd3R21tLX788UfU1tbiz3/+s1Hvz8zMRGZmJn755RcEBARwdSTpZ9NoNNya\nRnFxMW7evEmkA/TmmVOmTIFIJMKLL76I2NhYYq2ioiIUFRVxOaixk6ldXFxgaWmJgoIC7mcsEon6\nNWDxoQUI00cBhFV/GGA+yuMN81EePULzUQB6XooQ6zSh1lameinMR+FXi8FgMBiMgWKhZ49RMhiM\nx5zjx48jMTERVVVVePbZZzFv3jzihQONRgORSAS1Wo3CwkJMmTIFjo6ORut0dHSgrKwMkyZNQk9P\nDyoqKjBhwgSimGh+vuzsbBw/fhzh4eFwd3fHJ598gqioqAG//9SpU4IoxH6v+Pn5QSqVoq2tDe+/\n/z4CAgLMZlvWixcvPnBs2rRpPETSnzfffBMtLS1wdnbmDAbSn3lQUBCio6MRGRmJL774AitXrsTB\ngweN0ggMDISDg0O/BS3SqT0qlQqlpaWQSqWwsrLChQsX8PLLLxNp0UKtViM9PR23bt3CmDFj4Ofn\nR2WKsykYtonV6/V48skn8cYbb+Dvf/+7URqDce185513iLZOfRTodDpcv34dbm5uJv3+aOgEBQVh\n/PjxmDVrFqZNm8Zt+fvJJ5/w1pCp1+tx8uRJVFZWYsyYMfD29ubiMpbq6uoHjjk5OQ34/REREdiz\nZw/R9/41aOVSQuXo0aPcNtQ6nQ6BgYG8TzKdP38+0tLSsHTpUoSEhGDz5s349ttveY3JnMnJyYGP\njw9mzJgBX19f7nh2djbR9Ht/f3/U19fD3t6ee2iAJNegeQ+lVcvQqGMeliMa4DtXfNj2oAb4mqqo\n0+lw8uRJ3Lp1C6NHj4a3t7dJZm9xcTHu3LmDkSNHmtTcRCvXF1LNMBj5nRDzcwBobGxEVVUVnJ2d\nTdo+XIi5vrkzb9487N27F3Z2dmhsbERYWBiOHDnCd1jUaGxsRHp6OmpqauDk5IS3336b+ByleX3Z\nsWMHGhoaUFJSghkzZkAsFhM9qPjBBx8gICCAaxJOSUnBpk2bABg3ZZXm/aqvlo2NDWbPnk00bRmg\nd485e/Yspk6diuvXryMxMREzZ87E3LlzifVoQHsLcZVKhdraWowcOZK4ttq6dSuqq6shEong6uqK\nyZMnY+bMmURaMpkMycnJRO/ty88//wxXV1dUV1fjyJEjkEqlxPe9vXv3IjAwEN988w2OHDkCT09P\n7u+FL06cOAFvb29BaQnRRwGEVX8YYD7K4w3zUR49QvNRAHpeihDrNKHWVqZ6KcxHEYYWg8Hgj6dm\nRPIdAuMxoeVUNK/fnzUbMxgMs0Cn06GpqQm2trYmmannz5+Hp6cnhg4dis7OTpSWlho95cHAlStX\n0NDQgOnTp+POnTtGNf/0Ra/XQ6/XU/l8NLl69SrUajX3hCnpz4kxcIS4qMEYOOXl5di5cyeUSiXG\njRuH8PBwjBs3zmgdlUqFhoYGeHh4cNvh8o1SqURCQgI6Ozvx8ccfIzs7m3ibwpaWFrS3t3OvTZnI\nx/h1Ll269Kv/RrL9KQCEhoYiLi7O5PsULR2gNz+gdd9saGiAvb092tvbce7cOXh5eRE1M+zevRsR\nERGCuZ/ThmYuxRgYBw4cwPz586mY9IyBEx8fD7lczr3m27wwmHm0oFHLCLWO+T1g+NkDxjWk9aW5\nuRnp6eloa2tDREQEzp49a1YNEzTzVyHWxrQ+H63852F0dHQIYiqYOVNSUoK9e/dydWNoaKhJTZ1C\nRKj14/Xr11FZWQk3NzfiKZYymeyhx42dsmpo4uvs7OSuU0JoSqJJXV0d6uvr4eHhgc7OTt6vLfv3\n78fkyZMxceJEDBs2zCSt27dvIz8/H21tbdyx8PBwo3Vu3boFFxcXLi8z7BBAQnV1NfE69//C3O4L\narUap0+f7pcj/OMf/+BdS4g+CmDe9YcQc0Vzh/kojze0fBRAeF4K81EeP4Tso9DWYjAY/MOajRkD\nhe9mYxGv353BYDAosGjRIjz//POYPXu2SdvuAUBcXBw3mcHa2hpxcXFEiz9RUVGwt7fHuXPn8Oqr\nr2L9+vVQKBREMc2bNw9Hjhwx+bM9jNTUVAQEBBj9vrVr12Lo0KEoLCzECy+8gJaWFrNYJBPidLK+\nODo64rXXXuMWTl966SW+Q/rdsXv3buJtydrb2/HFF1+YZOjs2rUL1dXVKCsrQ0ZGBiIiIpCYmEik\nFR8fj6VLl+Lo0aNQKBTw8fFBYGAgkVZkZCQ2b96MDRs2QCwW47vvviNaJIuIiEBnZydsbW25pqlP\nPvmEKCZaHDt2jJtiqtFoIJPJeJ9iCgBr1qzB5s2bOVMnKioKn3322YDff+7cOQC906SGDx8ONzc3\nVFZW4t69e8QTijo7O6ksatHSAYCCggKkpKSgvr4eWVlZiI6OxocffkiktXLlSiQnJ2PTpk1wc3ND\nUlISvvrqK6N1ioqKqH0+w7QIAETbu9LWAejlUkKltLT0gaadqVOn8hqTVqvFypUrIZFI8Morr5hd\nE5FQ6dtoDMCkRmOtVovm5mZIJBLiPGHhwoX9/m7Xrl1LfA+lVcsMZh0jBLZs2dJvutnevXuJt7Sm\nhUKhwDfffIOqqiqMGDECw4YNQ05ODpHWmjVrsGjRIsTFxUEsFkOhUFBrNv7ggw+wefNmXnVo5a80\na2Mh5ue08p+HERISQpxvMAbGc889h4SEBL7DGDSEWD8CQGtrK6qqqtDd3Y0bN27gxo0b8PHxMVqH\nxuRYoDdH8PHxodJck5WVBR8fH1y4cAFJSUnw9fXlfVv6+9dJwsPDiddJaGGYtJybm4vW1lYMGTIE\nn376KZFWeHg4wsLC8Ic//MGkmAoLC5Gbm4uRI0fizp07eP3114nWhAEgJibmgWM01k1NuS/s27cP\nISEh3OvDhw9j/vz5JsdkCv/85z8xZcoU5OTk4LXXXkNFRQVxgzAtLSH6KMDjUX8wH6U/zEdh/BZ8\n+ygAPS9FiHWaUPNgIXop5uyj0NZiMBgMBmOgsGZjBoPx2HPgwAGUlJTg66+/xq1btzBp0iTMnj2b\n6ElXjUaDtrY2DBs2DK2trejp6SGKSalUYsuWLSgtLQUAmDJEXiKRQKfTmVRY63S6B441NTUhMzOT\naJFMpVIhKSkJQUFB2L59O0JDQ4ljExKG5oA9e/Zg1qxZcHNzQ0VFBY4fP85zZL3QbB5g/G+uXbsG\nDw8PnD9/vt/x/Px84kWybdu2mWzMl5SU4NChQ5DJZLCysoJGoyHWOnPmDORyOfLy8pCWloZ58+YR\nL5JpNBq4uLhwr7VaLZFOd3e34MxwhUKB1NRUiEQidHd3C2KBDOi9Dhsm/lhbW0OlUhn1/vfeew8A\nsHjx4n4NcsHBwcQx2dvbIygoCJ6entw9i+TvhZYOACQkJCA1NRULFy6EWCxGeXk5kQ4AtLW1oba2\nFpaWlggLC0NhYSGRjru7O2JiYvp9PlKjqa/5Vl9fj8zMTCo6WVlZRDoAvVxKqGzbtg2xsbFwcHDA\n3bt3sXz5chw+fJjXmJYtW4Zly5bh7t272Lt3L9atW8floIzBo6ioCPHx8VCr1bCxsYFcLifaRjwl\nJQW5ubl45plnoFKpjG78uHbtGn766SfU19cjIyMDANDT04OamhqjYzFAq5ahUccIkdbWVjQ3N+PH\nH3+EUqkE0JvDXLx4kfdm4xMnTiArKwsymQwKhQJr164l1lKr1XjppZewb98+AGTnwenTpyGVSrlz\n06BTVFTEi05faOWvNGtjIebnNPKf3bt3P3CsqanJpHUSxsAQYmMoTYRYPwK9NdXs2bMhkUhM0jl1\n6hSVBydHjx6NqqoqKs3G2dnZ8PX1RVpaGjZu3IiwsDDezyma6yS0eP7559HW1obKykpMnDgRkydP\nJtZ64YUX8P/+3/8zeUJybm4uV7fo9XosWLCAuNm4b75TV1eHkydPGvV+2vcFrVaLwsJCyOVy6PV6\n9PT0oKCggPdm49bWVsjlcpw9exYrVqzAsmXLeNcSoo8CCKv+YD7KwGA+CsOAUH0UgF6OIMQ6Tah5\nsBC9FHP2UWhrMRgMBoMxUFizMYPBeOyxsLCAnZ0dJBIJtFotGhsbkZaWhs7OTmzZssUordWrV/eb\ngrBq1SqimEaNGoWYmBi0tLQgNTUVzs7ORDpA7+ebM2cOJk2aBEtLS6InVF988UVMmDCBe8JVr9fD\nxsYGS5cuJYpJq9Wira0NDg4OiImJQV1dHZGO0HB1dQXQu0WhVCqFWCyGq6urYIp2ms0DjP/NzZs3\n4eHhgfXr18PX15c7fu/ePWJNd3d3KJXKfotJxiKRSJCTk4Ouri4UFBSYZF5aWloiMjIS7u7uEIvF\nsLa2JtYKDg7GggULUFVVhSVLliAoKMio9+/atYu7Nq1atQqjR4/m/o3vhRFXV1ecPn2aWzR3cXHh\nGotM+V2airOzM2JiYjB58mRcuXKFeJs0W1tbREdHY+zYsaisrDRp+su8efOI3zsYOgAgFotRU1MD\nCwsLNDc3m2Q4BQUFYePGjQgPD0d3dzfxdsi2trYAgMuXL3PHSJuN+zYTtre399M0RceURlVauZSQ\nMUyLMFy3+ObMmTPIz89HdXU1PDw8qE3BY/xvtm/fjvj4eNja2qKxsRFyubxfI+RAMbXxw9LSEiJR\n79KOSCSCXq/HE088gW3bthkdiwFatQyNOkaIXLx4ESdPnkR1dTVnNInFYuKGHZpoNBro9XoMGTIE\nxcXFuHnzJrHWnDlzsGTJEiiVSqxevRqzZs0yWsNwvUxMTERISAh3zTRM03/UOn0xNX81QLM2FlJ+\nboBG/pOfn4/169f3u2daW1sT51KMgSPExlCaCLF+BIBx48ZhyZIlJk8Yo/Xg5O3btxEaGso1WZhC\nV1cXYmNj4eTkBEdHRyqapkJznYQm7u7uqK2txY8//oja2lrimu/atWt4++23YWdnx63rpqamGq1j\nbW2NvLw8jB8/HuXl5SbdY/rmhnZ2dkZPI6Z5X8jOzkZWVhZu3LiBhQsXcnkQrd0YTEEikeDevXsY\nO3Ys1q1bB7VazbuWEH0UQFj1B/NRBgbzURgGhOqjAPRyBCHVaUL2UQBheinm7KPQ1mIwGAwGY6BY\n6IXgjjIYDIYJBAUFYfz48Zg1axamTZvGGY6ffPIJb4sIer0eJ0+eRGVlJcaMGQNvb29iI7S6uvqB\nY05OTkZpREREYM+ePUTf/2FoNBqIRCKo1WoUFhZiypQpcHR0pKbPN0ePHuW2+tHpdAgMDOT96VsA\nmD9/PtLS0rB06VKEhIRg8+bN+Pbbb/kOy6yJj4/vt036O++8Q7xNur+/P+rr62Fvb88teBtrEKnV\naqSnp+PWrVsYM2YM/Pz8iKcTdXR0oKysDJMmTUJPTw8qKiowYcIEIi3DlnRNTU2wtbU12lS9ePHi\nr/7btGnTiGKihVC3BdTpdDh58iRu3bqF0aNHw9vbm9jMLi4uxp07dzBy5Eg899xzlCPll/Lycuzc\nuRNKpRLjxo1DeHg40cQeodL3/LSxscHs2bOJJqvS0vk9UFJSgr1796KjowM2NjYIDQ3l/e/mwIED\n8Pb25sw+xqPhgw8+QEBAAMaOHYuKigqkpKRg06ZNAGDU9Tg4OBj+/v5c40dqairRlsFpaWlYsGCB\n0e97GLRqGRp1jJDZsGED9zsXCj///DNcXV1RXV2NI0eOQCqV4uWXXybWa2xsRFVVFZydnWFnZ0es\nk52djbfeeot7Tfqzo6VjQKfTEeevBmjWxkLKz2ly6tQpQTR9/R7x8/ODVCpFW1sb3n//fQQEBBA1\nKQqVh9WRfNePAPDmm2+ipaUFzs7OJjWHBgUFITo6GpGRkfjiiy+wcuVKHDx40GidwMBAODg49GsM\nJq1lVSoVSktLIZVKYWVlhQsXLph0n6EBzXUSWmzduhXV1dUQiURwdXXF5MmTMXPmTF5jamxsRHp6\nOmpqauDk5MQ1MJMgk8m4Rqcnn3wSb7zxBv7+978P+P2DcV8wZb1usNHpdLh+/Trc3NxMPjdN1RKi\njwIIq/5gPopxMB+FYUBoPgpAL0cQUp0mZB8FEKaXwnwUBoPxOPHUjEi+Q2A8JrSciub1+7NmYwaD\n8dij0+moGWcNDQ2wt7dHe3s7zp07By8vL6KF1927dyMiIoJXQ28wOX/+PDw9PTF06FB0dnaitLSU\neEIHY+AcOHAA8+fPp9Y8wHj8MBiVtLhy5QoaGhowffp03Llzh7gByM/PD0eOHKEaG2NgGBYoAeOa\n2ww0NzcjPT0dbW1tiIiIwNmzZ6mZfh988AE2b94sGB2h0NjYiIyMDNTU1GDkyJGYO3cuHBwc+A4L\nWq0Wzc3NkEgkJk2AppVLMRhCRyaTPfS4hYWFUdPdDI0fRUVF8PLywl/+8heTttqmgbnXMr8nOjo6\niKdOnj59GlKplHt96dIleHl50QqNdxYtWoTnn3+eeOtwA7RrY6Hn56mpqSZN8b569SrUajWXv5rD\nOoIQDXUDQmwMZQwcmg9OqlQqNDQ0wMPDg3tojk+USiUSEhLQ2dmJjz/+GNnZ2fDz8yPWa2lpQXt7\nO/eadGIdLW7dugUXFxeukciU+urXyMnJgY+Pj1HvEdrPSWhcunTpV/+NJAcKDQ1FXFwclZyalpYQ\nfRTAvOsP5qPwA/NRGABdL0XodRrjt/k9+Ci0tRgMxqNnxPT3+Q6B8ZjQWrCd1+8v4vW7MxgMBgUK\nCgqQkpKC+vp6ZGVlITo6Gh9++CGR1sqVK5GcnIxNmzbBzc0NSUlJ+Oqrr4zWKSoqorY4ZpgWAfz/\nxbGx29PR1oqLi+O26La2tkZcXJxZLZKVlpY+MLVw6tSpfIcFrVaLlStXQiKR4JVXXmFPzj4CioqK\nEB8fD7VaDRsbG8jlcpOmfZrazLdw4cJ+f7Nr164l3o48KioK9vb2OHfuHF599VWsX7+eaJIi0Lsl\nmU6nGxQDjW+2bNmCqKgo7vXevXsRFhbGY0S9KBQKfPPNN6iqqsKIESMwbNgw5OTkGK2zZs0aLFq0\nCHFxcRCLxVAoFEYvkhmakTIyMrhjer0eRUVFvOgInRUrViA4OBivvvoqKisr8e677xJPmMvKyoKP\njw8uXLiApKQk+Pr6Em2NrVAokJeXB0dHR6hUKsycOROLFi0iiolWLiVUTpw4gf3790MsFkOj0WDJ\nkiXw9vbmOywGDxhyYVP56KOPoFarYWtri7KyMpSXlxPf22lBq5ahWccIEX9/f26qX319PaysrPDv\nf/+b77D6ERISQvwzT0xM7NdsfPjwYeJm42PHjuHQoUOwsrKCVquFTCYjmnhGSwfobUAoKSnB119/\njVu3bmHSpElEjcc0a2Mh5ec6ne6BY01NTcjMzCRuNl67di2GDh2KwsJCvPDCC2hpaTGLdQRDbbBn\nzx7MmjWL2zL4+PHjPEcGODo64rXXXuOM9ZdeeonvkH6X7N69m2hb6/b2dnzxxRcm19m7du1CdXU1\nysrKkJGRgYiICCQmJhJpxcfHY+nSpTh69CgUCgV8fHwQGBhotE5kZCQ2b96MDRs2QCwW47vvviNu\nNo6IiEBnZydsbW25fIPvXKqwsBC5ubkYOXIk7ty5g9dff92kBzUehqEWHCg0f06G+7FIJIJGozHp\nfkyLNWvWYPPmzVxDZ1RUFD777DOjNM6dOwegd2rh8OHD4ebmhsrKSty7d48o9+/s7KTmD9DSEqKP\nAgiz/mA+ysBgPgrDgNB8FICelyKkOk3oCNFLMUcfhbYWg8FgMBjGwpqNGQzGY0+ed8sjAAAgAElE\nQVRCQgJSU1OxcOFCiMVilJeXE2u1tbWhtrYWlpaWCAsLQ2FhIZGOu7s7YmJi4OnpyRWNpItIfYvW\n+vp6ZGZmEuk8TCsrK4tIR6PRoK2tDcOGDUNrayt6enqIYxIi27ZtQ2xsLBwcHHD37l0sX74chw8f\n5jssLFu2DMuWLcPdu3exd+9erFu3DqWlpXyHZdZs374d8fHxsLW1RWNjI+Ryeb/i3RhSUlKQm5uL\nZ555BiqVyiiz6dq1a/jpp59QX1/Pff+enh7U1NQQxQL0ThLasmULdw6ZstmFhYUF5syZg0mTJnFb\nm/Ft7plKa2srmpub8eOPP0KpVAIAuru7cfHiRd4XyIDehsesrCzIZDIoFAri7S7VajVeeukl7Nu3\nDwDZeWAwhBITExESEsJpGDuhgZaO0BkxYgSmT58OkUgEFxcX4msK0LudvK+vL9LS0rBx40aEhYUR\nNRt///33nCmo1+sREBBA3GxMK5cSKgkJCUhOTsaQIUPQ3d0NmUzGmo1/p5w6dYqKUd/V1YX9+/cP\nQoTk0KplaNYxQuT+ZoodO3bwFElvI9v9NDU1Ed3XMzMzkZmZiV9++QUBAQGchqurK3F8CoUCqamp\nEIlE3LWTpCmJlg7Qm1/Y2dlBIpFAq9WisbERaWlp6OzsxJYtWwasQ7M2FlJ+/uKLL2LChAlcc41e\nr4eNjQ2WLl1KHJNKpUJSUhKCgoKwfft2hIaGEmsJCcPfxu3btyGVSiEWi+Hq6oqEhASeI6NnrDMG\nxrVr1+Dh4YHz58/3O56fn0/UbLxt2zYqD+2VlJTg0KFDkMlksLKygkajIdY6c+YM5HI58vLykJaW\nhnnz5hE1G2s0Gri4uHCvtVotcUzd3d2C+HvrS25uLreOqNfrsWDBAurNxsZC8+dE835MC5VKxe3m\nYG1tDZVKZbTGe++9BwBYvHgx4uLiuOPBwcFEMdnb2yMoKKhfTk1yLaCpJUQfBRBm/cF8lIHBfBSG\nAaH4KAB9L0VIdZpQEbKXYo4+Cm0tBoPBYDCMhTUbMxiMxx6xWIyamhpYWFigubnZpCdCg4KCsHHj\nRoSHh6O7uxvPPvsskY6trS0A4PLly9wx0mbjvgVwe3t7P01TtUgXWFavXo2QkBDu9apVq4hjEiqG\nQs1grAqBM2fOID8/H9XV1fDw8KA2UY/x60yYMAEqlQpPPvkk6urqMGHCBG7Kl7ETN0wxmywtLSES\n9aZtIpEIer0eTzzxBLZt22ZUDH0ZNWoUYmJi0NLSgtTUVDg7OxNrbdiwgfi9QuXixYs4efIkqqur\nOZNJLBbzbhAa0Gg00Ov1GDJkCIqLi3Hz5k0inTlz5mDJkiVQKpVYvXo1Zs2aZbSGYRtCuVzeb7KS\nsfcYWjpCp7KyElKpFM7OzlAqlXjqqae46ZjGTjju6upCbGwsnJyc4OjoyJmrxmJnZ4ekpCSMHTsW\nFRUVsLOz45okjM1faOVSQsXKygplZWUYP348ysrKzHYSCeO3oWXU6/V6rFq1CqNHj+aOkTYh0IJW\nLUOzjhEifY3Tjo4OXL16lbdY8vPzsX79+n51i7W1NdE1eO7cuZg7dy5kMhm1esPV1RWnT5/mJr66\nuLhwBmTfZrNHpQP03q/Gjx+PWbNmISQkhDPkjDV6adbGQsrP//SnP2HPnj0madyPVqtFW1sbHBwc\nEBMTg7q6Oqr6fBMcHAyZTAaRSASdTkfcnEYTWsY6Y2DcvHkTHh4eWL9+PXx9fbnj9+7dI9Jzd3eH\nUqk0+vp2PxKJBDk5Oejq6kJBQQEkEgmxlqWlJSIjI+Hu7g6xWAxra2sineDgYCxYsABVVVVYsmQJ\ngoKCjNbYtWsXt2YntFzK2toaeXl5GD9+PMrLy4l/Tv8LY9cqaf6caN6PaeHs7IyYmBhMnjwZV65c\nwahRo4i1bG1tER0djbFjx6KyshL29vZEOvPmzSOOYbC0hOijAMKsP5iPMnCYj8IAhOOjGL4fTS9F\nSHWaUBGyl2KOPgptLQaDwWAwjMVCL5TMn8FgMAgpLy/Hzp07oVQqMW7cOISHhxu99amQWbduHfe1\njY0NZs+eTbz9EE0tc6akpOSB7b+EsNXWgQMH4O3tbdJUMYZxyGSyhx4n2TovODgY/v7+nNmUmppq\n9HZbaWlpWLBggVHv+TX0ej1OnjyJyspKjBkzBt7e3uyp54ewYcMGbNq0ie8wHuDnn3+Gq6srqqur\nceTIEUilUm6ByVgaGxtRVVUFZ2dn2NnZUY6UMZioVCqUlpZCKpXCysoKFy5cIDoPYmJifvXfwsPD\nTQnR7KisrMSBAwdQU1MDJycnLFq0CG5ubnyHxeCBoKAgREdHIzIyEl988QVWrlyJgwcPGq1z8eLF\nB45NmzaNRoi8Y+61R3Z2Nve1jY0Npk2bxjVKPGpOnTpl9Padv4UhN6BB33PhfrZu3frIdQBAp9NR\n29qcFuaen2s0GohEIqjVahQWFmLKlClwdHTkOyyzZv78+UhLS8PSpUsREhKCzZs349tvv+U7LLMn\nPj4ecrmce/3OO+/0m5I6UPz9/VFfXw97e3tu8p2xDycCvVPY0tPTcevWLYwZMwZ+fn6wsbExWgfo\nfbimrKwMkyZNQk9PDyoqKjBhwgSjdfR6PfR6PZqammBra0t0PX5YDmWA71yqsbER6enpXM3w9ttv\nU6+1s7Oz8dZbbw34/7//52VhYQEvLy+i703zfkwLnU6HkydP4tatWxg9ejS8vb1Nus8XFxfjzp07\nGDlypCDWhGnBfBR+tMwZ5qMwDAjNRwHoeSnmXqfRRIheCvNRGAzG48SI6e/zHQLjMaG1YDuv3581\nGzMYDMYg0NjYiIyMDNTU1GDkyJGYO3cuHBwc+A4LQO80oebmZkgkEuLpBQ0NDbC3t0d7ezvOnTsH\nLy8vVlgxGL+BwWwqKiqCl5cX/vKXv2Dy5Mm8xbN7925ERERQabKQyWTcApthq2VjFxEZptHR0UE0\n1fb06dOQSqXc60uXLhEbjseOHcOhQ4dgZWUFrVZLvJUqLR0DdXV1qK+vx8SJE4l/TkDvzyY+Ph4d\nHR3Q6XTEZj+DwTAPzNmoF3ItIzRUKhVUKhUcHR3NrmmyvLwcycnJ6Ojo4CaUmcP2rgZOnTqFlJQU\nblvs6OhofPjhh0br0KyNhZif08zzz58/D09PTwwdOhSdnZ0oLS0l3gFKiJSWlj7QbDN16lReYzpw\n4ADmz59PxVhnPL4Y/nZpceXKFTQ0NGD69Om4c+cOnJycjNbw8/PDkSNHzLpRp6WlBe3t7dxr0km7\nx44dw7/+9S+o1WqTrsOGZnOgtzF3//79/ZrizQVDIztg/CRNA83NzUhPT0dbWxsiIiJw9uxZKg91\nffDBB9i8ebPJOrS1hIBQ6w/mozAY/MB8FMZgYk4+Cm0tBoPBP6zZmDFQ+G42FvH63RkMBsNMWbFi\nBYKDg/Hqq6+isrIS7777LnFDUlZWFnx8fHDhwgUkJSXB19cXf/vb34i0FAoF8vLy4OjoCJVKhZkz\nZ2LRokVG66xcuRLJycnYtGkT3NzckJSUhK+++oooJiFy4sQJ7N+/H2KxGBqNBkuWLIG3tzffYTF4\ngFYTAgB89NFHUKvVsLW1RVlZGcrLy3lt2CgqKqI2za3vZIH6+npkZmZS0RUC/v7+3DaA9fX1sLKy\nwr///W++w3qAkJAQooXJxMTEfotkhw8fJl4kUygUSE1NhUgkQnd3N/HCFi0doHdr3erqapSVleHr\nr79GeHg4EhMTibQ+//xzbnrp9u3bBXHfi4+Px9KlS3H06FEoFAr4+PggMDCQ77B+V4SGhuLLL7/k\nOwwGD7S3t+OLL74waethoUKrlqFZxwiRnTt3oqysDG5ubqisrMT48ePNalvkjz76CGvWrMHWrVvx\n3nvvIS8vj1iL1rlA85xKSEhAamoqFi5cCLFYjPLyciIdmrWxEPPz+3WysrKIY4qLi+O2sLa2tkZc\nXJxZNRtv27YNsbGxcHBwwN27d7F8+XJu+2e+0Gq1WLlyJSQSCV555RVBTBr8PVBUVIT4+Hio1WrY\n2NhALpcTT8Ok0ei2cOHCfrXi2rVridcioqKiYG9vj3PnzuHVV1/F+vXriSYNSiQS6HQ6s8yjACAi\nIgKdnZ2wtbXlGolIf+YJCQlISEiARCIxKaYdO3YgNDQUFhYW2L59O15//XVirS1btiAqKop7vXfv\nXoSFhZkUn6koFAp88803qKqqwogRIzBs2DDk5OQQaa1ZswaLFi1CXFwcxGIxFAqFUc3GhmakjIwM\n7pher0dRUZHRsdDUEjJCrD+YjzIwmI/CMMB8lIFhzj4K8Hh4Kebko9DWYjAYDAZjoLBmYwaDwRgE\nRowYgenTp0MkEsHFxaXfgqCxZGdnw9fXF2lpadi4cSPCwsKIF8m+//57bjFLr9cjICCAaJGsra0N\ntbW1sLS0RFhYGAoLC4niESoJCQlITk7GkCFDuOKMLZL9PqHVhAAAXV1d2L9/P8XoTMPd3R0xMTHw\n9PTkDD5Ss7+mpob7ur29HZcvX6YSoxC43wDYsWMHT5H0snv37geONTU1wdjNSjIzM5GZmYlffvkF\nAQEB3PtN2V7Q1dUVp0+fhpubGyoqKuDi4gKlUgkAcHFxeeQ6QO92jocOHYJMJoNIJIJGozHq/X3R\n6XTcZJ2nn34axcXFxFq0OHPmDORyOfLy8pCWloZ58+axZuNB4mG5XFNTE+7evctDNAwhsG3bNrMy\niftCq5ahWccIkeLi4n5NEOZ2/dVqtZgyZQpEIhFefPFFxMbGEmvROhdonlNisRg1NTWwsLBAc3Mz\nccMbzdpYiPn5/TqlpaVEOgCg0WjQ1taGYcOGobW1FT09PcRaQsXQhGAw2Plm2bJlWLZsGe7evYu9\ne/di3bp1Jv0OGQNj+/btiI+Ph62tLRobGyGXy4nupSkpKcjNzcUzzzwDlUqF119/HQEBAQN+/7Vr\n1/DTTz+hvr6e+/49PT39/q6NRalUYsuWLdx5RHqeW1hYYM6cOZg0aRIsLS1NasYVIt3d3UhISKCi\nNXXqVFy7do2bSgwYXxcDwGeffYbIyEjU1dVh9+7dRJNVW1tb0dzcjB9//JGr0bu7u3Hx4kXem41P\nnDiBrKwsyGQyKBQKrF27llhLrVbjpZdewr59+wAYf54b7gWJiYkICQnh3k8yyZumlpARYv3BfJSB\nwXwUhgHmowwMc/ZRAGF5Kb8HH4W2FoPBYDAYA4U1GzMYDMYgUFlZCalUCmdnZyiVSjz11FPcE53G\nPpXf1dWF2NhYODk5wdHRkXj7dwCws7NDUlISxo4di4qKCtjZ2eH8+fMAjCuOg4KCsHHjRoSHh6O7\nuxvPPvsscUxCxMrKCmVlZRg/fjzKysrMdtIK47eh1YQA9C5Mr1q1CqNHj+aOvfvuuzTCJMLW1hYA\n+i1okS6SxcXFcV/b2NggJCTEtOAERF+Do6OjA1evXuUxGiA/Px/r16/vtyhmbW1t9HV47ty5mDt3\nLmQyGTdhzlREIhFOnDjBvRaLxdy5sXXr1keuA/ROzMrJyUFXVxcKCgpMmgb19ttv4969e5DJZAgM\nDMQrr7xCrEULS0tLREZGwt3dHWKxGNbW1nyHZLbcb+4CgLOzM+Lj43mMisEn7u7uUCqVZrlwT6uW\noVnHCJERI0bg4MGDGD9+PMrLyzF8+HC+Q6LKyy+/jHv37mH27Nl488034enpSaxF61ygeU59+OGH\n2Lp1K5qbm7Fx48Z+ExqNgWZtLMT8nGaev3r16n7vN6dJ4ADw/vvv4/3330dHRwdsbGzw/vv8b315\n5swZ5Ofno7q6Gh4eHtTyfsb/ZsKECVCpVHjyySdRV1eHCRMmQKfTAYBRU/Fyc3O56dh6vR4LFiww\nqtnY0tISIlGv/SMSiaDX6/HEE09g27ZtRnya/owaNQoxMTFoaWlBamoqnJ2diXQ2bNhAHMPjAM31\nH7VajaNHj/Y7ZkxdbMjhgN4Hia5fv46IiAgAMHqN+uLFizh58iSqq6u5+4NYLDbqvBwsNBoN9Ho9\nhgwZguLiYty8eZNYa86cOViyZAmUSiVWr16NWbNmGfX+l19+GQAgl8vh4+PDHSd52IOmlpARYv3B\nfJSBwXwUhgHmowwMc/ZRAGF5Kb8HH4W2FoPBYDAYA8VCL4QxCwwGg8H4VVQqFUpLSyGVSmFlZYUL\nFy5wC43GEhMT86v/Fh4eThqi2VFZWYkDBw6gpqYGTk5OWLRoEdzc3PgOi8ED5eXl2LlzJ5RKJcaN\nG4fw8HCMGzeOSOvixYsPHJs2bZqpITIGmezsbO5rGxsbTJs2jVtg5INTp04ZtX3nb1FVVUVsED8O\nqNVqpKen49atWxgzZgz8/PxgY2NDpNXZ2YmysjJ0dnZCp9PBwsKCeKs0WnR0dKCsrAyTJk1CT08P\nKioqMGHCBF5jMlfS09Ph5+fHdxgMAeHv74/6+nrY29tzE/lItvo1Z2jWMUKkq6sLeXl5qK2txciR\nI/G3v/0NTzzxBN9hCRJa54K5n1NCRavVorm5GRKJhDWQPGYcOHAA3t7eJk3dYhiPTCZ76HELCwuj\ntmwODg6Gv78/91BLampqv623B0paWhoWLFhg9Psehl6vx8mTJ1FZWYkxY8bA29vb7Cas0uD+9R9T\nasf9+/dj8uTJmDhxIoYNG0YjPJPZsGEDNm3axHcY/fj555/h6uqK6upqHDlyBFKp1KQcobGxkVsv\nIZkCzeAH5qM8epiPwjDAfBQGICwvhfkoDAbjcWTEdP4fXGc8HrQWbOf1+7NmYwaDYRbU1dWhvr4e\nEydOREdHB/FT65cuXUJ8fDw6Ojq4RiLWNMBg/H65evUqJk6caJamemNjIzIyMlBTU4ORI0di7ty5\ncHBwINLKysqCj48PLly4gKSkJPj6+prVNukqlQoqlQqOjo5wdHTkOxyqlJeXIzk5GR0dHdxT/qTb\n19I6DwbzfDIlR/Dz84OPj0+/ZuW+k4V+i3Xr1v3qv5kyZeDKlStoaGjA9OnTcefOHTg5ORHptLS0\noL29nXs9atQoIp3fQy5VWlqK2tpajBo1yqRJnwwGgyFk9u3b12/K0uHDhzF//nxiPVo1Oy0dISLE\n/FyhUCAvLw+Ojo5QqVSYOXMm0RbiANDQ0AB7e3u0t7fj3Llz8PLyMqsGrhMnTmD//v0Qi8XQaDRY\nsmQJ20acYRKNjY1IT09HUVERvLy88Je//AWTJ0/mNabdu3cjIiLCqAnND0Mmk3FNynq93uhGbKFj\neNgVAHQ6Hfbv3w+5XE6kVVxcjOvXr+PGjRtobW3FkCFD8Omnnxqt09raigsXLvSr+YypZx83TMkR\nTp8+DalUyr2+dOkSUbP4sWPHcOjQIVhZWUGr1UImk2HOnDlEMdHUYj4Kg8EYDJiPMjDM3UcBzNdL\nEaKPQluLwWDwD2s2ZgwUvpuNTVsVYjAYDAGwa9cufPrpp4iKioJGozHpyfLPP/8cW7duhYWFBbZv\n344//vGPFCMlIz4+HjqdDrm5ufjHP/6BlJQUvkP63REaGsp3CAye2LZtm1kukAHAihUrMHbsWMhk\nMowbN86krciys7NhaWmJtLQ0bNy4EV9++SXFSPll586d2LhxI44fP46NGzdi586dfIdElY8++ghv\nvfUWbt++DV9fX5MmJdE6DwbzfDJla7rRo0ejqqqq33/GEBYWhrCwMGg0Grz66qtYunQpZsyYgZ6e\nHuKYoqKicOrUKezduxdWVlZYv349kU5ERARWr16Nzz//HJ9//jl27dpFHJMQcymarF69GkePHkVz\nczOOHj2K1atX8x0Sg0e0Wi3u3r0LrVbLdyiChNUxjy9arRaFhYXQ6/XQ6XTo6upCQUEBsR6tmp1m\n7S9EhJiff//99/jqq6/w+eefIzU1Fd9//z1xTCtXroSFhQU2bdqEiooKs/v9JSQk4NChQ0hOTkZS\nUhISEhL4DonBE6dOncLixYvxxhtvoKenBxs3biTS+eijj1BUVARbW1uUlZVR27bZFIqKikxuNAZ6\nH2Q4ePAgDh48iE8//RR/+tOfKEQnHHbs2IGffvoJ165dw6JFi0ya6Pf888/DxcUFQ4YMwcSJE+Hr\n60ukExwcjMrKSvT09HD/keLv74+AgAD4+/tj5syZeO2114i1BgtTav/ExMR+rw8fPkyko1AokJyc\njJSUFCQlJSEpKYk4JlpazEdhDDbMR/n9wnyUgWHOPgpg3l6KEH0U2loMBoN/9Dot+4/9N6D/+EbE\ndwAMBoNhKiUlJTh06BBkMhlEIhE0Gg2xlk6n455Iffrpp1FcXEwrTGLOnDkDuVyOvLw8pKWlYd68\neQgMDOQ7LLMkIyPjgWNNTU24e/cuD9EwhIC7uzuUSiVcXFz4DoU6I0aMwPTp0yESieDi4vLQ83+g\ndHV1ITY2Fk5OTnB0dDSrCXPFxcX9JrOY2/VXq9ViypQpEIlEePHFFxEbG0usRes8oKGze/fuB441\nNTXBlE1dbt++jdDQUOLPZdi++vbt25BKpRCLxXB1dTWpEUWpVGLLli0oLS0FAOLP193djf379xPH\n0Rch5lI0aW5uxo4dO7jXpNMdGY8/KSkpyM3NxTPPPAOVSoXXX38dAQEBfIclKFgd83iSnZ2NrKws\n3LhxAwsXLoRer8eQIUNM2n6UVs1Os/YXIkLMz+3s7JCUlISxY8eioqICdnZ2OH/+PADgz3/+s1Fa\nbW1tqK2thaWlJcLCwlBYWEgUk1CxsrJCWVkZxo8fj7KyMrNttmD8NgkJCUhNTcXChQshFotRXl5O\npNPV1UUtR6eFu7s7YmJi4OnpyZ3jxl4LAKCmpob7ur29HZcvX6YWoxD47LPPEBkZibq6Ouzevdvk\nKe7u7u6ora3Fjz/+iNraWqKf+bhx47B06VIqzeJfffVVv9d966NHDc3aPzMzE5mZmfjll18QEBDA\naRhqeWNxdXXF6dOn4ebmhoqKCri4uECpVAKA0euMtLSYj8KgBfNRGPfDfJSBYc4+CmDeXooQfRTa\nWgwGg8FgDBTWbMxgMB57JBIJcnJyuGlLEomEWOvtt9/GvXv3IJPJEBgYiFdeeYVipGRYWloiMjIS\n7u7uEIvFsLa25jsksyUxMREhISH9FqSdnZ0RHx/PY1QMPrl58yYWL14Me3t7WFpamtWWgJWVlZBK\npXB2doZSqcRTTz0Ff39/os+4Z88elJaWQiqVoru726ymWIwYMQIHDx7E+PHjUV5ejuHDh/MdElVe\nfvll3Lt3D7Nnz8abb74JT09PYi1a5wENnfz8fKxfv77f9dza2hrPPvssUUwAMGTIEOzZs6ffgt3W\nrVuN1gkODuaMPZ1Oh+DgYOKYRo0ahZiYGLS0tCA1NRXOzs5EOnq9HqtWrcLo0aO5Y6RTOoSYS9Fg\n165dsLCwQHd3N5YvX841XZlboxtj4OTm5nJTzvR6PRYsWMCaje+D1TGPJ2+99RbeeustvPPOO4iL\ni6OiSatmp1n7CxEh5ud/+MMfcO/ePVy5cgUAMGHCBK6ZyNhmt6CgIGzcuBHh4eHo7u42KS8TIh9/\n/DEOHDiAmpoaODk54eOPP+Y7JAZPiMVi1NTUwMLCAs3NzcSN5zRzdFoYJvT2bQ4maXzte3/5/9i7\n96io6/x/4M8ZBkJCE2S9wAACHr/aSmGF2+6xRc3Vo7KblyJERiErMLA0TPNytps3/KboipdASEWI\nEIXNltLQtlaPJ7xQHs9PU27GTU1gVBQYRub3h4f5ilbLvOcDn88Mz8c5nMN8aF68JJh5v96v9+f9\ndnFxsWoXWiVpf80G7i5IOXfuHObPnw8AwnNJa9asQXV1NTQaDXx8fBAYGCgU58cff8TYsWOh1Wph\nMpmsmt+6d5FVU1MTzpw5IxRHClLW/jNmzMCMGTOg0+kk2Ulco9GgsLDQ/NjR0dH8u2/pXIJUsdhH\nIamwj0L3Yx+lc+y5jwLYdy9FiX0UqWMRERF1lspkzfZeREQKcPv2beTk5KCiogKDBw9GWFgYXFxc\nhGI1NzejpKQEzc3NaGtrg0qlQnBwsMQZW6apqQklJSUYMWIEWltbUVZWhmHDhsmak73KyclBWFiY\n3GkQkYK0tLTg0KFDqK2txaBBgzBhwgQ89NBDcqelWFevXsXPP/+M3//+92hqahK+k97aOEeOHLFq\nB8ZfYzQaodfr4ebmpojd6kwmEw4fPozy8nIMHjwY48ePNze3LVFUVPTAtVGjRgnlpMSxlBR+6WfU\nTvRnRbYtKioKERER5gZKZmYmdu7cKXdaisI6htpJVbNLWfsD0o1biIjuVVpaig0bNqCyshIBAQGI\nj49HQECAxXGkHKOT7aqoqIC3tzcaGhoUU4fm5eWZP3dxccGoUaPMC9G7W1fU/lVVVcI38iod+ygk\nFfZRiOiXsJfSeVLOR3Bug8h+9P7zIrlTIBtx89sPZf3+XGxMRHbHmoF0WFgYpk6d2mGSberUqZ1+\n/tKlS3/1ayK7H7b74YcfcO3aNYwZMwaXL1+Gl5eXcKzr16/j1q1b5seenp4Wxzhx4gRSUlLQ1NRk\nnky0l7uU2xUXF6O2thaenp5W3aFKtu/OnTvQ6/Xo27evIpo6SpSSkoKXX34ZBQUF2LlzJ6ZOnWpX\nR2TZs48++qjDLlLZ2dkIDw8XirVx40ZUV1ejpKQEe/fuRUxMDNLS0mSL0+7MmTO4ffu2ebcVkZ23\ngLs7UR04cACDBg3C5cuXERoaKrSLaXFxMbZt24ampia4uLggNjYWI0eOFMpp06ZNmD9/viRH4X7/\n/feoqamx+n3P2rEUka2or69HTk4OTp48ieDgYPzpT38S3mlOKbqilpGyjqHutWjRInzwwQfo1asX\nmpubsWLFCnz4odgkZlZWFl588UWrx9JSxQGkG28otTbm+Fx+sbGx2L59u9xpkAzOnDmD3//+93Y5\nf1BfX4/c3FzU1NRg0KBBmDFjBjw8PCyOs3//fkydOhXfffcddu3ahenTp1NmmWIAACAASURBVGPC\nhAldkLE8bty4ge+++67D/KtoTbRnzx58/vnnVtehycnJD1yLj48XygkArly5gitXrmDAgAEYMGCA\ncBwlKi0tRUZGBpqamszzCOvWrbM4jpS/5131NyNnHwVQfv3BPkrnsI9C7dhH+e9Yp9kuJfZRpI5F\nRPLjYmPqLLkXG1vflSYiUhhrjt7z9fVFVVVVhw9LzJs3D/PmzYPRaMSzzz6Ll19+GePGjUNra6tw\nTitWrMCRI0ewbds2ODg4YPny5cKx5s+fj4SEBCQlJSEpKQkbN24UipOUlIQ1a9ZApVIhMTERjz32\nmHBOSpSQkICCggLo9XoUFBQgISFB7pRIJnv27MGsWbPwwQcfIDIy0u4mg6Xy7bffQq1W49ChQ/jk\nk0+wf/9+uVOiTrhz5w6OHj0Kk8mEtrY28zGaok6fPo3//d//haurKzQaDYxGo6xxAGDx4sXYt28f\nli9fjvz8fOzatUs41oEDB5CdnY2kpCRkZWXhwIEDQnHWrl2L1atXIyMjA6tXr0ZiYqJwTidPnpRk\nofHbb7+Nzz//HHq9Hp9//jnefvtt4VjWjqWIbMW7776LkydPws3NDSUlJZIctSw3qWsZKesY6n5X\nrlwxLz5xdnbGlStXhGN98cUXkjSbpYoDSDfeUGptzPF598nNzX3gIzU1FXV1dXKnRjJZu3at3S6w\nef311+Hv7w+dToeAgAC88cYbQnHy8vKgVqvxySef4L333rO7hflRUVEoLy9Ha2ur+UPU559/Lkkd\n+uSTT5o/vL29UVtbK5zThg0b8N577+HgwYN47733sGHDBuFYSvTuu+9i2rRpuHTpEqZPnw5XV1eh\nOFL+nnfV34ycfRRA2fUH+yidwz4KtWMfpXNYp9kmpfZRpI5FRETUWRq5EyAiErVp06YHrjU0NMCa\nDdsvXbqE2NhY4Tv6fXx8zHFCQkLg6OgIHx8fpKamCudUWVmJlStXori4GACs+vcZDAbs2LFD+Pnt\n2trazDuX9O/fH6dOnbI6ppLo9XqsX7/e/Dg6OlrGbEhO7U0d4O7f3syZM4V2kLF3arUay5Ytw9Ch\nQ+Ho6AhnZ2e5U6L/Ii8vD/v378ePP/6IOXPmwGQywcnJyarjR/v27Yv8/HzzZFvfvn1ljQPcXSi1\na9cuzJ49G4mJiYiNjRWO5ezsjEOHDmHIkCEoLS216ve8fYGwSqWy6n196NChSE5ORlBQkHlBg8jO\nzVVVVdizZ4/5sTU7alg7liKyFS0tLZKMq5VE6lpGyjqGup9Wq0VycjICAwPxww8/CO3k1i4wMBB5\neXkICgqCRnN3KtLb21u2OIB04w2l1sYcn3eftLQ0xMTEdHiN02q1SElJkTErktPQoUNRWVkp/Pqk\nZH369MGYMWOg0Wjg7e2N3NxcoTgtLS3YsmULvLy8MGDAALurHQICAvDyyy9LcmOoVHXo/XXi8ePH\nhXM6depUh0Vk9rYj4507d/D4449Do9Hg6aefxpYtW4TiSPl7bm0sJfZRAGXXH+yjdA77KNSOfZTO\nYZ1me5TcR5E6FhERUWdxsTER2ayvv/4ay5cv7zBp5OzsjOHDhwvHdHJywubNmztMkokc2RUVFQWd\nTgeNRoO2tjZERUUJ5+Tp6Ynk5GRcv34dmZmZ0Gq1wrFMJhPefPNN+Pr6mq+J7ELywgsv4ObNm9Dp\ndIiMjMTYsWOFc1KSjRs3QqVSwWAwIC4uDv7+/igrK+OdoD2YlIsL7dlHH32EkpISjBgxAgaDAX//\n+9/lTon+i2nTpmHatGl47bXXsHXrVklirl27Fjk5OXj00UdRUVEhfOSlVHGAu03CxsZGeHh4IDk5\nGVevXhWOtWHDBuTk5ODo0aPw8vIS3r1pyZIlWLJkCZqamuDi4oIlS5YI5+Tm5gYA+P77783XRBYb\ne3l5YeXKlebXOmuOGZVqLEWkdFKNq5VIqlpGyjqGut+qVatw+PBhXLhwAcOGDbPqqPWGhgYUFRWh\nqKjIfE3kvUGqOIB04w2l1sYcn3ef6Ohoi4+NJ/t24cIFvPTSS+jXrx/UajVUKpXd7O5XXl6OkJAQ\naLVaVFZW4pFHHkFERITF/8bNmzejuLgYISEhMBgMVt0UqkQ//vgjxo4dC61WC5PJZNXvgFR1aPv/\nJ+DuQidr3q/69OmDjz/+2Fw/9u7dWziWEj3zzDO4efMmJk2ahL/97W8ICgoSiiPl77m1sZTcRwGU\nWX+wj/Lb2Eeh+7GP0jms02yPkvsoUsciIiLqLJWJW8sQkY06cuSIVXcO/hqj0Qi9Xg83NzdFHHto\nMplw+PBhlJeXY/DgwRg/frx5cthS9zZl240aNcriOM3NzSgpKUFzczPa2tqgUqkQHBwslJOS/NLP\np53Iz4lsX319PXJycnDy5EkEBwfjT3/6EwIDA+VOS5F++OEHXLt2DWPGjMHly5etWqxItikrKwsv\nvvii1e+dUsUB7r6nazQa3L59G0ePHsXjjz+OAQMGCMWqr6+Hq6srnJyc0Nraips3b8Ld3d3qHJXi\n9OnTqK2txaBBg/DEE09YFUtpYymiriDVuNqeSVnHkHxMJpN5YYoUOzQqVVNTk9DOfEqujaUan1+/\nfh23bt0yP7Zml2t7V1xcjNraWnh6egovTiMiup/SXodbWlpw6NAhc/04YcIEPPTQQ7LmpFRXr17F\nzz//jN///vfCYw0pYrGPYjn2UX4b+yh0P/ZROo99FJKy/yFlLCKSX+8/L5I7BbIRN7/9UNbvz8XG\nRGQXzpw5g9u3b5uboCK7+gFAZmYmDhw4gEGDBuHy5csIDQ0VOuqnuLgY27ZtM+9aGBsbi5EjRwrl\ntGnTJsyfP1+yxu7333+Pmpoaq5pfYWFhmDp1KlxcXMzXuJMP2aPXX38dt2/fNu8eqlKpsG7dOpmz\nss7SpUt/9Wuidz2vWLEC/fr1w7Fjx5Cbm4uoqCjs3LlTMEPqTosWLcIHH3yAXr16obm5GStWrMCH\nH4oVKDqdDhkZGVbnJFUc4O7RsEFBQeZ/X3FxsfAYYc6cOUhPT4eDg4N5p53du3dbHKewsBA7duyA\no6MjjEYj5s6di/HjxwvlVF9fj9zcXNTU1GDQoEGYMWOG+XhOa2RmZgofdSjVWIqI5CNVLSN1HUPd\na+fOnfjss89QVVWFPn36wNXVFfn5+XKn1WVmz54t9L4uRW2s5PH5/Pnz0dTUJEk9dOLECaSkpKCp\nqcm82MZednsFgISEBLi7u8PPzw8VFRWoq6vrcKw49Sx37tyBXq9H37592fj/BSkpKXj55ZdRUFCA\nnTt3YurUqYiMjJQ7LckkJyc/cE30hID58+ejubkZbm5u5l2SpZyXys/P55zufT766CPExMSYH2dn\nZyM8PNziOBs3bkR1dTVKSkqwd+9exMTEIC0tTSgnKWMprY8CKLf+YB+FqPPYR+kc9lFslxL7KFLH\nIiL5cbExdZbci401sn53IiIJLF68GL169cLRo0fx1FNP4fr168KTZAcOHEB2djaAu3fCz5w5U2iS\nbO3atdiyZQs8PDxQV1eHuLg4c1xLnTx5UrIJsrfffhuurq7w9/fH6dOnkZ2djbVr11ocx9fXF1VV\nVR0myYjsUUtLC3bs2CF3GpKaN28egLtHME6cOBF+fn4oKyvDwYMHhWNWVlZi5cqVKC4uBgDwXjbb\nceXKFfNuOM7Ozrhy5YpwrMDAQOTl5SEoKAgazd0yw9vbW7Y4ALB161bzZJuzszO2bt0qPEZoaWkx\nLxRQq9UwGAxCcVJTU5GRkQEnJycYDAbodDrhxcavv/46oqKi8Oyzz6K8vBxvvPGGRYt2rl69iv79\n+6OystJ8zWQy4bPPPhNuEko1liIi+UhVy0hZx1D3KywsxP79+6HT6bBz504sXrxY7pQksWnTpgeu\nNTQ0CI9fpaiNlTw+NxgMktVDSUlJ+Mc//oGFCxciMTERWVlZksRVCr1e32FxcXR0tIzZkJz27NmD\nzz//HAMHDsSVK1d4890v+Pbbb/Hqq6/i0KFD+OSTT/Diiy/a1WLjJ5980vz51atXf3MH0P/GYDAg\nNTVVirR+0f79+7nw8R537tzB0aNH8eqrr8JkMqG1tRX//ve/hRYbnz59Grt374ZOp4NGo4HRaBTO\nS6pYSuyjAMqsP9hHIbIM+yidwz6K7VJiH0XqWERERJ3FxcZEZPOuXLmCXbt2Yfbs2UhMTERsbKxw\nLGdnZxw6dAhDhgxBaWkpnJ2dhWO1T2ypVCqrCsahQ4ciOTkZQUFB5kVOopOAVVVV2LNnj/mx6ET+\npUuXEBsba9XRb0S2wGQy4c0334Svr6/52htvvCFjRtbz8fEBcPfvOCQkBI6OjvDx8bGqeeXp6Ynk\n5GRcv34dmZmZ0Gq1UqVLXUyr1SI5ORmBgYH44YcfrDqOtaGhAUVFRR0aqSK7PEgVB7h7pGdjYyNc\nXV1x48YNtLa2CsUBgNDQUMydOxfDhg3DuXPnMGXKFKE4Dg4OKCkpwZAhQ1BSUmLVTmd9+vTBmDFj\noNFo4O3tjdzcXIue/89//hOvvPIKZs6ciWeeecZ8vbq6WjgnKcdSRCQfKWoZKesY6n5GoxEmkwlO\nTk44deoULly4IHdKkvj666+xfPnyDr/Xzs7OGD58uFA8KWpjJY/PpayH2trazCcw9O/fH6dOnRKK\nozQbN26ESqWCwWBAXFwc/P39UVZWZtWiMrJtn3/+OW+++y/UajWWLVuGoUOHwtHR0e5qhvvHO8eP\nHxeOZY/zUkqVl5eH/fv348cff8ScOXPM46Bx48YJxevbty/y8/PR0tKCf//73+jbt69wblLFUmof\nBVBe/cE+CpFl7PH9Ssl1GnU/JfZRpI5FRPJra7sjdwpEnaIy8ZYpIrJxkZGR2L59O/7+97/D398f\nR44cwf79+4Vi1dfXIycnBzU1NfDy8sILL7wAd3d3i+OcPn36gaO/nnjiCaGcpDx6b8mSJejdu7d5\nEvDGjRtITEy0OE5kZCQ8PDw6TJKxeCF79Eu7z4waNUqGTKRXUFCA3bt3Q6PRoK2tDZGRkZg8ebJQ\nLJPJhMOHD6O8vByDBw/G+PHjoVKpJM6YukJbWxsOHz6MiooK+Pr6Yvz48Xa1C+XJkyeRlJRkfvzG\nG29Y9TdcV1eH6upqeHl5oV+/fkIxysvLkZ6ebh5rREdHw8/PTyjWpEmTcOPGDWi1WlRWVuKRRx6B\nm5ubxceSr169GsuWLTM/tub4NanGUkQkH6lqGSnrGOp+58+fh4+PD6qrq/Hpp58iJCSkw40pturI\nkSPCi4Z+iZS1sRLH51LWQ/v27cOECRNw/PhxpKamYuzYsXjttdeEYinJb+1Yai+1I1kmKioKERER\n5rm3zMxMHo99n6amJpSUlGDEiBFobW1FWVkZhg0bJndakomIiDC/5qrVaowdOxYvvfSSUKz7X2NU\nKhWCg4OtzrEdj95+0GuvvYatW7daHef27dvIyclBRUUFBg8ejLCwMOHdbaWKpcQ+CqDM+oN9FCLL\nsI/SOeyj2C5776MQkTI8PHqh3CmQjbh1NOm//0ddiIuNicjmGY1GaDQa3L59G0ePHsXjjz+OAQMG\nCMWqr6+Hq6srnJyc0Nraips3b9rdApnTp0+jtrYWgwYNEl4ADdz9uev1eri5uVm1KyMR2b5NmzZh\n/vz5nFyxYSaTybxzDP8/UktLCx566CGh5/aEsRQRUU/U1NRkdzuynTlzBrdv3zaPgUR3vlNibSzl\n+Pz7779HTU0NPD09ERQUJBynubkZJSUlaG5uRltbm+QL5oiUon0B3smTJxEcHIw//elPCAwMlDst\nxfnhhx9w7do1jBkzBpcvX4aXl5fcKSlS++JS4O4ilx07duDVV1+VLH5eXh6mTZsmWTz6P1lZWXjx\nxRclGRtIFYt9FMuwj0JEUmMfxfaxj0JEXYmLjamz5F5srJH1uxMRSeDEiRMICgqCi4sL/vznP6O4\nuFh4kmzhwoVIT08HcPeY8wULFmD37t0WxyksLMSOHTvg6OgIo9GIuXPnYvz48UI51dfXIzc3FzU1\nNRg0aBBmzJhhPnpUxL0TY5mZmUJHOWZmZuLAgQMYNGgQLl++jNDQUB4JSWRjiouLH9g1ZOTIkUKx\nTp48yYkVG7Vz50589tlnqKqqQp8+feDq6or8/Hy505LMtWvX0K9fP9y6dQvHjh1DcHCw4ppfsbGx\n2L59u6w5fPPNNwgJCTE/PnPmjPDiH6nGUkQkH6lqGanrGJJXTEyMXb2eL168GL169cLRo0fx1FNP\n4fr160KLjaWsjZU4Pn/77bfh6uoKf39/nD59GtnZ2Vi7dq1QrNmzZ2Pq1KkddmLkYmOyR++++y5u\n374NNzc3lJSUoLS0FOvWrZM7LassXbr0V78mskPnihUr0K9fPxw7dgzPPvssli9f3iN2f87Pz8fU\nqVMtes769esRGxsLlUqFxMREhIaGCn3vI0eOYM+ePfj555+xf/9+rF69Gu+88w4XGv+CRYsW4YMP\nPkCvXr3Q3NyMFStW4MMPP7Q4zhdffIGIiAhJcpIqlhL7KIBy6w/2UYgIUGadRt3P3vsoREREluBi\nYyKyeVu3bjUf9+bs7IytW7cK70jU0tJivrtcrVbDYDAIxUlNTUVGRgacnJxgMBig0+mEFxu//vrr\niIqKwrPPPovy8nK88cYbFh2NDgBXr15F//79UVlZab5mMpnw2WefCU1uHThwANnZ2eY4M2fO5CQZ\nkY1Zu3YttmzZAg8PD9TV1SEuLs78d22poUOHIjk5GUFBQebXUNHXYepehYWF2L9/P3Q6HXbu3InF\nixfLnZKkFi5ciIyMDLz//vvw8/PDrl27kJWVJUsuubm5D1xraGhAXV2dDNl0lJaW1mGxcXZ2tvDi\nH6nGUkQkH6lqGSnqGOp+mzZteuBaQ0MD7O1gtCtXrmDXrl2YPXs2EhMTERsbKxRHytpYiePzqqoq\n7Nmzx/w4MjJSKB8A8PX1RVVVlfAR8kS2oqWlBTt27JA7DUnNmzcPALB582ZMnDgRfn5+KCsrw8GD\nB4XiVVZWYuXKlSguLgYAu3uP+TX79++3eLHxhx9+iGXLluHq1avYtGmT8M2zqampyMzMxJw5c+Do\n6IjS0lKhOD3BlStXzKc5ODs748qVK0JxAgMDkZeXh6CgIGg0d1ux3t7essZSYh8FUFb9wT4KEd1P\niXUadT9776MQERFZgouNicjmGY1GNDY2wtXVFTdu3EBra6twrNDQUMydOxfDhg3DuXPnMGXKFKE4\nDg4OKCkpwZAhQ1BSUmLV8Vh9+vTBmDFjoNFo4O3t/YuLlf6bf/7zn3jllVcwc+ZMPPPMM+br1dXV\nQjk5Ozvj0KFDGDJkCEpLS+Hs7CwUh4jk1X4XvUqlsqq55+bmBuDuEcvtOElmG4xGI0wmE5ycnHDq\n1ClcuHBB7pQk1djYiNraWqjVasybNw9Hjx6VLZe0tDTExMR0+FvTarVISUmRLad9+/Zh3759uHjx\nImbNmgWTyQSVSiXcAAWkG0sRkXykqmWkqGOo+3399ddYvnx5h/crZ2dnDB8+XMaspHfnzh00NjbC\nw8MDycnJuHr1qlAcqWtjpY3Pvby8sHLlSvO/z8vLSzinS5cuITY21ryAi8hemUwmvPnmm/D19TVf\ne+ONN2TMyHo+Pj4A7v4dh4SEwNHRET4+PkhNTRWK5+npieTkZFy/fh2ZmZnQarVSpmsXIiIioFKp\nANx9zzp37hzmz58PAEI3bzk6OqKmpgYqlQp6vd6quWp7p9VqkZycjMDAQPzwww/w9PQUitPQ0ICi\noiIUFRWZr4nsBC5lLCX2UQBl1R/soxDRL1FanUbdz977KERERJZQmXrKbeNEZLdOnjyJpKQk8+M3\n3ngDo0aNEo5XV1eH6upqeHl5oV+/fkIxysvLkZ6ejpqaGnh5eSE6Ohp+fn5CsSZNmoQbN25Aq9Wi\nsrISjzzyCNzc3KBSqSyeXF69ejWWLVtmfqzT6cy7GViivr4eOTk55n/fCy+8oLhj6Ynot50+ffqB\n47/uPR6Qeobz58/Dx8cH1dXV+PTTTxESEtKhmWLr8vLycPDgQcTHx2Po0KFYt24dVqxYIUsuOTk5\nCAsLk+V7/zei44FfI8VYiojkI1UtI2UdQ93nyJEjGDdunNxpdDmj0QiNRoPbt2/j6NGjePzxx4WO\nEZeyNlbq+Pz06dOora3FoEGDrMonMjISHh4eHRYbiy66IlKyexcDtrNmnlJJCgoKsHv3bmg0GrS1\ntSEyMhKTJ0+2OI7JZMLhw4dRXl6OwYMHY/z48eaFtfZM6rrLEqWlpdiwYQMqKysREBCA+Ph4BAQE\nyJKL0rW1teHw4cOoqKiAr68vxo8fbzdH3iuxjwIos/5gH4WI2im1TqPuZe99FCJShodHL5Q7BbIR\nt44m/ff/qAtxsTERUQ/W0tKChx56yOLn1dfXw9XVFU5OTmhtbcXNmzc5SUbUg9XX1yM3Nxc1NTUY\nNGgQZsyYAQ8PD7nTIgFNTU3cbe5XxMXFQa1WQ6vVYsSIERgxYkSH3cosUVxcjNraWnh6eiIoKEji\nTC1XVVXF3cSIiKhHOX78OIKCgtCrVy80NzejuLhYaEcppdbGXTU+z8zMtOrob6PRCL1eDzc3N+6q\nSdSDbdq0CfPnz7ebBZydlZeXh2nTpln0nBs3buC7777DrVu3zNemTp0qdWr0C0wmk3n3yp72u0oP\nYh+FiKTAPor9YB+FiLoCFxtTZ8m92JgVMhHZvGvXrsFkMqGxsREHDx5EfX293Ck9IDY2Vu4UAADf\nfPNNh8dnzpwRirNw4UJzY9DBwQELFiywOjci6l6FhYUIDw+HTqfDzJkzUVhYKBzr9ddfh7+/P3Q6\nHQICAmz+iNieLCYmRu4UFGvLli1ISkrCY489huzs7A473FgiISEBBQUF0Ov1KCgoQEJCgsUxli5d\n+qsfIlpaWvDuu+9iyZIlWLx4MRYvXiwUh4jsk1JqGSIpbd261dwYdHZ2xtatW4XiSFkbK2l8fvXq\nVQBAZWWl+eOnn37CZ599JpxTZmYmIiMjsWrVKkRGRnKHcyIbVFxcjFdffRU6nQ4xMTEoLi4WinPy\n5Em7Xrx55MgRvPTSS/jrX/+K1tZWvPfeewBg8UJjAIiKikJ5eTlaW1vNHyJ27tyJ8PBwzJo1CxER\nEVbdOGLvdu7cienTp+MPf/gDJkyYgOnTp8udkmRsoY8CKKP+YB+FiNopqU4j5WAfhYiIejKN3AkQ\nEVlr4cKFyMjIwPvvvw8/Pz/s2rULWVlZsuSSm5v7wLWGhgbU1dXJkM2D0tLSEBISYn6cnZ2N4OBg\ni+O0tLSYJ8nUajUMBoNkORJR90hNTUVGRgacnJxgMBig0+kwfvx4oVh9+vTBmDFjoNFo4O3t/Yuv\nhaQsmzZteuBaQ0MDeOjJb8vLy0N+fj6mT5+OMWPGCMXQ6/VYv369+XF0dLTFMebNmwcA2Lx5MyZO\nnAg/Pz+UlZXh4MGDQjm9++67WLRoEdasWYMFCxbg0KFDQnGIyLYpvZYhkpLRaERjYyNcXV1x48YN\n4cVbUtbGShqf//Of/8Qrr7yCmTNndjgatrq6WigfADhw4ACys7MB3N0tcubMmVzsRmRj1q5diy1b\ntsDDwwN1dXWIi4sz/11bYujQoUhOTkZQUJD5NVRkd3mlSk1NRWZmJubMmQNHR0eUlpYKxwoICMDL\nL79s9eLsgwcPIisry64XeUulsLAQ+/fvh06nw86dO+3qZlwl9VEAZdcf7KMQUTsl1WnU/dhHISIi\nehAXGxORzWtsbERtbS3UajXmzZuHo0ePypZLWloaYmJiOhQZWq0WKSkpsuUEAPv27cO+fftw8eJF\nzJo1CyaTCSqVCt7e3kLxQkNDMXfuXAwbNgznzp3DlClTJM6YiLqag4MDSkpKMGTIEJSUlFh1jHF5\neTlCQkKg1WpRWVmJRx55BBEREVCpVNyxTKG+/vprLF++vMP7lbOzM4YPHy5jVsrW2NiIwYMHY+LE\nicjLy0NGRgby8/M7/fyNGzdCpVLBYDAgLi4O/v7+KCsrg9FotDgXHx8fAMClS5cQEhICR0dH+Pj4\nIDU11eJYAHDnzh08/vjj0Gg0ePrpp7FlyxahOERk25RayxB1hYSEhA47Eb355ptCcaSsjZU0Pn/l\nlVcAAJMnT+5wmoNOpxPOydnZGYcOHcKQIUNQWloKZ2dn4VhEJJ/2xaoqlUp4kYWbmxsA4Pvvvzdf\ns6fFxo6OjqipqYFKpYJer7fq9fzHH3/E2LFjodVqzfO5IvMsgwcPRk5ODnx9fc3X7OlnLiWj0QiT\nyQQnJyecOnUKFy5ckDslySipjwIos/5gH4WI7qekOo26H/soRERED1KZeNsNEdm4vLw8HDx4EPHx\n8Rg6dCjWrVuHFStWyJJLTk4OwsLCZPnenaHT6ZCRkSFJrLq6OlRXV8PLywv9+vWTJCYRdZ/y8nKk\np6ejpqYGXl5eiI6Ohp+fn9xpUTc5cuQIxo0bJ3caNmXRokUIDAxEYGAgHn30UYsXyBQVFf3q10aN\nGiWUU0FBAXbv3g2NRoO2tjZERkZi8uTJFsfZtm0bIiMj8dlnn+HTTz9FUFAQ3n//faGciMh2Kb2W\nIVIqqWpjWxift7S04KGHHhJ6bn19PXJycsz/vhdeeAHu7u4SZ0hEXen06dPYtm0bmpqa4OLigtjY\nWDzxxBNyp6U4paWl2LBhAyorKxEQEID4+HgEBATImlNycvID1+Lj42XIRPnOnz8PHx8fVFdX49NP\nP0VISEiHXf5tmZL6KICy6w/2UYionS3UadR12Echou7k8sfX5U6BbMTt4/+Q9ftzsTER0T3i4uKg\nVquh1WoxYsQIjBgxosOOD5YoLi5GbW0tPD09ERQUJHGmYqqqqqDVauVOg4iIyObU19dj79695vf2\n559/3m4WyFy5cgX9+/eHSqWyOpaUYykiko8SaxkiKV27dg39+vXDHnLOUwAAIABJREFUrVu3cOzY\nMQQHB9vN+7qUvvnmmw5HiJ84cULoCHHg7ljK1dUVTk5OaG1txc2bN/kzJ+qh6uvrkZubi5qaGgwa\nNAgzZsyAh4eH3GkpUlctEq6srBTeqbWnaWpqQq9eveROQ3Gkrv2VVn+wj0JERERE3Y2LjamzuNiY\niEhhjEYjvvrqK2RlZaGtrU3o6JqEhAS4u7vDz88PFRUVqKurw/r16y2KsXTp0l/92po1ayzOCbi7\ns0ZGRgaamprMR76sW7dOKBYR2ZfY2Fhs375d7jSIJHXixAmkpKSgqakJbW1tVh1JFx0djZkzZyIg\nIAClpaX45JNP8PHHH0ucsWWKi4sf2Fls5MiRFscJDw9Hdna2ZHlJMZYiIvlYW8t0RR1DJLX23eoW\nL14MPz8//Oc//0FWVpbcaXWghPH57NmzsXv3bvPjhIQEi+c22s2ZMwfp6elwcHBAW1sboqKiOsQm\nIuUrLCzEjh074OjoCKPRiLlz52L8+PEWx4mMjERUVBT8/PxQXl6Ojz/+2K5qhp07d+LLL7+Eg4MD\nTCaTVXXo8ePHzZ9fvXoVRUVFWLVqldU53v/6Tr+OP6tfJ1Xtr8T6g30UIvo1SqjTiIjIPnGxMXWW\n3IuNNbJ+dyIiBcrLy0N+fj6mT5+OMWPGCMXQ6/UdJsSio6MtjjFv3jwAwObNmzFx4kT4+fmhrKwM\nBw8eFMoJAN59910sWrQIa9aswYIFC3Do0CHhWERkm3Jzcx+41tDQgLq6OhmyIepaSUlJ+Mc//oGF\nCxciMTHRqkVETU1NmDBhAgAgICAA6enpUqUpbO3atdiyZQs8PDxQV1eHuLg4oUXDAwcORGNjI1xd\nXSXJS4qxFBHJx9papivqGCKpNTY2ora2Fmq1GvPmzcPRo0dly0WJ4/N9+/Zh3759uHjxImbNmmVe\nLGfNLpgtLS1wcHAAAKjVahgMBqnSJaJukpqaioyMDDg5OcFgMECn0wktNu7Tpw/GjBkDjUYDb2/v\nX3wdtGUHDx5EVlYW1Gq11bH++Mc/dnh87+Ljzli5ciVWrFiBWbNmma+ZTCZcvHjR6tzszaZNmx64\n1tDQAO7X9Oukqv2VWH+wj0JESqzTiIiIiJSAi42JiO7R2NiIwYMHY+LEicjLy0NGRgby8/M7/fyN\nGzdCpVLBYDAgLi4O/v7+KCsrg9FotDgXHx8fAMClS5cQEhICR0dH+Pj4IDU11eJY7e7cuYPHH38c\nGo0GTz/9NLZs2SIci4hsU1paGmJiYjo0S7RaLVJSUmTMiqhrtLW1mY/j7d+/P06dOiUca8qUKQgP\nD4enpydqamoQGhoqVZpWaW9gq1Qq4SZodXU1xo0bB39/f6jVaqt23rJ2LEVE8pGqlumKOoZIarNn\nz8Z7772H+Ph4GAwGDB8+XLZclDg+nzFjBmbMmGHeAVoKoaGhmDt3LoYNG4Zz585hypQpksQlou7j\n4OCAkpISDBkyBCUlJeYbCCxVXl6OkJAQaLVaVFZW4pFHHkFERIRVdYiSDB48GDk5OfD19TVfu3/R\ncGe1/1yAu7Xf2LFjLXr+ihUrzM+99/Vcp9MJ5WPPvv76ayxfvrzD+7Gzs7OsYwQlk6L2V3L9wT4K\nESmxTiMiIiJSApWJt+USEZktWrQIgYGBCAwMxKOPPgpnZ2eLnl9UVPSrXxs1apRQTgUFBdi9ezc0\nGg3a2toQGRmJyZMnC8Xatm0bIiMj8dlnn+HTTz9FUFAQ3n//faFYRGSbcnJyEBYWJncaRN1i3759\nmDBhAo4fP47U1FSMHTsWr732mnA8o9GIhoYGuLm5QaOR/77N06dPY9u2bWhqaoKLiwtiY2PxxBNP\nyJqTtWMpIpKP1LWMlHUMkT1T8vi8qqoKWq1Wsnh1dXWorq6Gl5cX+vXrJ1lcIuoe5eXlSE9PR01N\nDby8vBAdHQ0/Pz+501Kc5OTkB67Fx8fLkMn/uXbtmvlGXAAoLCwU2pXanh05cgTjxo2TOw2bIUXt\nr+T6g30UIlJynUZERPbJ5Y+vy50C2Yjbx/8h6/fnYmMionvU19dj7969qK2thaenJ55//nm4u7vL\nnZZkrly5gv79+5t3xBAVFxcHtVoNrVaLESNGYMSIER126yAi21BcXGx+vQsKCrL4+UuXLv3Vr61Z\ns8aa1Igk0dzcjJKSEjQ3N6OtrQ0qlQrBwcFCse7/fVer1Rg4cCDCwsIwYMAAKdK1C/Y+liIiIrqX\n1LWx0sbnpaWlyMjIQFNTk3lHr3Xr1lkch4ioJ6usrIS3t7ekMfPz8zF16tRO//dZWVkIDw83n4xD\nZC17r/3ZRyGieymtTiMiIvvExcbUWVxsTERkpRMnTiAlJQVNTU3mhUSiR+5FR0dj5syZCAgIQGlp\nKT755BN8/PHHEmdsmeLi4gd2LRw5cqRQrPDwcGRnZ0uSl9FoxFdffYWsrCy0tbXZxTGHRD1JQkIC\n3N3d4efnh4qKCtTV1WH9+vUWxfjpp58AAJs3b8bEiRPh5+eHsrIyHDx4EB9++GFXpE1kkbCwMEyd\nOhUuLi7ma5Y0ZO/11ltvdfg9//LLLzFt2jR89NFHkh0vbqnCwkLs2LEDjo6OMBqNmDt3rtDuVO1H\n85pMJly/fh29evVCbm6uUE5KHEsRkTykrGOIlEyq2liJ43OdTodFixZhzZo1WLBgAQ4dOoS///3v\nFschIvsUGxuL7du3y52G4s2ePRu7d++WNaZOp5OtbiXlYB+l89hHIaJ2SqzTiIjIPnGxMXWW3IuN\n5T/7l4jISklJSfjHP/6BhQsXIjExEVlZWcKxmpqaMGHCBABAQEAA0tPTpUpT2Nq1a7FlyxZ4eHig\nrq4OcXFxwhNdAwcORGNjI1xdXa3OKy8vD/n5+Zg+fTrGjBljdTwi6l56vb7DpFh0dLTFMXx8fAAA\nly5dQkhICBwdHeHj44PU1FTJ8iSyhq+vL6qqqjosNhZVUVFh/j339vZGSkoKRo8ejS1btkiQqZjU\n1FRkZGTAyckJBoMBOp1OaLHxvWMng8GAbdu2CeekxLEUEclDyjqGSMmkqo2VOD6/c+cOHn/8cWg0\nGjz99NOyjnuISD6/dCNiQ0MD6urqZMhGuVauXIkVK1Zg1qxZ5msmkwkXL16UMau7AgMDkZeXh6Cg\nIGg0d9uCUu+2TMrHPkrnsY9CRO2UWKcRERERyYmLjYnI5rW1tcHDwwMA0L9/f5w6dUo41pQpUxAe\nHg5PT0/U1NQgNDRUqjSt0n7EXfuug6Kqq6sxbtw4+Pv7Q61WC+9e0NjYiMGDB2PixInIy8tDRkYG\n8vPzhfMiou6zceNGqFQqGAwGxMXFwd/fH2VlZTAajcIxo6KioNPpoNFo0NbWhqioKOkSJrLCpUuX\nEBsbi169elkdKzo6GnPmzIGDgwPu3LmD6OhoGI1GPPfccxJkKsbBwQElJSUYMmQISkpK4ODgIBTn\n+PHj5s+bmppQXFwsnJNSx1JEJA+p6hgipZKiNlby+PyZZ57BzZs3MWnSJPztb38TOjKYiGxfWloa\nYmJiOryXa7VapKSkyJiV8qxYsQLA3fHPvbsI63Q6yb+XpeOqhoYGFBUVoaioyHyNx7b3POyjdB77\nKESk5DqNiIiISE4qE7s9RGTj9u3bhwkTJuD48eNITU3F2LFj8dprrwnHMxqNaGhogJubm3mnBzmd\nPn36geO/nnjiCVlzWrRoEQIDAxEYGIhHH30Uzs7OsuZDRJ13b2PpfqNGjerGTIi6XmRkJDw8PDos\nNranhmp5eTnS09NRU1MDLy8vREdHw8/Pz+I4ycnJ5s9dXFwwduxYoTjtlDaWIiJ5KLGOIZKaFLWx\nksfnV65cQf/+/aFSqWTNg4jklZOTg7CwMLnTsBnXrl0zL+gEgMLCQqETaH5LXl4epk2bJmlMsn/s\no3Q/9lGIbJeS6zQiIrJPvf4QJ3cKZCOavpP39DkuNiYim9fc3IySkhI0Nzejra0NKpUKwcHBQrGW\nLl3a4bFarcbAgQMRFhaGAQMGSJGuXaivr8fevXtRW1sLT09PPP/883B3d5c7LSKSSXFx8QOT+SNH\njpQ7LSIAd5tfer0ebm5uwjv/AsC3336L0aNH48KFC9i7dy8mTZqEp556SsJM7QPHUkREZAtOnDiB\nlJQUNDU1mecRRHarU2ptLNX4PDw8XPj48fvFxcVBrVZDq9VixIgRGDFiBHx9fSWJTUTdp7i42Pya\nZ+lu5/fXCveyp5tCs7KyEB4ebt5h1RpHjhzBnj178PPPP2P//v1YvXo13nnnHYvjnDhx4oFrovPn\nZLvYR+l+Sh0rEpE82EchIqLfwsXG1FlyLza2fraDiEhms2fPxpkzZ1BVVYWamhpUV1cLxzIajXj2\n2Wfx8ssvY9y4cWhubsbIkSOxaNEiCTO2TGFhIcLDw6HT6TBz5kwUFhYKx4qIiMCsWbMQERGBKVOm\n4PnnnxeKk5CQAD8/P+h0OgwePBgJCQnCORGR7Vu7di1Wr16NjIwMrF69GomJiXKnRAQAyMzMRGRk\nJFatWoXIyEihRUTtUlNToVarsXXrVkyePBmrV6+WMFNpxMbGCj1vwYIFHR6vWrVKOAcljqWISB5S\n1jFEUktKSsKaNWugUqmQmJiIxx57TCiOUmtjqcbnAwcORGNjoyQ5bdmyBUlJSXjssceQnZ2NZcuW\nSRKXiLpPQkICCgoKoNfrUVBQYPFr3rx58zBv3rwHaobW1tYuylgeX3zxhSQLjYG7deiOHTvQt29f\nODo6orS0VCjOsWPHzB/5+fnYunWrJPmRbWEfpfPYRyGirsA+ChEREdkD+c+1ISKykq+vL6qqquDi\n4mJ1rIqKCoSEhMDR0RHe3t5ISUnB6NGjsWWLfHeGpKamIiMjA05OTjAYDNDpdMJH72VlZZk/NxgM\n2LZtm1CcpqYmTJgwAQAQEBCA9PR0oThEZD/aG2kqlQo8OIOU4sCBA+bd+EwmE2bOnIlZs2YJxbp1\n6xby8/Ph4eGBJ598UpJxh6jc3NwHrjU0NKCurs6iOFVVVaisrERFRQWOHz8OAGhtbcX58+eFc1Pi\nWIqI5CFlHUMktba2NvMR9/3798epU6eE4ii5NpZifF5dXY1x48bB398farVaeAfodnl5ecjPz8f0\n6dMxZswY4ThEJA+9Xo/169ebH0dHR1v0fB8fHwDApUuXzDWDj48PUlNTJc1TboGBgcjLy0NQUBA0\nmrstOG9vb6FYjo6OqKmpgUqlgl6vFz6t5/4bTO1pJ2nqPPZROo99FCLqKuyjEBERka3jYmMisnmX\nLl1CbGwsevXqZXWs6OhozJkzBw4ODrhz5w6io6NhNBrx3HPPSZCpGAcHB5SUlGDIkCEoKSmx6gj4\n9oVEwN2JruLiYqE4U6ZMQXh4ODw9PVFTU4PQ0FDhnIjI9i1ZsgRLliwxH/+1ZMkSuVMiAgA4Ozvj\n0KFDGDJkCEpLS+Hs7Cwca/Xq1Th27Bji4+NhMBgwffp0CTO1TFpaGmJiYjpMSGu1WqSkpFgUp6am\nBqdOncKNGzfMi6w0Gg3eeust4dyUOJYiInlIWccQSe2FF17AzZs3odPpEBkZibFjxwrFUWptLNX4\nfO/evZLl1NjYiMGDB2PixInIy8tDRkYG8vPzJYtPRF1n48aNUKlUMBgMiIuLg7+/P8rKymA0GoXi\nRUVFQafTQaPRoK2tDVFRUdImLLOGhgYUFRWhqKjIfE10ce8777yDNWvWQK/X47333sOKFSuE4rz1\n1ltQqVQA7s4JOzo6CsUh28Y+Suexj0JEXYF9FCIiIrIHKhNvmSIiGxcZGQkPD48Ok2T2tDtDeXk5\n0tPTUVNTAy8vL0RHR8PPz08oVnJysvlzFxcXjB07VjiW0WhEQ0MD3NzczLt0EBERKUl9fT1ycnLM\n76EvvPAC3N3d5U7Lajk5OQgLC5Ms3ubNmzF//nzJ4hERAdLWMURSa25uRklJCZqbm9HW1gaVSoXg\n4GChWKyNO2fRokUIDAxEYGAgHn30UatuAiOi7nXvotn7jRo1qhszIVHV1dXmz11cXODm5iZjNiQX\n9lE6j30UIiIiIupuvf4QJ3cKZCOavpP3NFkuNiYiu2A0GqHX6+Hm5mbVHevffvstRo8ejQsXLmDv\n3r2YNGkSnnrqKQkztQ9Lly7t8FitVmPgwIEICwvDgAEDZMqKiORSWFiIHTt2wNHREUajEXPnzuUx\n6aQI9fX1cHV1hZOTE1pbW3Hz5k3hxcYFBQXYtWsX9Ho91Go1evfujZycHIkztlxxcTFqa2vh6emJ\noKAg4Tj19fW4deuW+bHoMb8cSxERkS0ICwvD1KlTOxwjPnXqVIvjKLU2lmp8HhERYT7e9/r16+jV\nqxdyc3OFcqqvr8fevXvN45bnn3/eLm4CIyLLFRcXY9u2beZd/WJjYzFy5Ei505LMiRMnHrgmekPL\nzp078eWXX8LBwQEmkwkqlQqZmZnWpkg9GPso3UupY0Uikgf7KERE9Fu42Jg6S+7FxmpZvzsRkQQy\nMzMRGRmJVatWITIy0qoJ19TUVKjVamzduhWTJ0/G6tWrJcxUGrGxscLPXbBgQYfHq1atEopjNBrx\n7LPP4uWXX8a4cePQ3NyMkSNHYtGiRcK5EZHtSk1Nxe7du5GRkYFdu3YhNTVV7pSIAAALFy40N88c\nHBweeB+0xJ49e7Bnzx70798fubm5GDp0qFRpCktISEBBQQH0ej0KCgqQkJAgFCcxMRGLFy/GzJkz\nsWzZMixbtkw4J1sYSxGRPKypY4ik5uvri6qqqg4fIpRaG0s1Ps/KykJmZiaysrKQl5eHZ555Rjin\nhIQE+Pn5QafTYfDgwcLjFiKyfWvXrsXq1auRkZGB1atXIzExUe6UJHXs2DHzR35+PrZu3Soc6+DB\ngx1ei7nQmKzBPkrnsY9CRF2BfRQiIiKyBzyvhYhs3oEDB5CdnQ0AMJlMmDlzJmbNmiUU69atW8jP\nz4eHhweefPLJDrscdbdf2i2ooaEBdXV1FseqqqpCZWUlKioqcPz4cQBAa2srzp8/L5RbRUUFQkJC\n4OjoCG9vb6SkpGD06NHYskXeO2iISB4ODg4oKSnBkCFDUFJSYtXOKERSamlpMf8+qtVqGAwG4Vht\nbW1wdHSEWq2GXq/H2bNnpUpTmF6vx/r1682Po6OjheKcPXsWGRkZmD17Nnbv3o24OPG7p5U0liIi\neUhZxxB1lUuXLiE2NrbDMeIilFobSzU+b58/AICmpiYUFxcL59TU1IQJEyYAAAICApCeni4ci4hs\nn1p9dx+c9t3T7cn9ixTXrFkjHGvw4MHIycmBr6+v+dof//hH4XjUs7GP8t+xj0JEXYl9FCIiIrIH\nXGxMRDbP2dkZhw4dwpAhQ1BaWgpnZ2fhWKtXr8axY8cQHx8Pg8GA6dOnS5ipZdLS0hATE9Nhwl2r\n1SIlJcXiWDU1NTh16hRu3LiBU6dOAQA0Gg3eeustodyio6MxZ84cODg44M6dO4iOjobRaMRzzz0n\nFI+IbNuqVauQnp6OmpoaeHl5Ce/2QSS10NBQzJ07F8OGDcO5c+cwZcoU4VhxcXFobGxEfHw8Pvjg\nA+h0OgkztczGjRuhUqlgMBgQFxcHf39/lJWVwWg0CsUzGo0wGAx4+OGHkZeXh8rKSuHclDSWIiJ5\nSFnHEHUVJycnbN68ucNiY5HFYEqtjaUan7fPHwCAi4sL3nnnHeGcpkyZgvDwcHh6eqKmpgahoaHC\nsYjIti1ZsgRLlixBU1MTXFxcsGTJErlTktRbb70FlUoF4O6NFo6OjsKxvLy8cO3aNVy7ds18jYuN\nSRT7KP8d+yhE1JXYRyEiIiJ7oDLZ223jRNTj1NfXIycnx1ycvfDCC3B3d5c7Lavl5OQgLCxM0pib\nN2/G/PnzJY1JRESkZHV1daiuroaXlxf69esndzqSKCoq+tWvjRo1yuJ4V69eRd++faHX6/Gvf/0L\nTz/9NIYPH25NikTUg3VFHUPUFYxGI/R6Pdzc3LijVDcxGo1oaGiAm5sbNBrugUFE9qm6utr8uYuL\nC9zc3CSLXVlZCW9vb8niUc/CPkrnsY9CRERERN2t1x/ETx2lnqXpO3lPSuFiYyKyefX19XB1dYWT\nkxNaW1tx8+ZN4UmygoIC7Nq1C3q9Hmq1Gr1790ZOTo7EGVuuuLgYtbW18PT0RFBQkFWx6uvrcevW\nLfNjkQnqb7/9FqNHj8aFCxewd+9eTJo0CU899ZRVeRGR/YiNjcX27dvlToOoS9nr73n7AiBRSh1L\nEZE8pKxjiKSUmZmJAwcOYNCgQbh8+TJCQ0OFjhG3ldpYdNyyYMECbNy40fx41apVWL58uVAOS5cu\n7fBYrVZj4MCBCAsLw4ABA4RiEpFtKiwsxI4dO+Do6Aij0Yi5c+di/PjxcqdlE2bPno3du3db/Lxv\nvvkGISEh5scnTpxAcHCwlKmRDWAfxTLsoxBRV7PX+WUiIhLjHBwrdwpkI5pPyDt+4BYSRGTzFi5c\niPT0dACAg4MDFixYIDTpCgB79uzBnj178NJLL2H79u1Cx6hKLSEhAe7u7vDz88P333+PjIwMrF+/\nXihWYmIiLl68iPPnz8PPzw8AkJGRYXGc1NRU/PnPf8bWrVsxZ84crFq1Cvv37xfKiYhsV25u7gPX\nGhoaUFdXJ0M2RF2jJ/yeL1iwABs2bEBSUhLOnj2L3/3ud1i3bp1QLCWOpYhIHlLWMURSO3DgALKz\nswEAJpMJM2fOFFpsrLTaWKpxS1VVFSorK1FRUYHjx48DAFpbW3H+/Hnh3IxGIyZOnAg/Pz+UlZXh\nyy+/xMiRI7Fo0SKheQkisl2pqanIyMiAk5MTDAYDdDodFxvfZ+XKlVixYkWH9yaTyYSLFy8KxUtL\nS+uw2Dg7O5uLjXsg9lE6j30UIpJST5hfJiIiop5DLXcCRETWamlpMR95qlarYTAYhGO1tbXB0dER\narUaer0eZ8+elSpNYXq9HsuXL0dERASWLVuG+vp64Vhnz57Fjh074O/vj4yMDPTp00cozq1bt5Cf\nnw8PDw88+eSTcHFxEc6JiGxXWloaNBoNHBwczB9arRYpKSlyp0YkmZ7we3758mWo1WpUVVXh448/\nxk8//SQcS4ljKSKSh5R1DJHUnJ2dcejQIZSVlaGwsBDOzs5CcZRWG0s1bqmpqcGpU6dw48YNnDp1\nCqdOncL/+3//D2+99ZZwbhUVFQgJCUFAQABCQkLw008/YfTo0TAajcIxicg2OTg4oKSkBAaDASUl\nJeZ5Xfo/K1asAHB3rjszMxOZmZnIysrCsGHDLIqzb98+RERE4Ny5c5g1axYiIiIwa9YsODo6dkXa\npHDso3Qe+yhEJKWeML9MREREPQd3NiYimxcaGoq5c+di2LBhOHfuHKZMmSIcKy4uDo2NjYiPj8cH\nH3wAnU4nYaaW2bhxI1QqFQwGA+Li4uDv74+ysjKrGnFGoxEGgwEPP/ww8vLyUFlZKRRn9erVOHbs\nGOLj42EwGDB9+nThnIjIdkVHR2Pq1Klyp0HUpXrC7/n//M//4G9/+xtiYmJgMBisajwraSxFRPLo\nijqGSGobNmxATk4Ojh49Ci8vL2zYsEEojtJqY6nGLaNGjcKoUaNgMpkQHx8vQWZ3c5szZw4cHBxw\n584dREdHw2g04rnnnpMkPhHZjlWrViE9PR01NTXw8vLCqlWr5E5JsZKSkjo8njNnjkXPnzFjBmbM\nmAGdTsdd5Il9FAuwj0JEUuoJ88tERETUc6hMJpNJ7iSIiKxVV1eH6upqeHl5oV+/fnKnI4mioqJf\n/dqoUaOEYl69ehV9+/aFXq/Hv/71Lzz99NMYPny4aIpERGbFxcWora2Fp6cngoKC5E6HSHI1NTUd\nHqvVari7u8PJyUmmjLqOyWSCSqWSOw0islFdUccQSa2+vh6urq5wcnJCa2srbt68CXd3d7nTkpRU\n4/P6+nrcunXL/Njb21uK9IiIqBOysrIQHh4Otdq6Q0rb582J2EfpHPZRiKirsI9CRES/xjk4Vu4U\nyEY0n9gu6/fnYmMiot8QGxuL7dvlfaHuKg0NDXBzcxN6bkFBAXbt2gW9Xg+1Wo3evXsjJydH4gyJ\nyFYkJCTA3d0dfn5+qKioQF1dHdavXy93WkSIi4uDWq2GVqvFiBEjMGLECPj6+grFCgsLQ2trK3x9\nfVFRUQEHBwe4uLjgmWeewauvvipx5vbDnsdSRERku+bMmYP09HQ4ODigra0NUVFR2L17t8VxlFob\nSzU+T0xMxMWLF3H+/Hn4+fkBgPDOmN9++y1Gjx6NCxcuYO/evZg0aRKeeuopoVhEZF/srWb45ptv\nEBISYn584sQJBAcHC8WSakfipUuXPnBtzZo1Vsclamdvf8f3Yh+FiKTCPgoREf0WLjamzpJ7sbFG\n1u9ORKQQubm5D1xraGhAXV2dDNl0nQULFmDDhg1ISkrC2bNn8bvf/Q7r1q2zOM6ePXuwZ88evPTS\nS9i+fTsnp4l6OL1e32FSLDo6WsZsiP7Pli1bYDQa8dVXXyErKwttbW3IzMwUitW7d2+kpaWZH8+d\nOxdpaWmIiIjgYmP0nLEUERHZh5aWFjg4OAC4e1qBwWAQiqPU2liq8fnZs2eRkZGB2bNnY/fu3YiL\nixPOKTU1FX/+85+xdetWzJkzB6tWrcL+/fuF4xGR7ekpNUNaWlqHxcbZ2dnCi40DAwORl5eHoKAg\naDR323kiO8zPmzfP/PnVq1dx+PBhoXyIesrfMfsoRNQV2EchIiIie8DFxkREuDsJHBMTg3s3e9dq\ntUhJSZExK+ldvnwZarUaVVVV+PjjjxEeHi4Up62tDY6OjlCr1dDr9Th79qzEmRKRLdi4cSNUKhUM\nBgPi4uLg7++PsrIyGI1GuVMjMsvLy0N+fj6mT5+OMWPGCMdRq9XYtWsX/P39UVpaCpVKBaPRiNbW\nVumStWE9ZSxFRET2ITQ0FHPnzsWwYcNw7tw5TJkyRSiO0moM1vI7AAAc8ElEQVRjqcfnRqMRBoMB\nDz/8MPLy8lBZWSmc261bt5Cfnw8PDw88+eSTcHFxEY5FRLbJ3muGffv2Yd++fbh48SJmzZoFk8kE\nlUoltDi4XUNDA4qKilBUVGS+JrJYUavVmj93d3cX2s2fCLD/v+N27KMQkZTYRyEiIiJ7ojLdWxES\nEfVQOTk5CAsLkzuNLvfOO++guLgYMTEx+Mtf/oK5c+cKHcX3n//8ByNHjsS5c+eQlpaGv/zlL5gx\nY0YXZExESnZvs+t+o0aN6sZMiH5ZY2Mjzp07h3PnzuHQoUNobGxEfn6+UKyWlhZ89dVXqKmpwaBB\ng/CXv/wFzs7O5gZyT9dTxlJERGQ/6urqUF1dDS8vL/Tr108ohtJqY6nH51evXkXfvn2h1+vxr3/9\nC08//TSGDx8ulNv58+dx7NgxTJs2Da6urvj8888xffp0oVhEZJt6Ss2g0+mE5lu7kk6ng0qlgslk\nwsMPP4y//vWvwjfaUM/WU/6O2UchIimxj0JERJ3hHBwrdwpkI5pPbJf1+3OxMRHRPWpqajo8VqvV\ncHd3h5OTk0wZdS0ukCIiInu2aNEiBAYGIjAwEI8++iicnZ3lTsnu9bSxFBERUU/R0NAANzc3udMg\nIjtRXFyM2tpaeHp6IigoSO50JNV+I4sUTpw48cC14OBgSWITWaOn1f7soxARERFRV+NiY+osLjYm\nIrJSXFwc1Go1tFotRowYgREjRsDX11coVlhYGFpbW+Hr64uKigo4ODjAxcUFzzzzDF599VWJM7cf\nsbGx2L5d3jc0IiKi+9XX12Pv3r3mJvbzzz8Pd3d3udNSnEuXLuHrr79GY2Oj+Vp8fLxQLI6liIio\nJ7O32njBggXYsGEDkpKScPbsWfzud7/DunXrhGIVFBRg165d0Ov1UKvV6N27N3JyciTOmIhsQUJC\nAtzd3eHn54eKigrU1dVh/fr1cqclmaVLlz5wbc2aNUKxNm7caP78559/Rk1NDT7++GOL43zxxRfY\nvXs3NBoNjEYjdDodJk+eLJQT2S72UeRnb2NFIiIiIpIOFxtTZ8m92Fgj63f//+3dbUxcdd7/8c8c\nmJZiaSyawrDQForamPYBaVdj0lJTuVnrzSp1sVJQ21ooC2ZrqatsjNbqVt2k3cZESqcZkXITQ9mF\nRMUubGOp64Nl270SrNtGHYplC4uGQhoqDkyZ/4Mr1/ztirt0uPnNlPcrIZkzJL95PxrmzPfHOQAw\nCd566y15vV61tLSotrZWo6OjqqmpCWitqKgouVwu//GWLVvkcrmUk5PDl2SS6uvrf/Bcf3+/+vr6\nDNQAAPCflZSU6LHHHlNaWprcbrdKSkoCGsxe74qLi1VYWKjbbrttwmvxWQoAMBPMlHPjf/3rX7Is\nS//85z9VUVGhDRs2BLxWdXW1qqurtXnzZpWXlwe88Q5A6BsYGLhqc/GmTZsM1ky+wsJC/+Ovv/5a\nx44dC3it7du3X3Uc6HvnO++8o5qaGoWHh2t4eJjNxjMUc5TpM1M+KwIAAGDy+EavmE4AxoXNxgCu\nCw0NDWpsbFRWVpbuvvvugNexLEuVlZVKSkqS2+2WzWaT1+vVyMjI5MWGMJfLpYKCAn3/ovjx8fFy\nOp0GqwAAGNvQ0JAyMjIkSUuWLNHbb79tuCg4rVy5UqmpqZo7d+6E1+KzFABgJpgp58a33XabHnzw\nQRUUFGh4eFh2uz3gtUZHR2W322VZlgYGBnT69OlJLAUQCvbv3y+bzabh4WEVFRUpKSlJHR0d8nq9\nptMmVXx8vP9xdHS0Dh8+HPBazz77rGw2m6T/Pb8N9H144cKFam1tVWJiojo6OpSQkKCuri5JUkJC\nQsB9CD3MUabHTPmsCAAAAGDmsfm+f6YDACFocHBQZ86c0ZkzZ9Tc3KzBwUE1NjYGtJbH41FLS4u6\nu7vlcDiUnp6uiIgI+Xw+/xe7M1ldXZ2ys7NNZwAAMC5VVVX64IMPFBcXp+7ubt1///3Kzc01nRV0\nHn30UV26dEnR0dH+zzyBXt2Iz1IAgJlgpp4bT+Tv+ccff6yUlBSdOXNGLpdL6enpWr9+/SQXAghm\nbW1tP/q7O+64YxpLplZeXp5sNpt8Pp9uuOEGPfDAA7rvvvsCWuvChQv+x5GRkZo/f35A65SWlv7o\n77jS/MzBHGX6zNTPigAAAAjc7BVbTScgRHhOHTL6+mw2BhDydu7cqeXLl2v58uW6/fbbFRERYTrp\nutfd3X3VsWVZio6O1qxZswwVAQAwNq/Xq/7+fs2fP1/h4dzYBQAASEVFRbIsS/Hx8Vq2bJmWLVum\nRYsWXfM6nBsDAIBQwRxl+vFZEQAAAOPFZmOMF5uNAWCCLl68qCNHjqinp0dxcXF65JFHFB0dbTor\nKH311Vf66KOPNDg46H+uuLj4mtfJzs7WyMiIFi1apM7OToWFhSkyMlKrV69Wfn7+ZCYDABCwf796\nk2VZio2NVXZ2tmJiYgxVBZ/29nYdPHhQQ0NDOnjwoJxOp4qKikxnAQAwpbxer1paWlRbW6vR0dGA\nrurPuXHgtm3bpvLyctMZADDpPvzwQx0+fFjh4eHyer3Ky8vTunXrjDa9+uqreuGFF/zHBw4cUGFh\nocEimMAcZfyYowAAAGC6sdkY42V6s7Fl9NUBYBKUlJQoMTFReXl5Wrx4sUpKSkwnBa3i4mItWLBA\nK1as8P8EIioqSg0NDdq/f78aGxt14403qqqqSsePH5/cYAAAJsDr9eqee+7RU089pbVr1+q7775T\nSkqKdu7caTotqLz++ut64403NDIyIrvd/h9vbwwAwPWioaFB1dXVeuihh/Tmm28GtAbnxv9dfX39\nD34OHTqkvr4+02kAMCXeeecdVVVVqaqqSpWVlaqsrDTWcunSJZ0/f16ffvqpurq61NXVJbfbzTnf\nDMUcZfyYowAAAADA2LiPMICQNzQ0pIyMDEnSkiVL9PbbbxsuCl4rV65Uamqq5s6dO6F1LMtSZWWl\nkpKS5Ha7ZbPZ5PV6NTIyMkmlAABMXGdnp9asWSO73a6EhAQ5nU6tWrVKb731lum0oGSz2TQ8PKzR\n0VHTKQAATKnBwUEtXrxYmZmZamhoUFVVlRobG695Hc6N/zuXy6WCggJ9/+Z68fHxcjqdBqsAYOos\nXLhQra2tSkxMVEdHhxISEtTV1SVJSkhImNaWtrY2HTt2TBcuXFBZWZkkyW63a+PGjdPageDAHGX8\nmKMAAAAAwNhsvu9/0wsAIaiqqkoffPCB4uLi1N3drfvvv1+5ubmms4LSo48+qkuXLik6Olo+n082\nmy2gW8V6PB61tLSou7tbDodD6enpioiI8K8JAEAwaGpqUnV1tcLCwnTlyhXl5uYqIyND9fX12rBh\ng+m8oHHy5Ent379fHR0dWrZsmfLz87Vy5UrTWQAATJmdO3dq+fLlWr58uW6//XZFREQEtA7nxv9d\nXV2dsrOzTWcAwLQpLS390d+99tpr01jy/7344ovavXu3kddG8GCOMn7MUQAAADDdZq/YajoBIcJz\n6pDR12ezMYDrgtfrVX9/v+bPn6/wcC7aDgAAAAAAxnbx4kUdOXJEPT09iouL0yOPPKLo6GjTWUHn\nq6++0kcffaTBwUH/c8XFxQGt1d3dfdWxZVmKjo7WrFmzJtQIANez1tZWrVmzxn/8t7/9TT/96U8N\nFiHUMUcBAAAAghObjTFepjcbcyYJIOT9+9UiLMtSbGyssrOzFRMTY6gqOLW3t+vgwYMaGhrSwYMH\n5XQ6VVRUZDoLAIApceLECa1atUqff/65jhw5onvvvZcr9o4hLy/vqivq/N9nqSeffFJLly41WAYA\nwNQoKSnRY489prS0NLndbpWUlKiiosJ0VtApLi5WYWGhbrvttgmvtX37do2MjGjRokXq7OxUWFiY\nIiMjtXr1auXn509CLQAEh1dffVUvvPCC//jAgQMqLCwMaC2Xy3XVZuN33303oM3GOTk5stls8vl8\n+uabbxQWFqajR48G1ITQxRxl/JijAAAAAMDYLNMBADBRXq9X99xzj5566imtXbtW3333nVJSUrRz\n507TaUHn9ddf1xtvvKGRkRHZ7Xa1tbWZTgIAYMocOnRIlmWprKxM69at0549e0wnBaXFixertLRU\nTqdTzz//vOLi4lRQUKBdu3aZTgMAYEoMDQ0pIyNDS5YsUUZGhoaGhkwnBaWVK1cqNTVVd911l/8n\nUFFRUWpoaND+/fvV2NioG2+8UVVVVTp+/PjkBQOAQZcuXdL58+f16aefqqurS11dXXK73QF9//qH\nP/xBOTk5OnPmjDZu3KicnBxt3LhRdrs9oLba2lrV1NSotrZWLS0tSk9PD2gdhDbmKOPHHAUAAAAA\nxsaVjQGEvM7OTq1Zs0Z2u10JCQlyOp1atWqV3nrrLdNpQctms2l4eFijo6OmUwAAmDKXL19WY2Oj\nbr75Zq1YsUKRkZGmk4LSZ599JofDoYiICMXGxurs2bNKTEw0nQUAwJS57777tGHDBsXFxam7u1v3\n33+/6aSg9I9//EO/+MUvFB0dLZ/PJ5vNppqamoDWsixLlZWVSkpKktvtls1mk9fr1cjIyCRXA4AZ\nbW1tOnbsmC5cuKCysjJJkt1u18aNG695rfXr12v9+vXKy8tTVVXVhNvq6+v9j4eGhtTe3j7hNRF6\nmKNcO+YoAAAAmC6+0SumE4Bxsfl8Pp/pCACYiKamJlVXVyssLExXrlxRbm6uMjIyVF9frw0bNpjO\nCyonT57U/v371dHRoWXLlik/P5/byQMArltnz57VJ598oocfflhz587V+++/r6ysLNNZQefkyZNy\nOp369ttvFRkZqa1btyolJUUnTpzQ2rVrTecBADAlvF6v+vv7NX/+fIWHcz2GqebxeNTS0qLu7m45\nHA6lp6crIiLCv4kZAK4XL774onbv3j0pa124cEE/+clPJrxOQ0OD/3FkZKTuuOMOzZ8/f8LrIrQw\nRxk/5igAAACYbrNSNptOQIgY/p+3jb4+m40BAAAAYAbr6+vTTTfdZDoDAIBpU1paetWxZVmKjY1V\ndna2YmJiDFUFn/b2dh08eFBDQ0M6ePCgnE6nioqKTGcBwIzx73+vJOm1114LaK3e3l719vYqJiaG\nv3UAAAAAEGTYbIzxMr3ZmMt2AAh5J06c0KpVq/T555/ryJEjuvfee/kv8x+Rl5d31RWD/m+g+uST\nT2rp0qUGywAAmHxNTU2qrKzUwMCALMtSVFSU6urqTGcFnT179ujy5ctKTU1VZmYmG48BANc9r9er\nzMxMJSYmqqOjQ0ePHlVKSop27tw5Kberv168/vrrcjqdKiwslN1uV1tbG5uNAeC/yMnJkc1mk8/n\n0zfffKOwsDAdPXo0oLUKCwv9j7/++msdO3YsoHX27dunL7/8UomJiTp37pySk5O1Y8eOgNZC6GKO\nMn7MUQAAAABgbJbpAACYqEOHDsmyLJWVlWndunXas2eP6aSgtXjxYpWWlsrpdOr5559XXFycCgoK\ntGvXLtNpAABMuurqalVXV2vBggWqr6/XrbfeajopKO3du1dvvvmmYmNj9dJLL+nxxx9XbW2tBgcH\nTacBADAlOjs7tWbNGi1ZskRr1qzR+fPntWrVKnm9XtNpQclms2l4eFijo6OmUwAg6NXW1qqmpka1\ntbVqaWlRenp6wGvFx8f7f5YuXaoLFy4EtM6pU6dUVlamZ599VmVlZfr73/8ecBNCF3OU8WOOAgAA\nAABj48rGAELe5cuX1djYqJtvvlkrVqxQZGSk6aSg9dlnn8nhcCgiIkKxsbE6e/asEhMTTWcBADAl\nRkdHZbfbZVmWBgYGdPr0adNJQenixYtqaWlRa2ur5syZo5ycHFmWpaeffloVFRWm8wAAmHSbNm3S\nE088obCwMF25ckWbNm2S1+vVz3/+c9NpQWXHjh3atm2bOjo6VFxcrF/96lemkwAg6NXX1/sfDw0N\nqb29PeC1nnjiCf9Vkm+44QY98MADAa0zb948VVRUKDk5WW63W1FRUQE3IXQxRxk/5igAAAAAMDab\nz+fzmY4AgIk4e/asPvnkEz388MOaO3eu3n//fWVlZZnOCkonT56U0+nUt99+q8jISG3dulUpKSk6\nceKE1q5dazoPAIBJ9fHHHyslJUVnzpyRy+VSenq61q9fbzor6Gzfvl2ZmZm6++67NWfOHP/z7733\nXsDDbAAAAACYiRoaGvyPIyMjdccdd2j+/PkGiySPx6Pm5mb19PTI4XAoIyNDs2fPNtqE6cccZfyY\nowAAAGC6zUrZbDoBIWL4f942+vpsNgaAGaSvr0833XST6QwAABBEhoaGrtpk3Nvbq5iYGINFAABM\nrRMnTmjVqlX6/PPPdeTIEd17771auXKl6aygk5eXJ5vN5j+2LEuxsbF68skntXTpUoNlABDcent7\n/edVEzm3+vDDD3X48GGFh4fL6/UqLy9P69atm8RSAGNhjgIAAIDpxmZjjJfpzcbhRl8dACZBU1OT\nKisrNTAwIMuyFBUVpbq6OtNZQWnPnj26fPmyUlNTlZmZyRdmAIAZZdu2bSovLzedEXSKi4uVn5+v\nO++8U3V1dTp+/LjKyspMZwEAMGUOHTqk1NRUlZWV6YknntBvf/tb/fGPfzSdFXQWL16snJwcJSYm\nqqOjQ9XV1dq6datKS0v17rvvms4DgKC0b98+ffnll0pMTNS5c+eUnJysHTt2BLTWO++8o5qaGoWH\nh2t4eJjNxpgQ5ijjxxwFAAAAAMbGZmMAIa+6ulrV1dXavHmzysvL9dprr5lOClp79+7V8PCw/vKX\nv+ill17SpUuX9LOf/UwPPvig5s6dazoPAIBJUV9f/4Pn+vv71dfXZ6Am+B04cEC7du3SK6+8oqys\nLDYaAwCue5cvX1ZjY6NuvvlmrVixQpGRkaaTgtJnn30mh8OhiIgIxcbG6uzZs0pMTDSdBQBB7dSp\nU6qpqfEf5+bmBrzWwoUL1dra6v+nj4SEBHV1dUmSEhISJtyKmYU5yvgxRwEAAACAsbHZGEDIGx0d\nld1ul2VZGhgY0OnTp00nBa2LFy+qpaVFra2tmjNnjnJycmRZlp5++mlVVFSYzgMAYFK4XC4VFBTI\n5/P5n4uPj5fT6TRYFbxqa2vl8Xj03HPP6fDhw1q4cKHS0tJMZwEAMGX27NmjTz75RMXFxRoeHlZW\nVpbppKD0m9/8Rr/+9a/17bffKjIyUqWlpfJ6vcrPzzedBgBBa968eaqoqFBycrLcbreioqICXis8\nPFx//vOf/cd2u93/z6FsFMW1Yo4yfsxRAAAAAGBsNt/3J/AAEII+/vhjpaSk6MyZM3K5XEpPT9f6\n9etNZwWl7du3KzMzU3fffbfmzJnjf/69997TAw88YLAMAIDJU1dXp+zsbNMZIaOpqcl/K16v16vy\n8nIVFxcbrgIAAKb19fVx23AAuEYej0fNzc3q6emRw+FQRkaGZs+ebToLYI5yDZijAAAAAMDY2GwM\nADPI0NDQVV+O9fb2KiYmxmARAABTp7u7+6pjy7IUHR2tWbNmGSoKXr29vf7PBXw2AABc75qamlRZ\nWamBgQFZlqWoqCjV1dWZzgo6JSUlunz5slJTU5WZmcnGYwCYZq+++qpeeOEF//GBAwdUWFhosAiY\nGZijAAAAAMDYLNMBADDZtm3bZjohaBUXF+uvf/2rpP+96uPLL79suAgAgKmzfft2FRUV6Xe/+51+\n+ctfqqioSFu2bJHT6TSdFlT27dunXbt26U9/+pNefvll/f73vzedBADAlKqurlZ1dbUWLFig+vp6\n3XrrraaTgtLevXv15ptvKjY2Vi+99JIef/xx1dbWanBw0HQaAFzXLl26pPPnz+vTTz9VV1eXurq6\n5Ha71dbWZjoN1xHmKD+OOQoAAAAAjC3cdAAABKq+vv4Hz/X396uvr89ATWg4cOCAdu3apVdeeUVZ\nWVkqKysznQQAwJSJioqSy+XyH2/ZskUul0s5OTnKz883WBZcTp06pZqaGv9xbm6uwRoAAKbe6Oio\n7Ha7LMvSwMCATp8+bTopKF28eFEtLS1qbW3VnDlzlJOTI8uy9PTTT6uiosJ0HgBct9ra2nTs2DFd\nuHDB//2t3W7Xxo0bDZchFDFHuXbMUQAAAABgbGw2BhCyXC6XCgoK5PP5/M/Fx8dztcL/oLa2Vh6P\nR88995wOHz6shQsXKi0tzXQWAABTwrIsVVZWKikpSW63WzabTV6vVyMjI6bTgsq8efNUUVGh5ORk\nud1uRUVFmU4CAGBKFRUVaXBwUMXFxXrllVeUl5dnOiko7d69W5mZmdq7d+9VtxL3eDwGqwDg+peW\nlqa0tDS9+OKL2r17t+kchDjmKNeOOQoAAAAAjM3m+/7ZJQCEkLq6OmVnZ5vOCClNTU1at26dJMnr\n9aq8vFzFxcWGqwAAmBoej0ctLS3q7u6Ww+FQenq6IiIi5PP5ZLPZTOcFDY/Ho+bmZvX09MjhcCgj\nI0OzZ882nQUAAAwbGhq6apNxb2+vYmJiDBYBAIBrxRzl2jFHAQAAAICxsdkYQMjr7u6+6tiyLEVH\nR2vWrFmGioJbb2+vf0DIkBAAAAAAMNNt27ZN5eXlpjOCzpYtW5Sfn68777xTdXV1On78OLcRB4Bp\nlJOTI5vNJp/Pp2+++UZhYWE6evSo6SyEKOYo14Y5CgAAAAD8EJuNAYS87OxsjYyMaNGiRers7FRY\nWJgiIyO1evVq5efnm84LKvv27dMXX3yhpKQknTt3TrfccoueeeYZ01kAAAAAAEy5+vr6HzzX39+v\n5uZmHTlyxEBRcBseHtauXbvU3t6urKwsbd682XQSAMxoe/fuVUlJiekMhCjmKOPHHAUAAAAAxhZu\nOgAAJioqKkoul8t/vGXLFrlcLuXk5PAl2b85deqUampq/Me5ubkGawAAAAAAmD4ul0sFBQX6/rUX\n4uPj5XQ6DVYFr9raWnk8Hj333HM6fPiwFi5cqLS0NNNZADBjfP+fZIaGhtTe3m6wBqGOOcr4MUcB\nAAAAgLGx2RhAyLMsS5WVlUpKSpLb7ZbNZpPX69XIyIjptKAzb948VVRUKDk5WW63W1FRUaaTAAAA\nAACYFps2bdJDDz1kOiNkLFiwQHv37pUk3XXXXSovL2ezMQBMo7CwMP/jBQsWaP/+/QZrEOqYo4wf\ncxQAAAAAGJvN9/1LeQBACPJ4PGppaVF3d7ccDofS09MVEREhn88nm81mOi+oeDweNTc3q6enRw6H\nQxkZGZo9e7bpLAAAAAAApk13d/dVx5ZlKTo6WrNmzTJUFLx6e3vV29urmJgYxcTEmM4BgBmH92FM\nFuYo48ccBQAAAADGxmZjAAAAAAAAADNGdna2RkZGtGjRInV2diosLEyRkZFavXo1txH/nn379umL\nL75QUlKSzp07p1tuuUXPPPOM6SwAmDH27dunL7/8UomJiTp37pySk5O1Y8cO01kAAAAAAGCGCjcd\nAAAAAAAAAADTJSoqSi6Xy3+8ZcsWuVwu5eTksNn4e06dOqWamhr/cW5ursEaAJh5eB8GAAAAAADB\nhM3GAAAAAAAAAGYMy7JUWVmppKQkud1u2Ww2eb1ejYyMmE4LKvPmzVNFRYWSk5PldrsVFRVlOgkA\nZhTehwEAAAAAQDCx+Xw+n+kIAAAAAAAAAJgOHo9HLS0t6u7ulsPhUHp6uiIiIuTz+WSz2UznBQ2P\nx6Pm5mb19PTI4XAoIyNDs2fPNp0FADMG78MAAAAAACCYsNkYAAAAAAAAAAAAAAAAAAAAwJgs0wEA\nAAAAAAAAAAAAAAAAAAAAghObjQEAAAAAAAAAAAAAAAAAAACMic3GAAAAAAAAAAAAAAAAAAAAAMbE\nZmMAAAAAAAAAAAAAAAAAAAAAY2KzMQAAAAAAAAAAAAAAAAAAAIAx/T8FfHjo2fkAxgAAAABJRU5E\nrkJggg==\n",
+      "text/plain": [
+       "<matplotlib.figure.Figure at 0x52768518>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "combined = train_ft.copy()\n",
+    "combined['next_lactate'] = train_lbl.reset_index(drop=True)\n",
+    "heatmap(combined)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": [
+    "#helper methods\n",
+    "\n",
+    "reload(logger)\n",
+    "\n",
+    "\n",
+    "\n",
+    "def create_df(hdf5_fname,components,ids=constants.ALL):\n",
+    "    #Load up our data dict and simple data components\n",
+    "    \n",
+    "    df_all = None\n",
+    "    logger.log('Make DF ...'.format(len(hadm_ids)),new_level=True)\n",
+    "    \n",
+    "    id_filter = transformers.filter_ids(ids=ids)\n",
+    "    \n",
+    "    for component in components:\n",
+    "        logger.log(component.upper(),new_level=True)\n",
+    "\n",
+    "        logger.log('Opening...')\n",
+    "        df = utils.open_df(hdf5_fname,'cleaned/{}'.format(component))\n",
+    "        if ids != constants.ALL: \n",
+    "            df_filtered = id_filter.transform(df)\n",
+    "        else: df_filtered = df\n",
+    "        logger.log('Join {} to {}'.format(df_filtered.shape, None if df_all is None else df_all.shape))\n",
+    "        if df_all is None: \n",
+    "            df_all = df_filtered\n",
+    "        else: \n",
+    "            df_all = df_all.join(df_filtered,how='outer')\n",
+    "            del df,df_filtered\n",
+    "        \n",
+    "        logger.end_log_level()\n",
+    "    logger.end_log()\n",
+    "    \n",
+    "    df_all.sort_index(axis=1,inplace=True)\n",
+    "    df_all.sort_index(inplace=True)\n",
+    "    \n",
+    "    \n",
+    "    return df_all\n",
+    "\n",
+    "\n",
+    "\n",
+    "def clean_and_combine_simple_data(hadm_ids,data_dict):\n",
+    "    #Load up our data dict and simple data components\n",
+    "    hdf5_fname = 'data/mimic_simple_all'\n",
+    "    components = data_dict.get_panel_defintions(12).component.unique().tolist() #12 is \"simple data\"\n",
+    "    \n",
+    "    filter_ids =transformers.filter_ids(hadm_ids)\n",
+    "    #This will be our cleaning pipeline\n",
+    "    custom_cleaners = Pipeline([\n",
+    "            ('filter_ids',filter_ids),\n",
+    "            ('one_hotter',transformers.nominal_to_onehot()),\n",
+    "            ('drop_small_columns5',transformers.remove_small_columns(threshold=5)),\n",
+    "            ('drop_oob_values',transformers.oob_value_remover(data_dict)),\n",
+    "            ('drop_small_columns50',transformers.remove_small_columns(threshold=50)),\n",
+    "            ('combine_like_columns',transformers.combine_like_cols())\n",
+    "        ])\n",
+    "    \n",
+    "    df_all = None\n",
+    "    logger.log('Make DF for {} admission'.format(len(hadm_ids)),new_level=True)\n",
+    "    for component in components:\n",
+    "        logger.log(component.upper(),new_level=True)\n",
+    "\n",
+    "        logger.log('Opening...')\n",
+    "        df = utils.open_df(hdf5_fname,'cleaned/{}'.format(component))\n",
+    "\n",
+    "        display(df.describe())\n",
+    "\n",
+    "        logger.log('Clean {}'.format(df.shape))\n",
+    "        df_cleaned = custom_cleaners.fit_transform(df)\n",
+    "\n",
+    "        display(df_cleaned.describe())\n",
+    "\n",
+    "        print utils.data_loss(filter_ids.transform(df),df_cleaned)\n",
+    "        \n",
+    "        logger.log('Join {} to {}'.format(df_cleaned.shape, None if df_all is None else df_all.shape))\n",
