--- a +++ b/fine-tuning/finetuning_NER.ipynb @@ -0,0 +1,23203 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "NH518TfOBOwe" + }, + "source": [ + "# Finetuning Transformer Models for NER\n", + "\n", + "In this file following things will be done:\n", + "\n", + "- fine-tune BERT, RoBERTA and Bio_ClinicalBERT for NER\n", + "- evaluate and compare their performance\n", + "- choose best performaning model and optimize parameter\n", + "- continue evaluating with test set" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "A-VFH8lt_xcp" + }, + "outputs": [], + "source": [ + "import os\n", + "import itertools\n", + "import pandas as pd\n", + "import numpy as np\n", + "!pip3 install datasets\n", + "!pip3 install transformers\n", + "from datasets import Dataset\n", + "from datasets import load_metric\n", + "from transformers import AutoTokenizer\n", + "from transformers import AutoModelForTokenClassification, TrainingArguments, Trainer\n", + "from transformers import DataCollatorForTokenClassification\n", + "import torch" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "3yP25LVQCabA" + }, + "outputs": [], + "source": [ + "import ast" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mQ48t22uC6QI" + }, + "outputs": [], + "source": [ + "from datasets import DatasetDict, Dataset\n", + "import pandas as pd\n", + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 744 + }, + "id": "rSAFyHMGB_SQ", + "outputId": "faf90fcc-95d5-48a2-8cd2-73c7d1ec9624" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " sentence \\\n", + "0 CASE: A 28-year-old previously healthy man pre... \n", + "1 The symptoms occurred during rest, 2–3 times p... \n", + "2 Except for a grade 2/6 holosystolic tricuspid ... \n", + "3 An electrocardiogram (ECG) revealed normal sin... \n", + "4 Transthoracic echocardiography demonstrated th... \n", + "... ... \n", + "4537 MHL was diagnosed (Fig.3). \n", + "4538 Immunohistochemistry results (Fig.4) were the ... \n", + "4539 After 9 days of recovery, the patient returned... \n", + "4540 A follow-up examination, which included blood ... \n", + "4541 No adverse or unanticipated event was presented. \n", + "\n", + " tags \\\n", + "0 ['O', 'O', 'B-Age', 'B-History', 'I-History', ... \n", + "1 ['O', 'B-Coreference', 'O', 'O', 'B-Clinical_e... \n", + "2 ['O', 'O', 'O', 'B-Lab_value', 'I-Lab_value', ... \n", + "3 ['O', 'B-Diagnostic_procedure', 'O', 'O', 'B-L... \n", + "4 ['B-Biological_structure', 'B-Diagnostic_proce... \n", + "... ... \n", + "4537 ['B-Disease_disorder', 'O', 'O', 'O'] \n", + "4538 ['B-Diagnostic_procedure', 'I-Diagnostic_proce... \n", + "4539 ['O', 'B-Duration', 'I-Duration', 'O', 'B-Ther... \n", + "4540 ['O', 'B-Clinical_event', 'O', 'O', 'O', 'B-Di... \n", + "4541 ['O', 'B-Sign_symptom', 'I-Sign_symptom', 'I-S... \n", + "\n", + " tokens \\\n", + "0 ['case', 'a', '28-year-old', 'previously', 'he... \n", + "1 ['the', 'symptoms', 'occurred', 'during', 'res... \n", + "2 ['except', 'for', 'a', 'grade', '2/6', 'holosy... \n", + "3 ['an', 'electrocardiogram', 'ecg', 'revealed',... \n", + "4 ['transthoracic', 'echocardiography', 'demonst... \n", + "... ... \n", + "4537 ['mhl', 'was', 'diagnosed', 'fig3'] \n", + "4538 ['immunohistochemistry', 'results', 'fig4', 'w... \n", + "4539 ['after', '9', 'days', 'of', 'recovery', 'the'... \n", + "4540 ['a', 'follow-up', 'examination', 'which', 'in... \n", + "4541 ['no', 'adverse', 'or', 'unanticipated', 'even... \n", + "\n", + " numeric_tags \n", + "0 [0, 0, 1, 15, 16, 3, 5, 0, 0, 37, 0, 0, 9] \n", + "1 [0, 29, 0, 0, 5, 43, 44, 44, 44, 0, 13, 14, 14... \n", + "2 [0, 0, 0, 23, 24, 13, 11, 9, 10, 0, 0, 0, 0, 1... \n", + "3 [0, 19, 0, 0, 23, 19, 20, 0, 0, 9, 10, 10, 10,... \n", + "4 [11, 19, 0, 0, 0, 0, 25, 26, 0, 0, 11, 12, 0, ... \n", + "... ... \n", + "4537 [25, 0, 0, 0] \n", + "4538 [19, 20, 0, 0, 0, 0, 19, 20, 0, 19, 0, 19, 0, ... \n", + "4539 [0, 37, 38, 0, 33, 0, 0, 5, 7, 0, 9] \n", + "4540 [0, 5, 0, 0, 0, 19, 20, 19, 20, 20, 19, 20, 0,... \n", + "4541 [0, 9, 10, 10, 10, 0, 0] \n", + "\n", + "[4542 rows x 4 columns]" + ], + "text/html": [ + "\n", + " <div id=\"df-02b18f3d-0145-4000-a6ca-6371deb7c1bf\" class=\"colab-df-container\">\n", + " <div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>sentence</th>\n", + " <th>tags</th>\n", + " <th>tokens</th>\n", + " <th>numeric_tags</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>CASE: A 28-year-old previously healthy man pre...</td>\n", + " <td>['O', 'O', 'B-Age', 'B-History', 'I-History', ...</td>\n", + " <td>['case', 'a', '28-year-old', 'previously', 'he...</td>\n", + " <td>[0, 0, 1, 15, 16, 3, 5, 0, 0, 37, 0, 0, 9]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>The symptoms occurred during rest, 2–3 times p...</td>\n", + " <td>['O', 'B-Coreference', 'O', 'O', 'B-Clinical_e...</td>\n", + " <td>['the', 'symptoms', 'occurred', 'during', 'res...</td>\n", + " <td>[0, 29, 0, 0, 5, 43, 44, 44, 44, 0, 13, 14, 14...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>Except for a grade 2/6 holosystolic tricuspid ...</td>\n", + " <td>['O', 'O', 'O', 'B-Lab_value', 'I-Lab_value', ...</td>\n", + " <td>['except', 'for', 'a', 'grade', '2/6', 'holosy...</td>\n", + " <td>[0, 0, 0, 23, 24, 13, 11, 9, 10, 0, 0, 0, 0, 1...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>An electrocardiogram (ECG) revealed normal sin...</td>\n", + " <td>['O', 'B-Diagnostic_procedure', 'O', 'O', 'B-L...</td>\n", + " <td>['an', 'electrocardiogram', 'ecg', 'revealed',...</td>\n", + " <td>[0, 19, 0, 0, 23, 19, 20, 0, 0, 9, 10, 10, 10,...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>Transthoracic echocardiography demonstrated th...</td>\n", + " <td>['B-Biological_structure', 'B-Diagnostic_proce...</td>\n", + " <td>['transthoracic', 'echocardiography', 'demonst...</td>\n", + " <td>[11, 19, 0, 0, 0, 0, 25, 26, 0, 0, 11, 12, 0, ...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4537</th>\n", + " <td>MHL was diagnosed (Fig.3).</td>\n", + " <td>['B-Disease_disorder', 'O', 'O', 'O']</td>\n", + " <td>['mhl', 'was', 'diagnosed', 'fig3']</td>\n", + " <td>[25, 0, 0, 0]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4538</th>\n", + " <td>Immunohistochemistry results (Fig.4) were the ...</td>\n", + " <td>['B-Diagnostic_procedure', 'I-Diagnostic_proce...</td>\n", + " <td>['immunohistochemistry', 'results', 'fig4', 'w...</td>\n", + " <td>[19, 20, 0, 0, 0, 0, 19, 20, 0, 19, 0, 19, 0, ...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4539</th>\n", + " <td>After 9 days of recovery, the patient returned...</td>\n", + " <td>['O', 'B-Duration', 'I-Duration', 'O', 'B-Ther...</td>\n", + " <td>['after', '9', 'days', 'of', 'recovery', 'the'...</td>\n", + " <td>[0, 37, 38, 0, 33, 0, 0, 5, 7, 0, 9]</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4540</th>\n", + " <td>A follow-up examination, which included blood ...</td>\n", + " <td>['O', 'B-Clinical_event', 'O', 'O', 'O', 'B-Di...</td>\n", + " <td>['a', 'follow-up', 'examination', 'which', 'in...</td>\n", + " <td>[0, 5, 0, 0, 0, 19, 20, 19, 20, 20, 19, 20, 0,...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4541</th>\n", + " <td>No adverse or unanticipated event was presented.</td>\n", + " <td>['O', 'B-Sign_symptom', 'I-Sign_symptom', 'I-S...</td>\n", + " <td>['no', 'adverse', 'or', 'unanticipated', 'even...</td>\n", + " <td>[0, 9, 10, 10, 10, 0, 0]</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>4542 rows × 4 columns</p>\n", + "</div>\n", + " <div class=\"colab-df-buttons\">\n", + "\n", + " <div class=\"colab-df-container\">\n", + " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-02b18f3d-0145-4000-a6ca-6371deb7c1bf')\"\n", + " title=\"Convert this dataframe to an interactive table.\"\n", + " style=\"display:none;\">\n", + "\n", + " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", + " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", + " </svg>\n", + " </button>\n", + "\n", + " <style>\n", + " .colab-df-container {\n", + " display:flex;\n", + " gap: 12px;\n", + " }\n", + "\n", + " .colab-df-convert {\n", + " background-color: #E8F0FE;\n", + " border: none;\n", + " border-radius: 50%;\n", + " cursor: pointer;\n", + " display: none;\n", + " fill: #1967D2;\n", + " height: 32px;\n", + " padding: 0 0 0 0;\n", + " width: 32px;\n", + " }\n", + "\n", + " .colab-df-convert:hover {\n", + " background-color: #E2EBFA;\n", + " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", + " fill: #174EA6;\n", + " }\n", + "\n", + " .colab-df-buttons div {\n", + " margin-bottom: 4px;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert {\n", + " background-color: #3B4455;\n", + " fill: #D2E3FC;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert:hover {\n", + " background-color: #434B5C;\n", + " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", + " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", + " fill: #FFFFFF;\n", + " }\n", + " </style>\n", + "\n", + " <script>\n", + " const buttonEl =\n", + " document.querySelector('#df-02b18f3d-0145-4000-a6ca-6371deb7c1bf button.colab-df-convert');\n", + " buttonEl.style.display =\n", + " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + "\n", + " async function convertToInteractive(key) {\n", + " const element = document.querySelector('#df-02b18f3d-0145-4000-a6ca-6371deb7c1bf');\n", + " const dataTable =\n", + " await google.colab.kernel.invokeFunction('convertToInteractive',\n", + " [key], {});\n", + " if (!dataTable) return;\n", + "\n", + " const docLinkHtml = 'Like what you see? Visit the ' +\n", + " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", + " + ' to learn more about interactive tables.';\n", + " element.innerHTML = '';\n", + " dataTable['output_type'] = 'display_data';\n", + " await google.colab.output.renderOutput(dataTable, element);\n", + " const docLink = document.createElement('div');\n", + " docLink.innerHTML = docLinkHtml;\n", + " element.appendChild(docLink);\n", + " }\n", + " </script>\n", + " </div>\n", + "\n", + "\n", + "<div id=\"df-5f27ecd7-7033-46e1-9a63-a625c22e570b\">\n", + " <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-5f27ecd7-7033-46e1-9a63-a625c22e570b')\"\n", + " title=\"Suggest charts.\"\n", + " style=\"display:none;\">\n", + "\n", + "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", + " width=\"24px\">\n", + " <g>\n", + " <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", + " </g>\n", + "</svg>\n", + " </button>\n", + "\n", + "<style>\n", + " .colab-df-quickchart {\n", + " --bg-color: #E8F0FE;\n", + " --fill-color: #1967D2;\n", + " --hover-bg-color: #E2EBFA;\n", + " --hover-fill-color: #174EA6;\n", + " --disabled-fill-color: #AAA;\n", + " --disabled-bg-color: #DDD;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-quickchart {\n", + " --bg-color: #3B4455;\n", + " --fill-color: #D2E3FC;\n", + " --hover-bg-color: #434B5C;\n", + " --hover-fill-color: #FFFFFF;\n", + " --disabled-bg-color: #3B4455;\n", + " --disabled-fill-color: #666;\n", + " }\n", + "\n", + " .colab-df-quickchart {\n", + " background-color: var(--bg-color);\n", + " border: none;\n", + " border-radius: 50%;\n", + " cursor: pointer;\n", + " display: none;\n", + " fill: var(--fill-color);\n", + " height: 32px;\n", + " padding: 0;\n", + " width: 32px;\n", + " }\n", + "\n", + " .colab-df-quickchart:hover {\n", + " background-color: var(--hover-bg-color);\n", + " box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", + " fill: var(--button-hover-fill-color);\n", + " }\n", + "\n", + " .colab-df-quickchart-complete:disabled,\n", + " .colab-df-quickchart-complete:disabled:hover {\n", + " background-color: var(--disabled-bg-color);\n", + " fill: var(--disabled-fill-color);\n", + " box-shadow: none;\n", + " }\n", + "\n", + " .colab-df-spinner {\n", + " border: 2px solid var(--fill-color);\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " animation:\n", + " spin 1s steps(1) infinite;\n", + " }\n", + "\n", + " @keyframes spin {\n", + " 0% {\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " border-left-color: var(--fill-color);\n", + " }\n", + " 20% {\n", + " border-color: transparent;\n", + " border-left-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " }\n", + " 30% {\n", + " border-color: transparent;\n", + " border-left-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " border-right-color: var(--fill-color);\n", + " }\n", + " 40% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " }\n", + " 60% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " }\n", + " 80% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " border-bottom-color: var(--fill-color);\n", + " }\n", + " 90% {\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " }\n", + " }\n", + "</style>\n", + "\n", + " <script>\n", + " async function quickchart(key) {\n", + " const quickchartButtonEl =\n", + " document.querySelector('#' + key + ' button');\n", + " quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", + " quickchartButtonEl.classList.add('colab-df-spinner');\n", + " try {\n", + " const charts = await google.colab.kernel.invokeFunction(\n", + " 'suggestCharts', [key], {});\n", + " } catch (error) {\n", + " console.error('Error during call to suggestCharts:', error);\n", + " }\n", + " quickchartButtonEl.classList.remove('colab-df-spinner');\n", + " quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", + " }\n", + " (() => {\n", + " let quickchartButtonEl =\n", + " document.querySelector('#df-5f27ecd7-7033-46e1-9a63-a625c22e570b button');\n", + " quickchartButtonEl.style.display =\n", + " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + " })();\n", + " </script>\n", + "</div>\n", + " </div>\n", + " </div>\n" + ] + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "data = pd.read_csv(\"data.csv\")\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "r29gex2BCP9u" + }, + "source": [ + "Because when reading the file in, the lists in columns 'tags', 'numeric_tags' and 'tokens' are read as strings, so they need to be converted into lists again." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mw8eII0oCjKo" + }, + "outputs": [], + "source": [ + "def convert_tags(tags_string):\n", + " return ast.literal_eval(tags_string)\n", + "\n", + "data['tags'] = data['tags'].apply(convert_tags)\n", + "data['numeric_tags'] = data['numeric_tags'].apply(convert_tags)\n", + "data['tokens'] = data['tokens'].apply(convert_tags)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "T4ZzYWOuCvGM" + }, + "source": [ + "For later purposes, we will need the dictionary again." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "1p45Sf--Cex5" + }, + "outputs": [], + "source": [ + "label_dict = {'O': 0, 'B-Age': 1, 'I-Age': 2, 'B-Sex': 3, 'I-Sex': 4, 'B-Clinical_event': 5,\n", + " 'I-Clinical_event': 6, 'B-Nonbiological_location': 7, 'I-Nonbiological_location': 8,\n", + " 'B-Sign_symptom': 9, 'I-Sign_symptom': 10, 'B-Biological_structure': 11, 'I-Biological_structure': 12,\n", + " 'B-Detailed_description': 13, 'I-Detailed_description': 14, 'B-History': 15, 'I-History': 16, 'B-Family_history': 17,\n", + " 'I-Family_history': 18, 'B-Diagnostic_procedure': 19, 'I-Diagnostic_procedure': 20, 'B-Distance': 21,\n", + " 'I-Distance': 22, 'B-Lab_value': 23, 'I-Lab_value': 24, 'B-Disease_disorder': 25, 'I-Disease_disorder': 26,\n", + " 'B-Shape': 27, 'I-Shape': 28, 'B-Coreference': 29, 'I-Coreference': 30, 'B-Volume': 31, 'I-Volume': 32,\n", + " 'B-Therapeutic_procedure': 33, 'I-Therapeutic_procedure': 34, 'B-Area': 35, 'I-Area': 36, 'B-Duration': 37,\n", + " 'I-Duration': 38, 'B-Date': 39, 'I-Date': 40, 'B-Color': 41, 'I-Color': 42, 'B-Frequency': 43, 'I-Frequency': 44,\n", + " 'B-Texture': 45, 'I-Texture': 46, 'B-Biological_attribute': 47, 'I-Biological_attribute': 48, 'B-Severity': 49,\n", + " 'I-Severity': 50, 'B-Activity': 51, 'I-Activity': 52, 'B-Outcome': 53, 'I-Outcome': 54, 'B-Personal_background': 55,\n", + " 'I-Personal_background': 56, 'B-Medication': 57, 'I-Medication': 58, 'B-Dosage': 59, 'I-Dosage': 60, 'B-Other_event': 61,\n", + " 'I-Other_event': 62, 'B-Administration': 63, 'I-Administration': 64, 'B-Occupation': 65, 'I-Occupation': 66,\n", + " 'B-Other_entity': 67, 'I-Other_entity': 68, 'B-Time': 69, 'I-Time': 70, 'B-Subject': 71, 'I-Subject': 72,\n", + " 'B-Quantitative_concept': 73, 'I-Quantitative_concept': 74, 'B-Height': 75, 'I-Height': 76, 'B-Mass': 77, 'I-Mass': 78,\n", + " 'B-Weight': 79, 'I-Weight': 80, 'B-Qualitative_concept': 81, 'I-Qualitative_concept': 82}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Y26dEt6JI0a6" + }, + "outputs": [], + "source": [ + "id2label = {i: label for i, label in enumerate(label_dict)}\n", + "label2id = {v: k for k, v in id2label.items()}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iz3SCN6uDBm0" + }, + "source": [ + "Next, the dataset is splitted into training, validation, and test. It creates dataframes containing the corresponding data, which get converted into datasets using the Hugging Face `Dataset.from_pandas` method. Finally, it organizes these datasets into a DatasetDict named data_dict." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "uxN4BM4xDRgT" + }, + "outputs": [], + "source": [ + "X = data[\"sentence\"]\n", + "y = data[\"tags\"]\n", + "numeric_tags = data[\"numeric_tags\"]\n", + "\n", + "X_train, X_rest, y_train, y_rest, numeric_tags_train, numeric_tags_rest = train_test_split(X, y, numeric_tags, test_size=0.2, random_state=42)\n", + "X_valid, X_test, y_valid, y_test, numeric_tags_valid, numeric_tags_test = train_test_split(X_rest, y_rest, numeric_tags_rest, test_size=0.5, random_state=42)\n", + "\n", + "train_df = pd.DataFrame({\"tags\": y_train, \"sentence\": X_train, \"numeric_tags\": numeric_tags_train, \"tokens\": data[\"tokens\"][X_train.index]})\n", + "valid_df = pd.DataFrame({\"tags\": y_valid, \"sentence\": X_valid, \"numeric_tags\": numeric_tags_valid, \"tokens\": data[\"tokens\"][X_valid.index]})\n", + "test_df = pd.DataFrame({\"tags\": y_test, \"sentence\": X_test, \"numeric_tags\": numeric_tags_test, \"tokens\": data[\"tokens\"][X_test.index]})\n", + "\n", + "train_dataset = Dataset.from_pandas(train_df)\n", + "valid_dataset = Dataset.from_pandas(valid_df)\n", + "test_dataset = Dataset.from_pandas(test_df)\n", + "\n", + "data_dict = DatasetDict({\n", + " \"train\": train_dataset,\n", + " \"validation\": valid_dataset,\n", + " \"test\": test_dataset\n", + "})" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bgc2aRxwDo3p" + }, + "source": [ + "Now it is in the right format: \"train\" for fine-tuning, \"eval\" for evaluation and \"test\" for testing the models performance." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C5aMoeyBD20n" + }, + "source": [ + "# Prepare Data\n", + "\n", + "The sentences need to be converted to token ids before the model can make sense of them.\n", + "\n", + "The first processing will be more detailed, using the first pre-trained model: BERT\n", + "\n", + "For later, we need a framework for evaluating the token classification prediction, called seqeval." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "iuiWHzw7D7h8" + }, + "outputs": [], + "source": [ + "from transformers import AutoTokenizer\n", + "from transformers import DataCollatorForTokenClassification\n", + "!pip install seqeval\n", + "!pip install evaluate\n", + "import evaluate\n", + "metric = evaluate.load(\"seqeval\")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "To begin, the tokenizer is initialized. To tokenize a pre-tokenized input, we add `is_split_into_words=True`:" + ], + "metadata": { + "id": "6OssTa4HqQvi" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bs9XrJtQD72O" + }, + "outputs": [], + "source": [ + "checkpoint_bert = \"bert-base-uncased\"\n", + "tokenizer_bert = AutoTokenizer.from_pretrained(checkpoint_bert)\n", + "data_collator_bert = DataCollatorForTokenClassification(tokenizer=tokenizer_bert)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fn2vWI71EHJq", + "outputId": "3553e8a3-4673-471f-ad39-1ec46daf9625" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "['[CLS]',\n", + " 'then',\n", + " 'the',\n", + " 'tram',\n", + " 'flap',\n", + " 'was',\n", + " 'harvested',\n", + " 'from',\n", + " 'right',\n", + " 'rec',\n", + " '##tus',\n", + " 'abd',\n", + " '##omi',\n", + " '##nis',\n", + " 'fig',\n", + " '##2',\n", + " '##b',\n", + " 'and',\n", + " 'was',\n", + " 'deep',\n", + " '##ith',\n", + " '##elial',\n", + " '##ized',\n", + " 'fig',\n", + " '##2',\n", + " '##c',\n", + " '[SEP]']" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "inputs = tokenizer_bert(data_dict[\"train\"][0][\"tokens\"], is_split_into_words=True)\n", + "inputs.tokens() # add start and end, and turn token into subtoken" + ] + }, + { + "cell_type": "markdown", + "source": [ + "The tokenizer now added special tokens ([CLS] at the beginning and [SEP] at the end), left most of the words untouched, some got splitted into subtokens.\n", + "\n", + "It is necessary to do more processing on the labels as the input ids returned by the tokenizer are longer than the lists of labels of the dataset, which produces mismatches. We need another function to align all the labels with its word." + ], + "metadata": { + "id": "h05j9JV9qk9j" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cTZH71mREQI-", + "outputId": "c24bb54a-08de-4de9-946e-734045da975d" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[None,\n", + " 0,\n", + " 1,\n", + " 2,\n", + " 3,\n", + " 4,\n", + " 5,\n", + " 6,\n", + " 7,\n", + " 8,\n", + " 8,\n", + " 9,\n", + " 9,\n", + " 9,\n", + " 10,\n", + " 10,\n", + " 10,\n", + " 11,\n", + " 12,\n", + " 13,\n", + " 13,\n", + " 13,\n", + " 13,\n", + " 14,\n", + " 14,\n", + " 14,\n", + " None]" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ], + "source": [ + "inputs.word_ids()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "The function `align_labels_with_tokens` expands the label list to match the tokens. Special tokens get a label of -100, which will be ignored in the loss function. Subtokens get the same tokens as their starting token." + ], + "metadata": { + "id": "P5bfzUfyo244" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "kUseDN3IESHA" + }, + "outputs": [], + "source": [ + "def align_labels_with_tokens(labels, word_ids):\n", + " new_labels = []\n", + " current_word = None\n", + " for word_id in word_ids:\n", + " if word_id != current_word: # New word\n", + " current_word = word_id\n", + " try:\n", + " label = -100 if word_id is None else labels[word_id]\n", + " except:\n", + " label = -100\n", + " new_labels.append(label)\n", + " elif word_id is None: # Special token\n", + " new_labels.append(-100)\n", + " else: # Same word as previous token\n", + " try:\n", + " label = labels[word_id]\n", + " if label % 2 == 1: # if praefix is B-, it gets changed to I-\n", + " label += 1\n", + " except:\n", + " label = -100\n", + " new_labels.append(label)\n", + "\n", + " return new_labels" + ] + }, + { + "cell_type": "markdown", + "source": [ + "An example:" + ], + "metadata": { + "id": "2umNMteGsAaz" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zUEUPv_4EdEV", + "outputId": "a44463d7-f402-4fe1-a35f-07c1c3fcff01" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[0, 0, 33, 34, 0, 33, 0, 11, 12, 12, 0, 0, 0, 33, 0]\n", + "[-100, 0, 0, 33, 34, 0, 33, 0, 11, 12, 12, 12, 12, 12, 0, 0, 0, 0, 0, 33, 34, 34, 34, 0, 0, 0, -100]\n" + ] + } + ], + "source": [ + "labels = data_dict[\"train\"][0][\"numeric_tags\"]\n", + "word_ids = inputs.word_ids()\n", + "print(labels)\n", + "print(align_labels_with_tokens(labels, word_ids))" + ] + }, + { + "cell_type": "markdown", + "source": [ + "The special tokens in the beginning and end are now represented by -100, additional subwords are now laveled like its corresponding ancestor." + ], + "metadata": { + "id": "gtQUGHqesCS2" + } + }, + { + "cell_type": "markdown", + "source": [ + "To preprocess the whole dataset, we need to tokenize all the inputs and apply `align_labels_with_tokens()` on all the labels." + ], + "metadata": { + "id": "rLuSlPrUsPeZ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wk_fvHsQEnjc" + }, + "outputs": [], + "source": [ + "def tokenize_and_align_labels(examples, tokenizer):\n", + " tokenized_inputs = tokenizer(\n", + " examples[\"tokens\"], truncation=True, is_split_into_words=True\n", + " )\n", + " all_labels = examples[\"numeric_tags\"]\n", + " new_labels = []\n", + " for i, labels in enumerate(all_labels):\n", + " word_ids = tokenized_inputs.word_ids(i)\n", + " new_labels.append(align_labels_with_tokens(labels, word_ids))\n", + "\n", + " tokenized_inputs[\"labels\"] = new_labels\n", + " return tokenized_inputs" + ] + }, + { + "cell_type": "markdown", + "source": [ + "By calling the function `get_tokenized_data`, each dataset will be preprocessed in the shown way." + ], + "metadata": { + "id": "DD8LrdU2saSU" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "PHxKa8e-EovN" + }, + "outputs": [], + "source": [ + "def get_tokenized_data(tokenizer, data=data_dict ):\n", + " tokenized_datasets = data.map(\n", + " lambda examples: tokenize_and_align_labels(examples, tokenizer),\n", + " batched=True,\n", + " remove_columns=data[\"train\"].column_names,\n", + " )\n", + " return tokenized_datasets" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 112, + "referenced_widgets": [ + "132d50e305ad41cba46f741bbcbfa1c7", + "31e8527002894a35ae45ca6ad00dbd84", + "7c3f37c48ea44b0c839b67a475e6acc4", + "89e012739f3a4b89aed392c4d027ffcc", + "7d9ee9ba55594f48ada2a5702b520b0e", + "b55ce36b74cf43a6bdb28bb000c5f956", + "dbec304daddb40c9bf3b0b04c125c3ab", + "6cf03c2c9e1b461b848c0f66836c68b6", + "b92f527f50db4930ba904224a1758e13", + "7b15a9a0b8724a978bb55d1e348524b3", + "f561b6a559da44d3a488a071922d6d17", + "dbb4192b103745d5a7ddab96909ec7c0", + "c0790f4e440f4bb49acc3261d5cac2b6", + "39a37366486f4167a988099f60f9b27c", + "443817df0b8c4abf86f7682eb1a60065", + "1d0c811004624e938803b3cb91054f42", + "74881981c47a445b9c28fd11655c69be", + "ec39c298101141e7a569e890431da6bb", + "e76f84942f154450ad048cd45b504e44", + "686554421a4340718b16272f6ece2ec2", + "8f4b77da3f574cae81234e87c3487dd4", + "8614663eb74c4befa0aa63292b585ea3", + "781905b76f5c42d891f1a700874cbf18", + "a8d2ab3d9c244271957f480818efa2d5", + "0152f3e0e6d6415c9ec6d50ededbb53c", + "a7212c058b2d45f2a63fa4757df37b8b", + "8cb09a84d6e0434db8dfc5880dd640ff", + "01c197965c5947a38a9e57c24c4a5e2c", + "a4f03f0e15cc4cf0a62f520a83f6a05b", + "ac34b85703d34b87a1cd8e0839edb0cb", + "aab7946c991c4049b2da6b775ec8042d", + "08532c1665584873ade5a5ddd082ae34", + "2929c85d5ed44172b53839483197094e" + ] + }, + "id": "lwAcjZdsFU-v", + "outputId": "fac3311d-cf21-42de-dd5e-d3c107b95c8a" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/3633 