|
a |
|
b/R/dirichlet.R |
|
|
1 |
#' Generate a matrix of `n` rows of sets of probabilities |
|
|
2 |
#' generated from the Dirichlet distribution, each row |
|
|
3 |
#' summing to 1. Uses the alternative \eqn{\mu} \eqn{\phi} |
|
|
4 |
#' parameterisation for the Dirichlet distribution, |
|
|
5 |
#' representing means and precision. |
|
|
6 |
#' |
|
|
7 |
#' @param n Number of sets of probabilities (defaults to 1) |
|
|
8 |
#' @param mu Vector of mean values for each probability in the set |
|
|
9 |
#' (defaults to c(0.001, 0.029. 0.7)). Must be greater than 0 and |
|
|
10 |
#' finite, and contain at least two values. |
|
|
11 |
#' @param phi Parameter representing precision, where precision is |
|
|
12 |
#' 1/variance. Must be positive and finite. Defaults to 10. |
|
|
13 |
#' |
|
|
14 |
#' @examples rdirichlet_alt(n = 3, mu = c(0.001, 0.029, 0.7), phi = 10) |
|
|
15 |
#' |
|
|
16 |
#' @export |
|
|
17 |
#' |
|
|
18 |
#' @import checkmate |
|
|
19 |
#' @importFrom stats rgamma |
|
|
20 |
#' |
|
|
21 |
rdirichlet_alt <- function( |
|
|
22 |
n = 1, |
|
|
23 |
mu = c(0.3, 0.3, 0.3), |
|
|
24 |
phi = 10 |
|
|
25 |
) { |
|
|
26 |
|
|
|
27 |
### Check and convert inputs |
|
|
28 |
|
|
|
29 |
# True if n is "close to an integer" |
|
|
30 |
checkmate::assert_integerish( |
|
|
31 |
n, lower = 1, , upper = 10^7, len = 1, any.missing = FALSE |
|
|
32 |
) |
|
|
33 |
|
|
|
34 |
# mu should be a numeric vector in the range [0, 1) |
|
|
35 |
checkmate::assert_vector( |
|
|
36 |
mu, min.len = 2, strict = TRUE, any.missing = FALSE |
|
|
37 |
) |
|
|
38 |
checkmate::assert_numeric( |
|
|
39 |
mu, lower = 10^-7, upper = 1 - 10^-7 |
|
|
40 |
) |
|
|
41 |
|
|
|
42 |
# phi should be a positive number |
|
|
43 |
checkmate::assert_number(phi, lower = 10^-7, finite = TRUE) |
|
|
44 |
|
|
|
45 |
# Make n actually an integer |
|
|
46 |
n <- as.integer(n) |
|
|
47 |
|
|
|
48 |
# Shape parameter (alpha) from mu and phi; alpha_0 = phi |
|
|
49 |
alpha <- phi * mu / mu[1] |
|
|
50 |
no_probs <- length(mu) |
|
|
51 |
|
|
|
52 |
# Dirichlet is a set of normalised independent gamma(alpha, 1) |
|
|
53 |
draws_mx <- matrix( |
|
|
54 |
stats::rgamma(n * no_probs, alpha), |
|
|
55 |
ncol = no_probs, |
|
|
56 |
byrow = TRUE |
|
|
57 |
) |
|
|
58 |
# Each set should sum to 1 |
|
|
59 |
draws_mx <- draws_mx / rowSums(draws_mx) |
|
|
60 |
|
|
|
61 |
return(draws_mx) |
|
|
62 |
} |
|
|
63 |
|