[bc9e98]: / HINT / molecule_encode.py

Download this file

450 lines (358 with data), 13.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
'''
input:
smiles batch
utility
1. graph MPN
2. smiles
3. morgan feature
output:
1. embedding batch
deeppurpose
DDI
encoders model
to do
lst -> dataloader -> feature -> model
mpnn's feature -> collate -> model
'''
import csv
from tqdm import tqdm
import numpy as np
from copy import deepcopy
import matplotlib.pyplot as plt
import rdkit
import rdkit.Chem as Chem
from rdkit import RDLogger
RDLogger.DisableLog('rdApp.info')
RDLogger.DisableLog('rdApp.*')
# from rdkit.Chem.EnumerateStereoisomers import EnumerateStereoisomers, StereoEnumerationOptions
import torch
torch.manual_seed(0)
from torch import nn
from torch.autograd import Variable
import torch.nn.functional as F
from torch.utils import data #### data.Dataset
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
from HINT.module import Highway
def get_drugbank_smiles_lst():
drugfile = 'data/drugbank_drugs_info.csv'
with open(drugfile, 'r') as csvfile:
rows = list(csv.reader(csvfile, delimiter = ','))[1:]
return [row[27] for row in rows]
def txt_to_lst(text):
"""
"['CN[C@H]1CC[C@@H](C2=CC(Cl)=C(Cl)C=C2)C2=CC=CC=C12', 'CNCCC=C1C2=CC=CC=C2CCC2=CC=CC=C12']"
"""
text = text[1:-1]
lst = [i.strip()[1:-1] for i in text.split(',')]
return lst
def get_cooked_data_smiles_lst():
cooked_file = 'data/raw_data.csv'
with open(cooked_file, 'r') as csvfile:
rows = list(csv.reader(csvfile, delimiter = ','))[1:]
smiles_lst = [row[8] for row in rows]
smiles_lst = list(map(txt_to_lst, smiles_lst))
from functools import reduce
smiles_lst = list(reduce(lambda x,y:x+y, smiles_lst))
smiles_lst = list(set(smiles_lst))
# print(len(smiles_lst))
return smiles_lst
def create_var(tensor, requires_grad=None):
if requires_grad is None:
return Variable(tensor)
else:
return Variable(tensor, requires_grad=requires_grad)
def index_select_ND(source, dim, index):
index_size = index.size()
suffix_dim = source.size()[1:]
final_size = index_size + suffix_dim
target = source.index_select(dim, index.view(-1))
return target.view(final_size)
def get_mol(smiles):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return None
Chem.Kekulize(mol)
return mol
ELEM_LIST = ['C', 'N', 'O', 'S', 'F', 'Si', 'P', 'Cl', 'Br', 'Mg', 'Na', 'Ca', 'Fe', 'Al', 'I', 'B', 'K', 'Se', 'Zn', 'H', 'Cu', 'Mn', 'unknown']
ATOM_FDIM = len(ELEM_LIST) + 6 + 5 + 4 + 1
BOND_FDIM = 5 + 6
MAX_NB = 6
### basic setting from https://github.com/wengong-jin/iclr19-graph2graph/blob/master/fast_jtnn/mpn.py
def onek_encoding_unk(x, allowable_set):
if x not in allowable_set:
x = allowable_set[-1]
return list(map(lambda s: x == s, allowable_set))
def atom_features(atom):
return torch.Tensor(onek_encoding_unk(atom.GetSymbol(), ELEM_LIST)
+ onek_encoding_unk(atom.GetDegree(), [0,1,2,3,4,5])
+ onek_encoding_unk(atom.GetFormalCharge(), [-1,-2,1,2,0])
+ onek_encoding_unk(int(atom.GetChiralTag()), [0,1,2,3])
+ [atom.GetIsAromatic()])
def bond_features(bond):
bt = bond.GetBondType()
stereo = int(bond.GetStereo())
fbond = [bt == Chem.rdchem.BondType.SINGLE, bt == Chem.rdchem.BondType.DOUBLE, bt == Chem.rdchem.BondType.TRIPLE, bt == Chem.rdchem.BondType.AROMATIC, bond.IsInRing()]
fstereo = onek_encoding_unk(stereo, [0,1,2,3,4,5])
return torch.Tensor(fbond + fstereo)
def smiles2mpnnfeature(smiles):
## from mpn.py::tensorize
'''