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "132d50e305ad41cba46f741bbcbfa1c7" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/454 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "dbb4192b103745d5a7ddab96909ec7c0" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/455 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "781905b76f5c42d891f1a700874cbf18" + } + }, + "metadata": {} + } + ], + "source": [ + "tokenized_datasets_bert = get_tokenized_data(tokenizer_bert)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "The data has now finally been preprocessed." + ], + "metadata": { + "id": "NkDd1J1CsoWZ" + } + }, + { + "cell_type": "markdown", + "source": [ + "The labels should be padded the exact same way as the inputs so that they stay the same size, which can be achieved using a DataCollatorForTokenClassification. It takes the tokenizer used to preprocess the inputs. Here are some examples:" + ], + "metadata": { + "id": "G0IzIKsLs0o2" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8hMvzmFZIISk", + "outputId": "9412e2b9-01c1-4f06-e4d8-5995dd96e693" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "You're using a BertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[-100, 0, 0, 33, 34, 0, 33, 0, 11, 12, 12, 12,\n", + " 12, 12, 0, 0, 0, 0, 0, 33, 34, 34, 34, 0,\n", + " 0, 0, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n", + " -100],\n", + " [-100, 39, 40, 40, 0, 0, 0, 0, 0, 0, 49, 11,\n", + " 12, 9, 0, 9, 0, 0, 0, 0, 33, 0, 0, 7,\n", + " 8, 8, 0, 0, 0, 0, 0, 13, 25, 26, 26, 26,\n", + " -100]])" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ], + "source": [ + "batch = data_collator_bert([tokenized_datasets_bert[\"train\"][i] for i in range(2)])\n", + "batch[\"labels\"]" + ] + }, + { + "cell_type": "markdown", + "source": [ + " Seqeval takes the lists of labels as strings, not integers, so we need to fully decode the predictions and labels before passing them to the metric. The labels for our first training example looks like this:" + ], + "metadata": { + "id": "vg1AoqiLt98V" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ElDPJNEPIRkf", + "outputId": "c98735c9-39f5-4f63-db7c-86b360514f01" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'tags': ['O',\n", + " 'O',\n", + " 'B-Therapeutic_procedure',\n", + " 'I-Therapeutic_procedure',\n", + " 'O',\n", + " 'B-Therapeutic_procedure',\n", + " 'O',\n", + " 'B-Biological_structure',\n", + " 'I-Biological_structure',\n", + " 'I-Biological_structure',\n", + " 'O',\n", + " 'O',\n", + " 'O',\n", + " 'B-Therapeutic_procedure',\n", + " 'O'],\n", + " 'sentence': 'Then the TRAM flap was harvested from right rectus abdominis (Fig.2B) and was deepithelialized (Fig.2C).',\n", + " 'numeric_tags': [0, 0, 33, 34, 0, 33, 0, 11, 12, 12, 0, 0, 0, 33, 0],\n", + " 'tokens': ['then',\n", + " 'the',\n", + " 'tram',\n", + " 'flap',\n", + " 'was',\n", + " 'harvested',\n", + " 'from',\n", + " 'right',\n", + " 'rectus',\n", + " 'abdominis',\n", + " 'fig2b',\n", + " 'and',\n", + " 'was',\n", + " 'deepithelialized',\n", + " 'fig2c'],\n", + " '__index_level_0__': 4418}" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ], + "source": [ + "data_dict[\"train\"][0]" + ] + }, + { + "cell_type": "markdown", + "source": [ + "We can then create fake predictions for those by just changing the value at index 2:" + ], + "metadata": { + "id": "yFNbkvnQuNJn" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "i4mwIIY-IYdZ", + "outputId": "c5818ff4-f22a-466b-ac3b-6230c1d90c6a" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "['O',\n", + " 'O',\n", + " 'B-Therapeutic_procedure',\n", + " 'I-Therapeutic_procedure',\n", + " 'O',\n", + " 'B-Therapeutic_procedure',\n", + " 'O',\n", + " 'B-Biological_structure',\n", + " 'I-Biological_structure',\n", + " 'I-Biological_structure',\n", + " 'O',\n", + " 'O',\n", + " 'O',\n", + " 'B-Therapeutic_procedure',\n", + " 'O']" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ], + "source": [ + "labels = data_dict[\"train\"][0][\"tags\"]\n", + "labels" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Here’s the output:" + ], + "metadata": { + "id": "SvtmyHzquQko" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "QuINbaOoIh97", + "outputId": "44e292f9-7450-424d-8c28-aa2fc692b084" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'Biological_structure': {'precision': 1.0,\n", + " 'recall': 1.0,\n", + " 'f1': 1.0,\n", + " 'number': 1},\n", + " 'Therapeutic_procedure': {'precision': 0.6666666666666666,\n", + " 'recall': 0.6666666666666666,\n", + " 'f1': 0.6666666666666666,\n", + " 'number': 3},\n", + " 'overall_precision': 0.75,\n", + " 'overall_recall': 0.75,\n", + " 'overall_f1': 0.75,\n", + " 'overall_accuracy': 0.9333333333333333}" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ], + "source": [ + "predictions = labels.copy()\n", + "predictions[2] = 'O'\n", + "metric.compute(predictions=[predictions], references=[labels])" + ] + }, + { + "cell_type": "markdown", + "source": [ + "We get the precision, recall, and F1 score for each separate entity, as well as overall metrics." + ], + "metadata": { + "id": "SFf7utyvuTm3" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DPxDzJKNIllt" + }, + "source": [ + "# Prepare for Fine-tuning\n", + "\n", + "To fine-tune multiple models, general functions are defined, thus we can call them with adjusted parameters." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "vtC7gTcYI4R4" + }, + "outputs": [], + "source": [ + "from transformers import AutoModelForTokenClassification\n", + "! pip install -U accelerate\n", + "! pip install -U transformers\n", + "from transformers import TrainingArguments\n", + "from transformers import Trainer" + ] + }, + { + "cell_type": "markdown", + "source": [ + "To enable the Trainer to calculate a metric after each epoch, we define the `compute_metrics()` function. This function receives arrays containing predictions and labels, and it returns a dictionary containing metric names and their values.\n", + "\n", + "Within the compute_metrics() function, we first convert the logits to predictions by taking the argmax. Following this, we convert both the labels and predictions to strings. We filter out all instances where the label is -100 and then proceed to utilize the `metric.compute()` method with the obtained results." + ], + "metadata": { + "id": "Y_c7i9srtWPI" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "RTVhOQKbIvmT" + }, + "outputs": [], + "source": [ + "def compute_metrics(eval_preds):\n", + " logits, labels = eval_preds\n", + " predictions = np.argmax(logits, axis=-1)\n", + " true_labels = [[id2label[l] for l in label if l != -100] for label in labels]\n", + " true_predictions = [\n", + " [id2label[p] for (p, l) in zip(prediction, label) if l != -100]\n", + " for prediction, label in zip(predictions, labels)\n", + " ]\n", + " all_metrics = metric.compute(predictions=true_predictions, references=true_labels)\n", + " return {\n", + " \"precision\": all_metrics[\"overall_precision\"],\n", + " \"recall\": all_metrics[\"overall_recall\"],\n", + " \"f1\": all_metrics[\"overall_f1\"],\n", + " \"accuracy\": all_metrics[\"overall_accuracy\"],\n", + " }" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Next, we define our TrainingArguments. There are already default-values for the hyperparameteres, which will be replaced when optimizing the model." + ], + "metadata": { + "id": "jeq8lq5BvHse" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9YrseX4dI7hn" + }, + "outputs": [], + "source": [ + "def get_args(name_to_save, learning_rate=2e-5, num_train_epochs=3, weight_decay=0.01):\n", + " args = TrainingArguments(\n", + " name_to_save,\n", + " evaluation_strategy=\"epoch\",\n", + " save_strategy=\"epoch\",\n", + " learning_rate=learning_rate,\n", + " num_train_epochs=num_train_epochs,\n", + " weight_decay=weight_decay\n", + " )\n", + " return args" + ] + }, + { + "cell_type": "markdown", + "source": [ + "When defining the model we have to pass along some information on the number of labels we have. id2label and label2id contain the mappings from ID to label and vice versa:" + ], + "metadata": { + "id": "fPcCCwgQvPIR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ht0gxChCJSvw" + }, + "outputs": [], + "source": [ + "def get_model(checkpoint):\n", + " return AutoModelForTokenClassification.from_pretrained(\n", + " checkpoint,\n", + " id2label=id2label,\n", + " label2id=label2id,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "source": [ + " We just pass everything to the Trainer." + ], + "metadata": { + "id": "ErEQ5eulvhQN" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "xOo36d4TJVex" + }, + "outputs": [], + "source": [ + "def get_trainer(model, args, training_set, eval_set, data_collator, tokenizer):\n", + " return Trainer(\n", + " model=model,\n", + " args=args,\n", + " train_dataset=training_set,\n", + " eval_dataset=eval_set,\n", + " data_collator=data_collator,\n", + " compute_metrics=compute_metrics,\n", + " tokenizer=tokenizer\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QORdgsJGQqQ8" + }, + "source": [ + "## BERT" + ] + }, + { + "cell_type": "markdown", + "source": [ + "First, we try BERT based uncased." + ], + "metadata": { + "id": "I6gLhL9ov_cu" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ZIOfngdsJb9_", + "outputId": "e7784816-2734-4027-df5a-1185dabc7b68" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of BertForTokenClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + } + ], + "source": [ + "model_bert = get_model(checkpoint_bert)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "All parameters are costumized with BERT's tokenizer." + ], + "metadata": { + "id": "R8OFfXfbwCZo" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "s249ItIHJoNr" + }, + "outputs": [], + "source": [ + "trainer_bert = get_trainer(model_bert, get_args(\"bert_ner\"),\n", + " tokenized_datasets_bert[\"train\"],\n", + " tokenized_datasets_bert[\"validation\"],\n", + " data_collator_bert,\n", + " tokenizer_bert)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 350 + }, + "id": "0dVCjp2_QkEI", + "outputId": "0285d038-99e2-434a-9724-0558e0cdc29e" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 03:50, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>1.164763</td>\n", + " <td>0.376830</td>\n", + " <td>0.493333</td>\n", + " <td>0.427283</td>\n", + " <td>0.685781</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.665000</td>\n", + " <td>1.011111</td>\n", + " <td>0.439300</td>\n", + " <td>0.533750</td>\n", + " <td>0.481941</td>\n", + " <td>0.719987</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>1.017200</td>\n", + " <td>0.983526</td>\n", + " <td>0.458201</td>\n", + " <td>0.541250</td>\n", + " <td>0.496275</td>\n", + " <td>0.728789</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "TrainOutput(global_step=1365, training_loss=1.2219703534583906, metrics={'train_runtime': 233.4984, 'train_samples_per_second': 46.677, 'train_steps_per_second': 5.846, 'total_flos': 305075418355890.0, 'train_loss': 1.2219703534583906, 'epoch': 3.0})" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ], + "source": [ + "trainer_bert.train()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 105 + }, + "id": "KhH5KQJ0QzGz", + "outputId": "38519365-dd0c-40cc-ce60-dbd6cc0e95a8" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='57' max='57' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [57/57 00:02]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "{'eval_loss': 0.9835257530212402, 'eval_precision': 0.4582010582010582, 'eval_recall': 0.54125, 'eval_f1': 0.4962750716332378, 'eval_accuracy': 0.7287894030851777, 'eval_runtime': 4.201, 'eval_samples_per_second': 108.069, 'eval_steps_per_second': 13.568, 'epoch': 3.0}\n" + ] + } + ], + "source": [ + "metrics_bert = trainer_bert.evaluate()\n", + "print(metrics_bert)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u4YTBtvMJwdS", + "outputId": "b2a49c15-311e-45f8-fa8d-d66ef49b10be" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "('tokenizer_bert/tokenizer_config.json',\n", + " 'tokenizer_bert/special_tokens_map.json',\n", + " 'tokenizer_bert/vocab.txt',\n", + " 'tokenizer_bert/added_tokens.json',\n", + " 'tokenizer_bert/tokenizer.json')" + ] + }, + "metadata": {}, + "execution_count": 31 + } + ], + "source": [ + "model_bert.save_pretrained('model_bert')\n", + "tokenizer_bert.save_pretrained('tokenizer_bert')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5CjULMCQQrmq" + }, + "source": [ + "## RoBERTa" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Next, we use RoBERTa for finetuning." + ], + "metadata": { + "id": "gJb-2qLJwK9w" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 249, + "referenced_widgets": [ + "e32494d07f254e14accf80f43442b757", + "0bc97c09bc6f43b0b79096828f523e27", + "89398efd3f274d4795a5acb086cee782", + "951ef472caed4cf28ed3d26496ea245b", + "6fe4f89cd91d4f34a29b82279b7c6909", + "83f47aa1a0864d55a0c9b59c3bbc8c76", + "a12897f0b93c4ec5a837750a83f1dd5d", + "d5872c937f2b429c805ba18f68081013", + "ff687e07042b460788121a464653c97c", + "51bb67ffca50459b816a538982810352", + "3485ee1ccf8645589b6517ac608236f8", + "c3a96067e51a4ecf9a44e7ed51b13e8b", + "c1c12e28b4274ed1b80041e979c73556", + "8f72fb4699c74524a854d607cdafd8f6", + "fd663a35255a468c9909b510cc7fb180", + "07a0ef84010649f49c77f2c8870c4250", + "5e79c4851ae646378fc323e03a9cd6e0", + "4c9bcbe70d0b4bfd8186ff72be297ca7", + "96bc42d101514b0cb7cbed302ae41e4c", + "c2416d8a16774559b7a8ced9366e421a", + "aa1191cade7a49e481fcdaa16e0d31d8", + "840856fe8d0a4cc19286025c307ac4b6", + "9c509d28edd24476a08b7e88f540252c", + "e2971f68b57e405ab7b9762e61d14ed6", + "7f62c16fa497461691d2de00a5b5c51e", + "ff95131912cd467fb6727f6a27738197", + "6321c0cf5ea84e8a823a3118b42248ef", + "4f3411e699e7470f82bcd0f7c5b0f476", + "46845205837b444c9bb447fbfe4f5e01", + "39044f86c441409f8b4d043bea2c4be2", + "518baebdf3ab4e5f9a5530e832783eaa", + "1ad119b0476744bc9be0af95690cc085", + "74db70a7f28042d794e90d8b56f74690", + "a411211e541248ff87613395067ca518", + "0fde49440a234dd0a68e784f29c11da1", + "554d6c7a0ab14ace8b1b38b90db66c5f", + "5fb15cda176a454b8543683cb911a1d7", + "4109349c7644433bbd5c970e00c972c9", + "d62098d42f1b436280090ee2b0652898", + "6b924fb53e4c4a79b16b387b89c12f3e", + "4ce929f7c63c4fed9e6ae6b8451bc105", + "bf1cb0036444494ea24fa0008273a814", + "5af95ea579f1472d887ebf85f67197a3", + "d111b4008d204e74b3f28ec19a3bc852" + ] + }, + "id": "0wSMoGglT6po", + "outputId": "19a55a6f-3b9e-4ab3-c26e-446fb62245ce" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading (…)lve/main/config.json: 0%| | 0.00/481 [00:00<?, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "e32494d07f254e14accf80f43442b757" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading (…)olve/main/vocab.json: 0%| | 0.00/899k [00:00<?, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "c3a96067e51a4ecf9a44e7ed51b13e8b" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading (…)olve/main/merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "9c509d28edd24476a08b7e88f540252c" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading (…)/main/tokenizer.json: 0%| | 0.00/1.36M [00:00<?, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "a411211e541248ff87613395067ca518" + } + }, + "metadata": {} + } + ], + "source": [ + "checkpoint_roberta = \"roberta-base\"\n", + "tokenizer_roberta = AutoTokenizer.from_pretrained(checkpoint_roberta, add_prefix_space=True)\n", + "data_collator_roberta = DataCollatorForTokenClassification(tokenizer=tokenizer_roberta)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 223, + "referenced_widgets": [ + "9d446e36059149e0914c260046825217", + "67546d9fdd074350be2b1e5da0d53676", + "278559bcca624553b53262dad249b588", + "e8be9a8dbaa44c60bf05a74ebe3f1d41", + "ba809dba38184a14ad33801a0e47d5c6", + "b7547723fe504390bffcb8ae2fe0cc09", + "6fbf72a480fc4a8a89c611d0ad667dbc", + "b6db314385cf4752a9a4b0adabb56655", + "189579b0ee4e4e0bb982743e17e923d1", + "29f5e79a383748cfbc88f092ae16a633", + "17168ce90bbc42778bb0f1126bac6905", + "8649f6dc2ca2451385b201b87a0a5535", + "2164148a67a547ab9077aa29ecae67ac", + "3062941dc458424eac698949f5e106d3", + "257bf19ce3034d479531fa9cf312dc88", + "bdf1a5b8834945b3929d2a33ce213b53", + "feb20e96d809418f85a28bac9bc7dd31", + "b9c3ffde4ae24c179afd5ba5dd74efd3", + "9dc0ed8b606e484997b90f38550961a4", + "4b700dcd0a394247819479e4a553d10d", + "f31fcfa22f1e4e248c194e2aa486dbeb", + "667946e07d574040aa59fedb591770e9", + "fad79d37fdd74493b0a1212bc76cf851", + "5ffad938a5e94932b7b9933c817f71c9", + "77ef86f0c1934c518c2b48bcdfa19b80", + "abd10dbcc3254a2f91f60e2f99999e6b", + "60b539b886674faba31c9b31307fe953", + "8ac4f350a49144e3b4f3e7a608cc8b16", + "b19e1c4795f34cc48e936b35f5f8bfc5", + "282c11eb554144d2bff257a503b19ea3", + "c6e45eb910f74d1aad782bbe9599dd78", + "eb587b612ad2477db859804902c5ef9d", + "307eb914c2404c2dbfc462ae8e91a13a", + "eb38cf044d7b48e0bec1dac883cb7901", + "7b6edeb90596441c885eae076d30ed23", + "1c8b8c0d7cc641beb46c7b78a368bcaf", + "d80f00a679ad4bf98bf7056fa0fa20ce", + "1aa045dd49d74bb096e05c2769794e32", + "499c224db89041d09689ae017e1abf65", + "e5d5b8ffec59405db36104c388b59cf4", + "a013627e77884b998a67bb7bebc100fb", + "4b8daedf383b441ea32b7b283a45ab8d", + "838eef05a15047049057eead4e5e70cd", + "bfa42f7ded6b4c34bb08adf9d52cc165" + ] + }, + "id": "XaA6prOZUExf", + "outputId": "b251f2ed-3626-4f46-c1cc-7ff240564199" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/3633 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "9d446e36059149e0914c260046825217" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/454 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "8649f6dc2ca2451385b201b87a0a5535" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/455 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "fad79d37fdd74493b0a1212bc76cf851" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading model.safetensors: 0%| | 0.00/499M [00:00<?, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "eb38cf044d7b48e0bec1dac883cb7901" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of RobertaForTokenClassification were not initialized from the model checkpoint at roberta-base and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + } + ], + "source": [ + "tokenized_datasets_roberta = get_tokenized_data(tokenizer_roberta)\n", + "model_roberta = get_model(checkpoint_roberta)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "467K0pQSUJiJ" + }, + "outputs": [], + "source": [ + "trainer_roberta = get_trainer(model_roberta,\n", + " get_args(\"roberta_ner\"),\n", + " tokenized_datasets_roberta[\"train\"],\n", + " tokenized_datasets_roberta[\"validation\"],\n", + " data_collator_roberta,\n", + " tokenizer_roberta)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 334 + }, + "id": "hlSDnh4gUaiL", + "outputId": "db33b8cf-c0ca-4c4c-d616-83b5992831d1" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "You're using a RobertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 04:01, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>1.120588</td>\n", + " <td>0.409740</td>\n", + " <td>0.525833</td>\n", + " <td>0.460584</td>\n", + " <td>0.692872</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.606100</td>\n", + " <td>0.963525</td>\n", + " <td>0.472543</td>\n", + " <td>0.562917</td>\n", + " <td>0.513786</td>\n", + " <td>0.734035</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>0.989300</td>\n", + " <td>0.935671</td>\n", + " <td>0.497052</td>\n", + " <td>0.562083</td>\n", + " <td>0.527571</td>\n", + " <td>0.739817</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "TrainOutput(global_step=1365, training_loss=1.1860921000386333, metrics={'train_runtime': 241.4337, 'train_samples_per_second': 45.143, 'train_steps_per_second': 5.654, 'total_flos': 297221582158254.0, 'train_loss': 1.1860921000386333, 'epoch': 3.0})" + ] + }, + "metadata": {}, + "execution_count": 35 + } + ], + "source": [ + "trainer_roberta.train()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 105 + }, + "id": "rClLdkjOVPiy", + "outputId": "5a29c44e-fc47-4807-a628-55f151718176" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='57' max='57' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [57/57 00:01]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "{'eval_loss': 0.9356706142425537, 'eval_precision': 0.4970523212969786, 'eval_recall': 0.5620833333333334, 'eval_f1': 0.5275713727023855, 'eval_accuracy': 0.7398170521228857, 'eval_runtime': 2.461, 'eval_samples_per_second': 184.474, 'eval_steps_per_second': 23.161, 'epoch': 3.0}\n" + ] + } + ], + "source": [ + "metrics_roberta = trainer_roberta.evaluate()\n", + "print(metrics_roberta)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wv6oR6JIUgXE", + "outputId": "a396895d-9f6a-43f5-9322-a03522e9f1c4" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "('tokenizer_roberta/tokenizer_config.json',\n", + " 'tokenizer_roberta/special_tokens_map.json',\n", + " 'tokenizer_roberta/vocab.json',\n", + " 'tokenizer_roberta/merges.txt',\n", + " 'tokenizer_roberta/added_tokens.json',\n", + " 'tokenizer_roberta/tokenizer.json')" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ], + "source": [ + "model_roberta.save_pretrained('model_roberta')\n", + "tokenizer_roberta.save_pretrained('tokenizer_roberta')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tiHPg5gAQtUh" + }, + "source": [ + "## BioClinicalBERT" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Lastly, we choose BioClinicalBERT." + ], + "metadata": { + "id": "gdCEqdd8wPtW" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 185, + "referenced_widgets": [ + "c0f3883db48b4f23927d4f6d97696571", + "dd782596b7e4451a89a9dbdb34bc4beb", + "fe2dbdc848e64c20997f9aeab5a9d07f", + "1583ff8fce1e4f98a10bef09f2172e81", + "123b6d2ff8974927bca548efaeaefb1a", + "3de3f9e0cfa6465e9aad9fa8f81df4fa", + "a39d7ba7b1df440685506018c1662931", + "b79e87373a154add9c8cc52464865a04", + "40af182cfec44682aa23975516a11a05", + "8aae972fd8494b9e843c6348be545f0b", + "e8645c8aba8e43108d21e2bd7e7cddb1", + "ee2e5c71c2a146d6a305a8e073cadd76", + "979e36d23538478c9b47fbd70280dfb3", + "b4ca9d7616a048b7877cfe110ebc2b0e", + "46a428b084594173ba3f266a2385c950", + "e5c6f70410844e87b42b4443dedb9e28", + "a756e823ef944fdabb4613d374345ced", + "bc67f1e89e15432ea49cbbe67708ba2d", + "562fe37a95ee43338c0bb64a6ea4b490", + "4aacab9f192744df942eed8c0e731dd9", + "d9fe26f009ef4a7c8929a55ef6bc86da", + "c8b8af25e9ed4dcc9b2919e77d7bdfcc" + ] + }, + "id": "KkDKCP6lSTaZ", + "outputId": "22dd3f30-220b-47cc-d57e-370f49225103" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading (…)lve/main/config.json: 0%| | 0.00/385 [00:00<?, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "c0f3883db48b4f23927d4f6d97696571" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading pytorch_model.bin: 0%| | 0.00/436M [00:00<?, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "ee2e5c71c2a146d6a305a8e073cadd76" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of BertForTokenClassification were not initialized from the model checkpoint at emilyalsentzer/Bio_ClinicalBERT and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + } + ], + "source": [ + "checkpoint_clinicalBERT = \"emilyalsentzer/Bio_ClinicalBERT\"\n", + "model_clinicalBERT = get_model(checkpoint_clinicalBERT)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 75, + "referenced_widgets": [ + "392c95b95be3470f8d4aa7d5a5f695cd", + "37566c4d62f744af85079962753fa220", + "13969498661d4169bea6af86b392e7b1", + "8424862ff9d34a0a92bb317cfa1169a8", + "0ea65f1f0b8b49dea1d8cec9fbc4006c", + "b973ceddcc0348a6908fa461720831b5", + "9bf4e7f180af44128705fc1a977f19b8", + "3ea495ea96124fc684fca81fac7d8f5e", + "53ab3382c6d6483d86ad221bf0c58b07", + "6fb98beeb91a41ffab79a57fa1a20a51", + "243c4a8bb29f44e69f3d2cee94a1de3a" + ] + }, + "id": "R8WtJfAlTE4w", + "outputId": "85f59d06-9f05-4006-fa99-96c93f59ef4b" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading (…)solve/main/vocab.txt: 0%| | 0.00/213k [00:00<?, ?B/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "392c95b95be3470f8d4aa7d5a5f695cd" + } + }, + "metadata": {} + } + ], + "source": [ + "tokenizer_clinicalBERT = AutoTokenizer.from_pretrained(checkpoint_clinicalBERT)\n", + "data_collator_clinicalBERT = DataCollatorForTokenClassification(tokenizer=tokenizer_clinicalBERT)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 149, + "referenced_widgets": [ + "e5c752d8d6d54305979b9deb92ef3011", + "c21afb241a6b4a5f99fdb8b00636a042", + "ddbc23b417ca46b193afb37765a52a2f", + "530e4dc921ef47109edad3dbb38730ab", + "6554f815e2204efd8b3f8b6abc340d19", + "f1f0898980094bc5ae77b8062063bd76", + "8b9cdc1e89ee4dfaae4d2a5609394ee4", + "23be9b8a4a264e7599820c144f11363d", + "ace1ae2dc5314ef8b54872ee40beba23", + "b4ab5abdda694b849608d0481dcabfa1", + "1b00a1d5b8784c4b93a16c73cd1873d5", + "ae17b075122f4a1f80ee672f143a8b63", + "49a146c30d134600b1a5610bddef4626", + "e498237bbfc34c31a8fb3c7fd1fa23ef", + "92c1cb1670a34b7b960248485c96818b", + "f6279766ba014a71b7ed87363aca76a0", + "df7947b84bfd4d8d8d620967774f05fb", + "8da62538e0dc496c8e4bb4d9c8d03921", + "2bb55e299e854571a960355801b9661b", + "3999f4cfa29940bc88b4115653585953", + "e1d0397c0daa4ffe9b41e64f074c771c", + "ba9c6884d7994effb9ac43d38859e3f5", + "8c4d27f105434a5ab471f763aa04ccad", + "841e50a52c1644a9b099fc1ee9de9ca3", + "a6df521399bc4bec97042c52a0c6c8e9", + "d1485b8f7f9346448d182f9e2ef7fed0", + "989894ddefcf4012ab838db7e387ba18", + "d832f0934fe441e0a217b740bb41db06", + "c687751933df43c293fa769978aea12d", + "d8426546e99642949dd3da690196dd74", + "e046366a7d3c46a98f49b855facbacff", + "8257d97785a04978946192a4d5932949", + "145d91c5f8f443e3a8c2923e578e2014" + ] + }, + "id": "z6kXf673TGQx", + "outputId": "09aa53f6-cb64-453d-9d67-bc94bd894b56" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/3633 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "e5c752d8d6d54305979b9deb92ef3011" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/454 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "ae17b075122f4a1f80ee672f143a8b63" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/455 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "8c4d27f105434a5ab471f763aa04ccad" + } + }, + "metadata": {} + } + ], + "source": [ + "tokenized_datasets_clinicalBERT = get_tokenized_data(tokenizer_clinicalBERT)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "t2nXbd7_SfMC" + }, + "outputs": [], + "source": [ + "trainer_clinicalBERT = get_trainer(model_clinicalBERT,\n", + " get_args(\"bioclinicalBERT_ner\"),\n", + " tokenized_datasets_clinicalBERT[\"train\"],\n", + " tokenized_datasets_clinicalBERT[\"validation\"],\n", + " data_collator_clinicalBERT,\n", + " tokenizer_clinicalBERT)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 334 + }, + "id": "ICHg3E1bTeqf", + "outputId": "b7c215c0-1fac-4dd8-e296-b4ee5f26e1aa" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "You're using a BertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 03:35, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>1.086799</td>\n", + " <td>0.414810</td>\n", + " <td>0.527500</td>\n", + " <td>0.464417</td>\n", + " <td>0.704842</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.608300</td>\n", + " <td>0.952119</td>\n", + " <td>0.466690</td>\n", + " <td>0.554583</td>\n", + " <td>0.506855</td>\n", + " <td>0.737384</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>0.944900</td>\n", + " <td>0.940906</td>\n", + " <td>0.471297</td>\n", + " <td>0.554167</td>\n", + " <td>0.509383</td>\n", + " <td>0.741550</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "TrainOutput(global_step=1365, training_loss=1.158196775555174, metrics={'train_runtime': 215.9306, 'train_samples_per_second': 50.475, 'train_steps_per_second': 6.321, 'total_flos': 326628269271252.0, 'train_loss': 1.158196775555174, 'epoch': 3.0})" + ] + }, + "metadata": {}, + "execution_count": 42 + } + ], + "source": [ + "trainer_clinicalBERT.train()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 105 + }, + "id": "NiSfJENrTgUM", + "outputId": "cb84f8d2-67dd-400d-f0ba-7352df728864" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='57' max='57' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [57/57 00:02]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "{'eval_loss': 0.9409064054489136, 'eval_precision': 0.4712969525159461, 'eval_recall': 0.5541666666666667, 'eval_f1': 0.5093833780160858, 'eval_accuracy': 0.7415500707435938, 'eval_runtime': 2.8944, 'eval_samples_per_second': 156.853, 'eval_steps_per_second': 19.693, 'epoch': 3.0}\n" + ] + } + ], + "source": [ + "metrics_clinicalBERT = trainer_clinicalBERT.evaluate()\n", + "print(metrics_clinicalBERT)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RO-g13GpTqF_", + "outputId": "c4a7cc37-8181-4875-daec-0a18bd5fc435" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "('tokenizer_clinicalBERT/tokenizer_config.json',\n", + " 'tokenizer_clinicalBERT/special_tokens_map.json',\n", + " 'tokenizer_clinicalBERT/vocab.txt',\n", + " 'tokenizer_clinicalBERT/added_tokens.json',\n", + " 'tokenizer_clinicalBERT/tokenizer.json')" + ] + }, + "metadata": {}, + "execution_count": 44 + } + ], + "source": [ + "model_clinicalBERT.save_pretrained('model_clinicalBERT')\n", + "tokenizer_clinicalBERT.save_pretrained('tokenizer_clinicalBERT')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CtcF6KPfVVca" + }, + "source": [ + "**Which model is the best?