[50a3f7]: / modules / HTTPRequest / playground / index.html

Download this file

966 lines (875 with data), 35.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
<!-- Copyright 2016 Google Inc. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================-->
<html>
<head lang="en">
<!-- Tab links -->
<link rel="icon" type="image/png" href="favicon.png">
<meta charset="utf-8">
<meta name="viewport" content="width=1024">
<meta name="keywords" content="neural networks,machine learning,javascript">
<meta property="og:type" content="article"/>
<meta property="og:title" content="Deep Learning for Cancer Therapy"/>
<meta property="og:description" content="A Somatic Mutation Classification DNN & Multivariate Distribution Visualizer">
<meta property="og:url" content="http://dlforcancertherapy.ml"/>
<meta property="og:image" content="http://playground.tensorflow.org/preview.png"/>
<meta name="twitter:card" value="summary_large_image">
<div class="tab">
<button class="tablinks" onclick="tabSelect('fm_mutations_independent_plot.csv')">fm_mutations_independent</button>
<button class="tablinks" onclick="tabSelect('fm_samples_independent_plot.csv')">fm_samples_independent</button>
<button class="tablinks" onclick="tabSelect('top10_LungMel_plot.csv')">top10_LungMel</button>
<button class="tablinks" onclick="tabSelect('top100_LungMel_plot.csv')">top100_LungMel</button>
<button class="tablinks" onclick="tabSelect('top1000_LungMel_plot.csv')">top1000_LungMel</button>
<button class="tablinks" onclick="tabSelect('top10000_LungMel_plot.csv')">top10000_LungMel</button>
</div>
<script type="text/javascript">
function tabSelect(file) {
d3.csv(file, function(flowers) {
// Size parameters.
var size = 140,
padding = 10,
n = 2,
traits = ["X", "Y"];
// Position scales.
var x = {}, y = {};
traits.forEach(function(trait) {
// Coerce values to numbers.
flowers.forEach(function(d) { d[trait] = +d[trait]; });
var value = function(d) { return d[trait]; },
domain = [d3.min(flowers, value), d3.max(flowers, value)],
range = [padding / 2, size - padding / 2];
x[trait] = d3.scale.linear().domain(domain).range(range);
y[trait] = d3.scale.linear().domain(domain).range(range.reverse());
});
d3.select("#svg1").remove();
// Axes.
var axis = d3.svg.axis()
.ticks(5)
.tickSize(size * n);
// Brush.
var brush = d3.svg.brush()
.on("brushstart", brushstart)
.on("brush", brush)
.on("brushend", brushend);
// Root panel.
var svg = d3.select(".MDS").append("svg")
.attr("width", 1280)
.attr("id", "svg1")
.attr("height", 800)
.append("svg:g")
.attr("transform", "translate(100,0)");
// Legend.
var legend = svg.selectAll("g.legend")
.data(["0.000000000000000000+e00", "1.000000000000000000+e00"])
.enter().append("svg:g")
.attr("class", "legend")
.attr("transform", function(d, i) { return "translate(-70," + (i * 20 + 394) + ")"; });
legend.append("svg:versicolor")
.attr("class", String)
.attr("r", 2);
legend.append("svg:text")
.attr("x", 12)
.attr("dy", ".31em")
.attr("fill","white")
.text(function(d) { return d; });
// X-axis.
svg.selectAll("g.x.axis")
.data(traits)
.enter().append("svg:g")
.attr("class", "x axis")
.attr("transform", function(d, i) { return "translate(" + i * size + ",0)"; })
.each(function(d) { d3.select(this).call(axis.scale(x[d]).orient("bottom")); });
// Y-axis.
svg.selectAll("g.y.axis")
.data(traits)
.enter().append("svg:g")
.attr("class", "y axis")
.attr("transform", function(d, i) { return "translate(0," + i * size + ")"; })
.each(function(d) { d3.select(this).call(axis.scale(y[d]).orient("right")); });
// Cell and plot.
var cell = svg.selectAll("g.cell")
.data(cross(traits, traits))
.enter().append("svg:g")
.attr("class", "cell")
.attr("transform", function(d) { return "translate(" + d.i * size + "," + d.j * size + ")"; })
.each(plot);
// Titles for the diagonal.
cell.filter(function(d) { return d.i == d.j; }).append("svg:text")
.attr("x", padding)
.attr("y", padding)
.attr("dy", ".71em")
.text(function(d) { return d.x; });
function plot(p) {
var cell = d3.select(this);
// Plot frame.
