[bc9e98]: / HINT / model.py

Download this file

916 lines (823 with data), 38.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
from sklearn.metrics import roc_auc_score, f1_score, average_precision_score, precision_score, recall_score, accuracy_score
import matplotlib.pyplot as plt
from copy import deepcopy
import numpy as np
from tqdm import tqdm
import torch
torch.manual_seed(0)
from torch import nn
from torch.autograd import Variable
import torch.nn.functional as F
from HINT.module import Highway, GCN
from functools import reduce
import pickle
class Interaction(nn.Sequential):
def __init__(self, molecule_encoder, disease_encoder, protocol_encoder,
device,
global_embed_size,
highway_num_layer,
prefix_name,
epoch = 20,
lr = 3e-4,
weight_decay = 0,
):
super(Interaction, self).__init__()
self.molecule_encoder = molecule_encoder
self.disease_encoder = disease_encoder
self.protocol_encoder = protocol_encoder
self.global_embed_size = global_embed_size
self.highway_num_layer = highway_num_layer
self.feature_dim = self.molecule_encoder.embedding_size + self.disease_encoder.embedding_size + self.protocol_encoder.embedding_size
self.epoch = epoch
self.lr = lr
self.weight_decay = weight_decay
self.save_name = prefix_name + '_interaction'
self.f = F.relu
self.loss = nn.BCEWithLogitsLoss()
##### NN
self.encoder2interaction_fc = nn.Linear(self.feature_dim, self.global_embed_size).to(device)
self.encoder2interaction_highway = Highway(self.global_embed_size, self.highway_num_layer).to(device)
self.pred_nn = nn.Linear(self.global_embed_size, 1)
self.device = device
self = self.to(device)
def feed_lst_of_module(self, input_feature, lst_of_module):
x = input_feature
for single_module in lst_of_module:
x = self.f(single_module(x))
return x
def forward_get_three_encoders(self, smiles_lst2, icdcode_lst3, criteria_lst):
molecule_embed = self.molecule_encoder.forward_smiles_lst_lst(smiles_lst2)
icd_embed = self.disease_encoder.forward_code_lst3(icdcode_lst3)
protocol_embed = self.protocol_encoder.forward(criteria_lst)
return molecule_embed, icd_embed, protocol_embed
def forward_encoder_2_interaction(self, molecule_embed, icd_embed, protocol_embed):
encoder_embedding = torch.cat([molecule_embed, icd_embed, protocol_embed], 1)
# interaction_embedding = self.feed_lst_of_module(encoder_embedding, [self.encoder2interaction_fc, self.encoder2interaction_highway])
h = self.encoder2interaction_fc(encoder_embedding)
h = self.f(h)
h = self.encoder2interaction_highway(h)
interaction_embedding = self.f(h)
return interaction_embedding
def forward(self, smiles_lst2, icdcode_lst3, criteria_lst):
molecule_embed, icd_embed, protocol_embed = self.forward_get_three_encoders(smiles_lst2, icdcode_lst3, criteria_lst)
interaction_embedding = self.forward_encoder_2_interaction(molecule_embed, icd_embed, protocol_embed)
output = self.pred_nn(interaction_embedding)
return output ### 32, 1
def evaluation(self, predict_all, label_all, threshold = 0.5):
import pickle, os
from sklearn.metrics import roc_curve, precision_recall_curve
with open("predict_label.txt", 'w') as fout:
for i,j in zip(predict_all, label_all):
fout.write(str(i)[:6] + '\t' + str(j)[:4]+'\n')
auc_score = roc_auc_score(label_all, predict_all)
figure_folder = "figure"
#### ROC-curve
fpr, tpr, thresholds = roc_curve(label_all, predict_all, pos_label=1)
# roc_curve =plt.figure()
# plt.plot(fpr,tpr,'-',label=self.save_name + ' ROC Curve ')
# plt.legend(fontsize = 15)
# plt.savefig(os.path.join(figure_folder,self.save_name+"_roc_curve.png"))
#### PR-curve
precision, recall, thresholds = precision_recall_curve(label_all, predict_all)
# plt.plot(recall,precision, label = self.save_name + ' PR Curve')
# plt.legend(fontsize = 15)
# plt.savefig(os.path.join(figure_folder,self.save_name + "_pr_curve.png"))
label_all = [int(i) for i in label_all]
float2binary = lambda x:0 if x < threshold else 1
predict_all = list(map(float2binary, predict_all))
f1score = f1_score(label_all, predict_all)
prauc_score = average_precision_score(label_all, predict_all)
# print(predict_all)
precision = precision_score(label_all, predict_all)
recall = recall_score(label_all, predict_all)
accuracy = accuracy_score(label_all, predict_all)
predict_1_ratio = sum(predict_all) / len(predict_all)
label_1_ratio = sum(label_all) / len(label_all)
return auc_score, f1score, prauc_score, precision, recall, accuracy, predict_1_ratio, label_1_ratio
def testloader_to_lst(self, dataloader):
