--- a +++ b/model.py @@ -0,0 +1,34 @@ +from sklearn.svm import SVC +import pandas as pd +from sklearn.model_selection import train_test_split +import joblib +from sklearn.ensemble import RandomForestClassifier +import os +from sklearn.metrics import log_loss, ConfusionMatrixDisplay, average_precision_score, accuracy_score +from sklearn.metrics import roc_curve, precision_recall_curve, auc, f1_score, confusion_matrix +import matplotlib.pyplot as plt +import numpy as np +import pickle +#def read_data(path): +# data = pd.read_csv(path) + #data.set_index("ID_REF",inplace = True) + #labels = data.pop("Result") +# return data, labels +dataset = pd.read_csv('GenesExp1.csv') +dataset.set_index("ID_REF",inplace = True) +X = dataset.iloc[:, :20] +y = dataset.iloc[:, -1] +path_model="F:/GeneModel/" +#X,y=read_data("GenesExp1.csv") +# name="Model" +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.40, random_state=1) +model=RandomForestClassifier(criterion='gini', max_depth=6, min_samples_leaf=1, min_samples_split=2, + n_estimators=100) +model.fit(X_train, y_train) + +y_pred=model.predict(X_test) +pickle.dump(model, open('model.pkl','wb')) + +model = pickle.load(open('model.pkl','rb')) +print(model.predict([[11.27285579,13.11888698,13.04983865,7.160173909,11.84600012,11.38408063,12.46225539,10.35803641,10.43634604,10.31537082,8.195574032,11.00985731, 9.804574801, 7.811523898,9.271842845,8.808279933,8.473070081,8.818380484,9.115116886, 9.315489635 +]]))