--- a +++ b/HINT/module.py @@ -0,0 +1,120 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from copy import deepcopy +from torch.autograd import Variable +from torch.utils import data +from torch.utils.data import SequentialSampler +import matplotlib.pyplot as plt +import numpy as np +sigmoid = torch.nn.Sigmoid() +torch.manual_seed(0) + +from HINT.gnn_layers import GraphConvolution, GraphAttention +torch.manual_seed(4) +np.random.seed(1) + +class Highway(nn.Module): + def __init__(self, size, num_layers): + super(Highway, self).__init__() + self.num_layers = num_layers + self.nonlinear = nn.ModuleList([nn.Linear(size, size) for _ in range(num_layers)]) + self.linear = nn.ModuleList([nn.Linear(size, size) for _ in range(num_layers)]) + self.gate = nn.ModuleList([nn.Linear(size, size) for _ in range(num_layers)]) + self.f = F.relu + + def forward(self, x): + """ + :param x: tensor with shape of [batch_size, size] + :return: tensor with shape of [batch_size, size] + applies σ(x) ⨀ (f(G(x))) + (1 - σ(x)) ⨀ (Q(x)) transformation | G and Q is affine transformation, + f is non-linear transformation, σ(x) is affine transformation with sigmoid non-linearition + and ⨀ is element-wise multiplication + """ + for layer in range(self.num_layers): + gate = F.sigmoid(self.gate[layer](x)) + nonlinear = self.f(self.nonlinear[layer](x)) + linear = self.linear[layer](x) + x = gate * nonlinear + (1 - gate) * linear + return x + + + + + + +class GCN(nn.Module): + def __init__(self, nfeat, nhid, nclass, dropout, init): + super(GCN, self).__init__() + + self.gc1 = GraphConvolution(nfeat, nhid, init=init) + self.gc2 = GraphConvolution(nhid, nclass, init=init) + self.dropout = dropout + + def bottleneck(self, path1, path2, path3, adj, in_x): + return F.relu(path3(F.relu(path2(F.relu(path1(in_x, adj)), adj)), adj)) + + def forward(self, x, adj): + x = F.dropout(F.relu(self.gc1(x, adj)), self.dropout, training=self.training) + x = self.gc2(x, adj) + return x + # return F.log_softmax(x, dim=1) + + + + +class GCN_drop_in(nn.Module): + def __init__(self, nfeat, nhid, nclass, dropout, init): + super(GCN_drop_in, self).__init__() + + self.gc1 = GraphConvolution(nfeat, nhid, init=init) + self.gc2 = GraphConvolution(nhid, nclass, init=init) + self.dropout = dropout + + def bottleneck(self, path1, path2, path3, adj, in_x): + return F.relu(path3(F.relu(path2(F.relu(path1(in_x, adj)), adj)), adj)) + + def forward(self, x, adj): + x = F.dropout(x, self.dropout, training=self.training) + x = F.dropout(F.relu(self.gc1(x, adj)), self.dropout, training=self.training) + x = self.gc2(x, adj) + + return F.log_softmax(x, dim=1) + +class GAT(nn.Module): + def __init__(self, nfeat, nhid, nclass, dropout, alpha, nheads): + super(GAT, self).__init__() + self.dropout = dropout + + self.attentions = [GraphAttention(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)] + for i, attention in enumerate(self.attentions): + self.add_module('attention_{}'.format(i), attention) + + self.out_att = GraphAttention(nhid * nheads, nclass, dropout=dropout, alpha=alpha, concat=False) + + def forward(self, x, adj): + x = F.dropout(x, self.dropout, training=self.training) + x = torch.cat([att(x, adj) for att in self.attentions], dim=1) + x = F.dropout(x, self.dropout, training=self.training) + x = F.elu(self.out_att(x, adj)) + return F.log_softmax(x, dim=1) + + + + +if __name__ == "__main__": + gnn = GCN( + nfeat = 20, + nhid = 30, + nclass = 1, + dropout = 0.6, + init = 'uniform') + + + + + + + + +