|
a |
|
b/R/utils-graphics.R |
|
|
1 |
|
|
|
2 |
#' Theme for ggplot2 |
|
|
3 |
#' @param base_size Legend title size, all other sizes scaled appropriately |
|
|
4 |
#' to this |
|
|
5 |
#' @param base_family Font family |
|
|
6 |
#' |
|
|
7 |
#' @import ggplot2 |
|
|
8 |
#' |
|
|
9 |
theme_bma <- function( |
|
|
10 |
base_size = 10, |
|
|
11 |
base_family = get_base_family() |
|
|
12 |
) { |
|
|
13 |
|
|
|
14 |
`%+replace%` <- ggplot2::`%+replace%` |
|
|
15 |
|
|
|
16 |
base_family <- ifelse(is.null(base_family), get_base_family(), base_family) |
|
|
17 |
|
|
|
18 |
ggplot2::theme_bw(base_size = base_size, base_family = base_family) %+replace% |
|
|
19 |
ggplot2::theme( |
|
|
20 |
text = ggplot2::element_text(family = base_family), |
|
|
21 |
plot.title = ggplot2::element_text( |
|
|
22 |
size = base_size + 6, |
|
|
23 |
margin = margin(0, 0, 13, 0), |
|
|
24 |
hjust = 0, |
|
|
25 |
face = "bold" |
|
|
26 |
), |
|
|
27 |
plot.title.position = "plot", |
|
|
28 |
plot.subtitle = ggplot2::element_text( |
|
|
29 |
size = base_size + 4, |
|
|
30 |
margin = margin(0, 0, 13, 0), |
|
|
31 |
hjust = 0 |
|
|
32 |
), |
|
|
33 |
axis.text = ggplot2::element_text(size = base_size - 1), |
|
|
34 |
axis.title = ggplot2::element_text(size = base_size + 4), |
|
|
35 |
axis.title.x = ggplot2::element_text( |
|
|
36 |
margin = ggplot2::margin(t = base_size - 1) |
|
|
37 |
), |
|
|
38 |
axis.title.y = ggplot2::element_text( |
|
|
39 |
margin = ggplot2::margin(l = 0, r = base_size + 1), |
|
|
40 |
angle = 90 |
|
|
41 |
), |
|
|
42 |
legend.text = ggplot2::element_text(size = base_size), |
|
|
43 |
legend.title = ggplot2::element_text(size = base_size + 2), |
|
|
44 |
strip.background = ggplot2::element_rect(fill = "grey90") |
|
|
45 |
) |
|
|
46 |
} |
|
|
47 |
|
|
|
48 |
|
|
|
49 |
#' Set base font family for ggplot2. |
|
|
50 |
#' |
|
|
51 |
#' @return Character string of the name of a postscript font related to |
|
|
52 |
#' Arial if available, otherwise "sans". |
|
|
53 |
#' |
|
|
54 |
#' @importFrom grDevices postscriptFonts |
|
|
55 |
#' |
|
|
56 |
get_base_family <- function() { |
|
|
57 |
avail_fonts <- tryCatch( |
|
|
58 |
grDevices::postscriptFonts(), |
|
|
59 |
error = function(cond) NULL, |
|
|
60 |
warning = function(cond) NULL |
|
|
61 |
) |
|
|
62 |
|
|
|
63 |
avail_fontnames <- names(avail_fonts) |
|
|
64 |
|
|
|
65 |
if (any(grepl("Arial", avail_fontnames))) { |
|
|
66 |
base_family <- avail_fontnames[grep("Arial", avail_fontnames)[1]] |
|
|
67 |
} else { |
|
|
68 |
base_family <- "sans" |
|
|
69 |
} |
|
|
70 |
|
|
|
71 |
return(base_family) |
|
|
72 |
} |
|
|
73 |
|
|
|
74 |
|
|
|
75 |
#' Generate arm closure summaries for batches |
|
|
76 |
#' |
|
|
77 |
#' @param file_prefix Consistent beginning of filenames holding |
|
|
78 |
#' arm closure data. Defaults to `closures`. |
|
|
79 |
#' @param run_time Specify a particular instance of `biomkrAccrual()` |
|
|
80 |
#' execution using a date-time format `yyyy-mm-dd-hh-mm-ss`. |
|
|
81 |
#' Used to select which files will be summarised. |
|
|
82 |
#' @param output_path Directory where the input files are located |
|
|
83 |
