[bc9e98]: / HINT / learn_indication.py

Download this file

89 lines (71 with data), 3.0 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
## 1. import
## 2. input & hyperparameter
## 3. pretrain
## 4. 'dataloader, model build, train, inference'
################################################
## 1. import
import torch, os, sys
if not os.path.exists("figure"):
os.makedirs("figure")
torch.manual_seed(0)
sys.path.append('.')
from HINT.dataloader import csv_three_feature_2_dataloader, generate_admet_dataloader_lst, csv_three_feature_2_complete_dataloader
from HINT.molecule_encode import MPNN, ADMET
from HINT.icdcode_encode import GRAM, build_icdcode2ancestor_dict
from HINT.protocol_encode import Protocol_Embedding
from HINT.model import HINTModel
device = torch.device("cuda:0") ## cuda:0
## 2. input & hyperparameter
base_name = 'indication'
train_file = 'data/' + base_name + '_train.csv'
valid_file = 'data/' + base_name + '_valid.csv'
test_file = 'data/' + base_name + '_test.csv'
mpnn_model = MPNN(mpnn_hidden_size = 50, mpnn_depth=3, device = device)
## 3. pretrain
admet_model_path = "save_model/admet_model.ckpt"
if not os.path.exists(admet_model_path):
admet_dataloader_lst = generate_admet_dataloader_lst(batch_size=32)
admet_trainloader_lst = [i[0] for i in admet_dataloader_lst]
admet_testloader_lst = [i[1] for i in admet_dataloader_lst]
admet_model = ADMET(molecule_encoder = mpnn_model,
highway_num=2,
device = device,
epoch=3,
lr=5e-4,
weight_decay=0,
save_name = 'admet_')
admet_model.train(admet_trainloader_lst, admet_testloader_lst)
torch.save(admet_model, admet_model_path)
else:
admet_model = torch.load(admet_model_path)
admet_model = admet_model.to(device)
admet_model.set_device(device)
## 4. dataloader, model build, train, inference
train_loader = csv_three_feature_2_dataloader(train_file, shuffle=True, batch_size=32)
valid_loader = csv_three_feature_2_dataloader(valid_file, shuffle=False, batch_size=32)
test_loader = csv_three_feature_2_dataloader(test_file, shuffle=False, batch_size=32)
test_complete_loader = csv_three_feature_2_complete_dataloader(test_file, shuffle=False, batch_size = 32)
icdcode2ancestor_dict = build_icdcode2ancestor_dict()
gram_model = GRAM(embedding_dim = 50, icdcode2ancestor = icdcode2ancestor_dict, device = device)
protocol_model = Protocol_Embedding(output_dim = 50, highway_num=3, device = device)
hint_model_path = "save_model/" + base_name + ".ckpt"
if not os.path.exists(hint_model_path):
model = HINTModel(molecule_encoder = mpnn_model,
disease_encoder = gram_model,
protocol_encoder = protocol_model,
device = device,
global_embed_size = 50,
highway_num_layer = 2,
prefix_name = base_name,
gnn_hidden_size = 50,
epoch = 5,
lr = 1e-3,
weight_decay = 0,
)
model.init_pretrain(admet_model)
model.learn(train_loader, valid_loader, test_loader)
model.bootstrap_test(test_loader)
torch.save(model, hint_model_path)
else:
model = torch.load(hint_model_path)
model.bootstrap_test(test_loader)