+    "        if df_all is None: df_all = df_cleaned\n",
+    "        else : df_all = df_all.join(df_cleaned,how='outer')\n",
+    "        del df,df_cleaned\n",
+    "        \n",
+    "        logger.end_log_level()\n",
+    "    logger.end_log()\n",
+    "\n",
+    "    return df_all\n",
+    "\n",
+    "\n",
+    "def features_and_labels(df,data_dict,random_state,n_hrs,feature_tuples):\n",
+    "    \n",
+    "    labels = create_lactate_labels(df,data_dict,random_state)\n",
+    "    valid_ids = labels.index.get_level_values(constants.column_names.ID).unique().tolist()\n",
+    "    \n",
+    "    end_dt = labels.reset_index(constants.column_names.DATETIME,drop=False).iloc[:,0]\n",
+    "    df_context = mimic.get_context_data(valid_ids)\n",
+    "    \n",
+    "    \n",
+    "    pipeline = Pipeline([\n",
+    "        ('filter',transformers.filter_ids(valid_ids)),\n",
+    "        ('segmenter',segmenting.n_hrs_before(end_dt,df_context,n_hrs)),\n",
+    "        ('featurizer',features.featurizer(feature_tuples)),\n",
+    "        ('feature_cleaner',features.pdFeatureUnion())\n",
+    "    ])\n",
+    "    \n",
+    "    return pipeline.transform(df),labels\n",
+    "    \n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": [
+    "def clean_and_combine_data(hdf5_fname,components,cleaners,train_ids,test_ids):\n",
+    "    filter_ids = transformers.filter_ids(hadm_ids)\n",
+    "    \n",
+    "    df_all = None\n",
+    "    logger.log('Make DF for {} admission - {}'.format(len(hadm_ids),components),new_level=True)\n",
+    "    for component in components:\n",
+    "        logger.log(component.upper(),new_level=True)\n",
+    "\n",
+    "        logger.log('Opening...')\n",
+    "        df = utils.open_df(hdf5_fname,'cleaned/{}'.format(component))\n",
+    "        df_test = transformers.filter_ids(test_ids).transform(test_ids).sort_index(axis=1).sort_index()\n",
+    "        df_train = transformers.filter_ids(train_ids).transform(test_ids).sort_index(axis=1).sort_index()\n",
+    "        \n",
+    "        display(df.describe())\n",
+    "\n",
+    "        logger.log('Clean {}'.format(df.shape))\n",
+    "        df_cleaned = cleaners.fit_transform(df_test)\n",
+    "\n",
+    "        display(df_cleaned.describe())\n",
+    "\n",
+    "        print utils.data_loss(df,df_cleaned)\n",
+    "        \n",
+    "        logger.log('Join {} to {}'.format(df_cleaned.shape, None if df_all is None else df_all.shape))\n",
+    "        if df_all is None: df_all = df_cleaned\n",
+    "        else : df_all = df_all.join(df_cleaned,how='outer')\n",
+    "        del df,df_cleaned\n",
+    "        \n",
+    "        logger.end_log_level()\n",
+    "    logger.end_log()\n",
+    "\n",
+    "    return df_all\n",
+    "\n",
+    "\n",
+    "def lin_reg_feature_pipeline(labels,feature_tuples):\n",
+    "    valid_ids = labels.index.get_level_values(constants.column_names.ID).unique().tolist()\n",
+    "    df_context = mimic.get_context_data(valid_ids)\n",
+    "    end_dt = labels.reset_index(constants.column_names.DATETIME,drop=False).iloc[:,0]\n",
+    "   \n",
+    "    return Pipeline([\n",
+    "            ('filter_ids',transformers.filter_ids(ids=valid_ids)),\n",
+    "            ('segmenter',segmenting.n_hrs_before(end_dt,df_context,n_hrs=None)), #we are doing multivariate regression, so need to segment in this way for now\n",
+    "            ('featurizer',features.pdFeatureUnion(feature_tuples)),\n",
+    "            ('feature_cleaner',features.feature_cleaner())\n",
+    "        ])\n",
+    "\n",
+    "def lin_reg_features_and_labels(hadm_ids,hdf5_fname,feature_components,label_components,cleaners,\n",
+    "                                    feature_tuples,n_hrs=constants.ALL):\n",
+    "    #get all data, both for features and labels\n",
+    "    components = list(set(feature_components + label_components))\n",
+    "    df_all = clean_and_combine_data(hdf5_fname,components,cleaners,hadm_ids)\n",
+    "\n",
+    "    #extract labels\n",
+    "    labels = label_extractor.transform(df_all)\n",
+    "\n",
+    "    #feature pipeline\n",
+    "    feature_pipeline = lin_reg_feature_pipeline(labels,feature_tuples)\n",
+    "    feature_pipeline.set_params(segmenter__n_hrs=n_hrs)\n",
+    "    df_features = feature_pipeline.transform(df_all)\n",
+    "    return df_features,labels"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [],
+   "source": [
+    "import pandas as pd"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>A</th>\n",
+       "      <th>B</th>\n",
+       "      <th>C</th>\n",
+       "      <th>D</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>2</td>\n",
+       "      <td>3</td>\n",
+       "      <td>4</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>5</td>\n",
+       "      <td>6</td>\n",
+       "      <td>7</td>\n",
+       "      <td>8</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>9</td>\n",
+       "      <td>10</td>\n",
+       "      <td>11</td>\n",
+       "      <td>12</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   A   B   C   D\n",
+       "0  1   2   3   4\n",
+       "1  5   6   7   8\n",
+       "2  9  10  11  12"
+      ]
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "left = pd.DataFrame([(1,2,3,4),(5,6,7,8),(9,10,11,12)],columns=['A','B','C','D'])\n",
+    "r1 = pd.DataFrame([(3,4),(5,6)],columns=['E','F'],index=[0,1])\n",
+    "r2 = pd.DataFrame([(34,234),(5,6)],columns=['E','F'],index=[2,3])\n",
+    "\n",
+    "partitions = [r1,r2]\n",
+    "left"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "3"
+      ]
+     },
+     "execution_count": 10,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "left.iloc[:,0].dropna().index.get_level_values(0).unique().size"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>A</th>\n",
+       "      <th>B</th>\n",
+       "      <th>C</th>\n",
+       "      <th>D</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>2</td>\n",
+       "      <td>3</td>\n",
+       "      <td>4</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>5</td>\n",
+       "      <td>6</td>\n",
+       "      <td>7</td>\n",
+       "      <td>8</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>9</td>\n",
+       "      <td>10</td>\n",
+       "      <td>11</td>\n",
+       "      <td>12</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   A   B   C   D\n",
+       "0  1   2   3   4\n",
+       "1  5   6   7   8\n",
+       "2  9  10  11  12"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>E</th>\n",
+       "      <th>F</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>3</td>\n",
+       "      <td>4</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>5</td>\n",
+       "      <td>6</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   E  F\n",
+       "0  3  4\n",
+       "1  5  6"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>A</th>\n",
+       "      <th>B</th>\n",
+       "      <th>C</th>\n",
+       "      <th>D</th>\n",
+       "      <th>E</th>\n",
+       "      <th>F</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1.0</td>\n",
+       "      <td>2.0</td>\n",
+       "      <td>3.0</td>\n",
+       "      <td>4.0</td>\n",
+       "      <td>3.0</td>\n",
+       "      <td>4.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>5.0</td>\n",
+       "      <td>6.0</td>\n",
+       "      <td>7.0</td>\n",
+       "      <td>8.0</td>\n",
+       "      <td>5.0</td>\n",
+       "      <td>6.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>9.0</td>\n",
+       "      <td>10.0</td>\n",
+       "      <td>11.0</td>\n",
+       "      <td>12.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "     A     B     C     D    E    F\n",
+       "0  1.0   2.0   3.0   4.0  3.0  4.0\n",
+       "1  5.0   6.0   7.0   8.0  5.0  6.0\n",
+       "2  9.0  10.0  11.0  12.0  NaN  NaN"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>A</th>\n",
+       "      <th>B</th>\n",
+       "      <th>C</th>\n",
+       "      <th>D</th>\n",
+       "      <th>E</th>\n",
+       "      <th>F</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1.0</td>\n",
+       "      <td>2.0</td>\n",
+       "      <td>3.0</td>\n",
+       "      <td>4.0</td>\n",
+       "      <td>3.0</td>\n",
+       "      <td>4.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>5.0</td>\n",
+       "      <td>6.0</td>\n",
+       "      <td>7.0</td>\n",
+       "      <td>8.0</td>\n",
+       "      <td>5.0</td>\n",
+       "      <td>6.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>9.0</td>\n",
+       "      <td>10.0</td>\n",
+       "      <td>11.0</td>\n",
+       "      <td>12.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "     A     B     C     D    E    F\n",
+       "0  1.0   2.0   3.0   4.0  3.0  4.0\n",
+       "1  5.0   6.0   7.0   8.0  5.0  6.0\n",
+       "2  9.0  10.0  11.0  12.0  NaN  NaN"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>E</th>\n",
+       "      <th>F</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>34</td>\n",
+       "      <td>234</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>5</td>\n",