#' and the output files will be written. |
|
|
84 |
#' @param keep_files Save data files and plots generated during the run. |
|
|
85 |
#' Defaults to TRUE. |
|
|
86 |
#' |
|
|
87 |
#' @export |
|
|
88 |
#' |
|
|
89 |
#' @importFrom stats sd |
|
|
90 |
#' @importFrom utils read.csv write.csv |
|
|
91 |
#' |
|
|
92 |
##### Nothing is calling this? |
|
|
93 |
get_arm_closures <- function( |
|
|
94 |
file_prefix = "closures", |
|
|
95 |
run_time = "2024-08-07-18-35-09", |
|
|
96 |
output_path = "../biomkrAccrual_output_data/", |
|
|
97 |
keep_files = TRUE |
|
|
98 |
) { |
|
|
99 |
# What output files do we have? |
|
|
100 |
filenames <- list.files( |
|
|
101 |
output_path, |
|
|
102 |
pattern = paste0("^", file_prefix, "-", run_time, ".*.csv"), |
|
|
103 |
full.names = TRUE |
|
|
104 |
) |
|
|
105 |
|
|
|
106 |
# Read files |
|
|
107 |
closures_ls <- lapply(filenames, read.csv) |
|
|
108 |
|
|
|
109 |
# Summarise files |
|
|
110 |
summ <- lapply(closures_ls, function(d) summary(d[, -1])) |
|
|
111 |
name_types <- c("1", "2", "mixed", "unbalanced", "multirate", "multimix") |
|
|
112 |
names(summ) <- c( |
|
|
113 |
paste0("gamma_rate_closures_", name_types), |
|
|
114 |
paste0("fixed_rate_closures_", name_types) |
|
|
115 |
) |
|
|
116 |
|
|
|
117 |
write.csv( |
|
|
118 |
summ, |
|
|
119 |
paste0(output_path, "arm_closure_summary-", run_time, ".csv") |
|
|
120 |
) |
|
|
121 |
|
|
|
122 |
# Standard Deviations |
|
|
123 |
sd_mx <- t(sapply( |
|
|
124 |
closures_ls, |
|
|
125 |
function(a_df) { |
|
|
126 |
sapply( |
|
|
127 |
seq_len(ncol(a_df)), |
|
|
128 |
function(i) stats::sd(a_df[i, ], na.rm = TRUE) |
|
|
129 |
) |
|
|
130 |
} |
|
|
131 |
)) |
|
|
132 |
|
|
|
133 |
sd_mx <- sd_mx[, -1] |
|
|
134 |
|
|
|
135 |
colnames(sd_mx) <- paste0("T", 1:3, "_sd") |
|
|
136 |
rownames(sd_mx) <- c( |
|
|
137 |
paste0("gamma_rate_closures_", name_types), |
|
|
138 |
paste0("fixed_rate_closures_", name_types) |
|
|
139 |
) |
|
|
140 |
|
|
|
141 |
write.csv( |
|
|
142 |
as.data.frame(sd_mx), |
|
|
143 |
paste0(output_path, "arm_closures_sd", run_time, ".csv") |
|
|
144 |
) |
|
|
145 |
|
|
|
146 |
return(list(summ, sd_mx)) |
|
|
147 |
} |
|
|
148 |
|
|
|
149 |
|
|
|
150 |
#' Plot predicted recruitment from file containing a CSV from |
|
|
151 |
#' a single run |
|
|
152 |
#' |
|
|
153 |
#' @param file_prefix Consistent beginning of filenames holding |
|
|
154 |
#' arm closure data. Defaults to `accrual`. |
|
|
155 |
#' @param plot_prefix Prefix for file name to identify plot type. |
|
|
156 |
#' Defaults to `accrual_plot`. |
|
|
157 |
#' @param run_time Specify a particular instance of `biomkrAccrual()` |
|
|
158 |
#' execution using a date-time format `yyyy-mm-dd-hh-mm-ss`. |
|
|
159 |
#' Used to select which files will be summarised. |
|
|
160 |
#' @param output_path Directory where the output files from the |
|
|
161 |
#' `biomkrAccrual()` instance are located. |
|
|
162 |
#' @param figs_path Folder where figures generated during execution |
|
|
163 |
#' will be stored; defaults to the `figures` subdirectory in |
|
|
164 |
#' `output_path`. |
|
|
165 |
#' |
|
|
166 |
#' @export |
|
|
