'''
input:
smiles batch
utility
1. graph MPN
2. smiles
3. morgan feature
output:
1. embedding batch
deeppurpose
DDI
encoders model
to do
lst -> dataloader -> feature -> model
mpnn's feature -> collate -> model
'''
import csv
from tqdm import tqdm
import numpy as np
from copy import deepcopy
import matplotlib.pyplot as plt
import rdkit
import rdkit.Chem as Chem
from rdkit import RDLogger
RDLogger.DisableLog('rdApp.info')
RDLogger.DisableLog('rdApp.*')
# from rdkit.Chem.EnumerateStereoisomers import EnumerateStereoisomers, StereoEnumerationOptions
import torch
torch.manual_seed(0)
from torch import nn
from torch.autograd import Variable
import torch.nn.functional as F
from torch.utils import data #### data.Dataset
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
from HINT.module import Highway
def get_drugbank_smiles_lst():
drugfile = 'data/drugbank_drugs_info.csv'
with open(drugfile, 'r') as csvfile:
rows = list(csv.reader(csvfile, delimiter = ','))[1:]
return [row[27] for row in rows]
def txt_to_lst(text):
"""
"['CN[C@H]1CC[C@@H](C2=CC(Cl)=C(Cl)C=C2)C2=CC=CC=C12', 'CNCCC=C1C2=CC=CC=C2CCC2=CC=CC=C12']"
"""
text = text[1:-1]
lst = [i.strip()[1:-1] for i in text.split(',')]
return lst
def get_cooked_data_smiles_lst():
cooked_file = 'data/raw_data.csv'
with open(cooked_file, 'r') as csvfile:
rows = list(csv.reader(csvfile, delimiter = ','))[1:]
smiles_lst = [row[8] for row in rows]
smiles_lst = list(map(txt_to_lst, smiles_lst))
from functools import reduce
smiles_lst = list(reduce(lambda x,y:x+y, smiles_lst))
smiles_lst = list(set(smiles_lst))
# print(len(smiles_lst))
return smiles_lst
def create_var(tensor, requires_grad=None):
if requires_grad is None:
return Variable(tensor)
else:
return Variable(tensor, requires_grad=requires_grad)
def index_select_ND(source, dim, index):
index_size = index.size()
suffix_dim = source.size()[1:]
final_size = index_size + suffix_dim
target = source.index_select(dim, index.view(-1))
return target.view(final_size)
def get_mol(smiles):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return None
Chem.Kekulize(mol)
return mol
ELEM_LIST = ['C', 'N', 'O', 'S', 'F', 'Si', 'P', 'Cl', 'Br', 'Mg', 'Na', 'Ca', 'Fe', 'Al', 'I', 'B', 'K', 'Se', 'Zn', 'H', 'Cu', 'Mn', 'unknown']
ATOM_FDIM = len(ELEM_LIST) + 6 + 5 + 4 + 1
BOND_FDIM = 5 + 6
MAX_NB = 6
### basic setting from https://github.com/wengong-jin/iclr19-graph2graph/blob/master/fast_jtnn/mpn.py
def onek_encoding_unk(x, allowable_set):
if x not in allowable_set:
x = allowable_set[-1]
return list(map(lambda s: x == s, allowable_set))
def atom_features(atom):
return torch.Tensor(onek_encoding_unk(atom.GetSymbol(), ELEM_LIST)
+ onek_encoding_unk(atom.GetDegree(), [0,1,2,3,4,5])
+ onek_encoding_unk(atom.GetFormalCharge(), [-1,-2,1,2,0])
+ onek_encoding_unk(int(atom.GetChiralTag()), [0,1,2,3])
+ [atom.GetIsAromatic()])
def bond_features(bond):
bt = bond.GetBondType()
stereo = int(bond.GetStereo())
fbond = [bt == Chem.rdchem.BondType.SINGLE, bt == Chem.rdchem.BondType.DOUBLE, bt == Chem.rdchem.BondType.TRIPLE, bt == Chem.rdchem.BondType.AROMATIC, bond.IsInRing()]
fstereo = onek_encoding_unk(stereo, [0,1,2,3,4,5])
return torch.Tensor(fbond + fstereo)
def smiles2mpnnfeature(smiles):
## from mpn.py::tensorize
'''
data-flow:
data_process(): apply(smiles2mpnnfeature)