**" + ] + }, + { + "cell_type": "markdown", + "source": [ + "To get a fast overview, the first metrics will be compared:" + ], + "metadata": { + "id": "gELtmO38wV80" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FpkKAFK2VXaJ", + "outputId": "41337c90-28a7-40ca-97d7-a6fd1163368d" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Bert:\n", + "Accuracy: 0.7287894030851777\n", + "F1-Score: 0.4962750716332378\n", + "Bio_ClinicalBERT:\n", + "Accuracy: 0.7415500707435938\n", + "F1-Score: 0.5093833780160858\n", + "RoBERTa:\n", + "Accuracy: 0.7398170521228857\n", + "F1-Score: 0.5275713727023855\n" + ] + } + ], + "source": [ + "print(f\"Bert:\\nAccuracy: {metrics_bert['eval_accuracy']}\\nF1-Score: {metrics_bert['eval_f1']}\")\n", + "print(f\"Bio_ClinicalBERT:\\nAccuracy: {metrics_clinicalBERT['eval_accuracy']}\\nF1-Score: {metrics_clinicalBERT['eval_f1']}\")\n", + "print(f\"RoBERTa:\\nAccuracy: {metrics_roberta['eval_accuracy']}\\nF1-Score: {metrics_roberta['eval_f1']}\")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "It seems that all models perform similar good. To figure out if the values are differing significantly from each other, we will perform statistical tests, which can be done using metric values by applying 5-fold Cross Validation" + ], + "metadata": { + "id": "qmlcih4uwaAQ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "oew-SFTTtu4Y" + }, + "outputs": [], + "source": [ + "from sklearn.model_selection import KFold\n", + "from statistics import mean" + ] + }, + { + "cell_type": "code", + "source": [ + "def get_dataset(data_frame, tokenizer):\n", + " dataset = Dataset.from_pandas(data_frame)\n", + "\n", + " tokenized_dataset = dataset.map(\n", + " lambda examples: tokenize_and_align_labels(examples, tokenizer),\n", + " batched=True\n", + " )\n", + "\n", + " return tokenized_dataset" + ], + "metadata": { + "id": "Fk2rp83EQXiT" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "kb5CPtxGtLsN" + }, + "outputs": [], + "source": [ + "def get_cross_validation_scores(checkpoint):\n", + " kf = KFold(n_splits=5, shuffle=True, random_state=42)\n", + " if checkpoint=='roberta-base':\n", + " tokenizer = AutoTokenizer.from_pretrained('roberta-base', add_prefix_space=True)\n", + " else:\n", + " tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n", + " accuracy_scores = []\n", + " f1_scores = []\n", + "\n", + " for train, test in kf.split(data):\n", + " train_data = data.iloc[train]\n", + " test_data = data.iloc[test]\n", + "\n", + " train_fold = get_dataset(train_data, tokenizer)\n", + " valid_fold = get_dataset(test_data, tokenizer)\n", + "\n", + " model = get_model(checkpoint)\n", + " args = get_args(\"checkpoint_\" + \"for_cv\")\n", + " data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)\n", + " trainer = get_trainer(model, args, train_fold, valid_fold, data_collator, tokenizer)\n", + " trainer.train()\n", + " metrics = trainer.evaluate()\n", + " accuracy_scores.append(metrics['eval_accuracy'])\n", + " f1_scores.append(metrics['eval_f1'])\n", + " return [accuracy_scores, f1_scores]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "tKr_4uRdx4ho" + }, + "outputs": [], + "source": [ + "def print_mean_scores(scores):\n", + " avg_accuracy = sum(scores[0]) / len(scores[0])\n", + " avg_f1 = sum(scores[1]) / len(scores[1])\n", + "\n", + " print(f'Avg Accuracy: {avg_accuracy}, Avg F1-Score: {avg_f1}')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000, + "referenced_widgets": [ + "ee33ce2b23234990a5a87fe5fecbbe5f", + "0404855addff406cafc11bb68035600d", + "5f955cdac9b14f73aa141c96f0e1f4ee", + "c82cf075b71c41f2abd785fd721ce658", + "efbb998ef1ea4619b44fe5cab3466f94", + "45a8ae97fe6f4a519ed4c454482d5446", + "99d3219a6d9942f984d2bd80ebfd3ee3", + "e2830283f9414601ae385a596e5b96cd", + "a774f5be2e224abea936bcd9a65f0d5c", + "78d7edf0c1954fc1885d33914ece297f", + "4d7fc28d24784f5cbc5e33b012c1444d", + "dffa8294b1074d78bc1434a4d1d8135f", + "0f18683e8e024e8ebc9fe2f1b310637a", + "84e986e1e2974c02a85d337faae87231", + "5c2d519bfe9e4aeea0525574678ba18b", + "5658ef136c744c4ab6a9f90ca76913e7", + "209490283f84486d9cc79f428c532d27", + "5191b9d9a86a4dbd80d22bbdeb232e5c", + "ef7a41a2eee049ff8fde90b17035db34", + "ecdf0644624c4cbb93897097300f7495", + "16fd203f4e2047b9b079231a4c171f46", + "9e7541ef3d0a4a948d76cbe9756c61ab", + "fead456f72f1477a915708ba60e2041c", + "1a0cdfc39fbc4727beef37179dde3a8e", + "5b2da60155ab4fe3b77023e7acf07980", + "d56f300f72cc4ffb9837baccf65d10b9", + "816f7357043e4361a903cafb5b7ae89d", + "b1da73b919f445438b4657d73e4263b8", + "e46b5ed021ee417ea9d1f435dd80229d", + "4d3a255dd7424bdbae144a83212156da", + "b6aa7b22292f444b93780c8fcac9a394", + "f2898eb507944574b25d364910e64d8f", + "1d637135d67145e2aad234cede3469d0", + "c55e4148a8d440ceaaa3a795e677317e", + "5218de45ef0e41e9bfe0e7ef98579741", + "fd17e78b4a5049928060e3f0a5f14279", + "94929ad2ae9c402493abbacc028d9695", + "e53379e67fc246599f00ef77113f271f", + "baa9f023899d4a5d8c7266ccbd1aecca", + "d6df6096f9374f2d957794d2e7f9b08a", + "b22759f1298b46e58023084e9114e671", + "359c6484db094221b672c89e70c5cd77", + "57c69fbc3818408b8d092a6b6b86e824", + "ab02968d635f4d49a251369414d49196", + "7474ac12fd31476bb868645cbf7b9b92", + "148f5e33072846bb9a20cbdd9e82a6ad", + "30c25b13844e44d293f32e7831eb8607", + "71b210b0198e48fe97684ccbc0b3412f", + "49aaaba894324ded80eacaa55aa9cce5", + "00be5da2273a43b8937d73118e3b3c65", + "ab52e0aa9843487cadc1f80f034e44f2", + "fa6cebfb18644b72a345b3d2e7885592", + "c88efccb01864aeab06762311e2cbae5", + "566a834af3574a3a941b7d5e8334a3ff", + "ad5eee099aab4d59b8c9d8fd75660547", + "00959e1b50264101bebad05458e97d9f", + "4592192aba924b13b117ae4a4d518dbe", + "e638a62f15a94abb9e51e9ca63876b64", + "7da14e5c5d9f4d19ad703dcc4917c118", + "a7684c5681014a1aa992e430dd4407b1", + "100d8f60e12d4e28983d265924fce926", + "bae7e597f237419f9ef342338edac800", + "0378cdac3d16438081546844828410ae", + "ecde454e851a4e8296d1e87f4f24a548", + "0de56b4778d34cddaa0d92db7335fcf3", + "bc1ab70eaaed49ab918601400903a288", + "f2d7ce5472ed46378e12e3398100ce82", + "aea7671500684916832bbf4ba5364eeb", + "7c330b3e527c4e56a0d66b6ed4cdef41", + "59e0e1cf34d44a5ab563e6fc3d40c124", + "a2ee8ede6c23460dbc99834115b5bcc2", + "d60eef6346664f99be280ac8cbab6356", + "42a0b9eff0264750850c5d1303309c39", + "b18791667a224d8f8f78b298a603d9b6", + "77a6f2324d404efa8574a999ea950ac2", + "495fc2a975bd488591ccacfdd41ef6f6", + "3db94b75c00e423fa4df99bd8458487f", + "41c342d1327e4b0b860c7e2d26436692", + "439453767e5d491b85a727aec79fd6e7", + "8d2e92bd104e4896ad5f2528ca53d81d", + "21338cf80f294b9890ff57bcae6f2592", + "e801ea8c5d224f47a1691b47ca23272f", + "9e81dfc5945b4ca1b0f8a89116023507", + "c620cfb26c71412e8d7d810122d720ce", + "d2e4532c438147319110d220c361a376", + "11c60290c3ef438a8d8d468ea7b46be5", + "3974fccaf9cd42209848f84f98c0cada", + "882676c9079149eb99aa7a0fcb6773b9", + "92fcf68ac1f14c6da0aee4d81279207f", + "18fc8ee6aa104675b9339c6071cff91b", + "a25cf5e5bd2a4749927c778f60f70d32", + "5813ee9570f1407882b3e683dbe0a25f", + "7691bad753634c2887dedf5cc23ed7c2", + "fea9cee9fe7f4482bec53be736b0e17b", + "833327f0b9a94ee5aa2ba145d00a424b", + "ef3eaacdcc8b40759b70c44df2ca30b4", + "90fa7f53b95b4333995de2fdc8d1523b", + "3bc9e65e86344b7985062f2a4e5d28c4", + "3fb567ccddbf41ab826db630225df50b", + "251133d508dd4b158455d5bafb8343bc", + "94eeb97d65e8465ba1d66045dfc2f71d", + "fc4977e7b41c4866ab6395beab79e49a", + "ddaf5d6e21b9463c98dbaa817eb3f147", + "cae24c9278ac40fea8d1acc7f33bc182", + "a0ede0eeae7346acbb0f7509235c77b9", + "6aa536989b614c4fa6862b273f3bca1b", + "76015e7acd474fe58d32bea149c868f4", + "05ca4b8c795c462fb5c1c9b33efe93e0", + "539ad15eb23e43679a96f14d6715f35f", + "da6c104da19d403d9e6bc445578f9a73" + ] + }, + "id": "29qjAyqSwukC", + "outputId": "3b7edefd-b8ca-45a7-ba62-14516a4b6712" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/3633 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "ee33ce2b23234990a5a87fe5fecbbe5f" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/909 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "dffa8294b1074d78bc1434a4d1d8135f" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of BertForTokenClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", + "You're using a BertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 03:41, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>1.156941</td>\n", + " <td>0.382589</td>\n", + " <td>0.470197</td>\n", + " <td>0.421893</td>\n", + " <td>0.685283</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.626900</td>\n", + " <td>1.030604</td>\n", + " <td>0.455342</td>\n", + " <td>0.512650</td>\n", + " <td>0.482300</td>\n", + " <td>0.717830</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>0.998900</td>\n", + " <td>1.024186</td>\n", + " <td>0.454118</td>\n", + " <td>0.539022</td>\n", + " <td>0.492941</td>\n", + " <td>0.724816</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='114' max='114' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [114/114 00:03]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/3633 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "fead456f72f1477a915708ba60e2041c" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/909 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "c55e4148a8d440ceaaa3a795e677317e" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of BertForTokenClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 03:49, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>1.156984</td>\n", + " <td>0.396164</td>\n", + " <td>0.482838</td>\n", + " <td>0.435228</td>\n", + " <td>0.689652</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.632200</td>\n", + " <td>1.049778</td>\n", + " <td>0.455980</td>\n", + " <td>0.535481</td>\n", + " <td>0.492543</td>\n", + " <td>0.716842</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>1.001100</td>\n", + " <td>1.012401</td>\n", + " <td>0.469376</td>\n", + " <td>0.537376</td>\n", + " <td>0.501080</td>\n", + " <td>0.725277</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='114' max='114' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [114/114 00:03]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/3634 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "7474ac12fd31476bb868645cbf7b9b92" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/908 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "00959e1b50264101bebad05458e97d9f" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of BertForTokenClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 03:43, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>1.176537</td>\n", + " <td>0.405291</td>\n", + " <td>0.460868</td>\n", + " <td>0.431297</td>\n", + " <td>0.686747</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.610800</td>\n", + " <td>1.039953</td>\n", + " <td>0.450009</td>\n", + " <td>0.519076</td>\n", + " <td>0.482081</td>\n", + " <td>0.712596</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>1.001500</td>\n", + " <td>1.019376</td>\n", + " <td>0.472344</td>\n", + " <td>0.538042</td>\n", + " <td>0.503057</td>\n", + " <td>0.720570</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='114' max='114' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [114/114 00:03]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/3634 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "f2d7ce5472ed46378e12e3398100ce82" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/908 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "41c342d1327e4b0b860c7e2d26436692" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of BertForTokenClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 03:46, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>1.145955</td>\n", + " <td>0.410415</td>\n", + " <td>0.485792</td>\n", + " <td>0.444933</td>\n", + " <td>0.694829</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.628900</td>\n", + " <td>1.039630</td>\n", + " <td>0.442393</td>\n", + " <td>0.540744</td>\n", + " <td>0.486649</td>\n", + " <td>0.715414</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>1.006800</td>\n", + " <td>1.021600</td>\n", + " <td>0.468283</td>\n", + " <td>0.536774</td>\n", + " <td>0.500195</td>\n", + " <td>0.722399</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='114' max='114' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [114/114 00:03]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/3634 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "92fcf68ac1f14c6da0aee4d81279207f" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/908 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "251133d508dd4b158455d5bafb8343bc" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of BertForTokenClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 03:47, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>1.110955</td>\n", + " <td>0.410031</td>\n", + " <td>0.427358</td>\n", + " <td>0.418515</td>\n", + " <td>0.695315</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.643800</td>\n", + " <td>0.999179</td>\n", + " <td>0.439949</td>\n", + " <td>0.528207</td>\n", + " <td>0.480055</td>\n", + " <td>0.716991</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>1.013800</td>\n", + " <td>0.979439</td>\n", + " <td>0.459369</td>\n", + " <td>0.535613</td>\n", + " <td>0.494570</td>\n", + " <td>0.727154</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='114' max='114' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [114/114 00:03]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + } + ], + "source": [ + "cross_validation_scores_bert = get_cross_validation_scores(\"bert-base-uncased\")" + ] + }, + { + "cell_type": "code", + "source": [ + "cross_validation_scores_bert" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_nPP4khTaj2i", + "outputId": "41b05126-f4c5-4d0d-b5b7-8816e9e2a203" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[[0.7248159303882196,\n", + " 0.7252774251668646,\n", + " 0.7205695509309967,\n", + " 0.7223990410449304,\n", + " 0.727153881836967],\n", + " [0.4929411764705882,\n", + " 0.5010799136069115,\n", + " 0.5030574806359559,\n", + " 0.5001947040498443,\n", + " 0.4945695897023331]]" + ] + }, + "metadata": {}, + "execution_count": 71 + } + ] + }, + { + "cell_type": "code", + "source": [ + "print_mean_scores(cross_validation_scores_bert)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tWdYeqHjRAZx", + "outputId": "9e8cc5d1-8c4e-41a3-d063-cc8a91439b44" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Avg Accuracy: 0.723926030666099, Avg F1-Score: 0.49762739069204354\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000, + "referenced_widgets": [ + "3da72f2741774ec2ab52d22450c397e7", + "2eff3466ee704df1ac8cea674c83fddb", + "59afcabecbbe417a97df741e0b204035", + "87ed331ea6ea40eaafdff56468e97beb", + "e1741c9d4812493290dedf5e2ff5fc41", + "a0e4e41eab814ec2a32a1c6b6de5be06", + "c63aa313e3654fd0bd47eff44d40ab3d", + "9268df611f7142c5ae6a52fa575dbe05", + "80e95564055242fca30161fef022452d", + "bce96e7c739a4a92863c70aa43bd1c48", + "88031b1860044fe98f7af629022a927f", + "c198c5a3ca504a829eaf24d76abe40b7", + "4378c714f8d94d01b38f75d2ee9c7045", + "d0ca2d8f9923477794edaa096a400d63", + "58a8c66e00df4f5d99c0c3bc02405dc4", + "7f8ed30b9caa4eaa803156a1ed6d1602", + "555e2cfd647c42839f0b4fbccadb43b9", + "80150ad0577a4ac7b91b496dca6ad753", + "6160604fa167441c83a4e4b8738e482e", + "6fad0b0a4a254a21969dd33ada280024", + "2185c0bebebc477fa9996bd875b3f442", + "c813c198ef084bada26bc33a6f76a6f1", + "0b760da98de7483e84b9355ceece9413", + "1b18ca20ca3647eeaa591d759cfa19d6", + "9bb4b81e71b74d3bbd8c97ad0f38e095", + "6498f28d94d4450eb721ad69b4d0c96b", + "c3a6518cb6674ae1adcc4c86dbef2bd6", + "6f94603770d74fa1b60739aa00a791c4", + "d4d275146d63482fa2a354e02e5410eb", + "43754f0e74f24edaad9ee96e88b9f3e2", + "30f84ea40bba4eacaffb8c64473b9fff", + "b5255939f0a64e50bbe65d45273ed933", + "eac59f75e8cd4001972716b49c7dab68", + "834a0f698e5741bc947c1502b85d27d6", + "36a5e3a4252d4720b25399ff025f897f", + "65ee7858a43a49369031317214a88d58", + "a3aeb8c7876147aea7e4eb6a534760b2", + "2af768f1e62b4a3aa53f823f1e9c0435", + "6928f3d970b5400fb473ac83393900f6", + "ad0a326dffca419c9000165c43d843f4", + "b8eef9fb174c4283b1d5fd6ee1c5521d", + "4b888f95217f4e4a9725a168c4e73363", + "f4b010d6ff1f469eb841d2ac887c78c6", + "8e0d1c47a9b043d88e73c8fa36be540e", + "34b7bc15b2124eb6a06109a434062d12", + "7a310c953dbf45c29c03c5365f38037c", + "fe03906755b9420fa830b4cc66789363", + "5dca4efbe0cf41d7aa7d054a450e74f6", + "af978cb126e046349790cb73232199a8", + "c051a2c38f594f1e988abb7b60a5f034", + "850a3809f3e74c3ead04f374c8cc993e", + "000d0b7bc35a46939d6e953e327844c2", + "5604d62a213d42faad1a8fb696ed0521", + "d14174a5629c450b89e479ea7021b557", + "307f865620d740719a75349f873d08db", + "2533c4c58f854486b1398ab9f6e27850", + "3c1adb0c218d46248eb73df6ee516911", + "3a0cb12dc9bc47858fdadd059524bbf2", + "89ade8ba3b8841d9bb845715fc14039a", + "9fe6e1516dec4dbb87e3b2e766f5759b", + "97d470ab1cb14568a02dba17965bda78", + "21c20739f91744c08bda2cd7ef22df3d", + "4e0c1989adce4da58d2096244ce21a83", + "e5df9535afac4bfc9876d74a814eb986", + "5a5f8c7979e343ce96f649042344b5f0", + "8e22f03154fb4622ba9664bd07f1fd47", + "5aa8b09323644efcbfa5b14d1951cdd0", + "f90b114ec6fd4316a498654a70ac5365", + "3c2962231e6f43a1a7325f6c43851c1b", + "7490b1bfb64843c984993363ab830575", + "7a4ed92d68744371b534ba9c9023fd48", + "af2c9008d42347639e7b760f88d3f6f2", + "80fbddfc88ff4641bfdc24ea4a0b6db7", + "0c657c0fbad849ce9786abc5f608c838", + "ea3506eb1f2f4210a49203e5b5b1da59", + "9d7018f47c8e46629268336a0be64432", + "7271f80e4f514cb18ec320b179ea4450", + "a0de4806204f48fca96563831e9e624a", + "406ceea9100c4a84aa6374df73c6de76", + "29baeea8672545d2967e9e67bdd7ed83", + "116069856e6a4471ba2d0b58d2ceed54", + "412b6e72f99046b59bc382bae90a8e5b", + "2dcb2c91c1ec47fcbc70d7ca176278b7", + "1bed6b6ad0d14b95ac872e0936686c1f", + "13c348ede2a7489b997755148bfee3bb", + "45daa3a285b84083a256f2893962919c", + "69b0e732241344359ed6e3190e86927f", + "b985886dd8c54d51a86a1b1f592272bf", + "36a52d99bbe5419e9474b990dad621a8", + "e07339e557be4dec8d5496873d70f630", + "8b5b0e560ed2490fb3e07d4dedee4b63", + "653676fad58749b8aa81d767ff7bf503", + "39999828ea214bfea80c0a6ac51400bf", + "a343d203abea41c39dd1ccece0ef7d9b", + "bee4eb3e092c4c33a54718e7c9ccb7cb", + "ec78ed4c75004230b67823f8587baf8d", + "dcc10ada8b9f4481bfc1e017cca592ec", + "a4e693013cf543e899c268bad2bdca53", + "6958862ac48c4ef6abd0b01fcf77c241", + "021475f5715b4fe1a654b2e0d21fb853", + "5f121568104641df8d792a647113d39d", + "6fa0d6acabf942c7a152707efcd9c6fd", + "d5ae03e447bf4274b79c4094d9ea42b2", + "3ea9e0b5aba240ad97ae1ef74a3f0d75", + "eda379b949aa4a77b3dc1bfe3d32976e", + "3cce39b0628f4553a79e10167af13884", + "4aa90e1eba1b4f0f816676817905c785", + "d6e0d018dbe34437b71fa1af7603ee41", + "3d5db69b5ea749f98d824619ee84d8c2", + "54cfe09954694b7da25dd5e75263bcc2" + ] + }, + "id": "_c2sO80Lw48W", + "outputId": "bd2f19db-1e79-4cc1-ed3c-80151f80ab18" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/3633 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "3da72f2741774ec2ab52d22450c397e7" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/909 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "c198c5a3ca504a829eaf24d76abe40b7" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of RobertaForTokenClassification were not initialized from the model checkpoint at roberta-base and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", + "You're using a RobertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 03:42, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>1.097066</td>\n", + " <td>0.415056</td>\n", + " <td>0.483491</td>\n", + " <td>0.446667</td>\n", + " <td>0.698825</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.582200</td>\n", + " <td>0.991852</td>\n", + " <td>0.476973</td>\n", + " <td>0.535163</td>\n", + " <td>0.504395</td>\n", + " <td>0.723353</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>0.986500</td>\n", + " <td>0.976402</td>\n", + " <td>0.480274</td>\n", + " <td>0.555961</td>\n", + " <td>0.515353</td>\n", + " <td>0.730453</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='114' max='114' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [114/114 00:03]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/3633 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "0b760da98de7483e84b9355ceece9413" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/909 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "834a0f698e5741bc947c1502b85d27d6" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of RobertaForTokenClassification were not initialized from the model checkpoint at roberta-base and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 04:00, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>1.107128</td>\n", + " <td>0.423097</td>\n", + " <td>0.504527</td>\n", + " <td>0.460238</td>\n", + " <td>0.696007</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.574000</td>\n", + " <td>1.016745</td>\n", + " <td>0.473899</td>\n", + " <td>0.539061</td>\n", + " <td>0.504384</td>\n", + " <td>0.716966</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>0.979800</td>\n", + " <td>0.979545</td>\n", + " <td>0.494173</td>\n", + " <td>0.553590</td>\n", + " <td>0.522197</td>\n", + " <td>0.729516</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='114' max='114' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [114/114 00:03]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/3634 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "34b7bc15b2124eb6a06109a434062d12" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/908 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "2533c4c58f854486b1398ab9f6e27850" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of RobertaForTokenClassification were not initialized from the model checkpoint at roberta-base and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 03:54, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>1.109957</td>\n", + " <td>0.444037</td>\n", + " <td>0.475692</td>\n", + " <td>0.459320</td>\n", + " <td>0.700108</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.540400</td>\n", + " <td>0.983117</td>\n", + " <td>0.483996</td>\n", + " <td>0.543928</td>\n", + " <td>0.512215</td>\n", + " <td>0.723806</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>0.982000</td>\n", + " <td>0.959463</td>\n", + " <td>0.498349</td>\n", + " <td>0.559407</td>\n", + " <td>0.527116</td>\n", + " <td>0.730821</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='114' max='114' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [114/114 00:02]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/3634 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "5aa8b09323644efcbfa5b14d1951cdd0" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/908 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "a0de4806204f48fca96563831e9e624a" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of RobertaForTokenClassification were not initialized from the model checkpoint at roberta-base and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 03:53, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>1.104467</td>\n", + " <td>0.442596</td>\n", + " <td>0.511492</td>\n", + " <td>0.474557</td>\n", + " <td>0.702290</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.553700</td>\n", + " <td>0.989619</td>\n", + " <td>0.471260</td>\n", + " <td>0.551609</td>\n", + " <td>0.508279</td>\n", + " <td>0.722118</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>0.985000</td>\n", + " <td>0.957092</td>\n", + " <td>0.496408</td>\n", + " <td>0.563101</td>\n", + " <td>0.527655</td>\n", + " <td>0.731903</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='114' max='114' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [114/114 