167 |
#' |
|
|
168 |
accrual_plot_from_file <- function( |
|
|
169 |
file_prefix = "accrual", |
|
|
170 |
plot_prefix = "accrual-from-file", |
|
|
171 |
run_time = "2024-08-07-18-35-09", |
|
|
172 |
output_path = "../biomkrAccrual_output_data/", |
|
|
173 |
figs_path = paste0(output_path, "figures/") |
|
|
174 |
) { |
|
|
175 |
# Validate input |
|
|
176 |
|
|
|
177 |
checkmate::assert_directory_exists( |
|
|
178 |
file.path(output_path), |
|
|
179 |
access = "rx" |
|
|
180 |
) |
|
|
181 |
|
|
|
182 |
input_file <- paste0( |
|
|
183 |
output_path, file_prefix, "-", run_time, ".csv" |
|
|
184 |
) |
|
|
185 |
|
|
|
186 |
checkmate::assert_file_exists(file.path(input_file)) |
|
|
187 |
|
|
|
188 |
makeifnot_dir(figs_path, min_access = "rwx") |
|
|
189 |
|
|
|
190 |
accrual_raw_df <- utils::read.csv(file.path(input_file)) |
|
|
191 |
|
|
|
192 |
# Get unique arm identifiers |
|
|
193 |
arm_names <- unique(sapply( |
|
|
194 |
strsplit(names(accrual_raw_df), "\\."), |
|
|
195 |
getElement, |
|
|
196 |
1 |
|
|
197 |
)) |
|
|
198 |
|
|
|
199 |
# Make dataframe of arm recruitment per week by summing site-arm columns |
|
|
200 |
accrual_df <- as.data.frame( |
|
|
201 |
lapply( |
|
|
202 |
arm_names, |
|
|
203 |
function(n) rowSums(accrual_raw_df[startsWith(names(accrual_raw_df), n)]) |
|
|
204 |
), |
|
|
205 |
col.names = arm_names |
|
|
206 |
) |
|
|
207 |
|
|
|
208 |
# Convert to long format of class "accrualplotdata" |
|
|
209 |
accrual_df <- accrual_to_long(accrual_df) |
|
|
210 |
|
|
|
211 |
# Plot |
|
|
212 |
p <- plot( |
|
|
213 |
accrual_df, |
|
|
214 |
plot_prefix = plot_prefix, |
|
|
215 |
run_time = run_time |
|
|
216 |
) |
|
|
217 |
|
|
|
218 |
print(p) |
|
|
219 |
|
|
|
220 |
ggplot2::ggsave( |
|
|
221 |
paste0(figs_path, plot_prefix, "-", run_time, ".png"), |
|
|
222 |
plot = p, |
|
|
223 |
width = 12, |
|
|
224 |
height = 8, |
|
|
225 |
dpi = 400 |
|
|
226 |
) |
|
|
227 |
} |
|
|
228 |
|
|
|
229 |
|
|
|
230 |
#' Convert accrual data to long format dataframe of class |
|
|
231 |
#' `accrualplotformat`. |
|
|
232 |
#' |
|
|
233 |
#' @param accrual_df Wide format accrual data. |
|
|
234 |
#' |
|
|
235 |
#' @importFrom stats reshape |
|
|
236 |
#' |
|
|
237 |
accrual_to_long <- function(accrual_df) { |
|
|
238 |
# Convert to cumulative sums |
|
|
239 |
accrual_df <- cumsum(accrual_df) |
|
|
240 |
|
|
|
241 |
arm_names <- names(accrual_df) |
|
|
242 |
|
|
|
243 |
# Add week information |
|
|
244 |
accrual_df$Week <- seq_len(nrow(accrual_df)) |
|
|
245 |
|
|
|
246 |
# Convert to long format |
|
|
247 |
accrual_df <- stats::reshape( |
|
|
248 |
accrual_df, |
|
|
249 |
direction = "long", |
|
|
250 |
varying = list(arm_names), |
|
|
251 |
timevar = "Arm", |
|
|
252 |
times = arm_names, |
|
|
253 |
v.names = "Recruitment", |
|
|
254 |
idvar = "Week" |
|
|
255 |
) |
|
|
256 |
|
|
|
257 |
accrual_df$Arm <- factor(accrual_df$Arm) |
|
|
258 |
|
|
|
259 |
# Define an S3 class so we can have a custom plot command |
|
|
260 |
class(accrual_df) <- c("accrualplotdata", class(accrual_df)) |
|
|
261 |
|
|
|
262 |
return(accrual_df) |
|
|
263 |
} |
|
|
264 |
|
|
|
265 |
|
|
|
266 |