data-flow:
data_process(): apply(smiles2mpnnfeature)
DBTA: train(): data.DataLoader(data_process_loader())
mpnn_collate_func()
'''
padding = torch.zeros(ATOM_FDIM + BOND_FDIM)
fatoms, fbonds = [], [padding]
in_bonds,all_bonds = [], [(-1,-1)]
mol = get_mol(smiles)
if mol is not None:
n_atoms = mol.GetNumAtoms()
for atom in mol.GetAtoms():
fatoms.append( atom_features(atom))
in_bonds.append([])
for bond in mol.GetBonds():
a1 = bond.GetBeginAtom()
a2 = bond.GetEndAtom()
x = a1.GetIdx()
y = a2.GetIdx()
b = len(all_bonds)
all_bonds.append((x,y))
fbonds.append( torch.cat([fatoms[x], bond_features(bond)], 0) )
in_bonds[y].append(b)
b = len(all_bonds)
all_bonds.append((y,x))
fbonds.append( torch.cat([fatoms[y], bond_features(bond)], 0) )
in_bonds[x].append(b)
total_bonds = len(all_bonds)
fatoms = torch.stack(fatoms, 0)
fbonds = torch.stack(fbonds, 0)
agraph = torch.zeros(n_atoms,MAX_NB).long()
bgraph = torch.zeros(total_bonds,MAX_NB).long()
for a in range(n_atoms):
for i,b in enumerate(in_bonds[a]):
agraph[a,i] = b
for b1 in range(1, total_bonds):
x,y = all_bonds[b1]
for i,b2 in enumerate(in_bonds[x]):
if all_bonds[b2][0] != y:
bgraph[b1,i] = b2
else:
# print('Molecules not found and change to zero vectors..')
fatoms = torch.zeros(0,39)
fbonds = torch.zeros(0,50)
agraph = torch.zeros(0,6)
bgraph = torch.zeros(0,6)
Natom, Nbond = fatoms.shape[0], fbonds.shape[0]
shape_tensor = torch.Tensor([Natom, Nbond]).view(1,-1)
return [fatoms.float(), fbonds.float(), agraph.float(), bgraph.float(), shape_tensor]
class smiles_dataset(data.Dataset):
def __init__(self, smiles_lst, label_lst):
self.smiles_lst = smiles_lst
self.label_lst = label_lst
def __len__(self):
return len(self.smiles_lst)
def __getitem__(self, index):
smiles = self.smiles_lst[index]
label = self.label_lst[index]
smiles_feature = smiles2mpnnfeature(smiles)
return smiles_feature, label
## DTI.py --> collate
## x is a list, len(x)=batch_size, x[i] is tuple, len(x[0])=5
def mpnn_feature_collate_func(x):
return [torch.cat([x[j][i] for j in range(len(x))], 0) for i in range(len(x[0]))]
def mpnn_collate_func(x):
#print("len(x) is ", len(x)) ## batch_size
#print("len(x[0]) is ", len(x[0])) ## 3--- data_process_loader.__getitem__
mpnn_feature = [i[0] for i in x]
#print("len(mpnn_feature)", len(mpnn_feature), "len(mpnn_feature[0])", len(mpnn_feature[0]))
mpnn_feature = mpnn_feature_collate_func(mpnn_feature)
from torch.utils.data.dataloader import default_collate
x_remain = [i[1:] for i in x]
x_remain_collated = default_collate(x_remain)
return [mpnn_feature] + x_remain_collated
def data_loader():
smiles_lst = get_cooked_data_smiles_lst()
label_lst = [1 for i in range(len(smiles_lst))]
dataset = smiles_dataset(smiles_lst, label_lst)
dataloader = data.DataLoader(dataset, batch_size=32, collate_fn = mpnn_collate_func, )
return dataloader
class MPNN(nn.Sequential):
def __init__(self, mpnn_hidden_size, mpnn_depth, device):
super(MPNN, self).__init__()
self.mpnn_hidden_size = mpnn_hidden_size
self.mpnn_depth = mpnn_depth
self.W_i = nn.Linear(ATOM_FDIM + BOND_FDIM, self.mpnn_hidden_size, bias=False)
self.W_h = nn.Linear(self.mpnn_hidden_size, self.mpnn_hidden_size, bias=False)
self.W_o = nn.Linear(ATOM_FDIM + self.mpnn_hidden_size, self.mpnn_hidden_size)
self.device = device
self = self.to(self.device)
def set_device(self, device):
self.device = device
@property
def embedding_size(self):