cell.append("svg:rect")
.attr("class", "frame")
.attr("x", padding / 2)
.attr("y", padding / 2)
.attr("width", size - padding)
.attr("height", size - padding);
// Plot dots.
cell.selectAll("circle")
.data(flowers)
.enter().append("svg:circle")
.attr("class", function(d) { return d.species; })
.attr("cx", function(d) { return x[p.x](d[p.x]); })
.attr("cy", function(d) { return y[p.y](d[p.y]); })
.attr("r", 3);
// Plot brush.
cell.call(brush.x(x[p.x]).y(y[p.y]));
}
// Clear the previously-active brush, if any.
function brushstart(p) {
if (brush.data !== p) {
cell.call(brush.clear());
brush.x(x[p.x]).y(y[p.y]).data = p;
}
}
// Highlight the selected circles.
function brush(p) {
var e = brush.extent();
svg.selectAll(".cell circle").attr("class", function(d) {
return e[0][0] <= d[p.x] && d[p.x] <= e[1][0]
&& e[0][1] <= d[p.y] && d[p.y] <= e[1][1]
? d.species : null;
});
}
// If the brush is empty, select all circles.
function brushend() {
if (brush.empty()) svg.selectAll(".cell circle").attr("class", function(d) {
return d.species;
});
}
function cross(a, b) {
var c = [], n = a.length, m = b.length, i, j;
for (i = -1; ++i < n;) for (j = -1; ++j < m;) c.push({x: a[i], i: i, y: b[j], j: j});
return c;
}
});
d3.select("body")
.datum(irwinHallDistribution(10000, 10))
.call(histogramChart()
.bins(d3.scale.linear().ticks(20))
.tickFormat(d3.format(".02f")));
function irwinHallDistribution(n, m) {
var distribution = [];
for (var i = 0; i < n; i++) {
for (var s = 0, j = 0; j < m; j++) {
s += Math.random();
}
distribution.push(s / m);
}
return distribution;
}
}
</script>
<p id="fm_mutations_independent"></p>
<script type = "text/javascript" src="dataPlot.js"></script>
<div id="fm_mutations_independent" class="tabcontent">
<!-- function call here with fm_mutations_independent as argument -->
</div>
<div id="fm_samples_independent" class="tabcontent">
<!-- function call here with fm_samples_independent as argument -->
</div>
<div id="top10_LungMel" class="tabcontent">
<!-- function call here with top10_LungMel as argument -->
</div>
<div id="top100_LungMel" class="tabcontent">
<!-- function call here with top100_LungMel as argument -->
</div>
<div id="top1000_LungMel" class="tabcontent">
<!-- function call here with top1000_LungMel as argument -->
</div>
<div id="top10000_LungMel" class="tabcontent">
<!-- function call here with top10000_LungMel as argument -->
</div>
<meta name="twitter:title" content="Deep Learning for Cancer Therapy">
<meta name="twitter:description" content="A Somatic Mutation Classification DNN & Multivariate Distribution Visualizer">
<meta name="twitter:url" content="http://dlforcancertherapy.ml">
<meta name="twitter:image" content="http://playground.tensorflow.org/preview.png">
<meta name="twitter:image:width" content="560">
<meta name="twitter:image:height" content="1095">
<meta name="author" content="Suraj Jena | Kumud Ravisankaran | Valeria Brewer | Ninad Mehta">
<title>Deep Learning for Cancer Therapy</title>
<link rel="stylesheet" href="bundle.css" type="text/css">
<link href="https://fonts.googleapis.com/css?family=Roboto:300,400,500|Material+Icons" rel="stylesheet" type="text/css">
<style type="text/css">
svg {
font-size: 14px;
}
.axis {
shape-rendering: crispEdges;
}
.bars rect {
fill: steelblue;
}
.axis text {
font: 10px sans-serif;
}
.axis path, .axis line {
fill: none;
stroke: #000;
shape-rendering: crispEdges;
}
rect.extent {