nctid_lst, label_lst, smiles_lst2, icdcode_lst3, criteria_lst = [], [], [], [], []
for nctid, label, smiles, icdcode, criteria in dataloader:
nctid_lst.extend(nctid)
label_lst.extend([i.item() for i in label])
smiles_lst2.extend(smiles)
icdcode_lst3.extend(icdcode)
criteria_lst.extend(criteria)
length = len(nctid_lst)
assert length == len(smiles_lst2) and length == len(icdcode_lst3)
return nctid_lst, label_lst, smiles_lst2, icdcode_lst3, criteria_lst, length
def generate_predict(self, dataloader):
whole_loss = 0
label_all, predict_all, nctid_all = [], [], []
for nctid_lst, label_vec, smiles_lst2, icdcode_lst3, criteria_lst in dataloader:
nctid_all.extend(nctid_lst)
label_vec = label_vec.to(self.device)
output = self.forward(smiles_lst2, icdcode_lst3, criteria_lst).view(-1)
loss = self.loss(output, label_vec.float())
whole_loss += loss.item()
predict_all.extend([i.item() for i in torch.sigmoid(output)])
label_all.extend([i.item() for i in label_vec])
return whole_loss, predict_all, label_all, nctid_all
def bootstrap_test(self, dataloader, valid_loader = None, sample_num = 20):
best_threshold = 0.5
# if validloader is not None:
# best_threshold = self.select_threshold_for_binary(valid_loader)
# print(f"best_threshold: {best_threshold}")
self.eval()
whole_loss, predict_all, label_all, nctid_all = self.generate_predict(dataloader)
from HINT.utils import plot_hist
plt.clf()
prefix_name = "./figure/" + self.save_name
plot_hist(prefix_name, predict_all, label_all)
def bootstrap(length, sample_num):
idx = [i for i in range(length)]
from random import choices
bootstrap_idx = [choices(idx, k = length) for i in range(sample_num)]
return bootstrap_idx
results_lst = []
bootstrap_idx_lst = bootstrap(len(predict_all), sample_num = sample_num)
for bootstrap_idx in bootstrap_idx_lst:
bootstrap_label = [label_all[idx] for idx in bootstrap_idx]
bootstrap_predict = [predict_all[idx] for idx in bootstrap_idx]
results = self.evaluation(bootstrap_predict, bootstrap_label, threshold = best_threshold)
results_lst.append(results)
self.train()
auc = [results[0] for results in results_lst]
f1score = [results[1] for results in results_lst]
prauc_score = [results[2] for results in results_lst]
print("PR-AUC mean: "+str(np.mean(prauc_score))[:6], "std: "+str(np.std(prauc_score))[:6])
print("F1 mean: "+str(np.mean(f1score))[:6], "std: "+str(np.std(f1score))[:6])
print("ROC-AUC mean: "+str(np.mean(auc))[:6], "std: "+str(np.std(auc))[:6])
for nctid, label, predict in zip(nctid_all, label_all, predict_all):
if (predict > 0.5 and label == 0) or (predict < 0.5 and label == 1):
print(nctid, label, str(predict)[:6])
nctid2predict = {nctid:predict for nctid, predict in zip(nctid_all, predict_all)}
pickle.dump(nctid2predict, open('results/nctid2predict.pkl', 'wb'))
return nctid_all, predict_all
def ongoing_test(self, dataloader, sample_num = 20):
self.eval()
best_threshold = 0.5
whole_loss, predict_all, label_all, nctid_all = self.generate_predict(dataloader)
self.train()
return nctid_all, predict_all
def test(self, dataloader, return_loss = True, validloader=None):
# if validloader is not None:
# best_threshold = self.select_threshold_for_binary(validloader)
self.eval()
best_threshold = 0.5
whole_loss, predict_all, label_all, nctid_all = self.generate_predict(dataloader)
# from HINT.utils import plot_hist
# plt.clf()
# prefix_name = "./figure/" + self.save_name
# plot_hist(prefix_name, predict_all, label_all)
self.train()
if return_loss:
return whole_loss, predict_all, label_all
else:
print_num = 6
auc_score, f1score, prauc_score, precision, recall, accuracy, \
predict_1_ratio, label_1_ratio = self.evaluation(predict_all, label_all, threshold = best_threshold)
print("ROC AUC: " + str(auc_score)[:print_num] + "\nF1: " + str(f1score)[:print_num] \
+ "\nPR-AUC: " + str(prauc_score)[:print_num] \
+ "\nPrecision: " + str(precision)[:print_num] \
+ "\nrecall: "+str(recall)[:print_num] + "\naccuracy: "+str(accuracy)[:print_num] \
+ "\npredict 1 ratio: " + str(predict_1_ratio)[:print_num] \
+ "\nlabel 1 ratio: " + str(label_1_ratio)[:print_num])
return auc_score, f1score, prauc_score, precision, recall, accuracy, predict_1_ratio, label_1_ratio
def learn(self, train_loader, valid_loader, test_loader):
opt = torch.optim.Adam(self.parameters(), lr = self.lr, weight_decay = self.weight_decay)
train_loss_record = []
valid_loss, valid_predict, valid_label = self.test(valid_loader, return_loss=True)
