--- a +++ b/man/Generate.Accrual.Rd @@ -0,0 +1,37 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/accrual.R +\name{Generate.Accrual} +\alias{Generate.Accrual} +\title{Create An AccrualGenerator using a power law recruitment} +\usage{ +Generate.Accrual(start.date, end.date, k, deterministic = FALSE, + rec.start.date = NULL) +} +\arguments{ +\item{start.date}{The start of the subject accrual period} + +\item{end.date}{The date the last subject is accrued so \code{B} = +\code{end.date} - \code{start.date} unless \code{rec.start.date} is used see +below} + +\item{k}{The non-uniformity accrual parameter} + +\item{deterministic}{Logical, if FALSE then the recruitment times +are non-stochastically chosen so that their cumulative distribution function is \code{G(t)} +otherwise they are generated by sampling random variables with a cdf \code{G(t)}} + +\item{rec.start.date}{If this argument is used the subjects are still recruited between +start.date and end.date but they follow the cdf \code{G(t)=(t^k-L^k)/(B^k-L^k)} where +\code{t} is in \code{[L,B]} and \code{B = end.date - rec.start.date} and \code{L = start.date- rec.start.date}.} +} +\value{ +An AccrualGenerator object which generates the required subject accruals +} +\description{ +Subjects are accrued according to the c.d.f +\code{G(t)=t^k/B^k} where \code{k} is a parameter, +\code{t} is the time and \code{B} is the recruitment period. + +See the predict from data vignette for further details +} +