#' S3 method to plot predicted recruitment from a long format |
|
|
267 |
#' dataframe of class "accrualplotdata". |
|
|
268 |
#' |
|
|
269 |
#' @param data long format dataframe with columns "Week", |
|
|
270 |
#' "Arm" and "Recruitment". |
|
|
271 |
#' @param plot_prefix Prefix for file name to identify plot type. |
|
|
272 |
#' Defaults to `accrual_plot`. |
|
|
273 |
#' @param run_time Specify a particular instance of `biomkrAccrual()` |
|
|
274 |
#' execution using a date-time format `yyyy-mm-dd-hh-mm-ss`. |
|
|
275 |
#' @param output_path = Directory where the output files from the |
|
|
276 |
#' `biomkrAccrual()` instance are located. |
|
|
277 |
#' @param figs_path Folder where figures generated during execution |
|
|
278 |
#' will be stored; defaults to the `figures` subdirectory in |
|
|
279 |
#' `output_path`. |
|
|
280 |
#' @param target_arm_size Number of subjects required for each treatment arm. |
|
|
281 |
#' @param target_control Number of subjects required for control arm(s). |
|
|
282 |
#' @param target_interim Number of subjects required for treatment arm at |
|
|
283 |
#' interim analysis. |
|
|
284 |
#' @param accrual_period Number of weeks in recruitment period. |
|
|
285 |
#' @param interim_period Number of weeks to recruit for interim analysis. |
|
|
286 |
#' |
|
|
287 |
#' @import ggplot2 |
|
|
288 |
#' @importFrom grDevices palette.colors |
|
|
289 |
#' @importFrom rlang .data |
|
|
290 |
#' |
|
|
291 |
plot.accrualplotdata <- function( |
|
|
292 |
data, |
|
|
293 |
plot_prefix = "accrual_plot", |
|
|
294 |
run_time = NULL, |
|
|
295 |
output_path = "../biomkrAccrual_output_data/", |
|
|
296 |
figs_path = paste0(output_path, "figures/"), |
|
|
297 |
target_arm_size = NA_integer_, |
|
|
298 |
target_control = NA_integer_, |
|
|
299 |
target_interim = NA_integer_, |
|
|
300 |
accrual_period = NA_integer_, |
|
|
301 |
interim_period = NA_integer_ |
|
|
302 |
) { |
|
|
303 |
|
|
|
304 |
accrual_df <- data |
|
|
305 |
arm_names <- levels(accrual_df$Arm) |
|
|
306 |
|
|
|
307 |
linetypes <- c( |
|
|
308 |
"Interim arm" = 2, "Experimental arm" = 3, "Control arm" = 4, |
|
|
309 |
"Interim accrual" = 5, "Total accrual" = 6 |
|
|
310 |
) |
|
|
311 |
|
|
|
312 |
hline_y <- c(target_interim, target_arm_size, target_control) |
|
|
313 |
vline_x <- c(interim_period, accrual_period) |
|
|
314 |
|
|
|
315 |
p <- ggplot2::ggplot( |
|
|
316 |
accrual_df, |
|
|
317 |
ggplot2::aes( |
|
|
318 |
x = .data$Week, |
|
|
319 |
y = .data$Recruitment, |
|
|
320 |
group = .data$Arm, |
|
|
321 |
color = .data$Arm |
|
|
322 |
) |
|
|
323 |
) + |
|
|
324 |
ggplot2::geom_line(linewidth = 1) + |
|
|
325 |
# Use colourblind friendly Okabe-Ito palette |
|
|
326 |
ggplot2::scale_colour_manual( |
|
|
327 |
values = grDevices::palette.colors(length(arm_names)) |
|
|
328 |
) + |
|
|
329 |
ggplot2::geom_vline( |
|
|
330 |
xintercept = vline_x, |
|
|
331 |
linewidth = 1, |
|
|
332 |
linetype = 2:3, |
|
|
333 |
color = "grey75" |
|
|
334 |
) + |
|
|
335 |
ggplot2::geom_hline( |
|
|
336 |
yintercept = hline_y, |
|
|
337 |
linewidth = 1, |
|
|
338 |
linetype = 4:6, |
|
|
339 |
color = "grey65" |