fill: #000;
fill-opacity: .125;
stroke: #fff;
}
rect.frame {
fill: #fff;
fill-opacity: .7;
stroke: #aaa;
}
circle {
fill: #800;
fill-opacity: .5;
}
.legend circle {
fill-opacity: 1;
}
.legend text {
font-size: 18px;
font-style: oblique;
}
.cell text {
pointer-events: none;
}
.Lungad {
fill: #800;
}
.Melanoma {
fill: #080;
}
.virginica {
fill: #008;
}
a:link, a:visited {
color: #777;
text-decoration: none;
}
a:hover {
color: #666;
}
blockquote {
margin: 0;
}
blockquote:before {
content: "“";
position: absolute;
left: -.4em;
}
blockquote:after {
content: "”";
position: absolute;
}
h1 {
font-size: 64px;
}
h1, h2, h3{
font-weight: inherit;
margin: 0;
}
h2, h3, h4 {
text-align: right;
font-size: inherit;
position: absolute;
bottom: 0;
right: 0;
}
h2 {
font-size: 24px;
position: absolute;
}
h3 {
bottom: -20px;
font-size: 18px;
}
.invert {
background: #1f1f1f;
color: #dcdccc;
}
.invert h2, .invert h3 {
color: #7f9f7f;
}
.string, .regexp {
color: #f39;
}
.keyword {
color: #00c;
}
.comment {
color: #777;
font-style: oblique;
}
.number {
color: #369;
}
.class, .special {
color: #1181B8;
}
</style>
<script src="lib.js"></script>
<!-- <script src="http://35.184.171.249:8000/socket.io/socket.io.js"></script> -->
<!--<script src="requests.js"></script>-->
<link type = "text/css" href = "styles.css" media = "all" />
</head>
<body>
<!-- GitHub link -->
<a class="github-link" href="https://github.com/skjena/cnnCancerTherapy" title="Source on GitHub">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 0 60.5 60.5" width="60" height="60">
<polygon class="bg" points="60.5,60.5 0,0 60.5,0 "/>
<path class="icon" d="M43.1,5.8c-6.6,0-12,5.4-12,12c0,5.3,3.4,9.8,8.2,11.4c0.6,0.1,0.8-0.3,0.8-0.6c0-0.3,0-1,0-2c-3.3,0.7-4-1.6-4-1.6c-0.5-1.4-1.3-1.8-1.3-1.8c-1.1-0.7,0.1-0.7,0.1-0.7c1.2,0.1,1.8,1.2,1.8,1.2c1.1,1.8,2.8,1.3,3.5,1c0.1-0.8,0.4-1.3,0.8-1.6c-2.7-0.3-5.5-1.3-5.5-5.9c0-1.3,0.5-2.4,1.2-3.2c-0.1-0.3-0.5-1.5,0.1-3.2c0,0,1-0.3,3.3,1.2c1-0.3,2-0.4,3-0.4c1,0,2,0.1,3,0.4c2.3-1.6,3.3-1.2,3.3-1.2c0.7,1.7,0.2,2.9,0.1,3.2c0.8,0.8,1.2,1.9,1.2,3.2c0,4.6-2.8,5.6-5.5,5.9c0.4,0.4,0.8,1.1,0.8,2.2c0,1.6,0,2.9,0,3.3c0,0.3,0.2,0.7,0.8,0.6c4.8-1.6,8.2-6.1,8.2-11.4C55.1,11.2,49.7,5.8,43.1,5.8z"/>
</svg>
</a>
<!-- Header -->
<header>
<h1 class="l--page">Welcome to <b> Deep Learning for Cancer Therapy </b> </span> <br> A Somatic Mutation Classification DNN & Multivariate Distribution Visualizer </h1>
<hr>
<div class="plots">
<div class="MDS">
<div id="MDS_ID">
</div>
</div>
<div class="otherPlot">
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
<div> Place Other Plot Here</div>
</div>
</div>
</header>
<script src="histogram-chart.js"></script>
<!--
<script type="text/javascript">
d3.csv("fm_mutations_independent_plot.csv", function(flowers) {
var element = document.getElementById("fm_mutations_independent");
// Size parameters.
var size = 140,
padding = 10,
n = 2,
traits = ["X", "Y"];
// Position scales.
var x = {}, y = {};
traits.forEach(function(trait) {
// Coerce values to numbers.
flowers.forEach(function(d) { d[trait] = +d[trait]; });
var value = function(d) { return d[trait]; },
domain = [d3.min(flowers, value), d3.max(flowers, value)],
range = [padding / 2, size - padding / 2];
x[trait] = d3.scale.linear().domain(domain).range(range);
y[trait] = d3.scale.linear().domain(domain).range(range.reverse());
});
// Axes.
var axis = d3.svg.axis()
.ticks(5)
.tickSize(size * n);
// Brush.
