|
a |
|
b/R/eventDataDiagnostic.R |
|
|
1 |
#The Diagnostic functions (output site/censor information and the lagplot) |
|
|
2 |
#for the predict from data EventData object |
|
|
3 |
|
|
|
4 |
##' @include eventData.R |
|
|
5 |
NULL |
|
|
6 |
|
|
|
7 |
##' Output a data frame containing all subjects who been censored before |
|
|
8 |
##' a given date |
|
|
9 |
##' |
|
|
10 |
##' Output a data frame containing all subjects who been censored before |
|
|
11 |
##' a given date not including subjects censored at end of follow up period |
|
|
12 |
##' |
|
|
13 |
##' @param object An \code{EventData} object |
|
|
14 |
##' @param ... Additional parameters to be passed to the method |
|
|
15 |
##' @return A data frame with the required subject's data |
|
|
16 |
##' @rdname censorInformation-methods |
|
|
17 |
##' @name censorInformation |
|
|
18 |
##' @export |
|
|
19 |
setGeneric("censorInformation",function(object,...) standardGeneric("censorInformation")) |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
# Simple internal function for validating the analysis/censor date |
|
|
23 |
# arguments for the Diagnostic functions |
|
|
24 |
# @param date.arg The user's input date |
|
|
25 |
# @param default.date The default date to use if date.arg is null |
|
|
26 |
# @return date.arg or the default.date if date.arg is null |
|
|
27 |
# errors validating date.arg will throw an exception |
|
|
28 |
DiagDataArg <- function(date.arg,default.date){ |
|
|
29 |
if(is.null(date.arg)){ |
|
|
30 |
return(as.Date(default.date,origin="1970-01-01")) |
|
|
31 |
} |
|
|
32 |
FixDates(date.arg) |
|
|
33 |
} |
|
|
34 |
|
|
|
35 |
|
|
|
36 |
##' @param censor.date All subjects who have a censor date before this |
|
|
37 |
##' date should be output, by default (i.e. when NULL) the latest date for which |
|
|
38 |
##' any subject information (withdrawal/event/censor) is known |
|
|
39 |
##' @name censorInformation |
|
|
40 |
##' @aliases censorInformation,EventData-method |
|
|
41 |
##' @rdname censorInformation-methods |
|
|
42 |
##'@export |
|
|
43 |
setMethod("censorInformation", "EventData", |
|
|
44 |
function(object, censor.date=NULL){ |
|
|
45 |
|
|
|
46 |
censor.date <- DiagDataArg(censor.date,max(LastDate(object@subject.data))) |
|
|
47 |
|
|
|
48 |
data <-GetLaggedSubjects(object@subject.data,censor.date) |
|
|
49 |
|
|
|
50 |
if(nrow(data)==0){ |
|
|
51 |
return(data.frame(subject=character(0), |
|
|
52 |
timelag=numeric(0), |
|
|
53 |
rand.date=numeric(0), |
|
|
54 |
time=numeric(0))) |
|
|
55 |
} |
|
|
56 |
|
|
|
57 |
|
|
|
58 |
last.date <- LastDate(data) |
|
|
59 |
data <- data.frame(subject=data$subject, |
|
|
60 |
timelag=as.numeric(censor.date-last.date), |
|
|
61 |
rand.date=data$rand.date, |
|
|
62 |
time=data$time) |
|
|
63 |
|
|
|
64 |
ans <- data[order(data$timelag,decreasing=TRUE),] |
|
|
65 |
rownames(ans) <- 1:nrow(ans) |
|
|
66 |
ans |
|
|
67 |
}) |
|
|
68 |
|
|
|
69 |
|
|
|
70 |
##' Output a plot showing the lag between censoring and the date the analysis |
|
|
71 |
##' is being performed |
|
|
72 |
##' @param object An \code{EventData} object |
|
|
73 |
##' @param ... Additional arguments for the function |
|
|
74 |
##' @rdname DiagnosticPlot-methods |
|
|
75 |
##' @name DiagnosticPlot |
|
|
76 |
##' @export |
|
|
77 |
setGeneric("DiagnosticPlot",function(object,...) standardGeneric("DiagnosticPlot")) |
|
|
78 |
|
|
|
79 |
|
|
|
80 |
|
|
|
81 |
##' @param window.size An optional integer. If used an additional 2 lines at y=x-window.size |
|
|
82 |
##' and y = x-2*window.size are drawn on the graph. If \code{window.size} is chosen to be the |
|
|
83 |
##' visit schedule (in days) then these lines provide an easy way to determine the number of subjects |
|
|
84 |
##' who have missed one or two visits. |
|
|
85 |
##' @param analysis.date The date the analysis is being perfomed on, by default (i.e. when NULL) it is the |
|
|
86 |
##' the latest date at which any subject is censored/is known to have had an event |
|
|
87 |
##' @param separate.events Logical, if FALSE then all events are coloured the same with label "Had Event", if |
|
|
88 |
##' TRUE then the different event types (object@@subject.data$event.type) are coloured individually. |
|
|
89 |
##' @rdname DiagnosticPlot-methods |
|
|
90 |
##' @aliases DiagnosticPlot,EventData-method |
|
|
91 |
##' @name DiagnosticPlot |
|
|
92 |
##' @export |
|
|
93 |