return self.mpnn_hidden_size
### forward single molecule sequentially.
def feature_forward(self, feature):
'''
batch_size == 1
feature: utils.smiles2mpnnfeature
'''
fatoms, fbonds, agraph, bgraph, atoms_bonds = feature
agraph = agraph.long()
bgraph = bgraph.long()
#print(fatoms.shape, fbonds.shape, agraph.shape, bgraph.shape, atoms_bonds.shape)
atoms_bonds = atoms_bonds.long()
batch_size = atoms_bonds.shape[0]
N_atoms, N_bonds = 0, 0
embeddings = []
for i in range(batch_size):
n_a = atoms_bonds[i,0].item()
n_b = atoms_bonds[i,1].item()
if (n_a == 0):
embed = create_var(torch.zeros(1, self.mpnn_hidden_size))
embeddings.append(embed.to(self.device))
continue
sub_fatoms = fatoms[N_atoms:N_atoms+n_a,:].to(self.device)
sub_fbonds = fbonds[N_bonds:N_bonds+n_b,:].to(self.device)
sub_agraph = agraph[N_atoms:N_atoms+n_a,:].to(self.device)
sub_bgraph = bgraph[N_bonds:N_bonds+n_b,:].to(self.device)
embed = self.single_feature_forward(sub_fatoms, sub_fbonds, sub_agraph, sub_bgraph)
embed = embed.to(self.device)
embeddings.append(embed)
N_atoms += n_a
N_bonds += n_b
if len(embeddings)==0:
return None
else:
return torch.cat(embeddings, 0)
def single_feature_forward(self, fatoms, fbonds, agraph, bgraph):
'''
fatoms: (x, 39)
fbonds: (y, 50)
agraph: (x, 6)
bgraph: (y,6)
'''
### invalid molecule
if fatoms.shape[0] == 0:
return create_var(torch.zeros(1, self.mpnn_hidden_size).to(self.device))
agraph = agraph.long()
bgraph = bgraph.long()
fatoms = create_var(fatoms).to(self.device)
fbonds = create_var(fbonds).to(self.device)
agraph = create_var(agraph).to(self.device)
bgraph = create_var(bgraph).to(self.device)
binput = self.W_i(fbonds)
message = F.relu(binput)
#print("shapes", fbonds.shape, binput.shape, message.shape)
for i in range(self.mpnn_depth - 1):
nei_message = index_select_ND(message, 0, bgraph)
nei_message = nei_message.sum(dim=1)
nei_message = self.W_h(nei_message)
message = F.relu(binput + nei_message)
nei_message = index_select_ND(message, 0, agraph)
nei_message = nei_message.sum(dim=1)
ainput = torch.cat([fatoms, nei_message], dim=1)
atom_hiddens = F.relu(self.W_o(ainput))
return torch.mean(atom_hiddens, 0).view(1,-1)
def forward_single_smiles(self, smiles):
fatoms, fbonds, agraph, bgraph, _ = smiles2mpnnfeature(smiles)
embed = self.single_feature_forward(fatoms, fbonds, agraph, bgraph).view(1,-1)
return embed
def forward_smiles_lst(self, smiles_lst):
embed_lst = [self.forward_single_smiles(smiles) for smiles in smiles_lst]
embed_all = torch.cat(embed_lst, 0)
return embed_all
def forward_smiles_lst_average(self, smiles_lst):
embed_all = self.forward_smiles_lst(smiles_lst)
embed_avg = torch.mean(embed_all, 0).view(1,-1)
return embed_avg
def forward_smiles_lst_lst(self, smiles_lst_lst):
embed_lst = [self.forward_smiles_lst_average(smiles_lst) for smiles_lst in smiles_lst_lst]
embed_all = torch.cat(embed_lst, 0) #### n,dim
return embed_all
class ADMET(nn.Sequential):
def __init__(self, molecule_encoder, highway_num, device,
epoch, lr, weight_decay, save_name):
super(ADMET, self).__init__()
