--- a +++ b/HINT/learn_phaseII.py @@ -0,0 +1,104 @@ +## 1. import +## 2. input & hyperparameter +## 3. pretrain +## 4. 'dataloader, model build, train, inference' +################################################ + + +## 1. import +import torch, os, sys +torch.manual_seed(0) +sys.path.append('.') +from HINT.dataloader import csv_three_feature_2_dataloader, generate_admet_dataloader_lst, csv_three_feature_2_complete_dataloader +from HINT.molecule_encode import MPNN, ADMET +from HINT.icdcode_encode import GRAM, build_icdcode2ancestor_dict +from HINT.protocol_encode import Protocol_Embedding +from HINT.model import HINTModel +device = torch.device("cpu") +if not os.path.exists("figure"): + os.makedirs("figure") + +## 2. input & hyperparameter +base_name = 'phase_II' + +train_file = 'data/' + base_name + '_train.csv' +valid_file = 'data/' + base_name + '_valid.csv' +test_file = 'data/' + base_name + '_test.csv' + + +mpnn_model = MPNN(mpnn_hidden_size = 50, mpnn_depth=3, device = device) + + + + + + +## 4. dataloader, model build, train, inference +train_loader = csv_three_feature_2_dataloader(train_file, shuffle=True, batch_size=32) +valid_loader = csv_three_feature_2_dataloader(valid_file, shuffle=False, batch_size=32) +test_loader = csv_three_feature_2_dataloader(test_file, shuffle=False, batch_size=32) +test_complete_loader = csv_three_feature_2_complete_dataloader(test_file, shuffle=False, batch_size = 32) + +icdcode2ancestor_dict = build_icdcode2ancestor_dict() +gram_model = GRAM(embedding_dim = 50, icdcode2ancestor = icdcode2ancestor_dict, device = device) +protocol_model = Protocol_Embedding(output_dim = 50, highway_num=3, device = device) + + + +hint_model_path = "save_model/" + base_name + ".ckpt" +if not os.path.exists(hint_model_path): + + + # ## 3. pretrain + admet_model_path = "save_model/admet_model.ckpt" + if not os.path.exists(admet_model_path): + admet_dataloader_lst = generate_admet_dataloader_lst(batch_size=32) + admet_trainloader_lst = [i[0] for i in admet_dataloader_lst] + admet_testloader_lst = [i[1] for i in admet_dataloader_lst] + admet_model = ADMET(molecule_encoder = mpnn_model, + highway_num=2, + device = device, + epoch=3, + lr=5e-4, + weight_decay=0, + save_name = 'admet_') + admet_model.train(admet_trainloader_lst, admet_testloader_lst) + torch.save(admet_model, admet_model_path) + else: + admet_model = torch.load(admet_model_path) + admet_model = admet_model.to(device) + admet_model.set_device(device) + + + + model = HINTModel(molecule_encoder = mpnn_model, + disease_encoder = gram_model, + protocol_encoder = protocol_model, + device = device, + global_embed_size = 50, + highway_num_layer = 2, + prefix_name = base_name, + gnn_hidden_size = 50, + epoch = 5, + lr = 3e-4, + weight_decay = 0, + ) + model.init_pretrain(admet_model) + model.learn(train_loader, valid_loader, test_loader) + model.bootstrap_test(test_loader) + torch.save(model, hint_model_path) +else: + model = torch.load(hint_model_path) + model.bootstrap_test(test_loader) + + + +""" +PR-AUC mean: 0.6285 +F1 mean: 0.6197 +ROC-AUC mean: 0.6456 +""" + + + +