setMethod("DiagnosticPlot","EventData", |
|
|
94 |
function(object, window.size=NULL, analysis.date=NULL,separate.events=TRUE){ |
|
|
95 |
if(nrow(object@subject.data)==0)stop("Empty data frame!") |
|
|
96 |
|
|
|
97 |
analysis.date <- DiagDataArg(analysis.date,max(LastDate(object@subject.data))) |
|
|
98 |
|
|
|
99 |
xlab <- paste("Days on study if subjects censored on",as.character(analysis.date)) |
|
|
100 |
ylab <- "Known days on study" |
|
|
101 |
|
|
|
102 |
time.on.study <- object@subject.data$time |
|
|
103 |
|
|
|
104 |
|
|
|
105 |
status <- rep("Ongoing",nrow(object@subject.data)) |
|
|
106 |
status <- ifelse(object@subject.data$has.event==1, |
|
|
107 |
if(separate.events)as.character(object@subject.data$event.type) else "Had Event",status) |
|
|
108 |
status <- ifelse(object@subject.data$censored.at.follow.up==1,"Censored after follow up period",status) |
|
|
109 |
status <- ifelse(object@subject.data$withdrawn==1,"Withdrawn from Study",status) |
|
|
110 |
|
|
|
111 |
|
|
|
112 |
my.data <- data.frame(subject=object@subject.data$subject, |
|
|
113 |
rand.date=object@subject.data$rand.date, |
|
|
114 |
time.on.study=time.on.study, |
|
|
115 |
t.max=as.numeric(analysis.date - object@subject.data$rand.date + 1,origin="1970-01-01"), |
|
|
116 |
status=status, |
|
|
117 |
site=object@subject.data$site, |
|
|
118 |
date.of.event.censor.or.withdrawal=LastDate(object@subject.data)) |
|
|
119 |
|
|
|
120 |
|
|
|
121 |
p <- ggplot(my.data, aes_string(x="t.max", y="time.on.study", color="status")) + |
|
|
122 |
geom_point() + geom_abline(intercept=0, slope=1, col="black") + |
|
|
123 |
xlab(xlab) + ylab(ylab) |
|
|
124 |
|
|
|
125 |
if(!is.null(window.size)){ |
|
|
126 |
if(window.size<=0) stop("window.size should be positive") |
|
|
127 |
p <- p + geom_abline(intercept=-window.size, slope=1, col="black",linetype = 2)+ |
|
|
128 |
geom_abline(intercept=-2*window.size, slope=1, col="black",linetype = 2) |
|
|
129 |
} |
|
|
130 |
p |
|
|
131 |
} |
|
|
132 |
) |
|
|
133 |
|
|
|
134 |
##' Output information about how up to date subject censor dates |
|
|
135 |
##' are for each site |
|
|
136 |
##' |
|
|
137 |
##' Output information about how up to date subject censor dates |
|
|
138 |
##' are for each site in the study subjects who are censored at the |
|
|
139 |
##' end of their follow up period are |
|
|
140 |
##' not included in this analysis |
|
|
141 |
##' @param object An \code{EventData} object |
|
|
142 |
##' @param ... Additional arguments to be passed to the method |
|
|
143 |
##' @rdname siteInformation-methods |
|
|
144 |
##' @name siteInformation |
|
|
145 |
##' @export |
|
|
146 |
setGeneric("siteInformation",function(object,...) standardGeneric("siteInformation")) |
|
|
147 |
|
|
|
148 |
|
|
|
149 |
|
|
|
150 |
|
|
|
151 |
##'@param analysis.date The date the analysis is being perfomed on, by default (i.e. when NULL) it is the |
|
|
152 |
##' the latest date at which any subject is censored/is known to have had an event |
|
|
153 |
##'@param ndays The acceptable lag between \code{analysis.date} and censor date. If the lag is |
|
|
154 |
##'greater than this then the subject will be included in the output data frame. |
|
|
155 |
##'@return A data frame with each row containing a site name and the number |
|
|
156 |
##'of subjects at this site with censor date before \code{analysis.date}-\code{ndays} |
|
|
157 |
##'@rdname siteInformation-methods |
|
|
158 |
##'@aliases siteInformation,EventData-method |
|
|
159 |
##'@name siteInformation |
|
|
160 |
##'@export |
|
|
161 |
setMethod("siteInformation", "EventData", |
|
|
162 |
function(object, analysis.date=NULL, ndays){ |
|
|
163 |
if(ndays < 0 || class(ndays)!="numeric") stop("ndays must be numeric and non-negative") |
|
|
164 |
if(all(is.na(object@subject.data$site))) stop("No site information") |
|
|
165 |
|
|
|
166 |
analysis.date <- DiagDataArg(analysis.date,max(LastDate(object@subject.data))) |
|
|
167 |
|
|
|
168 |
data <-GetLaggedSubjects(object@subject.data,analysis.date-ndays)$site |
|
|
169 |
|
|
|
170 |
if(length(data)==0){ |
|
|
171 |
return(data.frame(site=character(0),count=character(0))) |
|
|
172 |
} |
|
|
173 |
|
|
|
174 |
sites <- as.data.frame(table(data)) |
|
|
175 |
colnames(sites) <- c("site","count") |
|
|
176 |
sites <- sites[order(sites$count,decreasing=TRUE),] |
|
|
177 |
rownames(sites) <- NULL |
|
|
178 |
sites[sites$count > 0,] |
|
|
179 |
}) |