valid_loss_record = [valid_loss]
best_valid_loss = valid_loss
best_model = deepcopy(self)
train_output = []
valid_output = []
for ep in tqdm(range(self.epoch)):
for nctid_lst, label_vec, smiles_lst2, icdcode_lst3, criteria_lst in train_loader:
label_vec = label_vec.to(self.device)
output = self.forward(smiles_lst2, icdcode_lst3, criteria_lst).view(-1) #### 32, 1 -> 32, || label_vec 32,
loss = self.loss(output, label_vec.float())
train_loss_record.append(loss.item())
train_output.append((loss.item(), output, label_vec))
opt.zero_grad()
loss.backward()
opt.step()
valid_loss, valid_predict, valid_label = self.test(valid_loader, return_loss=True)
valid_loss_record.append(valid_loss)
valid_output.append((valid_loss, valid_predict, valid_label))
print(f"valid_loss: {valid_loss}")
print(best_valid_loss)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
best_model = deepcopy(self)
self.plot_learning_curve(train_loss_record, valid_loss_record)
self = deepcopy(best_model)
auc_score, f1score, prauc_score, precision, recall, accuracy, predict_1_ratio, label_1_ratio = self.test(test_loader, return_loss = False, validloader = valid_loader)
return train_output, valid_output
def plot_learning_curve(self, train_loss_record, valid_loss_record):
plt.plot(train_loss_record)
plt.savefig("./figure/" + self.save_name + '_train_loss.jpg')
plt.clf()
plt.plot(valid_loss_record)
plt.savefig("./figure/" + self.save_name + '_valid_loss.jpg')
plt.clf()
def select_threshold_for_binary(self, validloader):
_, prediction, label_all, nctid_all = self.generate_predict(validloader)
best_f1 = 0
for threshold in prediction:
float2binary = lambda x:0 if x<threshold else 1
predict_all = list(map(float2binary, prediction))
f1score = precision_score(label_all, predict_all)
if f1score > best_f1:
best_f1 = f1score
best_threshold = threshold
return best_threshold
class HINTModel_multi(Interaction):
def __init__(self, molecule_encoder, disease_encoder, protocol_encoder,
device,
global_embed_size,
highway_num_layer,
prefix_name,
epoch = 20,
lr = 3e-4,
weight_decay = 0,
):
super(HINTModel_multi, self).__init__(molecule_encoder = molecule_encoder,
disease_encoder = disease_encoder,
protocol_encoder = protocol_encoder,
device = device,
prefix_name = prefix_name,
global_embed_size = global_embed_size,
highway_num_layer = highway_num_layer,
epoch = epoch,
lr = lr,
weight_decay = weight_decay)
self.pred_nn = nn.Linear(self.global_embed_size, 4)
self.loss = nn.CrossEntropyLoss()
def forward(self, smiles_lst2, icdcode_lst3, criteria_lst):
molecule_embed, icd_embed, protocol_embed = self.forward_get_three_encoders(smiles_lst2, icdcode_lst3, criteria_lst)
interaction_embedding = self.forward_encoder_2_interaction(molecule_embed, icd_embed, protocol_embed)
output = self.pred_nn(interaction_embedding)
return output ### 32, 4
def generate_predict(self, dataloader):
whole_loss = 0
label_all, predict_all = [], []
for nctid_lst, label_vec, smiles_lst2, icdcode_lst3, criteria_lst in dataloader:
label_vec = label_vec.to(self.device)
output = self.forward(smiles_lst2, icdcode_lst3, criteria_lst)
loss = self.loss(output, label_vec)
whole_loss += loss.item()
predict_all.extend(torch.argmax(output, 1).tolist())
# predict_all.extend([i.item() for i in torch.sigmoid(output)])
label_all.extend([i.item() for i in label_vec])
accuracy = len(list(filter(lambda x:x[0]==x[1], zip(predict_all, label_all)))) / len(label_all)
return whole_loss, predict_all, label_all, accuracy
def test(self, dataloader, return_loss = True, validloader=None):
# if validloader is not None:
# best_threshold = self.select_threshold_for_binary(validloader)
self.eval()
whole_loss, predict_all, label_all, accuracy = self.generate_predict(dataloader)
self.train()
return whole_loss, predict_all, label_all, accuracy
# # from HINT.utils import plot_hist
# # plt.clf()
# # prefix_name = "./figure/" + self.save_name
# # plot_hist(prefix_name, predict_all, label_all)
# self.train()
# if return_loss:
# return whole_loss
# else:
# print_num = 5
# auc_score, f1score, prauc_score, precision, recall, accuracy, \
# predict_1_ratio, label_1_ratio = self.evaluation(predict_all, label_all, threshold = best_threshold)
# print("ROC AUC: " + str(auc_score)[:print_num] + "\nF1: " + str(f1score)[:print_num] \
# + "\nPR-AUC: " + str(prauc_score)[:print_num] \
# + "\nPrecision: " + str(precision)[:print_num] \
# + "\nrecall: "+str(recall)[:print_num] + "\naccuracy: "+str(accuracy)[:print_num] \
# + "\npredict 1 ratio: " + str(predict_1_ratio)[:print_num] \
# + "\nlabel 1 ratio: " + str(label_1_ratio)[:print_num])
# return auc_score, f1score, prauc_score, precision, recall, accuracy, predict_1_ratio, label_1_ratio
def learn(self, train_loader, valid_loader, test_loader):