var brush = d3.svg.brush()
.on("brushstart", brushstart)
.on("brush", brush)
.on("brushend", brushend);
// Root panel.
var svg = d3.select("body").append("svg:svg")
.attr("width", 1280)
.attr("height", 800)
.append("svg:g")
.attr("transform", "translate(359.5,69.5)");
// Legend.
var legend = svg.selectAll("g.legend")
.data(["0.000000000000000000+e00", "1.000000000000000000+e00"])
.enter().append("svg:g")
.attr("class", "legend")
.attr("transform", function(d, i) { return "translate(-179," + (i * 20 + 594) + ")"; });
legend.append("svg:versicolor")
.attr("class", String)
.attr("r", 2);
legend.append("svg:text")
.attr("x", 12)
.attr("dy", ".31em")
.text(function(d) { return d; });
// X-axis.
svg.selectAll("g.x.axis")
.data(traits)
.enter().append("svg:g")
.attr("class", "x axis")
.attr("transform", function(d, i) { return "translate(" + i * size + ",0)"; })
.each(function(d) { d3.select(this).call(axis.scale(x[d]).orient("bottom")); });
// Y-axis.
svg.selectAll("g.y.axis")
.data(traits)
.enter().append("svg:g")
.attr("class", "y axis")
.attr("transform", function(d, i) { return "translate(0," + i * size + ")"; })
.each(function(d) { d3.select(this).call(axis.scale(y[d]).orient("right")); });
// Cell and plot.
var cell = svg.selectAll("g.cell")
.data(cross(traits, traits))
.enter().append("svg:g")
.attr("class", "cell")
.attr("transform", function(d) { return "translate(" + d.i * size + "," + d.j * size + ")"; })
.each(plot);
// Titles for the diagonal.
cell.filter(function(d) { return d.i == d.j; }).append("svg:text")
.attr("x", padding)
.attr("y", padding)
.attr("dy", ".71em")
.text(function(d) { return d.x; });
function plot(p) {
var cell = d3.select(this);
// Plot frame.
cell.append("svg:rect")
.attr("class", "frame")
.attr("x", padding / 2)
.attr("y", padding / 2)
.attr("width", size - padding)
.attr("height", size - padding);
// Plot dots.
cell.selectAll("circle")
.data(flowers)
.enter().append("svg:circle")
.attr("class", function(d) { return d.species; })
.attr("cx", function(d) { return x[p.x](d[p.x]); })
.attr("cy", function(d) { return y[p.y](d[p.y]); })
.attr("r", 3);
// Plot brush.
cell.call(brush.x(x[p.x]).y(y[p.y]));
}
// Clear the previously-active brush, if any.
function brushstart(p) {
if (brush.data !== p) {
cell.call(brush.clear());
brush.x(x[p.x]).y(y[p.y]).data = p;
}
}
// Highlight the selected circles.
function brush(p) {
var e = brush.extent();
svg.selectAll(".cell circle").attr("class", function(d) {
return e[0][0] <= d[p.x] && d[p.x] <= e[1][0]
&& e[0][1] <= d[p.y] && d[p.y] <= e[1][1]
? d.species : null;
});
}
// If the brush is empty, select all circles.