|
|
340 |
) + |
|
|
341 |
ggplot2::labs( |
|
|
342 |
title = "Accrual plot" |
|
|
343 |
) + |
|
|
344 |
theme_bma(base_size = 16) |
|
|
345 |
|
|
|
346 |
return(p) |
|
|
347 |
} |
|
|
348 |
|
|
|
349 |
|
|
|
350 |
#' Plot distributions of recruitment to arms at given time. |
|
|
351 |
#' |
|
|
352 |
#' @param data Matrix with columns for each recruitment arm, |
|
|
353 |
#' including control. |
|
|
354 |
#' @param target Vector of targets for recruitment. First two |
|
|
355 |
#' should be those directly relevant to the subject of the graph. |
|
|
356 |
#' @param target_names Vector of target names, for labelling. |
|
|
357 |
#' @param target The adjust parameter from `ggplot2::geom_density`; |
|
|
358 |
#' higher values mean more smoothing. Defaults to 1. |
|
|
359 |
#' |
|
|
360 |
#' @importFrom stats reshape |
|
|
361 |
#' @import ggplot2 |
|
|
362 |
#' @importFrom grDevices palette.colors |
|
|
363 |
#' |
|
|
364 |
#' @export |
|
|
365 |
#' |
|
|
366 |
plot.armtotals <- function( |
|
|
367 |
data, |
|
|
368 |
target, |
|
|
369 |
target_names, |
|
|
370 |
target_week, |
|
|
371 |
adjust = 1 |
|
|
372 |
) { |
|
|
373 |
data_df <- matrix_to_long(data) |
|
|
374 |
|
|
|
375 |
# Which of the accrual targets are within the dataset |
|
|
376 |
if (length(target) > 2) { |
|
|
377 |
target_indices <- |
|
|
378 |
c(1:2, 2 + which(target[-c(1, 2)] <= max(data_df$Recruitment))) |
|
|
379 |
} else { |
|
|
380 |
target_indices <- seq_len(length(target)) |
|
|
381 |
} |
|
|
382 |
target <- target[target_indices] |
|
|
383 |
target_names <- target_names[target_indices] |
|
|
384 |
|
|
|
385 |
p <- ggplot2::ggplot( |
|
|
386 |
data = data_df |
|
|
387 |
) + |
|
|
388 |
ggplot2::geom_density( |
|
|
389 |
ggplot2::aes( |
|
|
390 |
x = Recruitment, group = Arm, fill = Arm, col = Arm |
|
|
391 |
), |
|
|
392 |
alpha = 0.4, adjust = 1 |
|
|
393 |
) + |
|
|
394 |
ggplot2::scale_fill_manual( |
|
|
395 |
values = grDevices::palette.colors(length(unique(data_df$Arm))), |
|
|
396 |
aesthetics = c("color", "fill") |
|
|
397 |
) + |
|
|
398 |
ggplot2::geom_vline( |
|
|
399 |
xintercept = target, |
|
|
400 |
linetype = "dashed", |
|
|
401 |
linewidth = 1, |
|
|
402 |
colour = "grey65" |
|
|
403 |
) + |
|
|
404 |
ggplot2::labs( |
|
|
405 |
y = "Probability density", |
|
|
406 |
title = target_names[1], |
|
|
407 |
) + |
|
|
408 |
theme_bma(base_size = 16) |
|
|
409 |
|
|
|
410 |
p <- label_vlines(p, target, target_names) |
|
|
411 |
|
|
|
412 |
return(p) |
|
|
413 |
} |
|
|
414 |
|
|
|
415 |
|
|
|
416 |
#' Adds labels for vlines to accrual plots |
|
|
417 |
#' |
|
|
418 |
#' @param p Ggplot object. |
|
|
419 |
#' @param target Vector of x axis positions of vlines. |
|
|
420 |
#' @param target_names Vector of target names (excluding the |
|
|
421 |
#' word `target`). |
|
|
422 |
#' @param size Font size (in ggplot measure) for labels; |
|
|
423 |
#' defaults to 6. |
|
|
424 |
#' |
|
|
425 |
label_vlines <- function( |
|
|
426 |
p, |
|
|
427 |
target, |
|
|
428 |
target_names, |
|
|
429 |
size = 6 |
|
|
430 |
) { |
|
|
431 |
# Get height of y axis for this particular plot |
|
|
432 |