opt = torch.optim.Adam(self.parameters(), lr = self.lr, weight_decay = self.weight_decay)
train_loss_record = []
valid_loss, predict_all, label_all, accuracy = self.test(valid_loader, return_loss=True)
print('accuracy', accuracy)
# valid_loss_record = [valid_loss]
# best_valid_loss = valid_loss
best_model = deepcopy(self)
for ep in tqdm(range(self.epoch)):
self.train()
for nctid_lst, label_vec, smiles_lst2, icdcode_lst3, criteria_lst in train_loader:
label_vec = label_vec.to(self.device)
output = self.forward(smiles_lst2, icdcode_lst3, criteria_lst) #### 32, 1 -> 32, || label_vec 32,
# print(label_vec.shape, output.shape, label_vec, output)
loss = self.loss(output, label_vec)
train_loss_record.append(loss.item())
opt.zero_grad()
loss.backward()
opt.step()
valid_loss, predict_all, label_all, accuracy = self.test(valid_loader, return_loss=True)
print('accuracy', accuracy)
return predict_all, label_all
# valid_loss_record.append(valid_loss)
# if valid_loss < best_valid_loss:
# best_valid_loss = valid_loss
# best_model = deepcopy(self)
# self.plot_learning_curve(train_loss_record, valid_loss_record)
# self = deepcopy(best_model)
# auc_score, f1score, prauc_score, precision, recall, accuracy, predict_1_ratio, label_1_ratio = self.test(test_loader, return_loss = False, validloader = valid_loader)
class HINT_nograph(Interaction):
def __init__(self, molecule_encoder, disease_encoder, protocol_encoder, device,
global_embed_size,
highway_num_layer,
prefix_name,
epoch = 20,
lr = 3e-4,
weight_decay = 0, ):
super(HINT_nograph, self).__init__(molecule_encoder = molecule_encoder,
disease_encoder = disease_encoder,
protocol_encoder = protocol_encoder,
device = device,
global_embed_size = global_embed_size,
prefix_name = prefix_name,
highway_num_layer = highway_num_layer,
epoch = epoch,
lr = lr,
weight_decay = weight_decay,
)
self.save_name = prefix_name + '_HINT_nograph'
''' ### interaction model
self.molecule_encoder = molecule_encoder
self.disease_encoder = disease_encoder
self.protocol_encoder = protocol_encoder
self.global_embed_size = global_embed_size
self.highway_num_layer = highway_num_layer
self.feature_dim = self.molecule_encoder.embedding_size + self.disease_encoder.embedding_size + self.protocol_encoder.embedding_size
self.epoch = epoch
self.lr = lr
self.weight_decay = weight_decay
self.save_name = save_name
self.f = F.relu
self.loss = nn.BCEWithLogitsLoss()
##### NN
self.encoder2interaction_fc = nn.Linear(self.feature_dim, self.global_embed_size)
self.encoder2interaction_highway = Highway(self.global_embed_size, self.highway_num_layer)
self.pred_nn = nn.Linear(self.global_embed_size, 1)
'''
#### risk of disease
self.risk_disease_fc = nn.Linear(self.disease_encoder.embedding_size, self.global_embed_size)
self.risk_disease_higway = Highway(self.global_embed_size, self.highway_num_layer)
#### augment interaction
self.augment_interaction_fc = nn.Linear(self.global_embed_size*2, self.global_embed_size)
self.augment_interaction_highway = Highway(self.global_embed_size, self.highway_num_layer)
#### ADMET
self.admet_model = []
for i in range(5):
admet_fc = nn.Linear(self.molecule_encoder.embedding_size, self.global_embed_size).to(device)
admet_highway = Highway(self.global_embed_size, self.highway_num_layer).to(device)
self.admet_model.append(nn.ModuleList([admet_fc, admet_highway]))
self.admet_model = nn.ModuleList(self.admet_model)
#### PK
self.pk_fc = nn.Linear(self.global_embed_size*5, self.global_embed_size)
self.pk_highway = Highway(self.global_embed_size, self.highway_num_layer)
#### trial node
self.trial_fc = nn.Linear(self.global_embed_size*2, self.global_embed_size)
self.trial_highway = Highway(self.global_embed_size, self.highway_num_layer)
## self.pred_nn = nn.Linear(self.global_embed_size, 1)
self.device = device
self = self.to(device)
def forward(self, smiles_lst2, icdcode_lst3, criteria_lst, if_gnn = False):
### encoder for molecule, disease and protocol
molecule_embed, icd_embed, protocol_embed = self.forward_get_three_encoders(smiles_lst2, icdcode_lst3, criteria_lst)
### interaction
interaction_embedding = self.forward_encoder_2_interaction(molecule_embed, icd_embed, protocol_embed)
