# -*- coding: utf-8 -*-
'''
input: 348k data
1. ClinicalTrialGov/NCTxxxx/xxxxxx.xml
2. all_xml
processing:
0.1 Interventional: 273k data (348k total, e.g., observatorial, surgery, )
0.2 intervention_type == Drug (drug not empty)
0.3 drop_set 96k data (273k), (we don't use drop_set to filter out)
0.4 -1 -> 0 based on "why_stop"
0.5 filter out -1(invalid)
xxxxxxx
1. disease -> icd
output:
1. output_file = 'data/diseases.csv'
requires ~10 minutes.
'''
##### standard library
import os, csv, pickle
from xml.dom import minidom
from xml.etree import ElementTree as ET
from collections import defaultdict
from time import time
import re
from tqdm import tqdm
import requests
from utils import get_path_of_all_xml_file, walkData
drop_set = ['Active, not recruiting', 'Enrolling by invitation', 'No longer available',
'Not yet recruiting', 'Recruiting', 'Temporarily not available', 'Unknown status']
'''
14 overall_status
Active, not recruiting
Approved for marketing
Available
Completed
Enrolling by invitation
No longer available
Not yet recruiting
Recruiting
Suspended
Temporarily not available
Terminated
Unknown status
Withdrawn
Withheld
'''
### tricky
def normalize_disease(name):
name = name.lower()
if 'lymphoma' in name:
return 'lymphoma'
name = name.replace(',', '')
name = name.replace('(', ' ')
name = name.replace(')', ' ')
name = name.replace('cancer', 'neoplasm')
name = name.replace('neoplasms', 'neoplasm')
name = name.replace('tumors', 'tumor')
name = name.replace('infections', 'infection')
name = name.replace('diseases', 'disease')
name = name.replace('disorders', 'disorder')
name = name.replace('syndromes', 'syndrome')
name = ' '.join(name.split())
if name.split()[0]=='stage':
name = ' '.join(name.split()[2:])
name_lst = [name]
if ' neoplasm' in name:
print(name)
name_lst.append(name.replace('neoplasm', 'tumor'))
name_split = name.split()
idx = name_split.index('neoplasm')
name2 = name_split[idx-1] + ' ' + name_split[idx]
name_lst.append(name2)
if ' tumor' in name:
name_lst.append(name.replace('tumor', 'neoplasm'))
name_split = name.split()
idx = name_split.index('tumor')
name2 = name_split[idx-1] + ' ' + name_split[idx]
name_lst.append(name2)
if 'disease' in name:
name_lst.append(name.replace('disease', '').strip())
if 'disorder' in name:
name_lst.append(name.replace('disorder', '').strip())
if '-related' in name:
name_lst.append(name.replace('-related', '').strip())
if 'syndrome' in name:
name_lst.append(name.replace('syndrome', '').strip())
if 'lung' in name and 'carcinoma' in name:
name_lst.append('lung carcinoma')
elif 'cell' in name and 'carcinoma' in name:
name_lst.append('cell carcinoma')
elif 'carcinoma' in name:
name_lst.append('carcinoma')
## approximation 1 very few
organ = ['liver', 'kidney', 'cardio', 'renal', 'hiv']
for word in organ:
if word in name:
name_lst.append(word)
# approximation 2 most 20%
word_lst = sorted([(word, len(word)) for word in name.split()], key = lambda x:x[1], reverse = True)
for word, cnt in word_lst:
if cnt < 8:
break
name_lst.append(word)
return name_lst
def get_icd_from_nih(name):
prefix = 'https://clinicaltables.nlm.nih.gov/api/icd10cm/v3/search?sf=code,name&terms='
name_lst = normalize_disease(name)
for name in name_lst:
url = prefix + name
response = requests.get(url)
text = response.text
if text == '[0,[],null,[]]':
continue
text = text[1:-1]
idx1 = text.find('[')
idx2 = text.find(']')
codes = text[idx1+1:idx2].split(',')
codes = [i[1:-1] for i in codes]
return codes
return None
def root2outcome(root):
result_list = []
walkData(root, prefix = '', result_list = result_list)