00:03]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/3634 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "36a52d99bbe5419e9474b990dad621a8" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/908 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "021475f5715b4fe1a654b2e0d21fb853" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of RobertaForTokenClassification were not initialized from the model checkpoint at roberta-base and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 04:00, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>1.066230</td>\n", + " <td>0.429740</td>\n", + " <td>0.446308</td>\n", + " <td>0.437867</td>\n", + " <td>0.706020</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.558500</td>\n", + " <td>0.948279</td>\n", + " <td>0.472836</td>\n", + " <td>0.549771</td>\n", + " <td>0.508410</td>\n", + " <td>0.729094</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>0.987400</td>\n", + " <td>0.939218</td>\n", + " <td>0.488368</td>\n", + " <td>0.557831</td>\n", + " <td>0.520793</td>\n", + " <td>0.738636</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='114' max='114' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [114/114 00:03]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + } + ], + "source": [ + "cross_validation_scores_roberta = get_cross_validation_scores('roberta-base')" + ] + }, + { + "cell_type": "code", + "source": [ + "cross_validation_scores_roberta" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GK1s5W8ogU0N", + "outputId": "19014341-889b-444e-d2a9-cc2f956c6a7c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[[0.7304531176040278,\n", + " 0.7295161631100782,\n", + " 0.7308211170069251,\n", + " 0.7319032561319545,\n", + " 0.7386363636363636],\n", + " [0.5153532743714597,\n", + " 0.5221968417916377,\n", + " 0.5271158586688579,\n", + " 0.5276554087126775,\n", + " 0.5207930859176411]]" + ] + }, + "metadata": {}, + "execution_count": 75 + } + ] + }, + { + "cell_type": "code", + "source": [ + "print_mean_scores(cross_validation_scores_roberta)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KHlxCAkDRBtI", + "outputId": "da614e59-7ebb-49de-8fe2-700d110bb2ee" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Avg Accuracy: 0.7322660034978699, Avg F1-Score: 0.5226228938924548\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000, + "referenced_widgets": [ + "44ac1e2c9eba49cd894ad24729014b94", + "8e7ce8e1ed324da49b444d73b5723002", + "2d300df8b9cc46dfa1d00994fa65ec7e", + "4bd4fdc616e3470e8435293c235747b8", + "bea1036c94434c93a11f55f49a475548", + "e80a9a67808e48f69d2247eaa51a62bd", + "8b3d52d3ce68429b9307eb30d80b4e7f", + "b3ac4e56b5b94826a10243ced6ce1e23", + "1d039379227d47e39f51bccdf1f22265", + "b4d5b8498a4c426485d50cb89e632fcc", + "e6626b0c43194a96b4e2f14de69009f0", + "f6affabd909540a487cceadd0c3004ce", + "8f2f099a6fb24ae589d56ba18e6f35ca", + "13f7fc6ddfae48bd81e70be2930acabb", + "708cf5a7d1024198a412ee007550b86a", + "d4c7f4065da64917b872ac0807f29aa5", + "cbc1a610f2194628bcc25b205436aed5", + "ac6034d4d7dc4e38ae809550c413d095", + "393958d548c640cfa940110a19de4819", + "1778f74f350646548da2ff38c2b5046b", + "03c8c43d16d842018bda5c2332170e35", + "dd8af4b468794c269fc4e6766a4a3cbf", + "d36f6eab5096417f8052b2f5e5dddab3", + "e8fcafbe480147f2b03e8c139a668707", + "94af215951844f9694654e313e4a1645", + "26226ce313904c1fac5389fdab57c112", + "cbb44b8123744ed7b9c946d10ca81104", + "e32656c6a2b4410183fb6e815f3d5d9b", + "8cdecd9aa9484869b596ec9e7c58eae6", + "d34d1385a2094aab99443fc93b3a517f", + "a81fa21b947b4deeb58621678c21ea0b", + "0685a24595674236b6f8ed15ba0d0feb", + "c82644056fe342c2add9de21a9cfef90", + "b4d8b35636a4451092c40c4724df5dbc", + "12e6e6dd72724a6589fea31520176f46", + "f1f48df9ea794189a5023ffc9476ee7e", + "82499644ef514d3fbe3e8b2ce58d432a", + "c5043fe892a44cec855c6f8adf160f88", + "1896a4347739461fac94743b5833e1bc", + "ab410032c4c645ed9e762a7cc38c41bd", + "b852564f7da54cf0ba84a943f9da2e96", + "425f093010d146e9b6d2b943dd7e7b4c", + "6c22d771adc8460d8dda6ee8239559a2", + "a754a7e8326b4c54a9ebb5629454b5ae", + "95f31d58e1fe4d1ea15839069aa45c13", + "d4b2c3c7e11540a88e2e02be40af6312", + "befd17351a3141b98b0fb7c36150638f", + "4d3dd609484a4c1990f5eb46589856ee", + "e02efd516fc44f76b78e8f6e8b3a8013", + "01cf605e49eb422f8a2cd49aecd846ec", + "4a9ce5f43b994e578ff3c6f1e0c85e3c", + "8a7579cf9eda4f6381257a641c263ab7", + "90d6cfcca5f14f168e970d1536626d25", + "996d015ac65d42e5a560e7c81920c66f", + "0cef6d1a9a6a461faf90fd806adaeb2a", + "9e1a82ee37d9417fb8e35279f4119678", + "0af1f03d817f4099a2bcef8de2fe460a", + "999a22bd24d34cc59b5f63e8d8402929", + "4405640363ff40fd9b001db7c8229b4f", + "f947f81768e5469998fb314f4d37ee1d", + "ecde20b2de9d4618b7d1ce8cef6b445a", + "e6ba080ed6a64a0d8b47aaef1d2da870", + "6e5d302c19c245d7873292fd849607c8", + "43de14c110c84eabb1e110b4b2ea7a01", + "0cab0244e2e6425997439b5f4916ec54", + "0f00488e5cd349ada55005213ce3549f", + "36d946e3ec634d69bfffc2c0cf307c4a", + "1feefc1f34404d009d51d871c103cc63", + "63248758edf04958887f17a4d86ee3aa", + "360e47382c884ebc98a48b51c978f279", + "8a48d85eca144d96886d9a129a714fd6", + "3d8e61c5b93545e7bdf2d6181b8c8c98", + "67631fe61af642819db3d8b436f4f685", + "0ea83cace9584dc18c059f340b1c098f", + "874b1cf21d124737a596c8a1f63ce542", + "209235e98f984fe292f088a2c1e3677d", + "00b389c3ad27431d812fe216af560c95", + "2cce302fa0b647e5abd0f9182a9c57e8", + "22ef19026daf42028e918149fe862253", + "732b9f44b71042b7afdaf01aa089ff4b", + "d5a39b7db8fc4a4092cd8417f4758a10", + "30efcd296a2648fea43a1db1e833be70", + "10d8f5e351f74e0e9a5ec2583dfcadeb", + "d462b5d72ebe450e8dafbcd1447e77b3", + "1bfadd1914274e6f99f1e082bc49360e", + "33151d25bb1b4a438ffd13f04970af09", + "56cff11d96d24e889c42998729787e5e", + "6a1ee214ab374298a1f9c0d59355adaf", + "250c671121be4e098363eb4ac2734407", + "7b45c95c093e4aa3b286b8918b6704c6", + "a78b443efd504e968e34c6a8d758aec6", + "216bfbfc28fd430a892740d4a3c04e30", + "d40d7a651c6d4f7b94e4325e1b834c24", + "c6b14ac2db804865967b9c8e51752cbf", + "da33c50c9ad147cd963f8fbc5b610422", + "2b2e2157eecd4b36818db71e11d36a1b", + "0393451deccb46d68678adf22330e9b8", + "9ee75a17315948958a51131bed961246", + "2e2f911426c441898432c3b901102c86", + "7bc4a116e9ce416cb21bfd09a5484301", + "38cf7d06103245d2ab2662785f678b6e", + "3be1d0f60f7d4f19b792012f971da161", + "2a0dd4e716784207a39b95a99c83f793", + "0ba3812730394fb8b624860ea6744fa8", + "af3d347c769947a1a5ecfeed289dcc21", + "71216d7fd23c4fb297d7351a661ff4d6", + "de52354347bc47f8872a710c83a6bbaf", + "adda53b39cb3413698aa3255b4d79c40", + "81c24e9d50b04c10ad50d008caca7969", + "08c84762361d400db2889cae19282681" + ] + }, + "id": "GFTVt7fWw76t", + "outputId": "690ff9d6-ce4b-48e6-e8ef-a3bff94b2d6a" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/3633 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "44ac1e2c9eba49cd894ad24729014b94" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/909 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "f6affabd909540a487cceadd0c3004ce" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of BertForTokenClassification were not initialized from the model checkpoint at emilyalsentzer/Bio_ClinicalBERT and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", + "You're using a BertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 03:57, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>1.091431</td>\n", + " <td>0.415973</td>\n", + " <td>0.503645</td>\n", + " <td>0.455630</td>\n", + " <td>0.703202</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.583000</td>\n", + " <td>0.992685</td>\n", + " <td>0.463863</td>\n", + " <td>0.529803</td>\n", + " <td>0.494645</td>\n", + " <td>0.725022</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>0.935500</td>\n", + " <td>0.983385</td>\n", + " <td>0.467625</td>\n", + " <td>0.551244</td>\n", + " <td>0.506003</td>\n", + " <td>0.733577</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='114' max='114' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [114/114 00:03]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/3633 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "d36f6eab5096417f8052b2f5e5dddab3" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/909 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "b4d8b35636a4451092c40c4724df5dbc" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of BertForTokenClassification were not initialized from the model checkpoint at emilyalsentzer/Bio_ClinicalBERT and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 03:40, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>1.133353</td>\n", + " <td>0.411875</td>\n", + " <td>0.506844</td>\n", + " <td>0.454451</td>\n", + " <td>0.699443</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.606100</td>\n", + " <td>1.019712</td>\n", + " <td>0.456397</td>\n", + " <td>0.537797</td>\n", + " <td>0.493765</td>\n", + " <td>0.721098</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>0.949900</td>\n", + " <td>1.004915</td>\n", + " <td>0.472793</td>\n", + " <td>0.552537</td>\n", + " <td>0.509564</td>\n", + " <td>0.725859</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='114' max='114' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [114/114 00:03]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/3634 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "95f31d58e1fe4d1ea15839069aa45c13" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/908 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "9e1a82ee37d9417fb8e35279f4119678" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of BertForTokenClassification were not initialized from the model checkpoint at emilyalsentzer/Bio_ClinicalBERT and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 03:57, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>1.114807</td>\n", + " <td>0.442840</td>\n", + " <td>0.488119</td>\n", + " <td>0.464378</td>\n", + " <td>0.702966</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.577600</td>\n", + " <td>0.988521</td>\n", + " <td>0.465235</td>\n", + " <td>0.538260</td>\n", + " <td>0.499090</td>\n", + " <td>0.722519</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>0.951400</td>\n", + " <td>0.977412</td>\n", + " <td>0.481189</td>\n", + " <td>0.557663</td>\n", + " <td>0.516611</td>\n", + " <td>0.730365</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='114' max='114' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [114/114 00:03]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/3634 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "36d946e3ec634d69bfffc2c0cf307c4a" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/908 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "2cce302fa0b647e5abd0f9182a9c57e8" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of BertForTokenClassification were not initialized from the model checkpoint at emilyalsentzer/Bio_ClinicalBERT and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 03:49, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>1.098683</td>\n", + " <td>0.436341</td>\n", + " <td>0.516298</td>\n", + " <td>0.472964</td>\n", + " <td>0.701761</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.597500</td>\n", + " <td>0.990811</td>\n", + " <td>0.460678</td>\n", + " <td>0.559340</td>\n", + " <td>0.505237</td>\n", + " <td>0.725541</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>0.956900</td>\n", + " <td>0.973427</td>\n", + " <td>0.476918</td>\n", + " <td>0.567697</td>\n", + " <td>0.518363</td>\n", + " <td>0.731709</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='114' max='114' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [114/114 00:03]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/3634 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "250c671121be4e098363eb4ac2734407" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/908 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "7bc4a116e9ce416cb21bfd09a5484301" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of BertForTokenClassification were not initialized from the model checkpoint at emilyalsentzer/Bio_ClinicalBERT and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 03:48, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>1.054887</td>\n", + " <td>0.441123</td>\n", + " <td>0.478981</td>\n", + " <td>0.459273</td>\n", + " <td>0.714280</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.590800</td>\n", + " <td>0.953492</td>\n", + " <td>0.453199</td>\n", + " <td>0.539970</td>\n", + " <td>0.492794</td>\n", + " <td>0.729980</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>0.954000</td>\n", + " <td>0.952928</td>\n", + " <td>0.470479</td>\n", + " <td>0.551949</td>\n", + " <td>0.507968</td>\n", + " <td>0.736268</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='114' max='114' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [114/114 00:03]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + } + ], + "source": [ + "cross_validation_scores_bio_clinicalBERT = get_cross_validation_scores('emilyalsentzer/Bio_ClinicalBERT')" + ] + }, + { + "cell_type": "code", + "source": [ + "cross_validation_scores_bio_clinicalBERT" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "v9jQDWaJgg1R", + "outputId": "9031bc90-3d03-4a79-d581-61a06294686d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[[0.7335766423357665,\n", + " 0.7258590900364753,\n", + " 0.7303647716069668,\n", + " 0.7317092094033673,\n", + " 0.736267647407759],\n", + " [0.5060027553631176,\n", + " 0.5095640353432371,\n", + " 0.5166111279410279,\n", + " 0.5183630640083946,\n", + " 0.5079683271524508]]" + ] + }, + "metadata": {}, + "execution_count": 78 + } + ] + }, + { + "cell_type": "code", + "source": [ + "print_mean_scores(cross_validation_scores_bio_clinicalBERT)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "BDbsk8bsRC1A", + "outputId": "c9ff1730-6f27-42e8-86a8-f2297759fc7b" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Avg Accuracy: 0.7315554721580669, Avg F1-Score: 0.5117018619616457\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "j7o-HRrs3BUd" + }, + "source": [ + "To find out if there is a significant difference in the means of the metrics data, we will use the python library Pingouin to perform three paired t-test." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "g8v7M5ju3BCx" + }, + "outputs": [], + "source": [ + "!pip install pingouin\n", + "import pingouin as pg" + ] + }, + { + "cell_type": "code", + "source": [ + "bert_acc = [0.7248159303882196, 0.7252774251668646, 0.7205695509309967, 0.7223990410449304, 0.727153881836967] # eig accuracy\n", + "roberta_acc = [0.7304531176040278, 0.7295161631100782, 0.7308211170069251, 0.7319032561319545, 0.7386363636363636]\n", + "clinicalbert_acc = [0.7335766423357665, 0.7258590900364753, 0.7303647716069668, 0.7317092094033673, 0.736267647407759]" + ], + "metadata": { + "id": "9tKrO6VOLPCj" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Bonferroni correction must be performed because multiple groups are compared in multiple t tests. This results in a new alpha level." + ], + "metadata": { + "id": "nE6cGuEVMBLP" + } + }, + { + "cell_type": "code", + "source": [ + "alpha_adjusted = 0.05 / 3\n", + "alpha_adjusted" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ylvDRBORJyRX", + "outputId": "747dee75-3059-4b03-ec0d-8c21de45f634" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0.016666666666666666" + ] + }, + "metadata": {}, + "execution_count": 4 + } + ] + }, + { + "cell_type": "code", + "source": [ + "pg.ttest(bert_acc, roberta_acc, paired=True)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 111 + }, + "id": "ROJpCacOy5Cd", + "outputId": "aae8301a-2d95-465e-8fd9-bde8ed74d669" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " T dof alternative p-val CI95% cohen-d BF10 \\\n", + "T-test -5.892911 4 two-sided 0.004147 [-0.01, -0.0] 2.596799 13.337 \n", + "\n", + " power \n", + "T-test 0.987303 " + ], + "text/html": [ + "\n", + " <div id=\"df-a72a1dc4-8cfe-463c-861d-8fab55093f51\" class=\"colab-df-container\">\n", + " <div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>T</th>\n", + " <th>dof</th>\n", + " <th>alternative</th>\n", + " <th>p-val</th>\n", + " <th>CI95%</th>\n", + " <th>cohen-d</th>\n", + " <th>BF10</th>\n", + " <th>power</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>T-test</th>\n", + " <td>-5.892911</td>\n", + " <td>4</td>\n", + " <td>two-sided</td>\n", + " <td>0.004147</td>\n", + " <td>[-0.01, -0.0]</td>\n", + " <td>2.596799</td>\n", + " <td>13.337</td>\n", + " <td>0.987303</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>\n", + " <div class=\"colab-df-buttons\">\n", + "\n", + " <div class=\"colab-df-container\">\n", + " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-a72a1dc4-8cfe-463c-861d-8fab55093f51')\"\n", + " title=\"Convert this dataframe to an interactive table.\"\n", + " style=\"display:none;\">\n", + "\n", + " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", + " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", + " </svg>\n", + " </button>\n", + "\n", + " <style>\n", + " .colab-df-container {\n", + " display:flex;\n", + " gap: 12px;\n", + " }\n", + "\n", + " .colab-df-convert {\n", + " background-color: #E8F0FE;\n", + " border: none;\n", + " border-radius: 50%;\n", + " cursor: pointer;\n", + " display: none;\n", + " fill: #1967D2;\n", + " height: 32px;\n", + " padding: 0 0 0 0;\n", + " width: 32px;\n", + " }\n", + "\n", + " .colab-df-convert:hover {\n", + " background-color: #E2EBFA;\n", + " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", + " fill: #174EA6;\n", + " }\n", + "\n", + " .colab-df-buttons div {\n", + " margin-bottom: 4px;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert {\n", + " background-color: #3B4455;\n", + " fill: #D2E3FC;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert:hover {\n", + " background-color: #434B5C;\n", + " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", + " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", + " fill: #FFFFFF;\n", + " }\n", + " </style>\n", + "\n", + " <script>\n", + " const buttonEl =\n", + " document.querySelector('#df-a72a1dc4-8cfe-463c-861d-8fab55093f51 button.colab-df-convert');\n", + " buttonEl.style.display =\n", + " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + "\n", + " async function convertToInteractive(key) {\n", + " const element = document.querySelector('#df-a72a1dc4-8cfe-463c-861d-8fab55093f51');\n", + " const dataTable =\n", + " await google.colab.kernel.invokeFunction('convertToInteractive',\n", + " [key], {});\n", + " if (!dataTable) return;\n", + "\n", + " const docLinkHtml = 'Like what you see? Visit the ' +\n", + " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", + " + ' to learn more about interactive tables.';\n", + " element.innerHTML = '';\n", + " dataTable['output_type'] = 'display_data';\n", + " await google.colab.output.renderOutput(dataTable, element);\n", + " const docLink = document.createElement('div');\n", + " docLink.innerHTML = docLinkHtml;\n", + " element.appendChild(docLink);\n", + " }\n", + " </script>\n", + " </div>\n", + "\n", + " </div>\n", + " </div>\n" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "The t-test with the BERT and RoBERTa model showed a high significant difference in the means, as p<.016. Looking at the cross validation values, you can see that RoBERTa's values are slightly higher and thus is the better model of the two." + ], + "metadata": { + "id": "jJFVFgH_Nru2" + } + }, + { + "cell_type": "code", + "source": [ + "pg.ttest(bert_acc, clinicalbert_acc, paired=True)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 78 + }, + "id": "4iR0oExDLxfM", + "outputId": "19a3b17a-2e95-41db-9a46-523cd469dcd8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " T dof alternative p-val CI95% cohen-d BF10 \\\n", + "T-test -4.315672 4 two-sided 0.01249 [-0.01, -0.0] 2.281356 6.003 \n", + "\n", + " power \n", + "T-test 0.960982 " + ], + "text/html": [ + "\n", + " <div id=\"df-71ce6771-b47e-449b-beb7-030bcb4862e0\" class=\"colab-df-container\">\n", + " <div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>T</th>\n", + " <th>dof</th>\n", + " <th>alternative</th>\n", + " <th>p-val</th>\n", + " <th>CI95%</th>\n", + " <th>cohen-d</th>\n", + " <th>BF10</th>\n", + " <th>power</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>T-test</th>\n", + " <td>-4.315672</td>\n", + " <td>4</td>\n", + " <td>two-sided</td>\n", + " <td>0.01249</td>\n", + " <td>[-0.01, -0.0]</td>\n", + " <td>2.281356</td>\n", + " <td>6.003</td>\n", + " <td>0.960982</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>\n", + " <div class=\"colab-df-buttons\">\n", + "\n", + " <div class=\"colab-df-container\">\n", + " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-71ce6771-b47e-449b-beb7-030bcb4862e0')\"\n", + " title=\"Convert this dataframe to an interactive table.\"\n", + " style=\"display:none;\">\n", + "\n", + " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", + " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", + " </svg>\n", + " </button>\n", + "\n", + " <style>\n", + " .colab-df-container {\n", + " display:flex;\n", + " gap: 12px;\n", + " }\n", + "\n", + " .colab-df-convert {\n", + " background-color: #E8F0FE;\n", + " border: none;\n", + " border-radius: 50%;\n", + " cursor: pointer;\n", + " display: none;\n", + " fill: #1967D2;\n", + " height: 32px;\n", + " padding: 0 0 0 0;\n", + " width: 32px;\n", + " }\n", + "\n", + " .colab-df-convert:hover {\n", + " background-color: #E2EBFA;\n", + " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", + " fill: #174EA6;\n", + " }\n", + "\n", + " .colab-df-buttons div {\n", + " margin-bottom: 4px;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert {\n", + " background-color: #3B4455;\n", + " fill: #D2E3FC;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert:hover {\n", + " background-color: #434B5C;\n", + " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", + " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", + " fill: #FFFFFF;\n", + " }\n", + " </style>\n", + "\n", + " <script>\n", + " const buttonEl =\n", + " document.querySelector('#df-71ce6771-b47e-449b-beb7-030bcb4862e0 button.colab-df-convert');\n", + " buttonEl.style.display =\n", + " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + "\n", + " async function convertToInteractive(key) {\n", + " const element = document.querySelector('#df-71ce6771-b47e-449b-beb7-030bcb4862e0');\n", + " const dataTable =\n", + " await google.colab.kernel.invokeFunction('convertToInteractive',\n", + " [key], {});\n", + " if (!dataTable) return;\n", + "\n", + " const docLinkHtml = 'Like what you see? Visit the ' +\n", + " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", + " + ' to learn more about interactive tables.';\n", + " element.innerHTML = '';\n", + " dataTable['output_type'] = 'display_data';\n", + " await google.colab.output.renderOutput(dataTable, element);\n", + " const docLink = document.createElement('div');\n", + " docLink.innerHTML = docLinkHtml;\n", + " element.appendChild(docLink);\n", + " }\n", + " </script>\n", + " </div>\n", + "\n", + " </div>\n", + " </div>\n" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "The t-test between BERT and ClinicalBERT also showed a significant difference in the mean values, with p<.016. Looking at the values, it can be seen that ClinicalBERT performs better than BERT." + ], + "metadata": { + "id": "m1GudwzPOLbL" + } + }, + { + "cell_type": "code", + "source": [ + "pg.ttest(roberta_acc, clinicalbert_acc, paired=True)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 78 + }, + "id": "nJcX0qIaL4ns", + "outputId": "44f92555-a2b5-46a8-97d8-1ab3649bc583" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " T dof alternative p-val CI95% cohen-d BF10 \\\n", + "T-test 0.617701 4 two-sided 0.570204 [-0.0, 0.0] 0.188366 0.463 \n", + "\n", + " power \n", + "T-test 0.062652 " + ], + "text/html": [ + "\n", + " <div id=\"df-8da1acaa-1b00-4bea-ba89-61193ab80527\" class=\"colab-df-container\">\n", + " <div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>T</th>\n", + " <th>dof</th>\n", + " <th>alternative</th>\n", + " <th>p-val</th>\n", + " <th>CI95%</th>\n", + " <th>cohen-d</th>\n", + " <th>BF10</th>\n", + " <th>power</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>T-test</th>\n", + " <td>0.617701</td>\n", + " <td>4</td>\n", + " <td>two-sided</td>\n", + " <td>0.570204</td>\n", + " <td>[-0.0, 0.0]</td>\n", + " <td>0.188366</td>\n", + " <td>0.463</td>\n", + " <td>0.062652</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>\n", + " <div class=\"colab-df-buttons\">\n", + "\n", + " <div class=\"colab-df-container\">\n", + " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-8da1acaa-1b00-4bea-ba89-61193ab80527')\"\n", + " title=\"Convert this dataframe to an interactive table.\"\n", + " style=\"display:none;\">\n", + "\n", + " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", + " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", + " </svg>\n", + " </button>\n", + "\n", + " <style>\n", + " .colab-df-container {\n", + " display:flex;\n", + " gap: 12px;\n", + " }\n", + "\n", + " .colab-df-convert {\n", + " background-color: #E8F0FE;\n", + " border: none;\n", + " border-radius: 50%;\n", + " cursor: pointer;\n", + " display: none;\n", + " fill: #1967D2;\n", + " height: 32px;\n", + " padding: 0 0 0 0;\n", + " width: 32px;\n", + " }\n", + "\n", + " .colab-df-convert:hover {\n", + " background-color: #E2EBFA;\n", + " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", + " fill: #174EA6;\n", + " }\n", + "\n", + " .colab-df-buttons div {\n", + " margin-bottom: 4px;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert {\n", + " background-color: #3B4455;\n", + " fill: #D2E3FC;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert:hover {\n", + " background-color: #434B5C;\n", + " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", + " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", + " fill: #FFFFFF;\n", + " }\n", + " </style>\n", + "\n", + " <script>\n", + " const buttonEl =\n", + " document.querySelector('#df-8da1acaa-1b00-4bea-ba89-61193ab80527 button.colab-df-convert');\n", + " buttonEl.style.display =\n", + " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + "\n", + " async function convertToInteractive(key) {\n", + " const element = document.querySelector('#df-8da1acaa-1b00-4bea-ba89-61193ab80527');\n", + " const dataTable =\n", + " await google.colab.kernel.invokeFunction('convertToInteractive',\n", + " [key], {});\n", + " if (!dataTable) return;\n", + "\n", + " const docLinkHtml = 'Like what you see? Visit the ' +\n", + " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", + " + ' to learn more about interactive tables.';\n", + " element.innerHTML = '';\n", + " dataTable['output_type'] = 'display_data';\n", + " await google.colab.output.renderOutput(dataTable, element);\n", + " const docLink = document.createElement('div');\n", + " docLink.innerHTML = docLinkHtml;\n", + " element.appendChild(docLink);\n", + " }\n", + " </script>\n", + " </div>\n", + "\n", + " </div>\n", + " </div>\n" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kej7D_dR3GBD" + }, + "source": [ + "The last t-test with RoBERTa and BioClinicalBERT showed that neither model is significantly better, as p>.016. This means that we can decide which model we proceed with. We choose BioClinicalBERT." + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Model optimization\n", + "\n", + "Tough we could not find a outstanding model, we will use BioClinicalBERT and optimize its parameter, trying to better its performance.