Diff of /run.py [000000] .. [811e40]

Switch to side-by-side view

--- a
+++ b/run.py
@@ -0,0 +1,79 @@
+import fire
+import json
+import pickle
+from pathlib import Path
+from src.data import load_chia, load_fb
+from src.prompt import few_shot_entity_recognition
+from tqdm import tqdm
+
+
+def process_chia(n: int = None, random: bool = False):
+    """Processes the Chia dataset
+
+    Args:
+        n (int, optional): Number of rows to read. Defaults to None.
+        random (bool, optional): Whether to read rows randomly. Defaults to False.
+    """
+    df = load_chia()
+
+    if random:
+        for _, row in df.sample(frac=1.)[:n].iterrows():
+            print(row["criteria"])
+            print("TRUE: ", row["drugs"], row["persons"], row["conditions"])
+            print("PREDICTED: ", few_shot_entity_recognition(row["criteria"]))
+            print("-" * 100)
+    else:
+        # iterate over rows of the dataframe
+        for _, row in df[:n].iterrows():
+            print(row["criteria"])
+            print(row["drugs"], row["persons"], row["conditions"])
+            print(few_shot_entity_recognition(row["criteria"]))
+            print("-" * 100)
+
+
+def ner_fb(entity: str, n: int = None, random: bool = False, verbose: bool = False):
+    """Applies the LLM prompting to extract NERs from the FB dataset
+
+    Args:
+        entity (str): Entity type
+        n (int, optional): Number of rows to read. Defaults to None.
+        random (bool, optional): Whether to read rows randomly. Defaults to False.
+        verbose (bool, optional): Whether to print the results. Defaults to False.
+    """
+    df = load_fb()["test"]
+
+    results = []
+
+    few_shot_examples = Path("data/few-shots.json")
+    with open(few_shot_examples, "r") as f:
+        few_shot_examples = json.load(f)[entity]
+
+    if random:
+        for _, row in tqdm(df.sample(frac=1.)[:n].iterrows()):
+            criterion = row["criterion"]
+            ent_true = row[entity]
+            ent_pred = few_shot_entity_recognition(few_shot_examples, criterion, entity)
+
+            results.append((entity, criterion, ent_true, ent_pred))
+    else:
+        for _, row in tqdm(df[:n].iterrows()):
+            criterion = row["criterion"]
+            ent_true = row[entity]
+            ent_pred = few_shot_entity_recognition(few_shot_examples, criterion, entity)
+
+            results.append((entity, criterion, ent_true, ent_pred))
+
+    output_file = Path(f"data/{entity}_ner_results.pkl")
+    with open(output_file, "wb") as f:
+        pickle.dump(results, f)
+
+    if verbose:
+        for entity, criterion, ent_true, ent_pred in results:
+            print(criterion)
+            print("TRUE: ", ent_true)
+            print("PREDICTED: ", ent_pred)
+            print("-" * 100)
+
+
+if __name__ == "__main__":
+    fire.Fire()