+       "      <td>6</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "    E    F\n",
+       "2  34  234\n",
+       "3   5    6"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>A</th>\n",
+       "      <th>B</th>\n",
+       "      <th>C</th>\n",
+       "      <th>D</th>\n",
+       "      <th>E</th>\n",
+       "      <th>F</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1.0</td>\n",
+       "      <td>2.0</td>\n",
+       "      <td>3.0</td>\n",
+       "      <td>4.0</td>\n",
+       "      <td>3.0</td>\n",
+       "      <td>4.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>5.0</td>\n",
+       "      <td>6.0</td>\n",
+       "      <td>7.0</td>\n",
+       "      <td>8.0</td>\n",
+       "      <td>5.0</td>\n",
+       "      <td>6.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>9.0</td>\n",
+       "      <td>10.0</td>\n",
+       "      <td>11.0</td>\n",
+       "      <td>12.0</td>\n",
+       "      <td>34.0</td>\n",
+       "      <td>234.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>5.0</td>\n",
+       "      <td>6.0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "     A     B     C     D     E      F\n",
+       "0  1.0   2.0   3.0   4.0   3.0    4.0\n",
+       "1  5.0   6.0   7.0   8.0   5.0    6.0\n",
+       "2  9.0  10.0  11.0  12.0  34.0  234.0\n",
+       "3  NaN   NaN   NaN   NaN   5.0    6.0"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>A</th>\n",
+       "      <th>B</th>\n",
+       "      <th>C</th>\n",
+       "      <th>D</th>\n",
+       "      <th>E</th>\n",
+       "      <th>F</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1.0</td>\n",
+       "      <td>2.0</td>\n",
+       "      <td>3.0</td>\n",
+       "      <td>4.0</td>\n",
+       "      <td>3.0</td>\n",
+       "      <td>4.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>5.0</td>\n",
+       "      <td>6.0</td>\n",
+       "      <td>7.0</td>\n",
+       "      <td>8.0</td>\n",
+       "      <td>5.0</td>\n",
+       "      <td>6.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>9.0</td>\n",
+       "      <td>10.0</td>\n",
+       "      <td>11.0</td>\n",
+       "      <td>12.0</td>\n",
+       "      <td>34.0</td>\n",
+       "      <td>234.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>5.0</td>\n",
+       "      <td>6.0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "     A     B     C     D     E      F\n",
+       "0  1.0   2.0   3.0   4.0   3.0    4.0\n",
+       "1  5.0   6.0   7.0   8.0   5.0    6.0\n",
+       "2  9.0  10.0  11.0  12.0  34.0  234.0\n",
+       "3  NaN   NaN   NaN   NaN   5.0    6.0"
+      ]
+     },
+     "execution_count": 21,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "for df_partition in partitions:\n",
+    "    display(left)\n",
+    "    display(df_partition)\n",
+    "    in_index = df_partition.index.isin(left.index)\n",
+    "    in_column = df_partition.columns.isin(left.columns)\n",
+    "\n",
+    "    left = left.join(df_partition.loc[in_index,~in_column], how='outer')\n",
+    "    left = pd.concat([left,df_partition.loc[~in_index,:]])\n",
+    "    left.update(df_partition.loc[in_index,in_column])\n",
+    "    display(left)\n",
+    "left"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 97,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>A</th>\n",
+       "      <th>B</th>\n",
+       "      <th>C</th>\n",
+       "      <th>D</th>\n",
+       "      <th>E</th>\n",
+       "      <th>F</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>2</td>\n",
+       "      <td>3</td>\n",
+       "      <td>4</td>\n",
+       "      <td>3.0</td>\n",
+       "      <td>4.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>5</td>\n",
+       "      <td>6</td>\n",
+       "      <td>7</td>\n",
+       "      <td>8</td>\n",
+       "      <td>5.0</td>\n",
+       "      <td>6.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>9</td>\n",
+       "      <td>10</td>\n",
+       "      <td>11</td>\n",
+       "      <td>12</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   A   B   C   D    E    F\n",
+       "0  1   2   3   4  3.0  4.0\n",
+       "1  5   6   7   8  5.0  6.0\n",
+       "2  9  10  11  12  NaN  NaN"
+      ]
+     },
+     "execution_count": 97,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 90,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 91,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>A</th>\n",
+       "      <th>B</th>\n",
+       "      <th>C</th>\n",
+       "      <th>D</th>\n",
+       "      <th>E</th>\n",
+       "      <th>F</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1.0</td>\n",
+       "      <td>2.0</td>\n",
+       "      <td>3.0</td>\n",
+       "      <td>4.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>5.0</td>\n",
+       "      <td>6.0</td>\n",
+       "      <td>7.0</td>\n",
+       "      <td>8.0</td>\n",
+       "      <td>3.0</td>\n",
+       "      <td>4.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>5.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>6.0</td>\n",
+       "      <td>34.0</td>\n",
+       "      <td>234.0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "     A    B    C    D     E      F\n",
+       "0  1.0  2.0  3.0  4.0   NaN    NaN\n",
+       "1  5.0  6.0  7.0  8.0   3.0    4.0\n",
+       "2  NaN  5.0  NaN  6.0  34.0  234.0"
+      ]
+     },
+     "execution_count": 91,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df_joined"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [],
+   "source": [
+    "df2.loc[in_index,~in_column]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 39,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>A</th>\n",
+       "      <th>B</th>\n",
+       "      <th>C</th>\n",
+       "      <th>D</th>\n",
+       "      <th>E</th>\n",
+       "      <th>F</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1.0</td>\n",
+       "      <td>2.0</td>\n",
+       "      <td>3.0</td>\n",
+       "      <td>4.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>5.0</td>\n",
+       "      <td>6.0</td>\n",
+       "      <td>7.0</td>\n",
+       "      <td>8.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>3.0</td>\n",
+       "      <td>4.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>NaN</td>\n",
+       "      <td>5.0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>6.0</td>\n",
+       "      <td>7.0</td>\n",
+       "      <td>8.0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "     A    B    C    D    E    F\n",
+       "0  1.0  2.0  3.0  4.0  NaN  NaN\n",
+       "1  5.0  6.0  7.0  8.0  NaN  NaN\n",
+       "1  NaN  NaN  NaN  NaN  3.0  4.0\n",
+       "2  NaN  5.0  NaN  6.0  7.0  8.0"
+      ]
+     },
+     "execution_count": 39,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "pd.concat([df1,df2])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 43,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": [
+    "df1.update(df2,join='left')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 44,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>A</th>\n",
+       "      <th>B</th>\n",
+       "      <th>C</th>\n",
+       "      <th>D</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>2</td>\n",
+       "      <td>3</td>\n",
+       "      <td>4</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>5</td>\n",
+       "      <td>6</td>\n",
+       "      <td>7</td>\n",
+       "      <td>8</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   A  B  C  D\n",
+       "0  1  2  3  4\n",
+       "1  5  6  7  8"
+      ]
+     },
+     "execution_count": 44,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df1"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": true
+   },
+   "outputs": [],
+   "source": [
+    "class lactate_label_extractor(BaseEstimator,TransformerMixin,has_data_needs):\n",
+    "\n",
+    "    def __init__(self,lactate_component,random_state):\n",
+    "        self.lactate_component = lactate_component\n",
+    "        self.random_state = random_state\n",
+    "        super(lactate_label_extractor,self).__init__((lactate_component,ALL))\n",
+    "        \n",
+    "    def fit(self, df, y=None):\n",
+    "        return self\n",
+    "\n",
+    "    def transform(self, df):\n",
+    "        logger.log('Extract lactate label',new_level=True)\n",
+    "        lactate = df.groupby(level=constants.column_names.ID).apply(self.sample_lactate).dropna().reset_index(level=0,drop=True)\n",
+    "        logger.end_log_level()\n",
+    "        return labels\n",
+    "\n",
+    "    def sample_lactate(grp):\n",
+    "        eligible_lactate = grp.iloc[1:].loc[:,self.lactate_component]\n",
+    "        if eligible_lactate.size == 0: return pd.np.nan\n",
+    "        \n",
+    "        return eligible_lactate.sample(n=1,random_state=self.random_state)"
+   ]
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "kernelspec": {
+   "display_name": "Python [Root]",
+   "language": "python",
+   "name": "Python [Root]"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 2
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython2",
+   "version": "2.7.12"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}