### risk of disease
risk_of_disease_embedding = self.feed_lst_of_module(input_feature = icd_embed,
lst_of_module = [self.risk_disease_fc, self.risk_disease_higway])
### augment interaction
augment_interaction_input = torch.cat([interaction_embedding, risk_of_disease_embedding], 1)
augment_interaction_embedding = self.feed_lst_of_module(input_feature = augment_interaction_input,
lst_of_module = [self.augment_interaction_fc, self.augment_interaction_highway])
### admet
admet_embedding_lst = []
for idx in range(5):
admet_embedding = self.feed_lst_of_module(input_feature = molecule_embed,
lst_of_module = self.admet_model[idx])
admet_embedding_lst.append(admet_embedding)
### pk
pk_input = torch.cat(admet_embedding_lst, 1)
pk_embedding = self.feed_lst_of_module(input_feature = pk_input,
lst_of_module = [self.pk_fc, self.pk_highway])
### trial
trial_input = torch.cat([pk_embedding, augment_interaction_embedding], 1)
trial_embedding = self.feed_lst_of_module(input_feature = trial_input,
lst_of_module = [self.trial_fc, self.trial_highway])
output = self.pred_nn(trial_embedding)
if if_gnn == False:
return output
else:
embedding_lst = [molecule_embed, icd_embed, protocol_embed, interaction_embedding, risk_of_disease_embedding, \
augment_interaction_embedding] + admet_embedding_lst + [pk_embedding, trial_embedding]
return embedding_lst
class HINTModel(HINT_nograph):
def __init__(self, molecule_encoder, disease_encoder, protocol_encoder,
device,
global_embed_size,
highway_num_layer,
prefix_name,
gnn_hidden_size,
epoch = 20,
lr = 3e-4,
weight_decay = 0,):
super(HINTModel, self).__init__(molecule_encoder = molecule_encoder,
disease_encoder = disease_encoder,
protocol_encoder = protocol_encoder,
device = device,
prefix_name = prefix_name,
global_embed_size = global_embed_size,
highway_num_layer = highway_num_layer,
epoch = epoch,
lr = lr,
weight_decay = weight_decay)
self.save_name = prefix_name
self.gnn_hidden_size = gnn_hidden_size
#### GNN
self.adj = self.generate_adj()
self.gnn = GCN(
nfeat = self.global_embed_size,
nhid = self.gnn_hidden_size,
nclass = 1,
dropout = 0.6,
init = 'uniform')
### gnn's attention
self.node_size = self.adj.shape[0]
'''
self.graph_attention_model_mat = nn.ModuleList([nn.ModuleList([self.gnn_attention() \
if self.adj[i,j]==1 else None \
for j in range(self.node_size)]) \
for i in range(self.node_size)])
'''
self.graph_attention_model_mat = nn.ModuleList([nn.ModuleList([self.gnn_attention() if self.adj[i,j]==1 else None for j in range(self.node_size)]) for i in range(self.node_size)])
# self.graph_attention_model_mat = nn.ModuleList([nn.ModuleList([self.gnn_attention() if self.adj[i,j]==1 else None for j in range(self.node_size)]) for i in range(self.node_size)])
'''
nn.ModuleList([ nn.ModuleList([nn.Linear(3,2) for j in range(5)] + [None]) for i in range(3)])
'''
self.device = device
self = self.to(device)
def generate_adj(self):
##### consistent with HINT_nograph.forward
lst = ["molecule", "disease", "criteria", 'INTERACTION', 'risk_disease', 'augment_interaction', 'A', 'D', 'M', 'E', 'T', 'PK', "final"]
edge_lst = [("disease", "molecule"), ("disease", "criteria"), ("molecule", "criteria"),
("disease", "INTERACTION"), ("molecule", "INTERACTION"), ("criteria", "INTERACTION"),
("disease", "risk_disease"), ('risk_disease', 'augment_interaction'), ('INTERACTION', 'augment_interaction'),
("molecule", "A"), ("molecule", "D"), ("molecule", "M"), ("molecule", "E"), ("molecule", "T"),
('A', 'PK'), ('D', 'PK'), ('M', 'PK'), ('E', 'PK'), ('T', 'PK'),
('augment_interaction', 'final'), ('PK', 'final')]
adj = torch.zeros(len(lst), len(lst))
adj = torch.eye(len(lst)) * len(lst)
num2str = {k:v for k,v in enumerate(lst)}
str2num = {v:k for k,v in enumerate(lst)}
for i,j in edge_lst:
n1,n2 = str2num[i], str2num[j]
adj[n1,n2] = 1
adj[n2,n1] = 1
return adj.to(self.device)
def generate_attention_matrx(self, node_feature_mat):
attention_mat = torch.zeros(self.node_size, self.node_size).to(self.device)
for i in range(self.node_size):
for j in range(self.node_size):
if self.adj[i,j]!=1:
continue
feature = torch.cat([node_feature_mat[i].view(1,-1), node_feature_mat[j].view(1,-1)], 1)
attention_model = self.graph_attention_model_mat[i][j]
attention_mat[i,j] = torch.sigmoid(self.feed_lst_of_module(input_feature=feature, lst_of_module=attention_model))
return attention_mat
##### self.global_embed_size*2 -> 1
def gnn_attention(self):