function brushend() {
if (brush.empty()) svg.selectAll(".cell circle").attr("class", function(d) {
return d.species;
});
}
function cross(a, b) {
var c = [], n = a.length, m = b.length, i, j;
for (i = -1; ++i < n;) for (j = -1; ++j < m;) c.push({x: a[i], i: i, y: b[j], j: j});
return c;
}
});
</script>
<script>
d3.select("body")
.datum(irwinHallDistribution(10000, 10))
.call(histogramChart()
.bins(d3.scale.linear().ticks(20))
.tickFormat(d3.format(".02f")));
function irwinHallDistribution(n, m) {
var distribution = [];
for (var i = 0; i < n; i++) {
for (var s = 0, j = 0; j < m; j++) {
s += Math.random();
}
distribution.push(s / m);
}
return distribution;
}
</script>
-->
<section>
<h1>
</h1>
<!-- <h1> Level1</h1>
Level1 Text
<section>
<h1>Level2</h1>
Level2 Text
</section>
-->
</section>
<!-- Top Controls -->
<div id="top-controls">
<div class="container l--page">
<div class="timeline-controls">
<button class="mdl-button mdl-js-button mdl-button--icon ui-resetButton" id="reset-button" title="Reset the network">
<i class="material-icons">replay</i>
</button>
<button class="mdl-button mdl-js-button mdl-button--fab mdl-button--colored ui-playButton" id="play-pause-button" title="Run/Pause">
<i class="material-icons">play_arrow</i>
<i class="material-icons">pause</i>
</button>
<button class="mdl-button mdl-js-button mdl-button--icon ui-stepButton" id="next-step-button" title="Step">
<i class="material-icons">skip_next</i>
</button>
</div>
<div class="control">
<span class="label">Epoch</span>
<span class="value" id="iter-number"></span>
</div>
<div class="control ui-learningRate">
<label for="learningRate">Learning rate</label>
<div class="select">
<select id="learningRate">
<option value="0.00001">0.00001</option>
<option value="0.0001">0.0001</option>
<option value="0.001">0.001</option>
<option value="0.003">0.003</option>
<option value="0.01">0.01</option>
<option value="0.03">0.03</option>
<option value="0.1">0.1</option>
<option value="0.3">0.3</option>
<option value="1">1</option>
<option value="3">3</option>
<option value="10">10</option>
</select>
</div>
</div>
<div class="control ui-activation">
<label for="activations">Activation</label>
<div class="select">
<select id="activations">
<option value="relu">ReLU</option>
<option value="tanh">Tanh</option>
<option value="sigmoid">Sigmoid</option>
</select>
</div>
</div>
<div class="control ui-regularization">
<label for="regularizations">Regularization</label>
<div class="select">
<select id="regularizations">
<option value="none">None</option>
<option value="L1">L1</option>
<option value="L2">L2</option>
</select>
</div>
</div>
<div class="control ui-regularizationRate">
<label for="regularRate">Regularization rate</label>
<div class="select">
<select id="regularRate">
<option value="0">0</option>
<option value="0.001">0.001</option>
<option value="0.003">0.003</option>
<option value="0.01">0.01</option>
<option value="0.03">0.03</option>
<option value="0.1">0.1</option>
<option value="0.3">0.3</option>
<option value="1">1</option>
<option value="3">3</option>
<option value="10">10</option>
</select>
</div>
</div>
<div class="control ui-problem">
<label for="problem">Problem type</label>
<div class="select">
<select id="problem">
<option value="classification">Classification</option>
<option value="regression">Regression</option>
</select>
</div>
</div>
</div>
</div>
<!-- Main Part -->
<div id="main-part" class="l--page">
<!-- Data Column-->
<div class="column data">
<h4>
<span>Data</span>
</h4>
<div class="ui-dataset">
<p>Pick your dataset</p>
<div class="dataset-list">
<div class="dataset" title="fm_mutations_independent">
<canvas class="data-thumbnail" data-dataset="fm_mutations_independent"></canvas>
</div>
<div class="dataset" title="fm_sample_independent">
<canvas class="data-thumbnail" data-dataset="fm_sample_independent"></canvas>
</div>
<div class="dataset" title="top10000LungMel">
<canvas class="data-thumbnail" data-dataset="top10000LungMel"></canvas>
</div>
<div class="dataset" title="top1000LungMel">
<canvas class="data-thumbnail" data-dataset="top1000LungMel"></canvas>
</div>
<div class="dataset" title="top100LungMel">
<canvas class="data-thumbnail" data-dataset="top100LungMel"></canvas>
</div>
<div class="dataset" title="top10LungMel">
<canvas class="data-thumbnail" data-dataset="top10LungMel"></canvas>
</div>
<div class="dataset" title="fm_mutations_independent">
<canvas class="data-thumbnail" data-regDataset="fm_mutations_independent"></canvas>