\n", + "\n", + "We will vary the following hyperparameters: learning rate, number of epochs and weight decay. Their values for fine-tuning can be easily adjusted calling the get_args method with different values.\n", + "\n", + "For comparison the previous values:" + ], + "metadata": { + "id": "qNYTnNHwZPgg" + } + }, + { + "cell_type": "code", + "source": [ + "metrics_clinicalBERT" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9nuPzDSmneVN", + "outputId": "40617a08-c9b2-4b44-a255-64867f6d41e8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'eval_loss': 0.9409064054489136,\n", + " 'eval_precision': 0.4712969525159461,\n", + " 'eval_recall': 0.5541666666666667,\n", + " 'eval_f1': 0.5093833780160858,\n", + " 'eval_accuracy': 0.7415500707435938,\n", + " 'eval_runtime': 2.8944,\n", + " 'eval_samples_per_second': 156.853,\n", + " 'eval_steps_per_second': 19.693,\n", + " 'epoch': 3.0}" + ] + }, + "metadata": {}, + "execution_count": 91 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Learning rate\n", + "\n", + "\n", + "Until now we used a learning rate of 2e-5, which will be reduced to 1e-4 for fine-tuning." + ], + "metadata": { + "id": "OQXJh0HPZUmB" + } + }, + { + "cell_type": "code", + "source": [ + "model_1 = get_model('emilyalsentzer/Bio_ClinicalBERT')\n", + "trainer_1 = get_trainer(model_1,\n", + " get_args(\"model_1\", 1e-4),\n", + " tokenized_datasets_clinicalBERT[\"train\"],\n", + " tokenized_datasets_clinicalBERT[\"validation\"],\n", + " data_collator_clinicalBERT,\n", + " tokenizer_clinicalBERT\n", + " )\n", + "trainer_1.train()\n", + "trainer_1.evaluate()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 518 + }, + "id": "Xd3EEHEGZPIU", + "outputId": "638d09e7-f398-4651-990c-a2ac0a489ab1" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of BertForTokenClassification were not initialized from the model checkpoint at emilyalsentzer/Bio_ClinicalBERT and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 04:02, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>0.921146</td>\n", + " <td>0.439488</td>\n", + " <td>0.587083</td>\n", + " <td>0.502676</td>\n", + " <td>0.726851</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.181500</td>\n", + " <td>0.863842</td>\n", + " <td>0.519725</td>\n", + " <td>0.598333</td>\n", + " <td>0.556266</td>\n", + " <td>0.756092</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>0.636900</td>\n", + " <td>0.888697</td>\n", + " <td>0.526278</td>\n", + " <td>0.613333</td>\n", + " <td>0.566481</td>\n", + " <td>0.760887</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='57' max='57' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [57/57 00:01]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'eval_loss': 0.8886973261833191,\n", + " 'eval_precision': 0.5262781551662495,\n", + " 'eval_recall': 0.6133333333333333,\n", + " 'eval_f1': 0.5664806619203385,\n", + " 'eval_accuracy': 0.7608866530419746,\n", + " 'eval_runtime': 2.1777,\n", + " 'eval_samples_per_second': 208.479,\n", + " 'eval_steps_per_second': 26.175,\n", + " 'epoch': 3.0}" + ] + }, + "metadata": {}, + "execution_count": 89 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "With an adjusted learning rate of 1e-4, the model performs even better than before. All metrics improved, for example accuracy increased from 0.74 to 0.76." + ], + "metadata": { + "id": "QuqJFFdoNno4" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Number of Epochs\n", + "\n", + "From the results of the evaluation metrics after each epoch, it can be seen that from the 2nd to the 3rd epoch only limited improvements are visible. As a test, 4 epochs are now trained." + ], + "metadata": { + "id": "v2nF68LtamvF" + } + }, + { + "cell_type": "code", + "source": [ + "model_2 = get_model('emilyalsentzer/Bio_ClinicalBERT')\n", + "trainer_2 = get_trainer(model_2,\n", + " get_args(\"model_2\", learning_rate=1e-4, num_train_epochs=4),\n", + " tokenized_datasets_clinicalBERT[\"train\"],\n", + " tokenized_datasets_clinicalBERT[\"validation\"],\n", + " data_collator_clinicalBERT,\n", + " tokenizer_clinicalBERT\n", + " )\n", + "trainer_2.train()\n", + "trainer_2.evaluate()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 582 + }, + "id": "ldmZU8Ncatg9", + "outputId": "d65574d0-5cec-43ef-a75c-3be1d79ca1d5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of BertForTokenClassification were not initialized from the model checkpoint at emilyalsentzer/Bio_ClinicalBERT and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1820' max='1820' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1820/1820 05:08, Epoch 4/4]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>0.942180</td>\n", + " <td>0.438356</td>\n", + " <td>0.573333</td>\n", + " <td>0.496841</td>\n", + " <td>0.723000</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.212700</td>\n", + " <td>0.870196</td>\n", + " <td>0.518204</td>\n", + " <td>0.610833</td>\n", + " <td>0.560719</td>\n", + " <td>0.750904</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>0.672200</td>\n", + " <td>0.902824</td>\n", + " <td>0.533818</td>\n", + " <td>0.611667</td>\n", + " <td>0.570097</td>\n", + " <td>0.760022</td>\n", + " </tr>\n", + " <tr>\n", + " <td>4</td>\n", + " <td>0.410000</td>\n", + " <td>0.988483</td>\n", + " <td>0.534858</td>\n", + " <td>0.613750</td>\n", + " <td>0.571595</td>\n", + " <td>0.757507</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='57' max='57' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [57/57 00:01]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'eval_loss': 0.9884827733039856,\n", + " 'eval_precision': 0.5348583877995643,\n", + " 'eval_recall': 0.61375,\n", + " 'eval_f1': 0.5715948777648429,\n", + " 'eval_accuracy': 0.757506681339412,\n", + " 'eval_runtime': 2.1422,\n", + " 'eval_samples_per_second': 211.929,\n", + " 'eval_steps_per_second': 26.608,\n", + " 'epoch': 4.0}" + ] + }, + "metadata": {}, + "execution_count": 92 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "The fine-tuning with 4 epochs clearly shows a decreasing accuracy, indicating that the model tends to overfit the data. Thus we will not change this parameter and keep 3 epochs." + ], + "metadata": { + "id": "4PpmWo1iNvHA" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Weight Decay\n", + "\n", + "Because the dataset is rather small and has many labels, it may happen that the model tends to overfit faster. By using a smaller weight decay value, you can increase regularization and force the model to restrict weights more. We will use a value of 0.001." + ], + "metadata": { + "id": "qG16HwkqazBC" + } + }, + { + "cell_type": "code", + "source": [ + "model_3 = get_model('emilyalsentzer/Bio_ClinicalBERT')\n", + "trainer_3 = get_trainer(model_3,\n", + " get_args(\"model_3\", learning_rate=1e-4, weight_decay=0.001),\n", + " tokenized_datasets_clinicalBERT[\"train\"],\n", + " tokenized_datasets_clinicalBERT[\"validation\"],\n", + " data_collator_clinicalBERT,\n", + " tokenizer_clinicalBERT\n", + " )\n", + "trainer_3.train()\n", + "trainer_3.evaluate()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 518 + }, + "id": "8CLiyvR-a3KK", + "outputId": "fa898981-696b-4e30-99d2-d244f8f0177f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Some weights of BertForTokenClassification were not initialized from the model checkpoint at emilyalsentzer/Bio_ClinicalBERT and are newly initialized: ['classifier.bias', 'classifier.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='1365' max='1365' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [1365/1365 03:40, Epoch 3/3]\n", + " </div>\n", + " <table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: left;\">\n", + " <th>Epoch</th>\n", + " <th>Training Loss</th>\n", + " <th>Validation Loss</th>\n", + " <th>Precision</th>\n", + " <th>Recall</th>\n", + " <th>F1</th>\n", + " <th>Accuracy</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>No log</td>\n", + " <td>0.924542</td>\n", + " <td>0.442520</td>\n", + " <td>0.585417</td>\n", + " <td>0.504036</td>\n", + " <td>0.728895</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>1.176200</td>\n", + " <td>0.841584</td>\n", + " <td>0.525887</td>\n", + " <td>0.617917</td>\n", + " <td>0.568199</td>\n", + " <td>0.761830</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>0.636200</td>\n", + " <td>0.895939</td>\n", + " <td>0.528126</td>\n", + " <td>0.614167</td>\n", + " <td>0.567906</td>\n", + " <td>0.759865</td>\n", + " </tr>\n", + " </tbody>\n", + "</table><p>" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "<IPython.core.display.HTML object>" + ], + "text/html": [ + "\n", + " <div>\n", + " \n", + " <progress value='57' max='57' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", + " [57/57 00:01]\n", + " </div>\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'eval_loss': 0.8959393501281738,\n", + " 'eval_precision': 0.528126119670369,\n", + " 'eval_recall': 0.6141666666666666,\n", + " 'eval_f1': 0.5679059911385089,\n", + " 'eval_accuracy': 0.7598648011318975,\n", + " 'eval_runtime': 2.1635,\n", + " 'eval_samples_per_second': 209.845,\n", + " 'eval_steps_per_second': 26.346,\n", + " 'epoch': 3.0}" + ] + }, + "metadata": {}, + "execution_count": 93 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "In this case, a weight decay of 0.001 ensures a faster growing accuracy, but there is also a trend towards overfitting. That's why we keep the original value." + ], + "metadata": { + "id": "bUaDTp5xp4Ng" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Q6rpVfB8Q3YS" + }, + "source": [ + "# Precise Evaluation of the best Model with the Test Data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "JrBSsteEQ7ps" + }, + "outputs": [], + "source": [ + "from transformers import pipeline\n", + "from collections import Counter\n", + "from sklearn.metrics import classification_report" + ] + }, + { + "cell_type": "markdown", + "source": [ + "To use the finetuned model for inference we apply it in a pipeline(). After instantiating the pipeline for NER with the model, we will pass the text." + ], + "metadata": { + "id": "d2n4NHBwRa9Q" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "DKSkVT9NQ-Tz" + }, + "outputs": [], + "source": [ + "classifier = pipeline(\"ner\", model=model_1, tokenizer=tokenizer_clinicalBERT)\n", + "model_1.to(\"cpu\") # Oder \"cpu\", je nachdem, was verfügbar ist\n", + "\n", + "def predict_tags(sentence):\n", + " return classifier(sentence)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "THTr3_57RChE", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "cb68c55e-6cc0-43f4-b693-df88f48a603c" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[{'entity': 'B-Biological_structure',\n", + " 'score': 0.99034506,\n", + " 'index': 2,\n", + " 'word': 'left',\n", + " 'start': 4,\n", + " 'end': 8},\n", + " {'entity': 'I-Biological_structure',\n", + " 'score': 0.99015266,\n", + " 'index': 3,\n", + " 'word': 'f',\n", + " 'start': 9,\n", + " 'end': 10},\n", + " {'entity': 'I-Biological_structure',\n", + " 'score': 0.9918446,\n", + " 'index': 4,\n", + " 'word': '##em',\n", + " 'start': 10,\n", + " 'end': 12},\n", + " {'entity': 'I-Biological_structure',\n", + " 'score': 0.9898303,\n", + " 'index': 5,\n", + " 'word': '##oral',\n", + " 'start': 12,\n", + " 'end': 16},\n", + " {'entity': 'I-Biological_structure',\n", + " 'score': 0.9824426,\n", + " 'index': 6,\n", + " 'word': 'artery',\n", + " 'start': 17,\n", + " 'end': 23},\n", + " {'entity': 'B-Therapeutic_procedure',\n", + " 'score': 0.9038626,\n", + " 'index': 8,\n", + " 'word': 'can',\n", + " 'start': 28,\n", + " 'end': 31},\n", + " {'entity': 'I-Therapeutic_procedure',\n", + " 'score': 0.91639614,\n", + " 'index': 9,\n", + " 'word': '##nu',\n", + " 'start': 31,\n", + " 'end': 33},\n", + " {'entity': 'I-Therapeutic_procedure',\n", + " 'score': 0.95666164,\n", + " 'index': 10,\n", + " 'word': '##lated',\n", + " 'start': 33,\n", + " 'end': 38}]" + ] + }, + "metadata": {}, + "execution_count": 100 + } + ], + "source": [ + "classifier(\"The left femoral artery was cannulated.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gSGm_hPKREO8" + }, + "source": [ + "The classifier correctly extracts the entities from the sentence. However, these are not returned in lists, but with its entity information. In order to be able to compare the output with the ground truth lists from the original dataset, the results have to be processed.\n", + "\n", + "A first step is to extract each token from each sentence with its start and end value." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "F6bBDyrfRJAr" + }, + "outputs": [], + "source": [ + "def create_token_table(sentence):\n", + " sentence = sentence.replace(\"\\u2005\", \"\").replace(\"\\u200a\", \"\").replace(\"\\u2009\", \"\").replace(\"\\n\", \"\")\n", + " tokens = sentence.split()\n", + "\n", + " token_table = []\n", + " start = 0\n", + "\n", + " for token in tokens:\n", + " end = start + len(token) Läng\n", + "\n", + " token_info = {\n", + " \"token\": token,\n", + " \"start\": start,\n", + " \"end\": end\n", + " }\n", + " token_table.append(token_info)\n", + "\n", + " start = end + 1\n", + "\n", + " return token_table" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1l6sROD0RKZu" + }, + "source": [ + "Now the pipeline predictions are processed. Only entities with a confident prediction of 0.4 or higher are used. In addition, they are combined and the tokenization into subtokens is reversed." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "RlMKhugPROe3" + }, + "outputs": [], + "source": [ + "def preprocess_entities(sentence_info):\n", + " sentence_info = [info for info in sentence_info if info['score'] >= 0.4]\n", + "\n", + " cleaned_entities = []\n", + " current_entity = None\n", + " current_start = None\n", + " current_end = None\n", + "\n", + " for info in sentence_info:\n", + " entity = info['entity']\n", + " start = info['start']\n", + " end = info['end']\n", + "\n", + " if current_entity is None:\n", + " current_entity = entity.replace('B-', '').replace('I-', '')\n", + " current_start = start\n", + " current_end = end\n", + " elif current_end == start:\n", + " current_entity = entity.replace('B-', '').replace('I-', '')\n", + " current_end = end\n", + " else:\n", + " cleaned_entities.append((current_entity, current_start, current_end))\n", + " current_entity = entity.replace('B-', '').replace('I-', '')\n", + " current_start = start\n", + " current_end = end\n", + "\n", + " if current_entity is not None:\n", + " cleaned_entities.append((current_entity, current_start, current_end))\n", + "\n", + " return cleaned_entities" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "qtMwuxkBRP1Y" + }, + "outputs": [], + "source": [ + "def generate_tags(predicted_entities, sentence_entities):\n", + " tags = [\"O\"] * len(sentence_entities)\n", + "\n", + " for entity, start, end in predicted_entities:\n", + " for i, token_info in enumerate(sentence_entities):\n", + " token_start = token_info['start']\n", + " token_end = token_info['end']\n", + "\n", + " if token_start == start and token_end == end:\n", + " tags[i] = entity\n", + " return tags" + ] + }, + { + "cell_type": "markdown", + "source": [ + "With the `format_tags` function, we turn the raw tags into BOI-tags, just like in the original data." + ], + "metadata": { + "id": "p_Ss6z-yTQHd" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "S0bhOyPHRRKN" + }, + "outputs": [], + "source": [ + "def format_tags(tags):\n", + " formatted_tags = []\n", + " current_entity = None\n", + "\n", + " for tag in tags:\n", + " if tag == 'O':\n", + " formatted_tags.append(tag)\n", + " current_entity = None\n", + " else:\n", + " entity_type = tag\n", + " if current_entity == entity_type:\n", + " formatted_tags.append('I-' + entity_type)\n", + " else:\n", + " formatted_tags.append('B-' + entity_type)\n", + " current_entity = entity_type\n", + "\n", + " return formatted_tags" + ] + }, + { + "cell_type": "markdown", + "source": [ + "The function `get_sentence_tags` automates the whole process from turning a single sentence into a list of tags in BOI-format." + ], + "metadata": { + "id": "mo1G9Q9-TY0d" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "a_fZoiCpRSfu" + }, + "outputs": [], + "source": [ + "def get_sentence_tags(sentence):\n", + " token_table = create_token_table(sentence) # convert sentence to info table (where which word starts)\n", + " sentence_info = predict_tags(sentence) # predict tags of sentence\n", + " predicted_entities = preprocess_entities(sentence_info) # change format of pred tags\n", + " general_tags = generate_tags(predicted_entities, token_table) # use sentence info and tags to get list\n", + " boi_tags = format_tags(general_tags) # bring data in boi format\n", + " return boi_tags" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sNw8C0iORTrK" + }, + "source": [ + "The predicted values are stored in a list, to be able to compare them with the original data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0y3sBO11RUp7" + }, + "outputs": [], + "source": [ + "predicted_entities = []\n", + "for sentence in data_dict[\"test\"][\"sentence\"]:\n", + " predicted_entities.append(get_sentence_tags(sentence))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4dhM-y8NRVs2" + }, + "source": [ + "For performing the classification report, we save the predicted and ground truth tags into lists." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "YmTn7qb3RWvx" + }, + "outputs": [], + "source": [ + "ground_truth_tags = []\n", + "\n", + "for sublist in data_dict[\"test\"][\"tags\"]:\n", + " ground_truth_tags.extend(sublist)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "eS4ahoLuRXtf" + }, + "outputs": [], + "source": [ + "pred_tags = []\n", + "\n", + "for sublist in predicted_entities:\n", + " pred_tags.extend(sublist)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dhGy8tGlRbYA", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "e5768f5e-0aed-4b9d-9777-2bf5d4d4bf05" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Counter({'B-Diagnostic_procedure': 442,\n", + " 'I-Diagnostic_procedure': 377,\n", + " 'O': 4521,\n", + " 'B-Biological_structure': 248,\n", + " 'B-Sign_symptom': 312,\n", + " 'B-Detailed_description': 295,\n", + " 'I-Detailed_description': 189,\n", + " 'B-Clinical_event': 60,\n", + " 'B-Nonbiological_location': 27,\n", + " 'I-Biological_structure': 212,\n", + " 'B-Therapeutic_procedure': 78,\n", + " 'B-Lab_value': 213,\n", + " 'I-Lab_value': 209,\n", + " 'B-Volume': 3,\n", + " 'I-Volume': 5,\n", + " 'I-Sign_symptom': 131,\n", + " 'B-Disease_disorder': 116,\n", + " 'I-Disease_disorder': 78,\n", + " 'B-Distance': 5,\n", + " 'I-Distance': 8,\n", + " 'B-Severity': 26,\n", + " 'I-Therapeutic_procedure': 33,\n", + " 'B-Administration': 12,\n", + " 'B-Medication': 76,\n", + " 'B-Date': 51,\n", + " 'I-Date': 106,\n", + " 'B-Coreference': 23,\n", + " 'I-Coreference': 4,\n", + " 'B-History': 31,\n", + " 'I-History': 141,\n", + " 'B-Duration': 23,\n", + " 'I-Duration': 31,\n", + " 'B-Outcome': 4,\n", + " 'B-Shape': 10,\n", + " 'B-Other_event': 1,\n", + " 'I-Other_event': 11,\n", + " 'B-Frequency': 5,\n", + " 'I-Frequency': 4,\n", + " 'B-Texture': 5,\n", + " 'B-Dosage': 11,\n", + " 'I-Dosage': 22,\n", + " 'I-Nonbiological_location': 25,\n", + " 'B-Age': 19,\n", + " 'B-Sex': 17,\n", + " 'B-Color': 5,\n", + " 'I-Color': 2,\n", + " 'I-Texture': 1,\n", + " 'B-Other_entity': 6,\n", + " 'I-Other_entity': 48,\n", + " 'B-Family_history': 5,\n", + " 'I-Family_history': 35,\n", + " 'I-Medication': 16,\n", + " 'I-Age': 9,\n", + " 'B-Personal_background': 7,\n", + " 'B-Subject': 5,\n", + " 'I-Clinical_event': 6,\n", + " 'B-Activity': 6,\n", + " 'I-Activity': 7,\n", + " 'B-Biological_attribute': 2,\n", + " 'I-Biological_attribute': 1,\n", + " 'B-Time': 6,\n", + " 'I-Time': 9,\n", + " 'B-Qualitative_concept': 1,\n", + " 'I-Subject': 1,\n", + " 'I-Shape': 3,\n", + " 'I-Personal_background': 1,\n", + " 'I-Severity': 1,\n", + " 'B-Quantitative_concept': 1})" + ] + }, + "metadata": {}, + "execution_count": 112 + } + ], + "source": [ + "count_ground_truth = Counter(ground_truth_tags)\n", + "count_ground_truth" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ESRlNwyyRc3K", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "0215434d-7780-404c-835a-bc2026453df2" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Counter({'B-Diagnostic_procedure': 422,\n", + " 'I-Diagnostic_procedure': 273,\n", + " 'O': 5627,\n", + " 'B-Biological_structure': 238,\n", + " 'I-Biological_structure': 149,\n", + " 'B-Sign_symptom': 232,\n", + " 'B-Detailed_description': 227,\n", + " 'I-Detailed_description': 89,\n", + " 'B-Clinical_event': 43,\n", + " 'B-Therapeutic_procedure': 68,\n", + " 'B-Lab_value': 173,\n", + " 'I-Therapeutic_procedure': 24,\n", + " 'B-Date': 67,\n", + " 'I-Date': 87,\n", + " 'B-Nonbiological_location': 28,\n", + " 'I-Lab_value': 62,\n", + " 'B-Volume': 1,\n", + " 'B-Disease_disorder': 95,\n", + " 'I-Sign_symptom': 50,\n", + " 'B-Distance': 2,\n", + " 'B-Severity': 22,\n", + " 'B-History': 39,\n", + " 'I-History': 71,\n", + " 'B-Duration': 23,\n", + " 'B-Medication': 67,\n", + " 'B-Coreference': 17,\n", + " 'I-Medication': 16,\n", + " 'I-Disease_disorder': 44,\n", + " 'I-Nonbiological_location': 15,\n", + " 'B-Administration': 9,\n", + " 'I-Duration': 14,\n", + " 'I-Coreference': 2,\n", + " 'B-Dosage': 8,\n", + " 'I-Dosage': 12,\n", + " 'B-Age': 15,\n", + " 'B-Sex': 17,\n", + " 'B-Color': 2,\n", + " 'B-Family_history': 14,\n", + " 'I-Age': 2,\n", + " 'B-Personal_background': 5,\n", + " 'I-Family_history': 25,\n", + " 'B-Outcome': 2,\n", + " 'I-Clinical_event': 1,\n", + " 'I-Administration': 2,\n", + " 'B-Frequency': 1,\n", + " 'I-Frequency': 1,\n", + " 'B-Time': 1})" + ] + }, + "metadata": {}, + "execution_count": 113 + } + ], + "source": [ + "count_predictions = Counter(pred_tags)\n", + "count_predictions" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Finally, we can print the classification report." + ], + "metadata": { + "id": "qYt5EchTTyPf" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0P291AjpRgo1", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "b544ea0c-0a99-4087-fdbd-9b60fc7222a2" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n", + "\n", + " B-Activity 0.00 0.00 0.00 6\n", + " B-Administration 0.78 0.58 0.67 12\n", + " B-Age 1.00 0.79 0.88 19\n", + " B-Biological_attribute 0.00 0.00 0.00 2\n", + " B-Biological_structure 0.69 0.66 0.67 248\n", + " B-Clinical_event 0.86 0.62 0.72 60\n", + " B-Color 1.00 0.40 0.57 5\n", + " B-Coreference 0.29 0.22 0.25 23\n", + " B-Date 0.61 0.80 0.69 51\n", + " B-Detailed_description 0.53 0.41 0.46 295\n", + " B-Diagnostic_procedure 0.75 0.72 0.73 442\n", + " B-Disease_disorder 0.55 0.45 0.49 116\n", + " B-Distance 0.00 0.00 0.00 5\n", + " B-Dosage 0.50 0.36 0.42 11\n", + " B-Duration 0.70 0.70 0.70 23\n", + " B-Family_history 0.07 0.20 0.11 5\n", + " B-Frequency 1.00 0.20 0.33 5\n", + " B-History 0.49 0.61 0.54 31\n", + " B-Lab_value 0.57 0.46 0.51 213\n", + " B-Medication 0.76 0.67 0.71 76\n", + "B-Nonbiological_location 0.71 0.74 0.73 27\n", + " B-Other_entity 0.00 0.00 0.00 6\n", + " B-Other_event 0.00 0.00 0.00 1\n", + " B-Outcome 1.00 0.50 0.67 4\n", + " B-Personal_background 0.80 0.57 0.67 7\n", + " B-Qualitative_concept 0.00 0.00 0.00 1\n", + " B-Quantitative_concept 0.00 0.00 0.00 1\n", + " B-Severity 0.59 0.50 0.54 26\n", + " B-Sex 1.00 1.00 1.00 17\n", + " B-Shape 0.00 0.00 0.00 10\n", + " B-Sign_symptom 0.64 0.47 0.54 312\n", + " B-Subject 0.00 0.00 0.00 5\n", + " B-Texture 0.00 0.00 0.00 5\n", + " B-Therapeutic_procedure 0.57 0.50 0.53 78\n", + " B-Time 0.00 0.00 0.00 6\n", + " B-Volume 0.00 0.00 0.00 3\n", + " I-Activity 0.00 0.00 0.00 7\n", + " I-Administration 0.00 0.00 0.00 0\n", + " I-Age 1.00 0.22 0.36 9\n", + " I-Biological_attribute 0.00 0.00 0.00 1\n", + " I-Biological_structure 0.79 0.55 0.65 212\n", + " I-Clinical_event 1.00 0.17 0.29 6\n", + " I-Color 0.00 0.00 0.00 2\n", + " I-Coreference 0.00 0.00 0.00 4\n", + " I-Date 0.74 0.60 0.66 106\n", + " I-Detailed_description 0.42 0.20 0.27 189\n", + " I-Diagnostic_procedure 0.79 0.57 0.66 377\n", + " I-Disease_disorder 0.66 0.37 0.48 78\n", + " I-Distance 0.00 0.00 0.00 8\n", + " I-Dosage 0.75 0.41 0.53 22\n", + " I-Duration 0.71 0.32 0.44 31\n", + " I-Family_history 0.60 0.43 0.50 35\n", + " I-Frequency 1.00 0.25 0.40 4\n", + " I-History 0.89 0.45 0.59 141\n", + " I-Lab_value 0.74 0.22 0.34 209\n", + " I-Medication 0.25 0.25 0.25 16\n", + "I-Nonbiological_location 0.67 0.40 0.50 25\n", + " I-Other_entity 0.00 0.00 0.00 48\n", + " I-Other_event 0.00 0.00 0.00 11\n", + " I-Personal_background 0.00 0.00 0.00 1\n", + " I-Severity 0.00 0.00 0.00 1\n", + " I-Shape 0.00 0.00 0.00 3\n", + " I-Sign_symptom 0.72 0.27 0.40 131\n", + " I-Subject 0.00 0.00 0.00 1\n", + " I-Texture 0.00 0.00 0.00 1\n", + " I-Therapeutic_procedure 0.54 0.39 0.46 33\n", + " I-Time 0.00 0.00 0.00 9\n", + " I-Volume 0.00 0.00 0.00 5\n", + " O 0.75 0.93 0.83 4521\n", + "\n", + " accuracy 0.73 8404\n", + " macro avg 0.43 0.29 0.33 8404\n", + " weighted avg 0.71 0.73 0.70 8404\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] + } + ], + "source": [ + "report = classification_report(ground_truth_tags, pred_tags)\n", + "print(report)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "The Bio_ClinicalBERT model achieved an average accuracy of 0.73 when applied to the test dataset, indicating that it correctly identified 73% of the entities.\n", + "\n", + "The model has some challenges when dealing with certain entities, such as 'B-Activity' or 'I-Shape.' These entities are relatively rare in the dataset, which may explain the model's difficulties in learning them well.