## 1. import
## 2. input & hyperparameter
## 3. pretrain
## 4. 'dataloader, model build, train, inference'
################################################
## 1. import
import torch, os, sys
torch.manual_seed(0)
sys.path.append('.')
from HINT.dataloader import csv_three_feature_2_dataloader, generate_admet_dataloader_lst, csv_three_feature_2_complete_dataloader
from HINT.molecule_encode import MPNN, ADMET
from HINT.icdcode_encode import GRAM, build_icdcode2ancestor_dict
from HINT.protocol_encode import Protocol_Embedding
from HINT.model import Interaction, HINT_nograph, HINTModel
device = torch.device("cpu")
if not os.path.exists("figure"):
os.makedirs("figure")
## 2. data
base_name = 'phase_III'
for base_name in ['phase_III', 'phase_II', 'phase_I']:
datafolder = "data"
train_file = os.path.join(datafolder, base_name + '_train.csv')
valid_file = os.path.join(datafolder, base_name + '_valid.csv')
test_file = os.path.join(datafolder, base_name + '_test.csv')
ongoing_file = "data/ongoing_"+base_name+".csv"
## 4. dataloader, model build, train, inference
train_loader = csv_three_feature_2_dataloader(train_file, shuffle=True, batch_size=32)
valid_loader = csv_three_feature_2_dataloader(valid_file, shuffle=False, batch_size=32)
test_loader = csv_three_feature_2_dataloader(test_file, shuffle=False, batch_size=32)
ongoing_loader = csv_three_feature_2_dataloader(ongoing_file, shuffle=False, batch_size=32)
icdcode2ancestor_dict = build_icdcode2ancestor_dict()
gram_model = GRAM(embedding_dim = 50, icdcode2ancestor = icdcode2ancestor_dict, device = device)
protocol_model = Protocol_Embedding(output_dim = 50, highway_num=3, device = device)
hint_model_path = "save_model/" + base_name + ".ckpt"
# if not os.path.exists(hint_model_path):
if True:
## 3. pretrain
mpnn_model = MPNN(mpnn_hidden_size = 50, mpnn_depth=3, device = device)
admet_model_path = "save_model/admet_model.ckpt"
if not os.path.exists(admet_model_path):
admet_dataloader_lst = generate_admet_dataloader_lst(batch_size=32)
admet_trainloader_lst = [i[0] for i in admet_dataloader_lst]
admet_testloader_lst = [i[1] for i in admet_dataloader_lst]
admet_model = ADMET(molecule_encoder = mpnn_model,
highway_num=2,
device = device,
epoch=3,
lr=5e-4,
weight_decay=0,
save_name = 'admet_')
admet_model.train(admet_trainloader_lst, admet_testloader_lst)
torch.save(admet_model, admet_model_path)
else:
admet_model = torch.load(admet_model_path)
admet_model = admet_model.to(device)
admet_model.set_device(device)
model = HINTModel(molecule_encoder = mpnn_model,
disease_encoder = gram_model,
protocol_encoder = protocol_model,
device = device,
global_embed_size = 50,
highway_num_layer = 1,
prefix_name = base_name,
gnn_hidden_size = 50,
epoch = 2,
lr = 1e-3,
weight_decay = 0,
)
model.init_pretrain(admet_model)
model.learn(train_loader, valid_loader, test_loader)
nctid_lst, predict_lst = model.ongoing_test(test_loader)
with open('data/test_predict_' + base_name + '.txt', 'w') as fout:
for nctid, predict in zip(nctid_lst, predict_lst):
fout.write(nctid+'\t'+str(predict)+'\n')
nctid_lst, predict_lst = model.ongoing_test(ongoing_loader)
with open('data/ongoing_predict_' + base_name + '.txt', 'w') as fout:
for nctid, predict in zip(nctid_lst, predict_lst):
fout.write(nctid+'\t'+str(predict)+'\n')