self.molecule_encoder = molecule_encoder
self.embedding_size = self.molecule_encoder.embedding_size
self.highway_num = highway_num
self.highway_nn_lst = nn.ModuleList([Highway(size = self.embedding_size, num_layers = self.highway_num) for i in range(5)])
self.fc_output_lst = nn.ModuleList([nn.Linear(self.embedding_size, 1) for i in range(5)])
self.f = F.relu
self.loss = nn.BCEWithLogitsLoss()
self.epoch = epoch
self.lr = lr
self.weight_decay = weight_decay
self.save_name = save_name
self.device = device
self = self.to(device)
def set_device(self, device):
self.device = device
self.molecule_encoder.set_device(device)
def forward_smiles_lst_embedding(self, smiles_lst, idx):
embed_all = self.molecule_encoder.forward_smiles_lst(smiles_lst)
output = self.highway_nn_lst[idx](embed_all)
return output
def forward_embedding_to_pred(self, embeded, idx):
return self.fc_output_lst[idx](embeded)
def forward_smiles_lst_pred(self, smiles_lst, idx):
embeded = self.forward_smiles_lst_embedding(smiles_lst, idx)
fc_output = self.forward_embedding_to_pred(embeded, idx)
return fc_output
def test(self, dataloader_lst, return_loss = True):
loss_lst = []
for idx in range(1):
single_loss_lst = []
for smiles_lst, label_vec in dataloader_lst[idx]:
output = self.forward_smiles_lst_pred(smiles_lst, idx).view(-1)
loss = self.loss(output, label_vec.to(self.device).float())
single_loss_lst.append(loss.item())
loss_lst.append(np.mean(single_loss_lst))
return np.mean(loss_lst)
def train(self, train_loader_lst, valid_loader_lst):
opt = torch.optim.Adam(self.parameters(), lr = self.lr, weight_decay = self.weight_decay)
train_loss_record = []
valid_loss = self.test(valid_loader_lst, return_loss=True)
valid_loss_record = [valid_loss]
best_valid_loss = valid_loss
best_model = deepcopy(self)
for ep in tqdm(range(self.epoch)):
data_iterator_lst = [iter(train_loader_lst[idx]) for idx in range(5)]
try:
while True:
for idx in range(1):
smiles_lst, label_vec = next(data_iterator_lst[idx])
output = self.forward_smiles_lst_pred(smiles_lst, idx).view(-1)
loss = self.loss(output, label_vec.float())
opt.zero_grad()
loss.backward()
opt.step()
except:
pass
valid_loss = self.test(valid_loader_lst, return_loss = True)
valid_loss_record.append(valid_loss)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
best_model = deepcopy(self)
self = deepcopy(best_model)
if __name__ == "__main__":
model = MPNN(mpnn_hidden_size = 50, mpnn_depth = 3)
dataloader = data_loader()
for smiles_feature, labels in dataloader:
embedding = model(smiles_feature)
print(embedding.shape)
# smiles_lst = get_cooked_data_smiles_lst()
# valid_cnt, cnt = 0, 0
# for i,smiles in tqdm(enumerate(smiles_lst)):
# feature = smiles2mpnnfeature(smiles)
# if feature is not None:
# valid_cnt += 1
# if i%100==0:
# print("valid rate is", str(valid_cnt/(i+1)))
### single molecule forward
# for smiles in smiles_lst:
# fatoms, fbonds, agraph, bgraph, abshape = smiles2mpnnfeature(smiles)
# embedding = model.single_molecule_forward(fatoms, fbonds, agraph, bgraph)
# print(embedding.shape)