label_y <- round(ggplot2::layer_scales(p)$y$range$range[2], 2) |
|
|
433 |
|
|
|
434 |
# Get x range of plot |
|
|
435 |
xrange <- round(ggplot2::layer_scales(p)$x$range$range, 2) |
|
|
436 |
|
|
|
437 |
whisker <- diff(xrange) * .2 |
|
|
438 |
|
|
|
439 |
# There's more than one target. Move labels for the one at the range end |
|
|
440 |
|
|
|
441 |
# Add labels for vlines |
|
|
442 |
abline_df <- data.frame( |
|
|
443 |
x = target, |
|
|
444 |
y = label_y * 0.9, |
|
|
445 |
label = paste(target_names, "\ntarget") |
|
|
446 |
) |
|
|
447 |
|
|
|
448 |
p <- p + |
|
|
449 |
ggplot2::geom_text( |
|
|
450 |
data = abline_df, |
|
|
451 |
ggplot2::aes(x = x, y = y, label = label), |
|
|
452 |
size = size, |
|
|
453 |
family = get_base_family() |
|
|
454 |
) |
|
|
455 |
|
|
|
456 |
return(p) |
|
|
457 |
} |
|
|
458 |
|
|
|
459 |
|
|
|
460 |
#' Plot single arm accrual plot |
|
|
461 |
#' |
|
|
462 |
#' Bodge, fix later |
|
|
463 |
#' |
|
|
464 |
#' |
|
|
465 |
accrual_arm_plot <- function( |
|
|
466 |
data_df, |
|
|
467 |
arm_colours, |
|
|
468 |
treatment_arms, |
|
|
469 |
targets, |
|
|
470 |
plot_id, |
|
|
471 |
i |
|
|
472 |
) { |
|
|
473 |
arm_names <- colnames(data_df) |
|
|
474 |
|
|
|
475 |
if (length(unique(data_df[, i])) == 1) { |
|
|
476 |
# BODGE - don't want to see this but need it to produce graph |
|
|
477 |
arm_col <- "white" |
|
|
478 |
alpha <- 0.0001 |
|
|
479 |
} else { |
|
|
480 |
arm_col <- arm_colours[i] |
|
|
481 |
alpha <- 0.4 |
|
|
482 |
} |
|
|
483 |
|
|
|
484 |
|
|
|
485 |
p <- ggplot2::ggplot( |
|
|
486 |
data = data_df |
|
|
487 |
) + |
|
|
488 |
ggplot2::geom_density( |
|
|
489 |
ggplot2::aes(x = .data[[arm_names[i]]]), |
|
|
490 |
col = arm_col, fill = arm_col, |
|
|
491 |
alpha = alpha, adjust = 1 |
|
|
492 |
) |
|
|
493 |
|
|
|
494 |
if (length(unique(data_df[, i])) == 1) { |
|
|
495 |
p <- p + |
|
|
496 |
ggplot2::geom_vline( |
|
|
497 |
xintercept = unique(data_df[, i]), |
|
|
498 |
linewidth = 2, |
|
|
499 |
colour = arm_colours[i], |
|
|
500 |
alpha = 0.4 |
|
|
501 |
) |
|
|
502 |
} |
|
|
503 |
|
|
|
504 |
p <- p + |
|
|
505 |
ggplot2::geom_vline( |
|
|
506 |
xintercept = ifelse( |
|
|
507 |
treatment_arms[i], |
|
|
508 |
targets[1], |
|
|
509 |
targets[2] |
|
|
510 |
), |
|
|
511 |
linetype = "dashed", |
|
|
512 |
linewidth = 1, |
|
|
513 |
colour = "grey75" |
|
|
514 |
) + |
|
|
515 |
ggplot2::labs( |
|
|
516 |
x = paste( |
|
|
517 |
"No. virtual patients recruited at", |
|
|
518 |
"target week for", |
|
|
519 |
tolower(plot_id) |
|
|
520 |
), |
|
|
521 |
y = "Probability density", |
|
|
522 |
title = paste(plot_id, "for", arm_names[i]), |
|
|
523 |
) + |
|
|
524 |
ggplot2::scale_x_continuous(expand = expansion(mult = 0.07)) + |
|
|
525 |
theme_bma(base_size = 16) |
|
|
526 |
|
|
|
527 |
p <- label_vlines( |
|
|
528 |
p, |
|
|
529 |
target = ifelse( |
|
|
530 |
treatment_arms[i], |
|
|
531 |
targets[1], |
|
|
532 |
targets[2] |
|
|
533 |
), |
|
|
534 |
target_names = ifelse( |
|
|
535 |
treatment_arms[i], |
|
|
536 |
plot_id, |
|
|
537 |
paste0(plot_id, "\ncontrol") |
|
|
538 |
) |
|
|
539 |
) |
|
|
540 |
|
|
|
541 |
return(p) |
|
|
542 |
} |