--- a +++ b/HINT/gnn_layers.py @@ -0,0 +1,109 @@ +import math +import torch +import numpy as np +import torch.nn as nn +import torch.nn.functional as F +from torch.nn.parameter import Parameter +from torch.nn.modules.module import Module +torch.manual_seed(3) +np.random.seed(1) + +class GraphConvolution(Module): + """ + Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 + """ + + def __init__(self, in_features, out_features, bias=True, init='xavier'): + super(GraphConvolution, self).__init__() + self.in_features = in_features + self.out_features = out_features + self.weight = Parameter(torch.FloatTensor(in_features, out_features)) + if bias: + self.bias = Parameter(torch.FloatTensor(out_features)) + else: + self.register_parameter('bias', None) + if init == 'uniform': + print("| Uniform Initialization") + self.reset_parameters_uniform() + elif init == 'xavier': + print("| Xavier Initialization") + self.reset_parameters_xavier() + elif init == 'kaiming': + print("| Kaiming Initialization") + self.reset_parameters_kaiming() + else: + raise NotImplementedError + + def reset_parameters_uniform(self): + stdv = 1. / math.sqrt(self.weight.size(1)) + self.weight.data.uniform_(-stdv, stdv) + if self.bias is not None: + self.bias.data.uniform_(-stdv, stdv) + + def reset_parameters_xavier(self): + nn.init.xavier_normal_(self.weight.data, gain=0.02) # Implement Xavier Uniform + if self.bias is not None: + nn.init.constant_(self.bias.data, 0.0) + + def reset_parameters_kaiming(self): + nn.init.kaiming_normal_(self.weight.data, a=0, mode='fan_in') + if self.bias is not None: + nn.init.constant_(self.bias.data, 0.0) + + def forward(self, input, adj): + support = torch.mm(input, self.weight) + output = torch.spmm(adj, support) + if self.bias is not None: + return output + self.bias + else: + return output + + def __repr__(self): + return self.__class__.__name__ + ' (' \ + + str(self.in_features) + ' -> ' \ + + str(self.out_features) + ')' + + +class GraphAttention(nn.Module): + """ + Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 + """ + + def __init__(self, in_features, out_features, dropout, alpha, concat=True): + super(GraphAttention, self).__init__() + self.dropout = dropout + self.in_features = in_features + self.out_features = out_features + self.alpha = alpha + self.concat = concat + + self.W = nn.Parameter(nn.init.xavier_normal_(torch.Tensor(in_features, out_features).type(torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor), gain=np.sqrt(2.0)), requires_grad=True) + self.a1 = nn.Parameter(nn.init.xavier_normal_(torch.Tensor(out_features, 1).type(torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor), gain=np.sqrt(2.0)), requires_grad=True) + self.a2 = nn.Parameter(nn.init.xavier_normal_(torch.Tensor(out_features, 1).type(torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor), gain=np.sqrt(2.0)), requires_grad=True) + + self.leakyrelu = nn.LeakyReLU(self.alpha) + + def forward(self, input, adj): + h = torch.mm(input, self.W) + N = h.size()[0] + + f_1 = torch.matmul(h, self.a1) + f_2 = torch.matmul(h, self.a2) + e = self.leakyrelu(f_1 + f_2.transpose(0,1)) + + zero_vec = -9e15*torch.ones_like(e) + attention = torch.where(adj > 0, e, zero_vec) + attention = F.softmax(attention, dim=1) + attention = F.dropout(attention, self.dropout, training=self.training) + h_prime = torch.matmul(attention, h) + + if self.concat: + return F.elu(h_prime) + else: + return h_prime + + def __repr__(self): + return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')' + + +