DBTA: train(): data.DataLoader(data_process_loader())
mpnn_collate_func()
'''
padding = torch.zeros(ATOM_FDIM + BOND_FDIM)
fatoms, fbonds = [], [padding]
in_bonds,all_bonds = [], [(-1,-1)]
mol = get_mol(smiles)
if mol is not None:
n_atoms = mol.GetNumAtoms()
for atom in mol.GetAtoms():
fatoms.append( atom_features(atom))
in_bonds.append([])
for bond in mol.GetBonds():
a1 = bond.GetBeginAtom()
a2 = bond.GetEndAtom()
x = a1.GetIdx()
y = a2.GetIdx()
b = len(all_bonds)
all_bonds.append((x,y))
fbonds.append( torch.cat([fatoms[x], bond_features(bond)], 0) )
in_bonds[y].append(b)
b = len(all_bonds)
all_bonds.append((y,x))
fbonds.append( torch.cat([fatoms[y], bond_features(bond)], 0) )
in_bonds[x].append(b)
total_bonds = len(all_bonds)
fatoms = torch.stack(fatoms, 0)
fbonds = torch.stack(fbonds, 0)
agraph = torch.zeros(n_atoms,MAX_NB).long()
bgraph = torch.zeros(total_bonds,MAX_NB).long()
for a in range(n_atoms):
for i,b in enumerate(in_bonds[a]):
agraph[a,i] = b
for b1 in range(1, total_bonds):
x,y = all_bonds[b1]
for i,b2 in enumerate(in_bonds[x]):
if all_bonds[b2][0] != y:
bgraph[b1,i] = b2
else:
# print('Molecules not found and change to zero vectors..')
fatoms = torch.zeros(0,39)
fbonds = torch.zeros(0,50)
agraph = torch.zeros(0,6)
bgraph = torch.zeros(0,6)
Natom, Nbond = fatoms.shape[0], fbonds.shape[0]
shape_tensor = torch.Tensor([Natom, Nbond]).view(1,-1)
return [fatoms.float(), fbonds.float(), agraph.float(), bgraph.float(), shape_tensor]
class smiles_dataset(data.Dataset):
def __init__(self, smiles_lst, label_lst):
self.smiles_lst = smiles_lst
self.label_lst = label_lst
def __len__(self):
return len(self.smiles_lst)
def __getitem__(self, index):
smiles = self.smiles_lst[index]
label = self.label_lst[index]
smiles_feature = smiles2mpnnfeature(smiles)
return smiles_feature, label
## DTI.py --> collate
## x is a list, len(x)=batch_size, x[i] is tuple, len(x[0])=5
def mpnn_feature_collate_func(x):
return [torch.cat([x[j][i] for j in range(len(x))], 0) for i in range(len(x[0]))]
def mpnn_collate_func(x):
#print("len(x) is ", len(x)) ## batch_size
#print("len(x[0]) is ", len(x[0])) ## 3--- data_process_loader.__getitem__
mpnn_feature = [i[0] for i in x]
#print("len(mpnn_feature)", len(mpnn_feature), "len(mpnn_feature[0])", len(mpnn_feature[0]))
mpnn_feature = mpnn_feature_collate_func(mpnn_feature)
from torch.utils.data.dataloader import default_collate
x_remain = [i[1:] for i in x]
x_remain_collated = default_collate(x_remain)
return [mpnn_feature] + x_remain_collated
def data_loader():
smiles_lst = get_cooked_data_smiles_lst()
label_lst = [1 for i in range(len(smiles_lst))]
dataset = smiles_dataset(smiles_lst, label_lst)
dataloader = data.DataLoader(dataset, batch_size=32, collate_fn = mpnn_collate_func, )
return dataloader
class MPNN(nn.Sequential):
def __init__(self, mpnn_hidden_size, mpnn_depth, device):
super(MPNN, self).__init__()
self.mpnn_hidden_size = mpnn_hidden_size
self.mpnn_depth = mpnn_depth
self.W_i = nn.Linear(ATOM_FDIM + BOND_FDIM, self.mpnn_hidden_size, bias=False)
self.W_h = nn.Linear(self.mpnn_hidden_size, self.mpnn_hidden_size, bias=False)
self.W_o = nn.Linear(ATOM_FDIM + self.mpnn_hidden_size, self.mpnn_hidden_size)
self.device = device
self = self.to(self.device)
def set_device(self, device):
self.device = device
@property
def embedding_size(self):