</div>
<div class="dataset" title="fm_sample_independent">
<canvas class="data-thumbnail" data-regDataset="fm_sample_independent"></canvas>
</div>
<div class="dataset" title="top10000LungMel">
<canvas class="data-thumbnail" data-regDataset="top10000LungMel"></canvas>
</div>
<div class="dataset" title="top1000LungMel">
<canvas class="data-thumbnail" data-regDataset="top1000LungMel"></canvas>
</div>
<div class="dataset" title="top100LungMel">
<canvas class="data-thumbnail" data-regDataset="top100LungMel"></canvas>
</div>
<div class="dataset" title="top10LungMel">
<canvas class="data-thumbnail" data-regDataset="top10LungMel"></canvas>
</div>
</div>
</div>
<div>
<!--<div class="ui-percTrainData">
<label for="percTrainData">Ratio of training to test data:&nbsp;&nbsp;<span class="value">XX</span>%</label>
<p class="slider">
<input class="mdl-slider mdl-js-slider" type="range" id="percTrainData" min="10" max="90" step="10">
</p>
</div>-->
<div class="ui-noise">
<label for="noise">MDS Dimensions:&nbsp;&nbsp;<span class="value">XX</span></label>
<p class="slider">
<input class="mdl-slider mdl-js-slider" type="range" id="noise" min="0" max="10" step="1">
</p>
</div>
<div class="ui-batchSize">
<label for="batchSize">Batch size:&nbsp;&nbsp;<span class="value">XX</span></label>
<p class="slider">
<input class="mdl-slider mdl-js-slider" type="range" id="batchSize" min="1" max="30" step="1">
</p>
</div>
<hr>
<!--<div id="dvImportSegments" class="fileupload ">
<fieldset>
<legend>Upload a CSV File</legend>
<input type="file" name="File Upload" id="txtFileUpload" accept=".csv, .tab" />
</fieldset>
</div>
-->
</div>
</div>
<!-- Features Column -->
<div class="column features">
<h4>Features</h4>
<p>Which properties do you want to feed in?</p>
<div id="network">
<svg id="svg" width="510" height="450">
<defs>
<marker id="markerArrow" markerWidth="7" markerHeight="13" refX="1" refY="6" orient="auto" markerUnits="userSpaceOnUse">
<path d="M2,11 L7,6 L2,2" />
</marker>
</defs>
</svg>
<!-- Hover card -->
<div id="hovercard">
<div style="font-size:10px">Click anywhere to edit.</div>
<div><span class="type">Weight/Bias</span> is <span class="value">0.2</span><span><input type="number"/></span>.</div>
</div>
<div class="callout thumbnail">
<svg viewBox="0 0 30 30">
<defs>
<marker id="arrow" markerWidth="5" markerHeight="5" refx="5" refy="2.5" orient="auto" markerUnits="userSpaceOnUse">
<path d="M0,0 L5,2.5 L0,5 z"/>
</marker>
</defs>
<path d="M12,30C5,20 2,15 12,0" marker-end="url(#arrow)">
</svg>
<div class="label">
This is the output from one <b>neuron</b>. Hover to see it larger.
</div>
</div>
<div class="callout weights">
<svg viewBox="0 0 30 30">
<defs>
<marker id="arrow" markerWidth="5" markerHeight="5" refx="5" refy="2.5" orient="auto" markerUnits="userSpaceOnUse">
<path d="M0,0 L5,2.5 L0,5 z"/>
</marker>
</defs>
<path d="M12,30C5,20 2,15 12,0" marker-end="url(#arrow)">
</svg>
<div class="label">
The outputs are mixed with varying <b>weights</b>, shown by the thickness of the lines.
</div>
</div>
</div>
</div>
<!-- Hidden Layers Column -->
<div class="column hidden-layers">
<h4>
<div class="ui-numHiddenLayers">
<button id="add-layers" class="mdl-button mdl-js-button mdl-button--icon">
<i class="material-icons">add</i>
</button>
<button id="remove-layers" class="mdl-button mdl-js-button mdl-button--icon">
<i class="material-icons">remove</i>
</button>
</div>
<span id="num-layers"></span>
<span id="layers-label"></span>
</h4>
<div class="bracket"></div>
</div>
<!-- Output Column -->
<div class="column output">
<h4>Output</h4>
<div class="metrics">
<div class="output-stats ui-percTrainData">
<span>Test loss</span>
<div class="value" id="loss-test"></div>
</div>
<div class="output-stats train">
<span>Training loss</span>
<div class="value" id="loss-train"></div>
</div>
<div id="linechart"></div>
</div>
<div id="heatmap"></div>
<div style="float:left;margin-top:20px">
<div style="display:flex; align-items:center;">
<!-- Gradient color scale -->
<div class="label" style="width:45px; margin-right: 30px">
Melanoma
</div>
<svg width="170" height="30" id="colormap">
<defs>
<linearGradient id="gradient" x1="0%" y1="100%" x2="100%" y2="100%">
<stop offset="0%" stop-color="#f59322" stop-opacity="1"></stop>
<stop offset="50%" stop-color="#e8eaeb" stop-opacity="1"></stop>
<stop offset="100%" stop-color="#0877bd" stop-opacity="1"></stop>
</linearGradient>
</defs>
<g class="core" transform="translate(3, 0)">
<rect width="144" height="10" style="fill: url('#gradient');"></rect>