filter_func = lambda x:'p_value' in x[0]
outcome_list = list(filter(filter_func, result_list))
if len(outcome_list)==0:
return None
outcome = outcome_list[0][1]
if outcome[0]=='<':
return 1
if outcome[0]=='>':
return 0
if outcome[0]=='=':
outcome = outcome[1:]
try:
label = float(outcome)
if label < 0.05:
return 1
else:
return 0
except:
return None
def xml_file_2_tuple(xml_file):
tree = ET.parse(xml_file)
root = tree.getroot()
nctid = root.find('id_info').find('nct_id').text ### nctid: 'NCT00000102'
study_type = root.find('study_type').text
if study_type != 'Interventional':
return (None,) ### invalid
interventions = [i for i in root.findall('intervention')]
drug_interventions = [i.find('intervention_name').text for i in interventions \
if i.find('intervention_type').text=='Drug']
# or i.find('intervention_type').text=='Biological']
if len(drug_interventions)==0:
return (None,)
try:
status = root.find('overall_status').text
except:
status = ''
# if status in drop_set:
# return (None,) ### invalid
try:
why_stop = root.find('why_stopped').text
except:
why_stop = ''
label = root2outcome(root)
label = -1 if label is None else label
conditions = [i.text for i in root.findall('condition')]
conditions = [i.lower() for i in conditions]
return conditions, label, why_stop, None
def process_all():
output_file = 'data/diseases.csv'
t1 = time()
disease_hit, disease_all = 0,0 ### disease hit icd && drug hit smiles
input_file_lst = get_path_of_all_xml_file()
disease2icd_and_cnt = dict()
unfounded_disease_cnt = defaultdict(int)
word_cnt = defaultdict(int)
fieldname = ['disease', 'icd', 'count']
data_count = 0
for file in tqdm(input_file_lst[:]):
result = xml_file_2_tuple(file)
## 0.1 & 0.2
if len(result)==1:
continue ### only interventions
conditions, label, why_stop, _ = result
## 0.4
if (label == -1) and ('lack of efficacy' in why_stop or 'efficacy concern' in why_stop or \
'accrual' in why_stop):
label = 0
## 0.5
if label == -1:
continue
data_count += 1
icdcode_lst = []
for disease in conditions:
disease_all += 1
disease_hit += 1
if disease in disease2icd_and_cnt:
disease2icd_and_cnt[disease][1] += 1
if disease2icd_and_cnt[disease][0] == 'None':
disease_hit -= 1
unfounded_disease_cnt[disease] += 1
else:
codes = get_icd_from_nih(disease)
if codes is None:
disease2icd_and_cnt[disease] = ['None', 1]
disease_hit -= 1
unfounded_disease_cnt[disease] += 1
else:
disease2icd_and_cnt[disease] = [codes, 1]
t2 = time()
disease2cnt = sorted([(k,v) for k,v in unfounded_disease_cnt.items()], key = lambda x:x[1], reverse = True)
for disease, cnt in disease2cnt:
for word in disease.split():
word_cnt[word] += cnt
disease_icd_cnt = sorted([[disease,icd,cnt] for disease,(icd,cnt) in disease2icd_and_cnt.items()], key = lambda x:x[2], reverse=True)
### output
with open(output_file, 'w') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldname)
writer.writeheader()
for disease, icd, cnt in disease_icd_cnt:
writer.writerow({'disease':disease, 'icd':icd, 'count':cnt})
### use for debug
with open('unfounded_disease_cnt.txt', 'w') as fout:
for disease, cnt in disease2cnt:
fout.write(disease + '\t\t' + str(cnt) + '\n')
fout.write('\n'*10)
word_cnt = sorted([(w,c) for w,c in word_cnt.items()], key = lambda x:x[1], reverse = True)
for word, cnt in word_cnt:
fout.write(word + '\t\t' + str(cnt) + '\n')
print("disease hit icdcode", disease_hit, "disease all", disease_all)
print(str(int((t2-t1)/60)) + " minutes. " + str(data_count) + " data samples. ")
return
## write csv file
if __name__ == "__main__":
process_all()