Diff of /HINT/module.py [000000] .. [bc9e98]

Switch to unified view

a b/HINT/module.py
1
import torch
2
import torch.nn as nn
3
import torch.nn.functional as F
4
from copy import deepcopy 
5
from torch.autograd import Variable
6
from torch.utils import data
7
from torch.utils.data import SequentialSampler
8
import matplotlib.pyplot as plt
9
import numpy as np 
10
sigmoid = torch.nn.Sigmoid() 
11
torch.manual_seed(0)
12
13
from HINT.gnn_layers import GraphConvolution, GraphAttention
14
torch.manual_seed(4) 
15
np.random.seed(1)
16
17
class Highway(nn.Module):
18
    def __init__(self, size, num_layers):
19
        super(Highway, self).__init__()
20
        self.num_layers = num_layers
21
        self.nonlinear = nn.ModuleList([nn.Linear(size, size) for _ in range(num_layers)])
22
        self.linear = nn.ModuleList([nn.Linear(size, size) for _ in range(num_layers)])
23
        self.gate = nn.ModuleList([nn.Linear(size, size) for _ in range(num_layers)])
24
        self.f = F.relu
25
26
    def forward(self, x):
27
        """
28
            :param x: tensor with shape of [batch_size, size]
29
            :return: tensor with shape of [batch_size, size]
30
            applies σ(x) ⨀ (f(G(x))) + (1 - σ(x)) ⨀ (Q(x)) transformation | G and Q is affine transformation,
31
            f is non-linear transformation, σ(x) is affine transformation with sigmoid non-linearition
32
            and ⨀ is element-wise multiplication
33
        """
34
        for layer in range(self.num_layers):
35
            gate = F.sigmoid(self.gate[layer](x))
36
            nonlinear = self.f(self.nonlinear[layer](x))
37
            linear = self.linear[layer](x)
38
            x = gate * nonlinear + (1 - gate) * linear
39
        return x
40
41
42
43
44
45
46
class GCN(nn.Module):
47
    def __init__(self, nfeat, nhid, nclass, dropout, init):
48
        super(GCN, self).__init__()
49
50
        self.gc1 = GraphConvolution(nfeat, nhid, init=init)
51
        self.gc2 = GraphConvolution(nhid, nclass, init=init)
52
        self.dropout = dropout
53
54
    def bottleneck(self, path1, path2, path3, adj, in_x):
55
        return F.relu(path3(F.relu(path2(F.relu(path1(in_x, adj)), adj)), adj))
56
57
    def forward(self, x, adj):
58
        x = F.dropout(F.relu(self.gc1(x, adj)), self.dropout, training=self.training)
59
        x = self.gc2(x, adj)
60
        return x 
61
        # return F.log_softmax(x, dim=1)
62
63
64
65
66
class GCN_drop_in(nn.Module):
67
    def __init__(self, nfeat, nhid, nclass, dropout, init):
68
        super(GCN_drop_in, self).__init__()
69
70
        self.gc1 = GraphConvolution(nfeat, nhid, init=init)
71
        self.gc2 = GraphConvolution(nhid, nclass, init=init)
72
        self.dropout = dropout
73
74
    def bottleneck(self, path1, path2, path3, adj, in_x):
75
        return F.relu(path3(F.relu(path2(F.relu(path1(in_x, adj)), adj)), adj))
76
77
    def forward(self, x, adj):
78
        x = F.dropout(x, self.dropout, training=self.training)
79
        x = F.dropout(F.relu(self.gc1(x, adj)), self.dropout, training=self.training)
80
        x = self.gc2(x, adj)
81
82
        return F.log_softmax(x, dim=1)
83
84
class GAT(nn.Module):
85
    def __init__(self, nfeat, nhid, nclass, dropout, alpha, nheads):
86
        super(GAT, self).__init__()
87
        self.dropout = dropout
88
89
        self.attentions = [GraphAttention(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)]
90
        for i, attention in enumerate(self.attentions):
91
            self.add_module('attention_{}'.format(i), attention)
92
93
        self.out_att = GraphAttention(nhid * nheads, nclass, dropout=dropout, alpha=alpha, concat=False)
94
95
    def forward(self, x, adj):
96
        x = F.dropout(x, self.dropout, training=self.training)
97
        x = torch.cat([att(x, adj) for att in self.attentions], dim=1)
98
        x = F.dropout(x, self.dropout, training=self.training)
99
        x = F.elu(self.out_att(x, adj))
100
        return F.log_softmax(x, dim=1)
101
102
103
104
105
if __name__ == "__main__":
106
    gnn = GCN(
107
            nfeat = 20,
108
            nhid = 30,
109
            nclass = 1,
110
            dropout = 0.6,
111
            init = 'uniform') 
112
113
114
115
116
117
118
119
120