highway_nn = Highway(size = self.global_embed_size*2, num_layers = self.highway_num_layer).to(self.device)
highway_fc = nn.Linear(self.global_embed_size*2, 1).to(self.device)
return nn.ModuleList([highway_nn, highway_fc])
def forward(self, smiles_lst2, icdcode_lst3, criteria_lst, return_attention_matrix = False):
embedding_lst = HINT_nograph.forward(self, smiles_lst2, icdcode_lst3, criteria_lst, if_gnn = True)
### length is 13, each is 32,50
batch_size = embedding_lst[0].shape[0]
output_lst = []
if return_attention_matrix:
attention_mat_lst = []
for i in range(batch_size):
node_feature_lst = [embedding[i].view(1,-1) for embedding in embedding_lst]
node_feature_mat = torch.cat(node_feature_lst, 0) ### 13, 50
attention_mat = self.generate_attention_matrx(node_feature_mat)
output = self.gnn(node_feature_mat, self.adj * attention_mat)
output = output[-1].view(1,-1)
output_lst.append(output)
if return_attention_matrix:
attention_mat_lst.append(attention_mat)
output_mat = torch.cat(output_lst, 0)
if not return_attention_matrix:
return output_mat
else:
return output_mat, attention_mat_lst
def interpret(self, complete_dataloader):
from graph_visualize_interpret import data2graph
from HINT.utils import replace_strange_symbol
for nctid_lst, status_lst, why_stop_lst, label_vec, phase_lst, \
diseases_lst, icdcode_lst3, drugs_lst, smiles_lst2, criteria_lst in complete_dataloader:
output, attention_mat_lst = self.forward(smiles_lst2, icdcode_lst3, criteria_lst, return_attention_matrix=True)
output = output.view(-1)
batch_size = len(nctid_lst)
for i in range(batch_size):
name = '__'.join([nctid_lst[i], status_lst[i], why_stop_lst[i], \
str(label_vec[i].item()), str(torch.sigmoid(output[i]).item())[:5], \
phase_lst[i], diseases_lst[i], drugs_lst[i]])
if len(name) > 150:
name = name[:250]
name = replace_strange_symbol(name)
name = name.replace('__', '_')
name = name.replace(' ', ' ')
name = 'interpret_result/' + name + '.png'
print(name)
data2graph(attention_matrix = attention_mat_lst[i], adj = self.adj, save_name = name)
def init_pretrain(self, admet_model):
self.molecule_encoder = admet_model.molecule_encoder
### generate attention matrix
class Only_Molecule(Interaction):
def __init__(self, molecule_encoder, disease_encoder, protocol_encoder,
global_embed_size,
highway_num_layer,
prefix_name,
epoch = 20,
lr = 3e-4,
weight_decay = 0):
super(Only_Molecule, self).__init__(molecule_encoder=molecule_encoder,
disease_encoder=disease_encoder,
protocol_encoder=protocol_encoder,
global_embed_size = global_embed_size,
highway_num_layer = highway_num_layer,
prefix_name = prefix_name,
epoch = epoch,
lr = lr,
weight_decay = weight_decay,)
self.molecule2out = nn.Linear(self.global_embed_size,1)
def forward(self, smiles_lst2, icdcode_lst3, criteria_lst):
molecule_embed = self.molecule_encoder.forward_smiles_lst_lst(smiles_lst2)
return self.molecule2out(molecule_embed)
class Only_Disease(Only_Molecule):
def __init__(self, molecule_encoder, disease_encoder, protocol_encoder,
global_embed_size,
highway_num_layer,
prefix_name,
epoch = 20,
lr = 3e-4,
weight_decay = 0):
super(Only_Disease, self).__init__(molecule_encoder = molecule_encoder,
disease_encoder=disease_encoder,
protocol_encoder=protocol_encoder,
global_embed_size = global_embed_size,
highway_num_layer = highway_num_layer,
prefix_name = prefix_name,
epoch = epoch,
lr = lr,
weight_decay = weight_decay,)
self.disease2out = self.molecule2out
def forward(self, smiles_lst2, icdcode_lst3, criteria_lst):
icd_embed = self.disease_encoder.forward_code_lst3(icdcode_lst3)
return self.disease2out(icd_embed)
def dataloader2Xy(nctid_lst, label_vec, smiles_lst2, icdcode_lst3, criteria_lst, global_icd):
## label_vec: (n,)
y = label_vec
num_icd = len(global_icd)
from HINT.utils import smiles_lst2fp
fp_lst = [smiles_lst2fp(smiles_lst).reshape(1,-1) for smiles_lst in smiles_lst2]
fp_mat = np.concatenate(fp_lst, 0)
# fp_mat = torch.from_numpy(fp_mat) ### (n,2048)
icdcode_lst = []
for lst2 in icdcode_lst3:
lst = list(reduce(lambda x,y:x+y, lst2))
lst = [i.split('.')[0] for i in lst]
lst = set(lst)
icd_feature = np.zeros((1,num_icd), np.int32)
for ele in lst:
if ele in global_icd:
idx = global_icd.index(ele)
icd_feature[0,idx] = 1
icdcode_lst.append(icd_feature)
icdcode_mat = np.concatenate(icdcode_lst, 0)
X = np.concatenate([fp_mat, icdcode_mat], 1)
X = torch.from_numpy(X)
X = X.float()
# icdcode_mat = torch.from_numpy(icdcode_mat)
# X = torch.cat([fp_mat, icdcode_mat], 1)
return X, y