return self.mpnn_hidden_size
### forward single molecule sequentially.
def feature_forward(self, feature):
'''
batch_size == 1
feature: utils.smiles2mpnnfeature
'''
fatoms, fbonds, agraph, bgraph, atoms_bonds = feature
agraph = agraph.long()
bgraph = bgraph.long()
#print(fatoms.shape, fbonds.shape, agraph.shape, bgraph.shape, atoms_bonds.shape)
atoms_bonds = atoms_bonds.long()
batch_size = atoms_bonds.shape[0]
N_atoms, N_bonds = 0, 0
embeddings = []
for i in range(batch_size):
n_a = atoms_bonds[i,0].item()
n_b = atoms_bonds[i,1].item()
if (n_a == 0):
embed = create_var(torch.zeros(1, self.mpnn_hidden_size))
embeddings.append(embed.to(self.device))
continue
sub_fatoms = fatoms[N_atoms:N_atoms+n_a,:].to(self.device)
sub_fbonds = fbonds[N_bonds:N_bonds+n_b,:].to(self.device)
sub_agraph = agraph[N_atoms:N_atoms+n_a,:].to(self.device)
sub_bgraph = bgraph[N_bonds:N_bonds+n_b,:].to(self.device)
embed = self.single_feature_forward(sub_fatoms, sub_fbonds, sub_agraph, sub_bgraph)
embed = embed.to(self.device)
embeddings.append(embed)
N_atoms += n_a
N_bonds += n_b
if len(embeddings)==0:
return None
else:
return torch.cat(embeddings, 0)
def single_feature_forward(self, fatoms, fbonds, agraph, bgraph):
'''
fatoms: (x, 39)
fbonds: (y, 50)
agraph: (x, 6)
bgraph: (y,6)
'''
### invalid molecule
if fatoms.shape[0] == 0:
return create_var(torch.zeros(1, self.mpnn_hidden_size).to(self.device))
agraph = agraph.long()
bgraph = bgraph.long()
fatoms = create_var(fatoms).to(self.device)
fbonds = create_var(fbonds).to(self.device)
agraph = create_var(agraph).to(self.device)
bgraph = create_var(bgraph).to(self.device)
binput = self.W_i(fbonds)
message = F.relu(binput)
#print("shapes", fbonds.shape, binput.shape, message.shape)
for i in range(self.mpnn_depth - 1):
nei_message = index_select_ND(message, 0, bgraph)
nei_message = nei_message.sum(dim=1)
nei_message = self.W_h(nei_message)
message = F.relu(binput + nei_message)
nei_message = index_select_ND(message, 0, agraph)
nei_message = nei_message.sum(dim=1)
ainput = torch.cat([fatoms, nei_message], dim=1)
atom_hiddens = F.relu(self.W_o(ainput))
return torch.mean(atom_hiddens, 0).view(1,-1)
def forward_single_smiles(self, smiles):
fatoms, fbonds, agraph, bgraph, _ = smiles2mpnnfeature(smiles)
embed = self.single_feature_forward(fatoms, fbonds, agraph, bgraph).view(1,-1)
return embed
def forward_smiles_lst(self, smiles_lst):
embed_lst = [self.forward_single_smiles(smiles) for smiles in smiles_lst]
embed_all = torch.cat(embed_lst, 0)
return embed_all
def forward_smiles_lst_average(self, smiles_lst):
embed_all = self.forward_smiles_lst(smiles_lst)
embed_avg = torch.mean(embed_all, 0).view(1,-1)
return embed_avg
def forward_smiles_lst_lst(self, smiles_lst_lst):
embed_lst = [self.forward_smiles_lst_average(smiles_lst) for smiles_lst in smiles_lst_lst]
embed_all = torch.cat(embed_lst, 0) #### n,dim
return embed_all
class ADMET(nn.Sequential):
def __init__(self, molecule_encoder, highway_num, device,
epoch, lr, weight_decay, save_name):
super(ADMET, self).__init__()
