|
a |
|
b/benchmark/drug2smiles.py |
|
|
1 |
''' |
|
|
2 |
## drug maps to smiles |
|
|
3 |
## input: "data/drugbank_drugs_info.csv" |
|
|
4 |
## output: "data/drug2smiles.pkl" |
|
|
5 |
|
|
|
6 |
''' |
|
|
7 |
|
|
|
8 |
|
|
|
9 |
|
|
|
10 |
import csv, pickle |
|
|
11 |
from collections import defaultdict |
|
|
12 |
def drug2smiles_func(): |
|
|
13 |
file = "data/drugbank_drugs_info.csv" |
|
|
14 |
with open(file, 'r') as csvfile: |
|
|
15 |
reader = list(csv.reader(csvfile, delimiter = ','))[1:] |
|
|
16 |
drug2smiles = defaultdict(set) |
|
|
17 |
drug2smiles2 = dict() |
|
|
18 |
for row in reader: |
|
|
19 |
smiles = row[27] |
|
|
20 |
if smiles.strip()=='': |
|
|
21 |
continue |
|
|
22 |
drug1 = row[3].lower() |
|
|
23 |
drug2 = row[11].lower() |
|
|
24 |
drug2smiles[drug1].add(smiles) |
|
|
25 |
drug2smiles[drug2].add(smiles) |
|
|
26 |
for drug, smiles in drug2smiles.items(): |
|
|
27 |
smiles = list(smiles)[0] |
|
|
28 |
drug2smiles2[drug] = smiles |
|
|
29 |
#### to improve |
|
|
30 |
''' |
|
|
31 |
7: 53, 3: 1452, 1: 26851, 5: 178, 10: 16, 14: 6, 2: 6129, |
|
|
32 |
4: 504, 17: 8, 12: 8, 8: 38, 6: 83, 11: 12, 9: 17, 161: 1, |
|
|
33 |
21: 2, 15: 4, 32: 2, 13: 2, 31: 1, 22: 2, 23: 3, 16: 1, 18: 2, 104: 1, 19: 2 |
|
|
34 |
''' |
|
|
35 |
return drug2smiles2 |
|
|
36 |
|
|
|
37 |
### disease -> icd code |
|
|
38 |
if __name__ == "__main__": |
|
|
39 |
drug2smiles = drug2smiles_func() |
|
|
40 |
drug2smiles_file = "data/drug2smiles.pkl" |
|
|
41 |
pickle.dump(drug2smiles, open(drug2smiles_file, 'wb')) |
|
|
42 |
|
|
|
43 |
|
|
|
44 |
''' |
|
|
45 |
[ |
|
|
46 |
0: 'id', |
|
|
47 |
1: 'trial_id', |
|
|
48 |
2: 'kind', |
|
|
49 |
3: 'title', |
|
|
50 |
4: 'description', |
|
|
51 |
5: 'id', |
|
|
52 |
6: 'intervention_id', |
|
|
53 |
7: 'drug_id', |
|
|
54 |
8: 'id', |
|
|
55 |
9: 'type', |
|
|
56 |
10: 'drugbank_id', |
|
|
57 |
11: 'name', |
|
|
58 |
12: 'state', ----- solid liquid |
|
|
59 |
13: 'description', |
|
|
60 |
14: 'cas_number', |
|
|
61 |
15: 'protein_formula', |
|
|
62 |
16: 'protein_weight', |
|
|
63 |
17: 'investigational', |
|
|
64 |
18: 'approved', |
|
|
65 |
19: 'vet_approved', |
|
|
66 |
20: 'experimental', |
|
|
67 |
21: 'nutraceutical', |
|
|
68 |
22: 'illicit', |
|
|
69 |
23: 'withdrawn', |
|
|
70 |
'moldb_mono_mass', |
|
|
71 |
'moldb_inchi', |
|
|
72 |
'moldb_inchikey', |
|
|
73 |
'moldb_smiles', |
|
|
74 |
'moldb_average_mass', |
|
|
75 |
'moldb_formula', |
|
|
76 |
'synthesis_patent_id', |
|
|
77 |
'protein_weight_details', |
|
|
78 |
'biotech_kind'] |
|
|
79 |
|
|
|
80 |
''' |