class FFNN(nn.Sequential):
def __init__(self, molecule_dim, diseasecode_dim,
global_icd,
protocol_dim = 0,
prefix_name = 'FFNN',
epoch = 10,
lr = 3e-4,
weight_decay = 0,
):
super(FFNN, self).__init__()
self.molecule_dim = molecule_dim
self.diseasecode_dim = diseasecode_dim
self.protocol_dim = protocol_dim
self.prefix_name = prefix_name
self.epoch = epoch
self.lr = lr
self.weight_decay = weight_decay
self.global_icd = global_icd
self.num_icd = len(global_icd)
self.fc_dims = [self.molecule_dim + self.diseasecode_dim + self.protocol_dim, 2000, 1000, 200, 50, 1]
self.fc_layers = nn.ModuleList([nn.Linear(v,self.fc_dims[i+1]) for i,v in enumerate(self.fc_dims[:-1])])
self.loss = nn.BCEWithLogitsLoss()
self.save_name = prefix_name
def forward(self, X):
for i in range(len(self.fc_layers) - 1):
fc_layer = self.fc_layers[i]
X = fc_layer(X)
last_layer = self.fc_layers[-1]
pred = F.sigmoid(last_layer(X))
return pred
def learn(self, train_loader, valid_loader, test_loader):
opt = torch.optim.Adam(self.parameters(), lr = self.lr, weight_decay = self.weight_decay)
train_loss_record = []
valid_loss = self.test(valid_loader, return_loss=True)
valid_loss_record = [valid_loss]
best_valid_loss = valid_loss
best_model = deepcopy(self)
for ep in tqdm(range(self.epoch)):
for nctid_lst, label_vec, smiles_lst2, icdcode_lst3, criteria_lst in train_loader:
X, _ = dataloader2Xy(nctid_lst, label_vec, smiles_lst2, icdcode_lst3, criteria_lst, self.global_icd)
output = self.forward(X).view(-1) #### 32, 1 -> 32, || label_vec 32,
loss = self.loss(output, label_vec.float())
train_loss_record.append(loss.item())
opt.zero_grad()
loss.backward()
opt.step()
valid_loss = self.test(valid_loader, return_loss=True)
valid_loss_record.append(valid_loss)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
best_model = deepcopy(self)
self.plot_learning_curve(train_loss_record, valid_loss_record)
self = deepcopy(best_model)
auc_score, f1score, prauc_score, precision, recall, accuracy, predict_1_ratio, label_1_ratio = self.test(test_loader, return_loss = False, validloader = valid_loader)
def evaluation(self, predict_all, label_all, threshold = 0.5):
import pickle, os
from sklearn.metrics import roc_curve, precision_recall_curve
with open("predict_label.txt", 'w') as fout:
for i,j in zip(predict_all, label_all):
fout.write(str(i)[:4] + '\t' + str(j)[:4]+'\n')
auc_score = roc_auc_score(label_all, predict_all)
figure_folder = "figure"
#### ROC-curve
fpr, tpr, thresholds = roc_curve(label_all, predict_all, pos_label=1)
# roc_curve =plt.figure()
# plt.plot(fpr,tpr,'-',label=self.save_name + ' ROC Curve ')
# plt.legend(fontsize = 15)
#plt.savefig(os.path.join(figure_folder,name+"_roc_curve.png"))
#### PR-curve
precision, recall, thresholds = precision_recall_curve(label_all, predict_all)
# plt.plot(recall,precision, label = self.save_name + ' PR Curve')
# plt.legend(fontsize = 15)
# plt.savefig(os.path.join(figure_folder,self.save_name + "_pr_curve.png"))
label_all = [int(i) for i in label_all]
float2binary = lambda x:0 if x<threshold else 1
predict_all = list(map(float2binary, predict_all))
f1score = f1_score(label_all, predict_all)
prauc_score = average_precision_score(label_all, predict_all)
# print(predict_all)
precision = precision_score(label_all, predict_all)
recall = recall_score(label_all, predict_all)
accuracy = accuracy_score(label_all, predict_all)
predict_1_ratio = sum(predict_all) / len(predict_all)
label_1_ratio = sum(label_all) / len(label_all)
return auc_score, f1score, prauc_score, precision, recall, accuracy, predict_1_ratio, label_1_ratio
def generate_predict(self, dataloader):
whole_loss = 0
label_all, predict_all = [], []
for nctid_lst, label_vec, smiles_lst2, icdcode_lst3, criteria_lst in dataloader:
X, _ = dataloader2Xy(nctid_lst, label_vec, smiles_lst2, icdcode_lst3, criteria_lst, self.global_icd)
output = self.forward(X).view(-1)
loss = self.loss(output, label_vec.float())
whole_loss += loss.item()
predict_all.extend([i.item() for i in torch.sigmoid(output)])
label_all.extend([i.item() for i in label_vec])
return whole_loss, predict_all, label_all
def bootstrap_test(self, dataloader, validloader = None, sample_num = 20):
best_threshold = 0.5
# if validloader is not None:
# best_threshold = self.select_threshold_for_binary(validloader)
self.eval()
whole_loss, predict_all, label_all = self.generate_predict(dataloader)
from HINT.utils import plot_hist
plt.clf()