self.molecule_encoder = molecule_encoder
self.embedding_size = self.molecule_encoder.embedding_size
self.highway_num = highway_num
self.highway_nn_lst = nn.ModuleList([Highway(size = self.embedding_size, num_layers = self.highway_num) for i in range(5)])
self.fc_output_lst = nn.ModuleList([nn.Linear(self.embedding_size, 1) for i in range(5)])
self.f = F.relu
self.loss = nn.BCEWithLogitsLoss()
self.epoch = epoch
self.lr = lr
self.weight_decay = weight_decay
self.save_name = save_name
self.device = device
self = self.to(device)
def set_device(self, device):
self.device = device
self.molecule_encoder.set_device(device)
def forward_smiles_lst_embedding(self, smiles_lst, idx):
embed_all = self.molecule_encoder.forward_smiles_lst(smiles_lst)
output = self.highway_nn_lst[idx](embed_all)
return output
def forward_embedding_to_pred(self, embeded, idx):
return self.fc_output_lst[idx](embeded)
def forward_smiles_lst_pred(self, smiles_lst, idx):
embeded = self.forward_smiles_lst_embedding(smiles_lst, idx)
fc_output = self.forward_embedding_to_pred(embeded, idx)
return fc_output
def test(self, dataloader_lst, return_loss = True):
loss_lst = []
for idx in range(1):
single_loss_lst = []
for smiles_lst, label_vec in dataloader_lst[idx]:
output = self.forward_smiles_lst_pred(smiles_lst, idx).view(-1)
loss = self.loss(output, label_vec.to(self.device).float())
single_loss_lst.append(loss.item())
loss_lst.append(np.mean(single_loss_lst))
return np.mean(loss_lst)
def train(self, train_loader_lst, valid_loader_lst):
opt = torch.optim.Adam(self.parameters(), lr = self.lr, weight_decay = self.weight_decay)
train_loss_record = []
valid_loss = self.test(valid_loader_lst, return_loss=True)
valid_loss_record = [valid_loss]
best_valid_loss = valid_loss
best_model = deepcopy(self)
for ep in tqdm(range(self.epoch)):
data_iterator_lst = [iter(train_loader_lst[idx]) for idx in range(5)]
try:
while True:
for idx in range(1):
smiles_lst, label_vec = next(data_iterator_lst[idx])
output = self.forward_smiles_lst_pred(smiles_lst, idx).view(-1)
loss = self.loss(output, label_vec.float())
opt.zero_grad()
loss.backward()
opt.step()
except:
pass
valid_loss = self.test(valid_loader_lst, return_loss = True)
valid_loss_record.append(valid_loss)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
best_model = deepcopy(self)
self = deepcopy(best_model)
if __name__ == "__main__":
model = MPNN(mpnn_hidden_size = 50, mpnn_depth = 3)
dataloader = data_loader()
for smiles_feature, labels in dataloader:
embedding = model(smiles_feature)
print(embedding.shape)
# smiles_lst = get_cooked_data_smiles_lst()
# valid_cnt, cnt = 0, 0
# for i,smiles in tqdm(enumerate(smiles_lst)):
# feature = smiles2mpnnfeature(smiles)
# if feature is not None:
# valid_cnt += 1
# if i%100==0:
# print("valid rate is", str(valid_cnt/(i+1)))
### single molecule forward
# for smiles in smiles_lst:
# fatoms, fbonds, agraph, bgraph, abshape = smiles2mpnnfeature(smiles)
# embedding = model.single_molecule_forward(fatoms, fbonds, agraph, bgraph)
# print(embedding.shape)