\n", + "\n", + "In contrast, the model performs very well in identifying specific entities, such as 'B-Clinical_event,' 'B-Diagnostic_procedure,' and 'B-Sex.' For these categories, the model demonstrates high precision, recall, and F1-scores, often approaching a value of 1." + ], + "metadata": { + "id": "u0fEdpEoT1Y5" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LhWCWb8JRkkq" + }, + "source": [ + "Lastly, one example of a sentence, its ground truth tags and its predicted one:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "vGlZfUTQRohy", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "3d48f951-a970-424c-caf0-e2498cc5b20f" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'The negative cardiolipin test excluded tabetic crises.'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 122 + } + ], + "source": [ + "data_dict[\"test\"][\"sentence\"][10]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "twScD-NmRqB5", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "13369744-2e81-4f8a-b154-1043a9357955" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "['O',\n", + " 'B-Lab_value',\n", + " 'B-Diagnostic_procedure',\n", + " 'I-Diagnostic_procedure',\n", + " 'O',\n", + " 'B-Disease_disorder',\n", + " 'I-Disease_disorder']" + ] + }, + "metadata": {}, + "execution_count": 123 + } + ], + "source": [ + "data_dict[\"test\"][\"tags\"][10]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9h8ZikWIRq7K", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "b42ed6bd-a293-49fe-db46-69a162603159" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "['O',\n", + " 'B-Lab_value',\n", + " 'B-Diagnostic_procedure',\n", + " 'I-Diagnostic_procedure',\n", + " 'O',\n", + " 'B-Disease_disorder',\n", + " 'O']" + ] + }, + "metadata": {}, + "execution_count": 124 + } + ], + "source": [ + "predicted_entities[10]" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "132d50e305ad41cba46f741bbcbfa1c7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_31e8527002894a35ae45ca6ad00dbd84", + "IPY_MODEL_7c3f37c48ea44b0c839b67a475e6acc4", + "IPY_MODEL_89e012739f3a4b89aed392c4d027ffcc" + ], + "layout": "IPY_MODEL_7d9ee9ba55594f48ada2a5702b520b0e" + } + }, + "31e8527002894a35ae45ca6ad00dbd84": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b55ce36b74cf43a6bdb28bb000c5f956", + "placeholder": "", + "style": "IPY_MODEL_dbec304daddb40c9bf3b0b04c125c3ab", + "value": "Map: 100%" + } + }, + "7c3f37c48ea44b0c839b67a475e6acc4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6cf03c2c9e1b461b848c0f66836c68b6", + "max": 3633, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b92f527f50db4930ba904224a1758e13", + "value": 3633 + } + }, + "89e012739f3a4b89aed392c4d027ffcc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7b15a9a0b8724a978bb55d1e348524b3", + "placeholder": "", + "style": "IPY_MODEL_f561b6a559da44d3a488a071922d6d17", + "value": " 3633/3633 [00:01<00:00, 3391.60 examples/s]" + } + }, + "7d9ee9ba55594f48ada2a5702b520b0e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b55ce36b74cf43a6bdb28bb000c5f956": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dbec304daddb40c9bf3b0b04c125c3ab": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6cf03c2c9e1b461b848c0f66836c68b6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b92f527f50db4930ba904224a1758e13": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7b15a9a0b8724a978bb55d1e348524b3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f561b6a559da44d3a488a071922d6d17": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "dbb4192b103745d5a7ddab96909ec7c0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c0790f4e440f4bb49acc3261d5cac2b6", + "IPY_MODEL_39a37366486f4167a988099f60f9b27c", + "IPY_MODEL_443817df0b8c4abf86f7682eb1a60065" + ], + "layout": "IPY_MODEL_1d0c811004624e938803b3cb91054f42" + } + }, + "c0790f4e440f4bb49acc3261d5cac2b6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_74881981c47a445b9c28fd11655c69be", + "placeholder": "", + "style": "IPY_MODEL_ec39c298101141e7a569e890431da6bb", + "value": "Map: 100%" + } + }, + "39a37366486f4167a988099f60f9b27c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e76f84942f154450ad048cd45b504e44", + "max": 454, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_686554421a4340718b16272f6ece2ec2", + "value": 454 + } + }, + "443817df0b8c4abf86f7682eb1a60065": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8f4b77da3f574cae81234e87c3487dd4", + "placeholder": "", + "style": "IPY_MODEL_8614663eb74c4befa0aa63292b585ea3", + "value": " 454/454 [00:00<00:00, 3587.88 examples/s]" + } + }, + "1d0c811004624e938803b3cb91054f42": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "74881981c47a445b9c28fd11655c69be": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ec39c298101141e7a569e890431da6bb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e76f84942f154450ad048cd45b504e44": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "686554421a4340718b16272f6ece2ec2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8f4b77da3f574cae81234e87c3487dd4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8614663eb74c4befa0aa63292b585ea3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "781905b76f5c42d891f1a700874cbf18": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a8d2ab3d9c244271957f480818efa2d5", + "IPY_MODEL_0152f3e0e6d6415c9ec6d50ededbb53c", + "IPY_MODEL_a7212c058b2d45f2a63fa4757df37b8b" + ], + "layout": "IPY_MODEL_8cb09a84d6e0434db8dfc5880dd640ff" + } + }, + "a8d2ab3d9c244271957f480818efa2d5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_01c197965c5947a38a9e57c24c4a5e2c", + "placeholder": "", + "style": "IPY_MODEL_a4f03f0e15cc4cf0a62f520a83f6a05b", + "value": "Map: 100%" + } + }, + "0152f3e0e6d6415c9ec6d50ededbb53c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ac34b85703d34b87a1cd8e0839edb0cb", + "max": 455, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_aab7946c991c4049b2da6b775ec8042d", + "value": 455 + } + }, + "a7212c058b2d45f2a63fa4757df37b8b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_08532c1665584873ade5a5ddd082ae34", + "placeholder": "", + "style": "IPY_MODEL_2929c85d5ed44172b53839483197094e", + "value": " 455/455 [00:00<00:00, 3673.44 examples/s]" + } + }, + "8cb09a84d6e0434db8dfc5880dd640ff": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "01c197965c5947a38a9e57c24c4a5e2c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a4f03f0e15cc4cf0a62f520a83f6a05b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ac34b85703d34b87a1cd8e0839edb0cb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "aab7946c991c4049b2da6b775ec8042d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "08532c1665584873ade5a5ddd082ae34": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2929c85d5ed44172b53839483197094e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e32494d07f254e14accf80f43442b757": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0bc97c09bc6f43b0b79096828f523e27", + "IPY_MODEL_89398efd3f274d4795a5acb086cee782", + "IPY_MODEL_951ef472caed4cf28ed3d26496ea245b" + ], + "layout": "IPY_MODEL_6fe4f89cd91d4f34a29b82279b7c6909" + } + }, + "0bc97c09bc6f43b0b79096828f523e27": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_83f47aa1a0864d55a0c9b59c3bbc8c76", + "placeholder": "", + "style": "IPY_MODEL_a12897f0b93c4ec5a837750a83f1dd5d", + "value": "Downloading (…)lve/main/config.json: 100%" + } + }, + "89398efd3f274d4795a5acb086cee782": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d5872c937f2b429c805ba18f68081013", + "max": 481, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ff687e07042b460788121a464653c97c", + "value": 481 + } + }, + "951ef472caed4cf28ed3d26496ea245b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_51bb67ffca50459b816a538982810352", + "placeholder": "", + "style": "IPY_MODEL_3485ee1ccf8645589b6517ac608236f8", + "value": " 481/481 [00:00<00:00, 8.24kB/s]" + } + }, + "6fe4f89cd91d4f34a29b82279b7c6909": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "83f47aa1a0864d55a0c9b59c3bbc8c76": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a12897f0b93c4ec5a837750a83f1dd5d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d5872c937f2b429c805ba18f68081013": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ff687e07042b460788121a464653c97c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "51bb67ffca50459b816a538982810352": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3485ee1ccf8645589b6517ac608236f8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c3a96067e51a4ecf9a44e7ed51b13e8b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c1c12e28b4274ed1b80041e979c73556", + "IPY_MODEL_8f72fb4699c74524a854d607cdafd8f6", + "IPY_MODEL_fd663a35255a468c9909b510cc7fb180" + ], + "layout": "IPY_MODEL_07a0ef84010649f49c77f2c8870c4250" + } + }, + "c1c12e28b4274ed1b80041e979c73556": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5e79c4851ae646378fc323e03a9cd6e0", + "placeholder": "", + "style": "IPY_MODEL_4c9bcbe70d0b4bfd8186ff72be297ca7", + "value": "Downloading (…)olve/main/vocab.json: 100%" + } + }, + "8f72fb4699c74524a854d607cdafd8f6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_96bc42d101514b0cb7cbed302ae41e4c", + "max": 898823, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c2416d8a16774559b7a8ced9366e421a", + "value": 898823 + } + }, + "fd663a35255a468c9909b510cc7fb180": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aa1191cade7a49e481fcdaa16e0d31d8", + "placeholder": "", + "style": "IPY_MODEL_840856fe8d0a4cc19286025c307ac4b6", + "value": " 899k/899k [00:00<00:00, 15.8MB/s]" + } + }, + "07a0ef84010649f49c77f2c8870c4250": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5e79c4851ae646378fc323e03a9cd6e0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4c9bcbe70d0b4bfd8186ff72be297ca7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "96bc42d101514b0cb7cbed302ae41e4c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c2416d8a16774559b7a8ced9366e421a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "aa1191cade7a49e481fcdaa16e0d31d8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "840856fe8d0a4cc19286025c307ac4b6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9c509d28edd24476a08b7e88f540252c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e2971f68b57e405ab7b9762e61d14ed6", + "IPY_MODEL_7f62c16fa497461691d2de00a5b5c51e", + "IPY_MODEL_ff95131912cd467fb6727f6a27738197" + ], + "layout": "IPY_MODEL_6321c0cf5ea84e8a823a3118b42248ef" + } + }, + "e2971f68b57e405ab7b9762e61d14ed6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4f3411e699e7470f82bcd0f7c5b0f476", + "placeholder": "", + "style": "IPY_MODEL_46845205837b444c9bb447fbfe4f5e01", + "value": "Downloading (…)olve/main/merges.txt: 100%" + } + }, + "7f62c16fa497461691d2de00a5b5c51e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_39044f86c441409f8b4d043bea2c4be2", + "max": 456318, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_518baebdf3ab4e5f9a5530e832783eaa", + "value": 456318 + } + }, + "ff95131912cd467fb6727f6a27738197": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1ad119b0476744bc9be0af95690cc085", + "placeholder": "", + "style": "IPY_MODEL_74db70a7f28042d794e90d8b56f74690", + "value": " 456k/456k [00:00<00:00, 9.34MB/s]" + } + }, + "6321c0cf5ea84e8a823a3118b42248ef": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4f3411e699e7470f82bcd0f7c5b0f476": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "46845205837b444c9bb447fbfe4f5e01": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "39044f86c441409f8b4d043bea2c4be2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "518baebdf3ab4e5f9a5530e832783eaa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1ad119b0476744bc9be0af95690cc085": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "74db70a7f28042d794e90d8b56f74690": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a411211e541248ff87613395067ca518": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0fde49440a234dd0a68e784f29c11da1", + "IPY_MODEL_554d6c7a0ab14ace8b1b38b90db66c5f", + "IPY_MODEL_5fb15cda176a454b8543683cb911a1d7" + ], + "layout": "IPY_MODEL_4109349c7644433bbd5c970e00c972c9" + } + }, + "0fde49440a234dd0a68e784f29c11da1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d62098d42f1b436280090ee2b0652898", + "placeholder": "", + "style": "IPY_MODEL_6b924fb53e4c4a79b16b387b89c12f3e", + "value": "Downloading (…)/main/tokenizer.json: 100%" + } + }, + "554d6c7a0ab14ace8b1b38b90db66c5f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4ce929f7c63c4fed9e6ae6b8451bc105", + "max": 1355863, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_bf1cb0036444494ea24fa0008273a814", + "value": 1355863 + } + }, + "5fb15cda176a454b8543683cb911a1d7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5af95ea579f1472d887ebf85f67197a3", + "placeholder": "", + "style": "IPY_MODEL_d111b4008d204e74b3f28ec19a3bc852", + "value": " 1.36M/1.36M [00:00<00:00, 18.9MB/s]" + } + }, + "4109349c7644433bbd5c970e00c972c9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d62098d42f1b436280090ee2b0652898": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6b924fb53e4c4a79b16b387b89c12f3e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4ce929f7c63c4fed9e6ae6b8451bc105": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bf1cb0036444494ea24fa0008273a814": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5af95ea579f1472d887ebf85f67197a3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d111b4008d204e74b3f28ec19a3bc852": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9d446e36059149e0914c260046825217": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_67546d9fdd074350be2b1e5da0d53676", + "IPY_MODEL_278559bcca624553b53262dad249b588", + "IPY_MODEL_e8be9a8dbaa44c60bf05a74ebe3f1d41" + ], + "layout": "IPY_MODEL_ba809dba38184a14ad33801a0e47d5c6" + } + }, + "67546d9fdd074350be2b1e5da0d53676": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b7547723fe504390bffcb8ae2fe0cc09", + "placeholder": "", + "style": "IPY_MODEL_6fbf72a480fc4a8a89c611d0ad667dbc", + "value": "Map: 100%" + } + }, + "278559bcca624553b53262dad249b588": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b6db314385cf4752a9a4b0adabb56655", + "max": 3633, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_189579b0ee4e4e0bb982743e17e923d1", + "value": 3633 + } + }, + "e8be9a8dbaa44c60bf05a74ebe3f1d41": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_29f5e79a383748cfbc88f092ae16a633", + "placeholder": "", + "style": "IPY_MODEL_17168ce90bbc42778bb0f1126bac6905", + "value": " 3633/3633 [00:01<00:00, 3548.74 examples/s]" + } + }, + "ba809dba38184a14ad33801a0e47d5c6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b7547723fe504390bffcb8ae2fe0cc09": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6fbf72a480fc4a8a89c611d0ad667dbc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b6db314385cf4752a9a4b0adabb56655": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "189579b0ee4e4e0bb982743e17e923d1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "29f5e79a383748cfbc88f092ae16a633": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "17168ce90bbc42778bb0f1126bac6905": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8649f6dc2ca2451385b201b87a0a5535": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2164148a67a547ab9077aa29ecae67ac", + "IPY_MODEL_3062941dc458424eac698949f5e106d3", + "IPY_MODEL_257bf19ce3034d479531fa9cf312dc88" + ], + "layout": "IPY_MODEL_bdf1a5b8834945b3929d2a33ce213b53" + } + }, + "2164148a67a547ab9077aa29ecae67ac": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_feb20e96d809418f85a28bac9bc7dd31", + "placeholder": "", + "style": "IPY_MODEL_b9c3ffde4ae24c179afd5ba5dd74efd3", + "value": "Map: 100%" + } + }, + "3062941dc458424eac698949f5e106d3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9dc0ed8b606e484997b90f38550961a4", + "max": 454, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4b700dcd0a394247819479e4a553d10d", + "value": 454 + } + }, + "257bf19ce3034d479531fa9cf312dc88": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f31fcfa22f1e4e248c194e2aa486dbeb", + "placeholder": "", + "style": "IPY_MODEL_667946e07d574040aa59fedb591770e9", + "value": " 454/454 [00:00<00:00, 2777.36 examples/s]" + } + }, + "bdf1a5b8834945b3929d2a33ce213b53": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "feb20e96d809418f85a28bac9bc7dd31": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b9c3ffde4ae24c179afd5ba5dd74efd3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9dc0ed8b606e484997b90f38550961a4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4b700dcd0a394247819479e4a553d10d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f31fcfa22f1e4e248c194e2aa486dbeb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "667946e07d574040aa59fedb591770e9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fad79d37fdd74493b0a1212bc76cf851": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5ffad938a5e94932b7b9933c817f71c9", + "IPY_MODEL_77ef86f0c1934c518c2b48bcdfa19b80", + "IPY_MODEL_abd10dbcc3254a2f91f60e2f99999e6b" + ], + "layout": "IPY_MODEL_60b539b886674faba31c9b31307fe953" + } + }, + "5ffad938a5e94932b7b9933c817f71c9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8ac4f350a49144e3b4f3e7a608cc8b16", + "placeholder": "", + "style": "IPY_MODEL_b19e1c4795f34cc48e936b35f5f8bfc5", + "value": "Map: 100%" + } + }, + "77ef86f0c1934c518c2b48bcdfa19b80": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_282c11eb554144d2bff257a503b19ea3", + "max": 455, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c6e45eb910f74d1aad782bbe9599dd78", + "value": 455 + } + }, + "abd10dbcc3254a2f91f60e2f99999e6b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_eb587b612ad2477db859804902c5ef9d", + "placeholder": "", + "style": "IPY_MODEL_307eb914c2404c2dbfc462ae8e91a13a", + "value": " 455/455 [00:00<00:00, 2470.70 examples/s]" + } + }, + "60b539b886674faba31c9b31307fe953": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8ac4f350a49144e3b4f3e7a608cc8b16": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b19e1c4795f34cc48e936b35f5f8bfc5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "282c11eb554144d2bff257a503b19ea3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c6e45eb910f74d1aad782bbe9599dd78": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "eb587b612ad2477db859804902c5ef9d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "307eb914c2404c2dbfc462ae8e91a13a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "eb38cf044d7b48e0bec1dac883cb7901": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b6edeb90596441c885eae076d30ed23", + "IPY_MODEL_1c8b8c0d7cc641beb46c7b78a368bcaf", + "IPY_MODEL_d80f00a679ad4bf98bf7056fa0fa20ce" + ], + "layout": "IPY_MODEL_1aa045dd49d74bb096e05c2769794e32" + } + }, + "7b6edeb90596441c885eae076d30ed23": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_499c224db89041d09689ae017e1abf65", + "placeholder": "", + "style": "IPY_MODEL_e5d5b8ffec59405db36104c388b59cf4", + "value": "Downloading model.safetensors: 100%" + } + }, + "1c8b8c0d7cc641beb46c7b78a368bcaf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a013627e77884b998a67bb7bebc100fb", + "max": 498818054, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4b8daedf383b441ea32b7b283a45ab8d", + "value": 498818054 + } + }, + "d80f00a679ad4bf98bf7056fa0fa20ce": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_838eef05a15047049057eead4e5e70cd", + "placeholder": "", + "style": "IPY_MODEL_bfa42f7ded6b4c34bb08adf9d52cc165", + "value": " 499M/499M [00:02<00:00, 159MB/s]" + } + }, + "1aa045dd49d74bb096e05c2769794e32": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "499c224db89041d09689ae017e1abf65": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e5d5b8ffec59405db36104c388b59cf4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a013627e77884b998a67bb7bebc100fb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4b8daedf383b441ea32b7b283a45ab8d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "838eef05a15047049057eead4e5e70cd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bfa42f7ded6b4c34bb08adf9d52cc165": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c0f3883db48b4f23927d4f6d97696571": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dd782596b7e4451a89a9dbdb34bc4beb", + "IPY_MODEL_fe2dbdc848e64c20997f9aeab5a9d07f", + "IPY_MODEL_1583ff8fce1e4f98a10bef09f2172e81" + ], + "layout": "IPY_MODEL_123b6d2ff8974927bca548efaeaefb1a" + } + }, + "dd782596b7e4451a89a9dbdb34bc4beb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3de3f9e0cfa6465e9aad9fa8f81df4fa", + "placeholder": "", + "style": "IPY_MODEL_a39d7ba7b1df440685506018c1662931", + "value": "Downloading (…)lve/main/config.json: 100%" + } + }, + "fe2dbdc848e64c20997f9aeab5a9d07f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b79e87373a154add9c8cc52464865a04", + "max": 385, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_40af182cfec44682aa23975516a11a05", + "value": 385 + } + }, + "1583ff8fce1e4f98a10bef09f2172e81": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8aae972fd8494b9e843c6348be545f0b", + "placeholder": "", + "style": "IPY_MODEL_e8645c8aba8e43108d21e2bd7e7cddb1", + "value": " 385/385 [00:00<00:00, 13.0kB/s]" + } + }, + "123b6d2ff8974927bca548efaeaefb1a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3de3f9e0cfa6465e9aad9fa8f81df4fa": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a39d7ba7b1df440685506018c1662931": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b79e87373a154add9c8cc52464865a04": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "40af182cfec44682aa23975516a11a05": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8aae972fd8494b9e843c6348be545f0b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e8645c8aba8e43108d21e2bd7e7cddb1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ee2e5c71c2a146d6a305a8e073cadd76": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_979e36d23538478c9b47fbd70280dfb3", + "IPY_MODEL_b4ca9d7616a048b7877cfe110ebc2b0e", + "IPY_MODEL_46a428b084594173ba3f266a2385c950" + ], + "layout": "IPY_MODEL_e5c6f70410844e87b42b4443dedb9e28" + } + }, + "979e36d23538478c9b47fbd70280dfb3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a756e823ef944fdabb4613d374345ced", + "placeholder": "", + "style": "IPY_MODEL_bc67f1e89e15432ea49cbbe67708ba2d", + "value": "Downloading pytorch_model.bin: 100%" + } + }, + "b4ca9d7616a048b7877cfe110ebc2b0e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_562fe37a95ee43338c0bb64a6ea4b490", + "max": 435778770, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4aacab9f192744df942eed8c0e731dd9", + "value": 435778770 + } + }, + "46a428b084594173ba3f266a2385c950": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d9fe26f009ef4a7c8929a55ef6bc86da", + "placeholder": "", + "style": "IPY_MODEL_c8b8af25e9ed4dcc9b2919e77d7bdfcc", + "value": " 436M/436M [00:05<00:00, 59.5MB/s]" + } + }, + "e5c6f70410844e87b42b4443dedb9e28": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a756e823ef944fdabb4613d374345ced": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bc67f1e89e15432ea49cbbe67708ba2d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "562fe37a95ee43338c0bb64a6ea4b490": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4aacab9f192744df942eed8c0e731dd9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d9fe26f009ef4a7c8929a55ef6bc86da": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c8b8af25e9ed4dcc9b2919e77d7bdfcc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "392c95b95be3470f8d4aa7d5a5f695cd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_37566c4d62f744af85079962753fa220", + "IPY_MODEL_13969498661d4169bea6af86b392e7b1", + "IPY_MODEL_8424862ff9d34a0a92bb317cfa1169a8" + ], + "layout": "IPY_MODEL_0ea65f1f0b8b49dea1d8cec9fbc4006c" + } + }, + "37566c4d62f744af85079962753fa220": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b973ceddcc0348a6908fa461720831b5", + "placeholder": "", + "style": "IPY_MODEL_9bf4e7f180af44128705fc1a977f19b8", + "value": "Downloading (…)solve/main/vocab.txt: 100%" + } + }, + "13969498661d4169bea6af86b392e7b1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3ea495ea96124fc684fca81fac7d8f5e", + "max": 213450, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_53ab3382c6d6483d86ad221bf0c58b07", + "value": 213450 + } + }, + "8424862ff9d34a0a92bb317cfa1169a8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6fb98beeb91a41ffab79a57fa1a20a51", + "placeholder": "", + "style": "IPY_MODEL_243c4a8bb29f44e69f3d2cee94a1de3a", + "value": " 213k/213k [00:00<00:00, 435kB/s]" + } + }, + "0ea65f1f0b8b49dea1d8cec9fbc4006c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b973ceddcc0348a6908fa461720831b5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9bf4e7f180af44128705fc1a977f19b8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3ea495ea96124fc684fca81fac7d8f5e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "53ab3382c6d6483d86ad221bf0c58b07": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6fb98beeb91a41ffab79a57fa1a20a51": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "243c4a8bb29f44e69f3d2cee94a1de3a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e5c752d8d6d54305979b9deb92ef3011": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c21afb241a6b4a5f99fdb8b00636a042", + "IPY_MODEL_ddbc23b417ca46b193afb37765a52a2f", + "IPY_MODEL_530e4dc921ef47109edad3dbb38730ab" + ], + "layout": "IPY_MODEL_6554f815e2204efd8b3f8b6abc340d19" + } + }, + "c21afb241a6b4a5f99fdb8b00636a042": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f1f0898980094bc5ae77b8062063bd76", + "placeholder": "", + "style": "IPY_MODEL_8b9cdc1e89ee4dfaae4d2a5609394ee4", + "value": "Map: 100%" + } + }, + "ddbc23b417ca46b193afb37765a52a2f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_23be9b8a4a264e7599820c144f11363d", + "max": 3633, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ace1ae2dc5314ef8b54872ee40beba23", + "value": 3633 + } + }, + "530e4dc921ef47109edad3dbb38730ab": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b4ab5abdda694b849608d0481dcabfa1", + "placeholder": "", + "style": "IPY_MODEL_1b00a1d5b8784c4b93a16c73cd1873d5", + "value": " 3633/3633 [00:00<00:00, 4462.67 