59 lines (58 with data), 1.8 kB
Package: eventPrediction
Type: Package
Title: Event Prediction in Clinical Trials with Time-to-Event Outcomes
Version: 2.4.1
Date: 2015-11-24
Author: Daniel Dalevi and Nik Burkoff with contributions from Helen Mann, Paul
Metcalfe and David Ruau
Maintainer: Daniel Dalevi <daniel.dalevi@astrazeneca.com>
Description: There are two main parts of this package: 1) Predictions about
the required number of events in a 2-arm survival study from a fixed set of
parameters, 2) Predictions about the time when reaching a target level of events
from accumulated data analysed at an interim in a blinded survival study. 1)
uses an exponential or Weibull model for survival and accrual according to a
fixed non linear function. 2) by default uses a Weibull model for survival and
either a Poisson process or a non-linear function for accrual. This package is
based on earlier work by Christophe Delong and Sally Hollis.
License: GPL (>=2)
Depends:
ggplot2,
survival,
methods,
scales,
R (>= 2.10)
Imports:
mvtnorm,
stats
Suggests:
knitr,
testthat
VignetteBuilder: knitr
Collate:
'timeInternal.R'
'simQOutput.R'
'common.R'
'fromDataInternal.R'
'eventPrediction_package.R'
'fromDataSimParam.R'
'eventData.R'
'accrual.R'
'ctrlSpec.R'
'singleSimDetails.R'
'longlagSettings.R'
'dataResults.R'
'displayOptions.R'
'eventDataDiagnostic.R'
'fromDataSimInternal.R'
'eventModel.R'
'fromParameterInternal.R'
'sfn.R'
'lag.R'
'study.R'
'results.R'
'fromParameterPlot.R'
'simulate.R'
'study_constructors.R'
'summaryText.R'
'system_tests.R'
RoxygenNote: 5.0.1