--- a +++ b/modules/NeuralNet/management/trainingManager.py @@ -0,0 +1,27 @@ +import pandas as pd +from sklearn.model_selection import train_test_split +import tensorflow as tf +import sys +from Status.Status import Status +sys.path.append('/home/skjena/cnnCancerTherapy/modules/NeuralNet/core/classifiers/dnnClassifier') +sys.path.append('/home/skjena/cnnCancerTherapy/modules/NeuralNet/core/regressor/dnnRegressor') + +from NeuralNet.core.classifiers.dnnClassifier.DNNClassifierModel import DNNClassifierModel +# from NeuralNet.core.regressor.dnnRegressor.DNNRegressorModel import DNNRegressorModel +from NeuralNet.core.classifiers.dnnClassifier import dataProcessor + + +class trainingManager(): + def __init__(self, train_x, train_y, network, dnnModel): + self.train_x = train_x + self.train_y = train_y + self.network = network + self.dnnModel = dnnModel + self.status = Status("trainingManager") + + def run(self): + self.status.message(1, "run()") + self.dnnModel.model.train(input_fn=lambda:dataProcessor.train_input_fn(self.train_x, self.train_y, self.network.state.batchSize,steps=self.network.arguments.learningRate)) + self.status.message(3, self.network.state.networkShape) + self.status.message(0, "run()") + return True