</g>
</svg>
<div class="label" style="width:45px; margin-right: 10px">
Lung Adenocarcinoma
</div>
</div>
<br/>
<div style="display:flex;">
<label class="ui-showTestData mdl-checkbox mdl-js-checkbox mdl-js-ripple-effect" for="show-test-data">
<input type="checkbox" id="show-test-data" class="mdl-checkbox__input" checked>
<span class="mdl-checkbox__label label">Show test data</span>
</label>
<label class="ui-discretize mdl-checkbox mdl-js-checkbox mdl-js-ripple-effect" for="discretize">
<input type="checkbox" id="discretize" class="mdl-checkbox__input" checked>
<span class="mdl-checkbox__label label">Discretize output</span>
</label>
</div>
</div>
</div>
</div>
<a href="http://dlforcancertherapy.ml:8000/iris-plom.html"> Scatterplot Matrix </a>
<!-- More -->
<div class="more">
<!-- <button class="mdl-button mdl-js-button mdl-button--icon"><i class="material-icons">keyboard_arrow_down</i></button> -->
<button class="mdl-button mdl-js-button mdl-button--fab">
<i class="material-icons">keyboard_arrow_down</i>
</button>
</div>
<!-- Article -->
<article id="article-text">
<div class="l--body">
<h2 style="position:relative; right:150px;">How does this help cancer?</h2>
<p>Machine learning can be used to perform unsupervised learning on the DNA sequences of patient tumors in order to identify non-linear features of the tumor DNA that help predict treatment. Convolutional neural networks (CNN) have led to substantial advances in both supervised and unsupervised learning tasks in computer vision. It is easy to treat DNA sequence (an ordered sequence of A’s, C’s, G’s, and T’s) as an “image”, and therefore apply many of the same techniques used in imaging to DNA sequence. The R package <a href="https://github.com/friend1ws/pmsignature">pmsignature</a> extracts characteristic mutation patterns from sets of mutations, as proposed in the paper: <a href="http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005657"> A simple model-based approach to inferring and visualizing cancer mutation signatures</a> by Shiraishi, et. al. (2015). </p>
<p>
We use Principal Component Analysis (PCA) on these signatures generated by pmsignature, to compute scatter-plots of labelled training data; The DNN is then trained over a large amount of such signatures, ultimately computing and displaying the probability distribution on the heatmap in the output - the distribution of predictions to be made for testing data, having labelled the regions.
</p>
</div>
<div class="l--body">
<p>We’ve also provided some controls below to enable you tailor the playground to a specific topic or lesson. Just choose which features you’d like to be visible below then save <a class="hide-controls-link" href="#">this link</a>, or <a href="javascript:location.reload();">refresh</a> the page.</p>
<div class="hide-controls"></div>
</div>
<div class="l--body">
<h2 style="position:relative; right: 150px;">What Do All the Colors Mean?</h2>
<p>Orange and blue are used throughout the visualization in slightly different ways, but in general orange shows negative values while blue shows positive values.</p>
<p>The data points (represented by small circles) are initially colored orange or blue, which correspond to positive one and negative one.</p>
<p> The blue dots represent labelled <b> BRCA </b> tumors, whereas the orange dots represent the labelled <b> Lung Adenocarcinoma </b> (lungad_10) tumors. </p>
<p>In the hidden layers, the lines are colored by the weights of the connections between neurons. Blue shows a positive weight, which means the network is using that output of the neuron as given. An orange line shows that the network is assigning a negative weight.</p>
<p>In the output layer, the dots are colored orange or blue depending on their original values. The background color shows what the network is predicting for a particular area. The intensity of the color shows how confident that prediction is.</p>
</div>
<br>
<div class="l--body">
<h1>Credits</h1>
<p>
<b> Created by </b> <br> <br>
| Kumud Ravisankaran | Valeria Brewer | Ninad Mehta | Suraj Jena | <br> <br>
Repurposed the original <a href="https://github.com/tensorflow/playground"> TensorFlow Playground </a> made by <br> Daniel Smilkov and Shan Carter under the Apache-2.0 License. <br>
<a href="https://research.google.com/bigpicture/">Big Picture</a> and <a href="https://research.google.com/teams/brain/">Google Brain</a> teams for feedback and guidance on Neural Networks and the TensorFlow API.