examples/s]" + } + }, + "6554f815e2204efd8b3f8b6abc340d19": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f1f0898980094bc5ae77b8062063bd76": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8b9cdc1e89ee4dfaae4d2a5609394ee4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "23be9b8a4a264e7599820c144f11363d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ace1ae2dc5314ef8b54872ee40beba23": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b4ab5abdda694b849608d0481dcabfa1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1b00a1d5b8784c4b93a16c73cd1873d5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ae17b075122f4a1f80ee672f143a8b63": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_49a146c30d134600b1a5610bddef4626", + "IPY_MODEL_e498237bbfc34c31a8fb3c7fd1fa23ef", + "IPY_MODEL_92c1cb1670a34b7b960248485c96818b" + ], + "layout": "IPY_MODEL_f6279766ba014a71b7ed87363aca76a0" + } + }, + "49a146c30d134600b1a5610bddef4626": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_df7947b84bfd4d8d8d620967774f05fb", + "placeholder": "", + "style": "IPY_MODEL_8da62538e0dc496c8e4bb4d9c8d03921", + "value": "Map: 100%" + } + }, + "e498237bbfc34c31a8fb3c7fd1fa23ef": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2bb55e299e854571a960355801b9661b", + "max": 454, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3999f4cfa29940bc88b4115653585953", + "value": 454 + } + }, + "92c1cb1670a34b7b960248485c96818b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e1d0397c0daa4ffe9b41e64f074c771c", + "placeholder": "", + "style": "IPY_MODEL_ba9c6884d7994effb9ac43d38859e3f5", + "value": " 454/454 [00:00<00:00, 3756.27 examples/s]" + } + }, + "f6279766ba014a71b7ed87363aca76a0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "df7947b84bfd4d8d8d620967774f05fb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8da62538e0dc496c8e4bb4d9c8d03921": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2bb55e299e854571a960355801b9661b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3999f4cfa29940bc88b4115653585953": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e1d0397c0daa4ffe9b41e64f074c771c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ba9c6884d7994effb9ac43d38859e3f5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8c4d27f105434a5ab471f763aa04ccad": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_841e50a52c1644a9b099fc1ee9de9ca3", + "IPY_MODEL_a6df521399bc4bec97042c52a0c6c8e9", + "IPY_MODEL_d1485b8f7f9346448d182f9e2ef7fed0" + ], + "layout": "IPY_MODEL_989894ddefcf4012ab838db7e387ba18" + } + }, + "841e50a52c1644a9b099fc1ee9de9ca3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d832f0934fe441e0a217b740bb41db06", + "placeholder": "", + "style": "IPY_MODEL_c687751933df43c293fa769978aea12d", + "value": "Map: 100%" + } + }, + "a6df521399bc4bec97042c52a0c6c8e9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d8426546e99642949dd3da690196dd74", + "max": 455, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e046366a7d3c46a98f49b855facbacff", + "value": 455 + } + }, + "d1485b8f7f9346448d182f9e2ef7fed0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8257d97785a04978946192a4d5932949", + "placeholder": "", + "style": "IPY_MODEL_145d91c5f8f443e3a8c2923e578e2014", + "value": " 455/455 [00:00<00:00, 3833.70 examples/s]" + } + }, + "989894ddefcf4012ab838db7e387ba18": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d832f0934fe441e0a217b740bb41db06": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c687751933df43c293fa769978aea12d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d8426546e99642949dd3da690196dd74": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e046366a7d3c46a98f49b855facbacff": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8257d97785a04978946192a4d5932949": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "145d91c5f8f443e3a8c2923e578e2014": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ee33ce2b23234990a5a87fe5fecbbe5f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0404855addff406cafc11bb68035600d", + "IPY_MODEL_5f955cdac9b14f73aa141c96f0e1f4ee", + "IPY_MODEL_c82cf075b71c41f2abd785fd721ce658" + ], + "layout": "IPY_MODEL_efbb998ef1ea4619b44fe5cab3466f94" + } + }, + "0404855addff406cafc11bb68035600d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_45a8ae97fe6f4a519ed4c454482d5446", + "placeholder": "", + "style": "IPY_MODEL_99d3219a6d9942f984d2bd80ebfd3ee3", + "value": "Map: 100%" + } + }, + "5f955cdac9b14f73aa141c96f0e1f4ee": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e2830283f9414601ae385a596e5b96cd", + "max": 3633, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a774f5be2e224abea936bcd9a65f0d5c", + "value": 3633 + } + }, + "c82cf075b71c41f2abd785fd721ce658": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_78d7edf0c1954fc1885d33914ece297f", + "placeholder": "", + "style": "IPY_MODEL_4d7fc28d24784f5cbc5e33b012c1444d", + "value": " 3633/3633 [00:01<00:00, 1996.68 examples/s]" + } + }, + "efbb998ef1ea4619b44fe5cab3466f94": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "45a8ae97fe6f4a519ed4c454482d5446": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "99d3219a6d9942f984d2bd80ebfd3ee3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e2830283f9414601ae385a596e5b96cd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a774f5be2e224abea936bcd9a65f0d5c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "78d7edf0c1954fc1885d33914ece297f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4d7fc28d24784f5cbc5e33b012c1444d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "dffa8294b1074d78bc1434a4d1d8135f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0f18683e8e024e8ebc9fe2f1b310637a", + "IPY_MODEL_84e986e1e2974c02a85d337faae87231", + "IPY_MODEL_5c2d519bfe9e4aeea0525574678ba18b" + ], + "layout": "IPY_MODEL_5658ef136c744c4ab6a9f90ca76913e7" + } + }, + "0f18683e8e024e8ebc9fe2f1b310637a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_209490283f84486d9cc79f428c532d27", + "placeholder": "", + "style": "IPY_MODEL_5191b9d9a86a4dbd80d22bbdeb232e5c", + "value": "Map: 100%" + } + }, + "84e986e1e2974c02a85d337faae87231": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ef7a41a2eee049ff8fde90b17035db34", + "max": 909, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ecdf0644624c4cbb93897097300f7495", + "value": 909 + } + }, + "5c2d519bfe9e4aeea0525574678ba18b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_16fd203f4e2047b9b079231a4c171f46", + "placeholder": "", + "style": "IPY_MODEL_9e7541ef3d0a4a948d76cbe9756c61ab", + "value": " 909/909 [00:00<00:00, 1223.07 examples/s]" + } + }, + "5658ef136c744c4ab6a9f90ca76913e7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "209490283f84486d9cc79f428c532d27": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5191b9d9a86a4dbd80d22bbdeb232e5c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ef7a41a2eee049ff8fde90b17035db34": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ecdf0644624c4cbb93897097300f7495": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "16fd203f4e2047b9b079231a4c171f46": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9e7541ef3d0a4a948d76cbe9756c61ab": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fead456f72f1477a915708ba60e2041c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1a0cdfc39fbc4727beef37179dde3a8e", + "IPY_MODEL_5b2da60155ab4fe3b77023e7acf07980", + "IPY_MODEL_d56f300f72cc4ffb9837baccf65d10b9" + ], + "layout": "IPY_MODEL_816f7357043e4361a903cafb5b7ae89d" + } + }, + "1a0cdfc39fbc4727beef37179dde3a8e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b1da73b919f445438b4657d73e4263b8", + "placeholder": "", + "style": "IPY_MODEL_e46b5ed021ee417ea9d1f435dd80229d", + "value": "Map: 100%" + } + }, + "5b2da60155ab4fe3b77023e7acf07980": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4d3a255dd7424bdbae144a83212156da", + "max": 3633, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b6aa7b22292f444b93780c8fcac9a394", + "value": 3633 + } + }, + "d56f300f72cc4ffb9837baccf65d10b9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f2898eb507944574b25d364910e64d8f", + "placeholder": "", + "style": "IPY_MODEL_1d637135d67145e2aad234cede3469d0", + "value": " 3633/3633 [00:00<00:00, 4345.35 examples/s]" + } + }, + "816f7357043e4361a903cafb5b7ae89d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b1da73b919f445438b4657d73e4263b8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e46b5ed021ee417ea9d1f435dd80229d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4d3a255dd7424bdbae144a83212156da": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b6aa7b22292f444b93780c8fcac9a394": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f2898eb507944574b25d364910e64d8f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1d637135d67145e2aad234cede3469d0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c55e4148a8d440ceaaa3a795e677317e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5218de45ef0e41e9bfe0e7ef98579741", + "IPY_MODEL_fd17e78b4a5049928060e3f0a5f14279", + "IPY_MODEL_94929ad2ae9c402493abbacc028d9695" + ], + "layout": "IPY_MODEL_e53379e67fc246599f00ef77113f271f" + } + }, + "5218de45ef0e41e9bfe0e7ef98579741": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_baa9f023899d4a5d8c7266ccbd1aecca", + "placeholder": "", + "style": "IPY_MODEL_d6df6096f9374f2d957794d2e7f9b08a", + "value": "Map: 100%" + } + }, + "fd17e78b4a5049928060e3f0a5f14279": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b22759f1298b46e58023084e9114e671", + "max": 909, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_359c6484db094221b672c89e70c5cd77", + "value": 909 + } + }, + "94929ad2ae9c402493abbacc028d9695": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_57c69fbc3818408b8d092a6b6b86e824", + "placeholder": "", + "style": "IPY_MODEL_ab02968d635f4d49a251369414d49196", + "value": " 909/909 [00:00<00:00, 2875.27 examples/s]" + } + }, + "e53379e67fc246599f00ef77113f271f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "baa9f023899d4a5d8c7266ccbd1aecca": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d6df6096f9374f2d957794d2e7f9b08a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b22759f1298b46e58023084e9114e671": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "359c6484db094221b672c89e70c5cd77": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "57c69fbc3818408b8d092a6b6b86e824": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ab02968d635f4d49a251369414d49196": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7474ac12fd31476bb868645cbf7b9b92": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_148f5e33072846bb9a20cbdd9e82a6ad", + "IPY_MODEL_30c25b13844e44d293f32e7831eb8607", + "IPY_MODEL_71b210b0198e48fe97684ccbc0b3412f" + ], + "layout": "IPY_MODEL_49aaaba894324ded80eacaa55aa9cce5" + } + }, + "148f5e33072846bb9a20cbdd9e82a6ad": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_00be5da2273a43b8937d73118e3b3c65", + "placeholder": "", + "style": "IPY_MODEL_ab52e0aa9843487cadc1f80f034e44f2", + "value": "Map: 100%" + } + }, + "30c25b13844e44d293f32e7831eb8607": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fa6cebfb18644b72a345b3d2e7885592", + "max": 3634, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c88efccb01864aeab06762311e2cbae5", + "value": 3634 + } + }, + "71b210b0198e48fe97684ccbc0b3412f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_566a834af3574a3a941b7d5e8334a3ff", + "placeholder": "", + "style": "IPY_MODEL_ad5eee099aab4d59b8c9d8fd75660547", + "value": " 3634/3634 [00:00<00:00, 5012.84 examples/s]" + } + }, + "49aaaba894324ded80eacaa55aa9cce5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "00be5da2273a43b8937d73118e3b3c65": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ab52e0aa9843487cadc1f80f034e44f2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fa6cebfb18644b72a345b3d2e7885592": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c88efccb01864aeab06762311e2cbae5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "566a834af3574a3a941b7d5e8334a3ff": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad5eee099aab4d59b8c9d8fd75660547": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "00959e1b50264101bebad05458e97d9f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4592192aba924b13b117ae4a4d518dbe", + "IPY_MODEL_e638a62f15a94abb9e51e9ca63876b64", + "IPY_MODEL_7da14e5c5d9f4d19ad703dcc4917c118" + ], + "layout": "IPY_MODEL_a7684c5681014a1aa992e430dd4407b1" + } + }, + "4592192aba924b13b117ae4a4d518dbe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_100d8f60e12d4e28983d265924fce926", + "placeholder": "", + "style": "IPY_MODEL_bae7e597f237419f9ef342338edac800", + "value": "Map: 100%" + } + }, + "e638a62f15a94abb9e51e9ca63876b64": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0378cdac3d16438081546844828410ae", + "max": 908, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ecde454e851a4e8296d1e87f4f24a548", + "value": 908 + } + }, + "7da14e5c5d9f4d19ad703dcc4917c118": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0de56b4778d34cddaa0d92db7335fcf3", + "placeholder": "", + "style": "IPY_MODEL_bc1ab70eaaed49ab918601400903a288", + "value": " 908/908 [00:00<00:00, 4804.41 examples/s]" + } + }, + "a7684c5681014a1aa992e430dd4407b1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "100d8f60e12d4e28983d265924fce926": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bae7e597f237419f9ef342338edac800": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0378cdac3d16438081546844828410ae": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ecde454e851a4e8296d1e87f4f24a548": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0de56b4778d34cddaa0d92db7335fcf3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bc1ab70eaaed49ab918601400903a288": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f2d7ce5472ed46378e12e3398100ce82": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aea7671500684916832bbf4ba5364eeb", + "IPY_MODEL_7c330b3e527c4e56a0d66b6ed4cdef41", + "IPY_MODEL_59e0e1cf34d44a5ab563e6fc3d40c124" + ], + "layout": "IPY_MODEL_a2ee8ede6c23460dbc99834115b5bcc2" + } + }, + "aea7671500684916832bbf4ba5364eeb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d60eef6346664f99be280ac8cbab6356", + "placeholder": "", + "style": "IPY_MODEL_42a0b9eff0264750850c5d1303309c39", + "value": "Map: 100%" + } + }, + "7c330b3e527c4e56a0d66b6ed4cdef41": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b18791667a224d8f8f78b298a603d9b6", + "max": 3634, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_77a6f2324d404efa8574a999ea950ac2", + "value": 3634 + } + }, + "59e0e1cf34d44a5ab563e6fc3d40c124": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_495fc2a975bd488591ccacfdd41ef6f6", + "placeholder": "", + "style": "IPY_MODEL_3db94b75c00e423fa4df99bd8458487f", + "value": " 3634/3634 [00:00<00:00, 5125.65 examples/s]" + } + }, + "a2ee8ede6c23460dbc99834115b5bcc2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d60eef6346664f99be280ac8cbab6356": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "42a0b9eff0264750850c5d1303309c39": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b18791667a224d8f8f78b298a603d9b6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "77a6f2324d404efa8574a999ea950ac2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "495fc2a975bd488591ccacfdd41ef6f6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3db94b75c00e423fa4df99bd8458487f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "41c342d1327e4b0b860c7e2d26436692": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_439453767e5d491b85a727aec79fd6e7", + "IPY_MODEL_8d2e92bd104e4896ad5f2528ca53d81d", + "IPY_MODEL_21338cf80f294b9890ff57bcae6f2592" + ], + "layout": "IPY_MODEL_e801ea8c5d224f47a1691b47ca23272f" + } + }, + "439453767e5d491b85a727aec79fd6e7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9e81dfc5945b4ca1b0f8a89116023507", + "placeholder": "", + "style": "IPY_MODEL_c620cfb26c71412e8d7d810122d720ce", + "value": "Map: 100%" + } + }, + "8d2e92bd104e4896ad5f2528ca53d81d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d2e4532c438147319110d220c361a376", + "max": 908, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_11c60290c3ef438a8d8d468ea7b46be5", + "value": 908 + } + }, + "21338cf80f294b9890ff57bcae6f2592": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3974fccaf9cd42209848f84f98c0cada", + "placeholder": "", + "style": "IPY_MODEL_882676c9079149eb99aa7a0fcb6773b9", + "value": " 908/908 [00:00<00:00, 4407.82 examples/s]" + } + }, + "e801ea8c5d224f47a1691b47ca23272f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9e81dfc5945b4ca1b0f8a89116023507": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c620cfb26c71412e8d7d810122d720ce": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d2e4532c438147319110d220c361a376": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "11c60290c3ef438a8d8d468ea7b46be5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3974fccaf9cd42209848f84f98c0cada": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "882676c9079149eb99aa7a0fcb6773b9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "92fcf68ac1f14c6da0aee4d81279207f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_18fc8ee6aa104675b9339c6071cff91b", + "IPY_MODEL_a25cf5e5bd2a4749927c778f60f70d32", + "IPY_MODEL_5813ee9570f1407882b3e683dbe0a25f" + ], + "layout": "IPY_MODEL_7691bad753634c2887dedf5cc23ed7c2" + } + }, + "18fc8ee6aa104675b9339c6071cff91b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fea9cee9fe7f4482bec53be736b0e17b", + "placeholder": "", + "style": "IPY_MODEL_833327f0b9a94ee5aa2ba145d00a424b", + "value": "Map: 100%" + } + }, + "a25cf5e5bd2a4749927c778f60f70d32": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ef3eaacdcc8b40759b70c44df2ca30b4", + "max": 3634, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_90fa7f53b95b4333995de2fdc8d1523b", + "value": 3634 + } + }, + "5813ee9570f1407882b3e683dbe0a25f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3bc9e65e86344b7985062f2a4e5d28c4", + "placeholder": "", + "style": "IPY_MODEL_3fb567ccddbf41ab826db630225df50b", + "value": " 3634/3634 [00:01<00:00, 3050.85 examples/s]" + } + }, + "7691bad753634c2887dedf5cc23ed7c2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fea9cee9fe7f4482bec53be736b0e17b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "833327f0b9a94ee5aa2ba145d00a424b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ef3eaacdcc8b40759b70c44df2ca30b4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "90fa7f53b95b4333995de2fdc8d1523b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3bc9e65e86344b7985062f2a4e5d28c4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3fb567ccddbf41ab826db630225df50b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "251133d508dd4b158455d5bafb8343bc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_94eeb97d65e8465ba1d66045dfc2f71d", + "IPY_MODEL_fc4977e7b41c4866ab6395beab79e49a", + "IPY_MODEL_ddaf5d6e21b9463c98dbaa817eb3f147" + ], + "layout": "IPY_MODEL_cae24c9278ac40fea8d1acc7f33bc182" + } + }, + "94eeb97d65e8465ba1d66045dfc2f71d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a0ede0eeae7346acbb0f7509235c77b9", + "placeholder": "", + "style": "IPY_MODEL_6aa536989b614c4fa6862b273f3bca1b", + "value": "Map: 100%" + } + }, + "fc4977e7b41c4866ab6395beab79e49a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_76015e7acd474fe58d32bea149c868f4", + "max": 908, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_05ca4b8c795c462fb5c1c9b33efe93e0", + "value": 908 + } + }, + "ddaf5d6e21b9463c98dbaa817eb3f147": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_539ad15eb23e43679a96f14d6715f35f", + "placeholder": "", + "style": "IPY_MODEL_da6c104da19d403d9e6bc445578f9a73", + "value": " 908/908 [00:00<00:00, 2933.58 examples/s]" + } + }, + "cae24c9278ac40fea8d1acc7f33bc182": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a0ede0eeae7346acbb0f7509235c77b9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6aa536989b614c4fa6862b273f3bca1b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "76015e7acd474fe58d32bea149c868f4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "05ca4b8c795c462fb5c1c9b33efe93e0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "539ad15eb23e43679a96f14d6715f35f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "da6c104da19d403d9e6bc445578f9a73": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3da72f2741774ec2ab52d22450c397e7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2eff3466ee704df1ac8cea674c83fddb", + "IPY_MODEL_59afcabecbbe417a97df741e0b204035", + "IPY_MODEL_87ed331ea6ea40eaafdff56468e97beb" + ], + "layout": "IPY_MODEL_e1741c9d4812493290dedf5e2ff5fc41" + } + }, + "2eff3466ee704df1ac8cea674c83fddb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a0e4e41eab814ec2a32a1c6b6de5be06", + "placeholder": "", + "style": "IPY_MODEL_c63aa313e3654fd0bd47eff44d40ab3d", + "value": "Map: 100%" + } + }, + "59afcabecbbe417a97df741e0b204035": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9268df611f7142c5ae6a52fa575dbe05", + "max": 3633, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_80e95564055242fca30161fef022452d", + "value": 3633 + } + }, + "87ed331ea6ea40eaafdff56468e97beb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bce96e7c739a4a92863c70aa43bd1c48", + "placeholder": "", + "style": "IPY_MODEL_88031b1860044fe98f7af629022a927f", + "value": " 3633/3633 [00:01<00:00, 3533.68 examples/s]" + } + }, + "e1741c9d4812493290dedf5e2ff5fc41": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a0e4e41eab814ec2a32a1c6b6de5be06": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c63aa313e3654fd0bd47eff44d40ab3d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9268df611f7142c5ae6a52fa575dbe05": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "80e95564055242fca30161fef022452d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bce96e7c739a4a92863c70aa43bd1c48": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "88031b1860044fe98f7af629022a927f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c198c5a3ca504a829eaf24d76abe40b7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4378c714f8d94d01b38f75d2ee9c7045", + "IPY_MODEL_d0ca2d8f9923477794edaa096a400d63", + "IPY_MODEL_58a8c66e00df4f5d99c0c3bc02405dc4" + ], + "layout": "IPY_MODEL_7f8ed30b9caa4eaa803156a1ed6d1602" + } + }, + "4378c714f8d94d01b38f75d2ee9c7045": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_555e2cfd647c42839f0b4fbccadb43b9", + "placeholder": "", + "style": "IPY_MODEL_80150ad0577a4ac7b91b496dca6ad753", + "value": "Map: 100%" + } + }, + "d0ca2d8f9923477794edaa096a400d63": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6160604fa167441c83a4e4b8738e482e", + "max": 909, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6fad0b0a4a254a21969dd33ada280024", + "value": 909 + } + }, + "58a8c66e00df4f5d99c0c3bc02405dc4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2185c0bebebc477fa9996bd875b3f442", + "placeholder": "", + "style": "IPY_MODEL_c813c198ef084bada26bc33a6f76a6f1", + "value": " 909/909 [00:00<00:00, 3434.82 examples/s]" + } + }, + "7f8ed30b9caa4eaa803156a1ed6d1602": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "555e2cfd647c42839f0b4fbccadb43b9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "80150ad0577a4ac7b91b496dca6ad753": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6160604fa167441c83a4e4b8738e482e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6fad0b0a4a254a21969dd33ada280024": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2185c0bebebc477fa9996bd875b3f442": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c813c198ef084bada26bc33a6f76a6f1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0b760da98de7483e84b9355ceece9413": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1b18ca20ca3647eeaa591d759cfa19d6", + "IPY_MODEL_9bb4b81e71b74d3bbd8c97ad0f38e095", + "IPY_MODEL_6498f28d94d4450eb721ad69b4d0c96b" + ], + "layout": "IPY_MODEL_c3a6518cb6674ae1adcc4c86dbef2bd6" + } + }, + "1b18ca20ca3647eeaa591d759cfa19d6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6f94603770d74fa1b60739aa00a791c4", + "placeholder": "", + "style": "IPY_MODEL_d4d275146d63482fa2a354e02e5410eb", + "value": "Map: 100%" + } + }, + "9bb4b81e71b74d3bbd8c97ad0f38e095": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_43754f0e74f24edaad9ee96e88b9f3e2", + "max": 3633, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_30f84ea40bba4eacaffb8c64473b9fff", + "value": 3633 + } + }, + "6498f28d94d4450eb721ad69b4d0c96b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b5255939f0a64e50bbe65d45273ed933", + "placeholder": "", + "style": "IPY_MODEL_eac59f75e8cd4001972716b49c7dab68", + "value": " 3633/3633 [00:00<00:00, 3942.64 examples/s]" + } + }, + "c3a6518cb6674ae1adcc4c86dbef2bd6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6f94603770d74fa1b60739aa00a791c4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d4d275146d63482fa2a354e02e5410eb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "43754f0e74f24edaad9ee96e88b9f3e2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "30f84ea40bba4eacaffb8c64473b9fff": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b5255939f0a64e50bbe65d45273ed933": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eac59f75e8cd4001972716b49c7dab68": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "834a0f698e5741bc947c1502b85d27d6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_36a5e3a4252d4720b25399ff025f897f", + "IPY_MODEL_65ee7858a43a49369031317214a88d58", + "IPY_MODEL_a3aeb8c7876147aea7e4eb6a534760b2" + ], + "layout": "IPY_MODEL_2af768f1e62b4a3aa53f823f1e9c0435" + } + }, + "36a5e3a4252d4720b25399ff025f897f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6928f3d970b5400fb473ac83393900f6", + "placeholder": "", + "style": "IPY_MODEL_ad0a326dffca419c9000165c43d843f4", + "value": "Map: 100%" + } + }, + "65ee7858a43a49369031317214a88d58": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b8eef9fb174c4283b1d5fd6ee1c5521d", + "max": 909, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4b888f95217f4e4a9725a168c4e73363", + "value": 909 + } + }, + "a3aeb8c7876147aea7e4eb6a534760b2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f4b010d6ff1f469eb841d2ac887c78c6", + "placeholder": "", + "style": "IPY_MODEL_8e0d1c47a9b043d88e73c8fa36be540e", + "value": " 909/909 [00:00<00:00, 4861.90 