prefix_name = "./figure/" + self.save_name
plot_hist(prefix_name, predict_all, label_all)
def bootstrap(length, sample_num):
idx = [i for i in range(length)]
from random import choices
bootstrap_idx = [choices(idx, k = length) for i in range(sample_num)]
return bootstrap_idx
results_lst = []
bootstrap_idx_lst = bootstrap(len(predict_all), sample_num = sample_num)
for bootstrap_idx in bootstrap_idx_lst:
bootstrap_label = [label_all[idx] for idx in bootstrap_idx]
bootstrap_predict = [predict_all[idx] for idx in bootstrap_idx]
results = self.evaluation(bootstrap_predict, bootstrap_label, threshold = best_threshold)
results_lst.append(results)
self.train()
auc = [results[0] for results in results_lst]
f1score = [results[1] for results in results_lst]
prauc_score = [results[2] for results in results_lst]
print("PR-AUC mean: "+str(np.mean(prauc_score))[:6], "std: "+str(np.std(prauc_score))[:6])
print("F1 mean: "+str(np.mean(f1score))[:6], "std: "+str(np.std(f1score))[:6])
print("ROC-AUC mean: "+ str(np.mean(auc))[:6], "std: " + str(np.std(auc))[:6])
def test(self, dataloader, return_loss = True, validloader=None):
# if validloader is not None:
# best_threshold = self.select_threshold_for_binary(validloader)
self.eval()
best_threshold = 0.5
whole_loss, predict_all, label_all = self.generate_predict(dataloader)
# from HINT.utils import plot_hist
# plt.clf()
# prefix_name = "./figure/" + self.save_name
# plot_hist(prefix_name, predict_all, label_all)
self.train()
if return_loss:
return whole_loss
else:
print_num = 5
auc_score, f1score, prauc_score, precision, recall, accuracy, \
predict_1_ratio, label_1_ratio = self.evaluation(predict_all, label_all, threshold = best_threshold)
print("ROC AUC: " + str(auc_score)[:print_num] + "\nF1: " + str(f1score)[:print_num] \
+ "\nPR-AUC: " + str(prauc_score)[:print_num] \
+ "\nPrecision: " + str(precision)[:print_num] \
+ "\nrecall: "+str(recall)[:print_num] + "\naccuracy: "+str(accuracy)[:print_num] \
+ "\npredict 1 ratio: " + str(predict_1_ratio)[:print_num] \
+ "\nlabel 1 ratio: " + str(label_1_ratio)[:print_num])
return auc_score, f1score, prauc_score, precision, recall, accuracy, predict_1_ratio, label_1_ratio
def plot_learning_curve(self, train_loss_record, valid_loss_record):
plt.plot(train_loss_record)
plt.savefig("./figure/" + self.save_name + '_train_loss.jpg')
plt.clf()
plt.plot(valid_loss_record)
plt.savefig("./figure/" + self.save_name + '_valid_loss.jpg')
plt.clf()
class ADMET(nn.Sequential):
def __init__(self, mpnn_model, device):
super(ADMET, self).__init__()
self.num = 5
self.mpnn_model = mpnn_model
self.device = device
self.mpnn_dim = mpnn_model.mpnn_hidden_size
self.admet_model = []
self.global_embed_size = self.mpnn_dim
self.highway_num_layer = 2
for i in range(5):
admet_fc = nn.Linear(self.mpnn_model.mpnn_hidden_size, self.global_embed_size).to(device)
admet_highway = Highway(self.global_embed_size, self.highway_num_layer).to(device)
self.admet_model.append(nn.ModuleList([admet_fc, admet_highway]))
self.admet_model = nn.ModuleList(self.admet_model)
self.admet_pred = nn.ModuleList([nn.Linear(self.global_embed_size,1).to(device) for i in range(5)])
self.f = F.relu
self.device = device
self = self.to(device)
def feed_lst_of_module(self, input_feature, lst_of_module):
x = input_feature
for single_module in lst_of_module:
x = self.f(single_module(x))
return x
def forward(self, smiles_lst, idx):
assert idx in list(range(5))
'''
xxxxxxxxxxxx
'''
embeds = self.mpnn_model.forward_smiles_lst_lst(smiles_lst)
embeds = self.feed_lst_of_module(embeds, self.admet_model[idx])
output = self.admet_pred[idx](embeds)
return output
def test(self, valid_loader):
pass
def learn(self, train_loader, valid_loader, idx):
opt = torch.optim.Adam(self.parameters(), lr = self.lr, weight_decay = self.weight_decay)
train_loss_record = []
valid_loss = self.test(valid_loader, return_loss=True)
valid_loss_record = [valid_loss]
best_valid_loss = valid_loss
best_model = deepcopy(self)
for ep in tqdm(range(self.epoch)):
for smiles_lst in train_loader:
output = self.forward(smiles_lst).view(-1) #### 32, 1 -> 32, || label_vec 32,
loss = self.loss(output, label_vec.float())
train_loss_record.append(loss.item())
opt.zero_grad()
loss.backward()
opt.step()
valid_loss = self.test(valid_loader, return_loss=True)
valid_loss_record.append(valid_loss)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
best_model = deepcopy(self)
self = deepcopy(best_model)