</p>
</div>
</article>
<!-- Footer -->
<footer>
<div class="l--body">
<a href="https://www.tensorflow.org/" class="logo">
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 0 528 87" xml:space="preserve">
<path d="M37.4,15.5v70.3H25V15.5H1V3.4h60.4v12.1H37.4z"/>
<path d="M149,85.8v-35c0-12.5-4.7-16.9-12.7-16.9c-8.1,0-12.7,5.8-12.7,15.8v36.1h-12.1V24h12.1v5.9c3.1-4.5,9.2-7.2,15.5-7.2
c14.4,0,22,9.4,22,27.7v35.4H149z"/>
<path d="M188.7,87.1c-8.4,0-17.4-3.3-23.7-7.9l5.5-9.2c5.8,4,12.2,6.1,18,6.1c7.7,0,11.3-2.5,11.3-6.8c0-4.7-5.4-6.9-14.4-10.4
c-13.3-5.2-18.1-9.7-18.1-19.4c0-11.1,8.7-16.8,21.1-16.8c7.8,0,15.4,2.8,21,6.8l-5.3,9.3c-5.1-3.5-10.1-5.3-16-5.3
c-5.9,0-8.5,2.4-8.5,5.7c0,3.1,2.1,5.3,11.4,8.9c13.8,5.3,20.8,9.1,20.8,20.7C211.9,82.5,200.8,87.1,188.7,87.1z"/>
<path d="M242,87.1c-15.5,0-27.2-12.8-27.2-32.1c0-20.2,12-32.3,27.5-32.3c15.8,0,27.5,12.6,27.5,31.9
C269.9,75.1,257.9,87.1,242,87.1z M241.9,34.3c-9.2,0-14.8,8.1-14.8,20.4c0,13.5,6.2,21,15.4,21c9.2,0,15.2-9.3,15.2-20.6
C257.7,42.4,251.7,34.3,241.9,34.3z"/>
<path d="M310,36.8c-2.6-1.4-5.3-2.2-9.3-2.2c-7.7,0-12.1,5.4-12.1,15.9v35.3h-12.1V24h12.1v5.9c2.8-4.1,8-7.2,14.1-7.2
c4.9,0,8,0.9,10.5,2.6L310,36.8z"/>
<path d="M330.3,15.5v21.5H354v12.1h-23.7v36.6H318V3.4h50.3v12.1H330.3z"/>
<path d="M374.5,85.8V6.4L386.6,0v85.8H374.5z"/>
<path d="M421.9,87.1c-15.5,0-27.2-12.8-27.2-32.1c0-20.2,12-32.3,27.5-32.3c15.8,0,27.5,12.6,27.5,31.9
C449.8,75.1,437.7,87.1,421.9,87.1z M421.7,34.3c-9.2,0-14.8,8.1-14.8,20.4c0,13.5,6.2,21,15.4,21c9.2,0,15.2-9.3,15.2-20.6
C437.5,42.4,431.5,34.3,421.7,34.3z"/>
<path d="M510.9,85.8h-10.4l-8.4-31.2c-1.3-4.7-2.6-10.2-3.2-13.2c-0.6,2.9-1.9,8.6-3.2,13.3l-8.2,31.1h-10.4L450.3,24h12l7.3,30
c1.2,4.7,2.5,10.6,3.1,13.5c0.7-3.1,2.1-8.7,3.4-13.5l8.2-30h9.8l8.4,30.1c1.3,4.8,2.6,10.4,3.3,13.4c0.7-3.1,1.9-8.8,3.1-13.5
l7.3-30h12L510.9,85.8z"/>
<path d="M79.1,76.2c-6.7,0-12.7-4-14.9-13.2l40.5-12.2c-0.2-2.8-0.6-5.4-1.3-8c-3-11.6-11.1-20.1-24.7-20.1
c-16,0-27.1,11.3-27.1,32.3c0,20.5,12.2,32.1,26.7,32.1c9.4,0,15.9-2.9,21.3-8.1l-7.2-7.8C88.4,74.3,84.3,76.2,79.1,76.2z
M78,33.7c7.9,0,12.1,4.5,13.8,10.5l-27.9,8.5l0-3.5C64.9,39.3,69.8,33.7,78,33.7z"/>
</svg>
</a>
<div class="links">
<a href="https://github.com/skjena/cancerTherapy">Source on GitHub</a>
</div>
</div>
</footer>
<script src="bundle.js"></script>
<!-- Google analytics -->
<script src="analytics.js"></script>
</body>
</html>