examples/s]" + } + }, + "2af768f1e62b4a3aa53f823f1e9c0435": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6928f3d970b5400fb473ac83393900f6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad0a326dffca419c9000165c43d843f4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b8eef9fb174c4283b1d5fd6ee1c5521d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4b888f95217f4e4a9725a168c4e73363": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f4b010d6ff1f469eb841d2ac887c78c6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8e0d1c47a9b043d88e73c8fa36be540e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "34b7bc15b2124eb6a06109a434062d12": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7a310c953dbf45c29c03c5365f38037c", + "IPY_MODEL_fe03906755b9420fa830b4cc66789363", + "IPY_MODEL_5dca4efbe0cf41d7aa7d054a450e74f6" + ], + "layout": "IPY_MODEL_af978cb126e046349790cb73232199a8" + } + }, + "7a310c953dbf45c29c03c5365f38037c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c051a2c38f594f1e988abb7b60a5f034", + "placeholder": "", + "style": "IPY_MODEL_850a3809f3e74c3ead04f374c8cc993e", + "value": "Map: 100%" + } + }, + "fe03906755b9420fa830b4cc66789363": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_000d0b7bc35a46939d6e953e327844c2", + "max": 3634, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5604d62a213d42faad1a8fb696ed0521", + "value": 3634 + } + }, + "5dca4efbe0cf41d7aa7d054a450e74f6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d14174a5629c450b89e479ea7021b557", + "placeholder": "", + "style": "IPY_MODEL_307f865620d740719a75349f873d08db", + "value": " 3634/3634 [00:01<00:00, 3033.06 examples/s]" + } + }, + "af978cb126e046349790cb73232199a8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c051a2c38f594f1e988abb7b60a5f034": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "850a3809f3e74c3ead04f374c8cc993e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "000d0b7bc35a46939d6e953e327844c2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5604d62a213d42faad1a8fb696ed0521": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d14174a5629c450b89e479ea7021b557": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "307f865620d740719a75349f873d08db": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2533c4c58f854486b1398ab9f6e27850": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3c1adb0c218d46248eb73df6ee516911", + "IPY_MODEL_3a0cb12dc9bc47858fdadd059524bbf2", + "IPY_MODEL_89ade8ba3b8841d9bb845715fc14039a" + ], + "layout": "IPY_MODEL_9fe6e1516dec4dbb87e3b2e766f5759b" + } + }, + "3c1adb0c218d46248eb73df6ee516911": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_97d470ab1cb14568a02dba17965bda78", + "placeholder": "", + "style": "IPY_MODEL_21c20739f91744c08bda2cd7ef22df3d", + "value": "Map: 100%" + } + }, + "3a0cb12dc9bc47858fdadd059524bbf2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4e0c1989adce4da58d2096244ce21a83", + "max": 908, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e5df9535afac4bfc9876d74a814eb986", + "value": 908 + } + }, + "89ade8ba3b8841d9bb845715fc14039a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5a5f8c7979e343ce96f649042344b5f0", + "placeholder": "", + "style": "IPY_MODEL_8e22f03154fb4622ba9664bd07f1fd47", + "value": " 908/908 [00:00<00:00, 2797.82 examples/s]" + } + }, + "9fe6e1516dec4dbb87e3b2e766f5759b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "97d470ab1cb14568a02dba17965bda78": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "21c20739f91744c08bda2cd7ef22df3d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4e0c1989adce4da58d2096244ce21a83": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e5df9535afac4bfc9876d74a814eb986": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5a5f8c7979e343ce96f649042344b5f0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8e22f03154fb4622ba9664bd07f1fd47": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5aa8b09323644efcbfa5b14d1951cdd0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f90b114ec6fd4316a498654a70ac5365", + "IPY_MODEL_3c2962231e6f43a1a7325f6c43851c1b", + "IPY_MODEL_7490b1bfb64843c984993363ab830575" + ], + "layout": "IPY_MODEL_7a4ed92d68744371b534ba9c9023fd48" + } + }, + "f90b114ec6fd4316a498654a70ac5365": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_af2c9008d42347639e7b760f88d3f6f2", + "placeholder": "", + "style": "IPY_MODEL_80fbddfc88ff4641bfdc24ea4a0b6db7", + "value": "Map: 100%" + } + }, + "3c2962231e6f43a1a7325f6c43851c1b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0c657c0fbad849ce9786abc5f608c838", + "max": 3634, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ea3506eb1f2f4210a49203e5b5b1da59", + "value": 3634 + } + }, + "7490b1bfb64843c984993363ab830575": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9d7018f47c8e46629268336a0be64432", + "placeholder": "", + "style": "IPY_MODEL_7271f80e4f514cb18ec320b179ea4450", + "value": " 3634/3634 [00:00<00:00, 5725.72 examples/s]" + } + }, + "7a4ed92d68744371b534ba9c9023fd48": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "af2c9008d42347639e7b760f88d3f6f2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "80fbddfc88ff4641bfdc24ea4a0b6db7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0c657c0fbad849ce9786abc5f608c838": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ea3506eb1f2f4210a49203e5b5b1da59": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9d7018f47c8e46629268336a0be64432": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7271f80e4f514cb18ec320b179ea4450": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a0de4806204f48fca96563831e9e624a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_406ceea9100c4a84aa6374df73c6de76", + "IPY_MODEL_29baeea8672545d2967e9e67bdd7ed83", + "IPY_MODEL_116069856e6a4471ba2d0b58d2ceed54" + ], + "layout": "IPY_MODEL_412b6e72f99046b59bc382bae90a8e5b" + } + }, + "406ceea9100c4a84aa6374df73c6de76": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2dcb2c91c1ec47fcbc70d7ca176278b7", + "placeholder": "", + "style": "IPY_MODEL_1bed6b6ad0d14b95ac872e0936686c1f", + "value": "Map: 100%" + } + }, + "29baeea8672545d2967e9e67bdd7ed83": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_13c348ede2a7489b997755148bfee3bb", + "max": 908, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_45daa3a285b84083a256f2893962919c", + "value": 908 + } + }, + "116069856e6a4471ba2d0b58d2ceed54": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_69b0e732241344359ed6e3190e86927f", + "placeholder": "", + "style": "IPY_MODEL_b985886dd8c54d51a86a1b1f592272bf", + "value": " 908/908 [00:00<00:00, 4986.20 examples/s]" + } + }, + "412b6e72f99046b59bc382bae90a8e5b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2dcb2c91c1ec47fcbc70d7ca176278b7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1bed6b6ad0d14b95ac872e0936686c1f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "13c348ede2a7489b997755148bfee3bb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "45daa3a285b84083a256f2893962919c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "69b0e732241344359ed6e3190e86927f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b985886dd8c54d51a86a1b1f592272bf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "36a52d99bbe5419e9474b990dad621a8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e07339e557be4dec8d5496873d70f630", + "IPY_MODEL_8b5b0e560ed2490fb3e07d4dedee4b63", + "IPY_MODEL_653676fad58749b8aa81d767ff7bf503" + ], + "layout": "IPY_MODEL_39999828ea214bfea80c0a6ac51400bf" + } + }, + "e07339e557be4dec8d5496873d70f630": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a343d203abea41c39dd1ccece0ef7d9b", + "placeholder": "", + "style": "IPY_MODEL_bee4eb3e092c4c33a54718e7c9ccb7cb", + "value": "Map: 100%" + } + }, + "8b5b0e560ed2490fb3e07d4dedee4b63": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ec78ed4c75004230b67823f8587baf8d", + "max": 3634, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_dcc10ada8b9f4481bfc1e017cca592ec", + "value": 3634 + } + }, + "653676fad58749b8aa81d767ff7bf503": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a4e693013cf543e899c268bad2bdca53", + "placeholder": "", + "style": "IPY_MODEL_6958862ac48c4ef6abd0b01fcf77c241", + "value": " 3634/3634 [00:00<00:00, 5736.67 examples/s]" + } + }, + "39999828ea214bfea80c0a6ac51400bf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a343d203abea41c39dd1ccece0ef7d9b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bee4eb3e092c4c33a54718e7c9ccb7cb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ec78ed4c75004230b67823f8587baf8d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dcc10ada8b9f4481bfc1e017cca592ec": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a4e693013cf543e899c268bad2bdca53": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6958862ac48c4ef6abd0b01fcf77c241": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "021475f5715b4fe1a654b2e0d21fb853": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5f121568104641df8d792a647113d39d", + "IPY_MODEL_6fa0d6acabf942c7a152707efcd9c6fd", + "IPY_MODEL_d5ae03e447bf4274b79c4094d9ea42b2" + ], + "layout": "IPY_MODEL_3ea9e0b5aba240ad97ae1ef74a3f0d75" + } + }, + "5f121568104641df8d792a647113d39d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_eda379b949aa4a77b3dc1bfe3d32976e", + "placeholder": "", + "style": "IPY_MODEL_3cce39b0628f4553a79e10167af13884", + "value": "Map: 100%" + } + }, + "6fa0d6acabf942c7a152707efcd9c6fd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4aa90e1eba1b4f0f816676817905c785", + "max": 908, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d6e0d018dbe34437b71fa1af7603ee41", + "value": 908 + } + }, + "d5ae03e447bf4274b79c4094d9ea42b2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3d5db69b5ea749f98d824619ee84d8c2", + "placeholder": "", + "style": "IPY_MODEL_54cfe09954694b7da25dd5e75263bcc2", + "value": " 908/908 [00:00<00:00, 4609.11 examples/s]" + } + }, + "3ea9e0b5aba240ad97ae1ef74a3f0d75": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eda379b949aa4a77b3dc1bfe3d32976e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3cce39b0628f4553a79e10167af13884": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4aa90e1eba1b4f0f816676817905c785": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d6e0d018dbe34437b71fa1af7603ee41": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3d5db69b5ea749f98d824619ee84d8c2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "54cfe09954694b7da25dd5e75263bcc2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "44ac1e2c9eba49cd894ad24729014b94": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8e7ce8e1ed324da49b444d73b5723002", + "IPY_MODEL_2d300df8b9cc46dfa1d00994fa65ec7e", + "IPY_MODEL_4bd4fdc616e3470e8435293c235747b8" + ], + "layout": "IPY_MODEL_bea1036c94434c93a11f55f49a475548" + } + }, + "8e7ce8e1ed324da49b444d73b5723002": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e80a9a67808e48f69d2247eaa51a62bd", + "placeholder": "", + "style": "IPY_MODEL_8b3d52d3ce68429b9307eb30d80b4e7f", + "value": "Map: 100%" + } + }, + "2d300df8b9cc46dfa1d00994fa65ec7e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b3ac4e56b5b94826a10243ced6ce1e23", + "max": 3633, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1d039379227d47e39f51bccdf1f22265", + "value": 3633 + } + }, + "4bd4fdc616e3470e8435293c235747b8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b4d5b8498a4c426485d50cb89e632fcc", + "placeholder": "", + "style": "IPY_MODEL_e6626b0c43194a96b4e2f14de69009f0", + "value": " 3633/3633 [00:01<00:00, 2609.29 examples/s]" + } + }, + "bea1036c94434c93a11f55f49a475548": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e80a9a67808e48f69d2247eaa51a62bd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8b3d52d3ce68429b9307eb30d80b4e7f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b3ac4e56b5b94826a10243ced6ce1e23": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1d039379227d47e39f51bccdf1f22265": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b4d5b8498a4c426485d50cb89e632fcc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e6626b0c43194a96b4e2f14de69009f0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f6affabd909540a487cceadd0c3004ce": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8f2f099a6fb24ae589d56ba18e6f35ca", + "IPY_MODEL_13f7fc6ddfae48bd81e70be2930acabb", + "IPY_MODEL_708cf5a7d1024198a412ee007550b86a" + ], + "layout": "IPY_MODEL_d4c7f4065da64917b872ac0807f29aa5" + } + }, + "8f2f099a6fb24ae589d56ba18e6f35ca": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cbc1a610f2194628bcc25b205436aed5", + "placeholder": "", + "style": "IPY_MODEL_ac6034d4d7dc4e38ae809550c413d095", + "value": "Map: 100%" + } + }, + "13f7fc6ddfae48bd81e70be2930acabb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_393958d548c640cfa940110a19de4819", + "max": 909, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1778f74f350646548da2ff38c2b5046b", + "value": 909 + } + }, + "708cf5a7d1024198a412ee007550b86a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_03c8c43d16d842018bda5c2332170e35", + "placeholder": "", + "style": "IPY_MODEL_dd8af4b468794c269fc4e6766a4a3cbf", + "value": " 909/909 [00:00<00:00, 2927.99 examples/s]" + } + }, + "d4c7f4065da64917b872ac0807f29aa5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cbc1a610f2194628bcc25b205436aed5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ac6034d4d7dc4e38ae809550c413d095": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "393958d548c640cfa940110a19de4819": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1778f74f350646548da2ff38c2b5046b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "03c8c43d16d842018bda5c2332170e35": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dd8af4b468794c269fc4e6766a4a3cbf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d36f6eab5096417f8052b2f5e5dddab3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e8fcafbe480147f2b03e8c139a668707", + "IPY_MODEL_94af215951844f9694654e313e4a1645", + "IPY_MODEL_26226ce313904c1fac5389fdab57c112" + ], + "layout": "IPY_MODEL_cbb44b8123744ed7b9c946d10ca81104" + } + }, + "e8fcafbe480147f2b03e8c139a668707": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e32656c6a2b4410183fb6e815f3d5d9b", + "placeholder": "", + "style": "IPY_MODEL_8cdecd9aa9484869b596ec9e7c58eae6", + "value": "Map: 100%" + } + }, + "94af215951844f9694654e313e4a1645": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d34d1385a2094aab99443fc93b3a517f", + "max": 3633, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a81fa21b947b4deeb58621678c21ea0b", + "value": 3633 + } + }, + "26226ce313904c1fac5389fdab57c112": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0685a24595674236b6f8ed15ba0d0feb", + "placeholder": "", + "style": "IPY_MODEL_c82644056fe342c2add9de21a9cfef90", + "value": " 3633/3633 [00:00<00:00, 5276.43 examples/s]" + } + }, + "cbb44b8123744ed7b9c946d10ca81104": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e32656c6a2b4410183fb6e815f3d5d9b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8cdecd9aa9484869b596ec9e7c58eae6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d34d1385a2094aab99443fc93b3a517f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a81fa21b947b4deeb58621678c21ea0b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0685a24595674236b6f8ed15ba0d0feb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c82644056fe342c2add9de21a9cfef90": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b4d8b35636a4451092c40c4724df5dbc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_12e6e6dd72724a6589fea31520176f46", + "IPY_MODEL_f1f48df9ea794189a5023ffc9476ee7e", + "IPY_MODEL_82499644ef514d3fbe3e8b2ce58d432a" + ], + "layout": "IPY_MODEL_c5043fe892a44cec855c6f8adf160f88" + } + }, + "12e6e6dd72724a6589fea31520176f46": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1896a4347739461fac94743b5833e1bc", + "placeholder": "", + "style": "IPY_MODEL_ab410032c4c645ed9e762a7cc38c41bd", + "value": "Map: 100%" + } + }, + "f1f48df9ea794189a5023ffc9476ee7e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b852564f7da54cf0ba84a943f9da2e96", + "max": 909, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_425f093010d146e9b6d2b943dd7e7b4c", + "value": 909 + } + }, + "82499644ef514d3fbe3e8b2ce58d432a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6c22d771adc8460d8dda6ee8239559a2", + "placeholder": "", + "style": "IPY_MODEL_a754a7e8326b4c54a9ebb5629454b5ae", + "value": " 909/909 [00:00<00:00, 4293.53 examples/s]" + } + }, + "c5043fe892a44cec855c6f8adf160f88": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1896a4347739461fac94743b5833e1bc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ab410032c4c645ed9e762a7cc38c41bd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b852564f7da54cf0ba84a943f9da2e96": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "425f093010d146e9b6d2b943dd7e7b4c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6c22d771adc8460d8dda6ee8239559a2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a754a7e8326b4c54a9ebb5629454b5ae": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "95f31d58e1fe4d1ea15839069aa45c13": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d4b2c3c7e11540a88e2e02be40af6312", + "IPY_MODEL_befd17351a3141b98b0fb7c36150638f", + "IPY_MODEL_4d3dd609484a4c1990f5eb46589856ee" + ], + "layout": "IPY_MODEL_e02efd516fc44f76b78e8f6e8b3a8013" + } + }, + "d4b2c3c7e11540a88e2e02be40af6312": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_01cf605e49eb422f8a2cd49aecd846ec", + "placeholder": "", + "style": "IPY_MODEL_4a9ce5f43b994e578ff3c6f1e0c85e3c", + "value": "Map: 100%" + } + }, + "befd17351a3141b98b0fb7c36150638f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8a7579cf9eda4f6381257a641c263ab7", + "max": 3634, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_90d6cfcca5f14f168e970d1536626d25", + "value": 3634 + } + }, + "4d3dd609484a4c1990f5eb46589856ee": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_996d015ac65d42e5a560e7c81920c66f", + "placeholder": "", + "style": "IPY_MODEL_0cef6d1a9a6a461faf90fd806adaeb2a", + "value": " 3634/3634 [00:01<00:00, 3290.00 examples/s]" + } + }, + "e02efd516fc44f76b78e8f6e8b3a8013": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "01cf605e49eb422f8a2cd49aecd846ec": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4a9ce5f43b994e578ff3c6f1e0c85e3c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8a7579cf9eda4f6381257a641c263ab7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "90d6cfcca5f14f168e970d1536626d25": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "996d015ac65d42e5a560e7c81920c66f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0cef6d1a9a6a461faf90fd806adaeb2a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9e1a82ee37d9417fb8e35279f4119678": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0af1f03d817f4099a2bcef8de2fe460a", + "IPY_MODEL_999a22bd24d34cc59b5f63e8d8402929", + "IPY_MODEL_4405640363ff40fd9b001db7c8229b4f" + ], + "layout": "IPY_MODEL_f947f81768e5469998fb314f4d37ee1d" + } + }, + "0af1f03d817f4099a2bcef8de2fe460a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ecde20b2de9d4618b7d1ce8cef6b445a", + "placeholder": "", + "style": "IPY_MODEL_e6ba080ed6a64a0d8b47aaef1d2da870", + "value": "Map: 100%" + } + }, + "999a22bd24d34cc59b5f63e8d8402929": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6e5d302c19c245d7873292fd849607c8", + "max": 908, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_43de14c110c84eabb1e110b4b2ea7a01", + "value": 908 + } + }, + "4405640363ff40fd9b001db7c8229b4f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0cab0244e2e6425997439b5f4916ec54", + "placeholder": "", + "style": "IPY_MODEL_0f00488e5cd349ada55005213ce3549f", + "value": " 908/908 [00:00<00:00, 2623.57 examples/s]" + } + }, + "f947f81768e5469998fb314f4d37ee1d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ecde20b2de9d4618b7d1ce8cef6b445a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e6ba080ed6a64a0d8b47aaef1d2da870": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6e5d302c19c245d7873292fd849607c8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "43de14c110c84eabb1e110b4b2ea7a01": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0cab0244e2e6425997439b5f4916ec54": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0f00488e5cd349ada55005213ce3549f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "36d946e3ec634d69bfffc2c0cf307c4a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1feefc1f34404d009d51d871c103cc63", + "IPY_MODEL_63248758edf04958887f17a4d86ee3aa", + "IPY_MODEL_360e47382c884ebc98a48b51c978f279" + ], + "layout": "IPY_MODEL_8a48d85eca144d96886d9a129a714fd6" + } + }, + "1feefc1f34404d009d51d871c103cc63": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3d8e61c5b93545e7bdf2d6181b8c8c98", + "placeholder": "", + "style": "IPY_MODEL_67631fe61af642819db3d8b436f4f685", + "value": "Map: 100%" + } + }, + "63248758edf04958887f17a4d86ee3aa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0ea83cace9584dc18c059f340b1c098f", + "max": 3634, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_874b1cf21d124737a596c8a1f63ce542", + "value": 3634 + } + }, + "360e47382c884ebc98a48b51c978f279": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_209235e98f984fe292f088a2c1e3677d", + "placeholder": "", + "style": "IPY_MODEL_00b389c3ad27431d812fe216af560c95", + "value": " 3634/3634 [00:00<00:00, 4984.02 examples/s]" + } + }, + "8a48d85eca144d96886d9a129a714fd6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3d8e61c5b93545e7bdf2d6181b8c8c98": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "67631fe61af642819db3d8b436f4f685": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0ea83cace9584dc18c059f340b1c098f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "874b1cf21d124737a596c8a1f63ce542": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "209235e98f984fe292f088a2c1e3677d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "00b389c3ad27431d812fe216af560c95": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2cce302fa0b647e5abd0f9182a9c57e8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_22ef19026daf42028e918149fe862253", + "IPY_MODEL_732b9f44b71042b7afdaf01aa089ff4b", + "IPY_MODEL_d5a39b7db8fc4a4092cd8417f4758a10" + ], + "layout": "IPY_MODEL_30efcd296a2648fea43a1db1e833be70" + } + }, + "22ef19026daf42028e918149fe862253": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_10d8f5e351f74e0e9a5ec2583dfcadeb", + "placeholder": "", + "style": "IPY_MODEL_d462b5d72ebe450e8dafbcd1447e77b3", + "value": "Map: 100%" + } + }, + "732b9f44b71042b7afdaf01aa089ff4b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1bfadd1914274e6f99f1e082bc49360e", + "max": 908, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_33151d25bb1b4a438ffd13f04970af09", + "value": 908 + } + }, + "d5a39b7db8fc4a4092cd8417f4758a10": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_56cff11d96d24e889c42998729787e5e", + "placeholder": "", + "style": "IPY_MODEL_6a1ee214ab374298a1f9c0d59355adaf", + "value": " 908/908 [00:00<00:00, 4544.66 examples/s]" + } + }, + "30efcd296a2648fea43a1db1e833be70": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "10d8f5e351f74e0e9a5ec2583dfcadeb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d462b5d72ebe450e8dafbcd1447e77b3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1bfadd1914274e6f99f1e082bc49360e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "33151d25bb1b4a438ffd13f04970af09": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "56cff11d96d24e889c42998729787e5e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6a1ee214ab374298a1f9c0d59355adaf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "250c671121be4e098363eb4ac2734407": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b45c95c093e4aa3b286b8918b6704c6", + "IPY_MODEL_a78b443efd504e968e34c6a8d758aec6", + "IPY_MODEL_216bfbfc28fd430a892740d4a3c04e30" + ], + "layout": "IPY_MODEL_d40d7a651c6d4f7b94e4325e1b834c24" + } + }, + "7b45c95c093e4aa3b286b8918b6704c6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c6b14ac2db804865967b9c8e51752cbf", + "placeholder": "", + "style": "IPY_MODEL_da33c50c9ad147cd963f8fbc5b610422", + "value": "Map: 100%" + } + }, + "a78b443efd504e968e34c6a8d758aec6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2b2e2157eecd4b36818db71e11d36a1b", + "max": 3634, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0393451deccb46d68678adf22330e9b8", + "value": 3634 + } + }, + "216bfbfc28fd430a892740d4a3c04e30": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9ee75a17315948958a51131bed961246", + "placeholder": "", + "style": "IPY_MODEL_2e2f911426c441898432c3b901102c86", + "value": " 3634/3634 [00:01<00:00, 3061.33 examples/s]" + } + }, + "d40d7a651c6d4f7b94e4325e1b834c24": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c6b14ac2db804865967b9c8e51752cbf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "da33c50c9ad147cd963f8fbc5b610422": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2b2e2157eecd4b36818db71e11d36a1b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0393451deccb46d68678adf22330e9b8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9ee75a17315948958a51131bed961246": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2e2f911426c441898432c3b901102c86": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7bc4a116e9ce416cb21bfd09a5484301": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_38cf7d06103245d2ab2662785f678b6e", + "IPY_MODEL_3be1d0f60f7d4f19b792012f971da161", + "IPY_MODEL_2a0dd4e716784207a39b95a99c83f793" + ], + "layout": "IPY_MODEL_0ba3812730394fb8b624860ea6744fa8" + } + }, + "38cf7d06103245d2ab2662785f678b6e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_af3d347c769947a1a5ecfeed289dcc21", + "placeholder": "", + "style": "IPY_MODEL_71216d7fd23c4fb297d7351a661ff4d6", + "value": "Map: 100%" + } + }, + "3be1d0f60f7d4f19b792012f971da161": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_de52354347bc47f8872a710c83a6bbaf", + "max": 908, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_adda53b39cb3413698aa3255b4d79c40", + "value": 908 + } + }, + "2a0dd4e716784207a39b95a99c83f793": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_81c24e9d50b04c10ad50d008caca7969", + "placeholder": "", + "style": "IPY_MODEL_08c84762361d400db2889cae19282681", + "value": " 908/908 [00:00<00:00, 2761.20 examples/s]" + } + }, + "0ba3812730394fb8b624860ea6744fa8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "af3d347c769947a1a5ecfeed289dcc21": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "71216d7fd23c4fb297d7351a661ff4d6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "de52354347bc47f8872a710c83a6bbaf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "adda53b39cb3413698aa3255b4d79c40": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "81c24e9d50b04c10ad50d008caca7969": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "08c84762361d400db2889cae19282681": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file