[bc9e98]: / HINT / dataloader.py

Download this file

196 lines (146 with data), 7.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
'''
(I). Trial_Dataset for prediction
(II). Trial_Dataset_Complete for interpretation
(III). SMILES lst
(IV). disease lst icd-code
'''
import torch, csv, os
from torch.utils import data
from torch.utils.data.dataloader import default_collate
from HINT.molecule_encode import smiles2mpnnfeature
from HINT.protocol_encode import protocol2feature, load_sentence_2_vec
sentence2vec = load_sentence_2_vec()
class Trial_Dataset(data.Dataset):
def __init__(self, nctid_lst, label_lst, smiles_lst, icdcode_lst, criteria_lst):
self.nctid_lst = nctid_lst
self.label_lst = label_lst
self.smiles_lst = smiles_lst
self.icdcode_lst = icdcode_lst
self.criteria_lst = criteria_lst
def __len__(self):
return len(self.nctid_lst)
def __getitem__(self, index):
return self.nctid_lst[index], self.label_lst[index], self.smiles_lst[index], self.icdcode_lst[index], self.criteria_lst[index]
#### smiles_lst[index] is list of smiles
class Trial_Dataset_Complete(Trial_Dataset):
def __init__(self, nctid_lst, status_lst, why_stop_lst, label_lst, phase_lst,
diseases_lst, icdcode_lst, drugs_lst, smiles_lst, criteria_lst):
Trial_Dataset.__init__(self, nctid_lst, label_lst, smiles_lst, icdcode_lst, criteria_lst)
self.status_lst = status_lst
self.why_stop_lst = why_stop_lst
self.phase_lst = phase_lst
self.diseases_lst = diseases_lst
self.drugs_lst = drugs_lst
def __getitem__(self, index):
return self.nctid_lst[index], self.status_lst[index], self.why_stop_lst[index], self.label_lst[index], self.phase_lst[index], \
self.diseases_lst[index], self.icdcode_lst[index], self.drugs_lst[index], self.smiles_lst[index], self.criteria_lst[index]
class ADMET_Dataset(data.Dataset):
def __init__(self, smiles_lst, label_lst):
self.smiles_lst = smiles_lst
self.label_lst = label_lst
def __len__(self):
return len(self.smiles_lst)
def __getitem__(self, index):
return self.smiles_lst[index], self.label_lst[index]
def admet_collate_fn(x):
smiles_lst = [i[0] for i in x]
label_vec = default_collate([int(i[1]) for i in x]) ### shape n,
return [smiles_lst, label_vec]
def smiles_txt_to_lst(text):
"""
"['CN[C@H]1CC[C@@H](C2=CC(Cl)=C(Cl)C=C2)C2=CC=CC=C12', 'CNCCC=C1C2=CC=CC=C2CCC2=CC=CC=C12']"
"""
text = text[1:-1]
lst = [i.strip()[1:-1] for i in text.split(',')]
return lst
def icdcode_text_2_lst_of_lst(text):
text = text[2:-2]
lst_lst = []
for i in text.split('", "'):
i = i[1:-1]
lst_lst.append([j.strip()[1:-1] for j in i.split(',')])
return lst_lst
def trial_collate_fn(x):
nctid_lst = [i[0] for i in x] ### ['NCT00604461', ..., 'NCT00788957']
label_vec = default_collate([int(i[1]) for i in x]) ### shape n,
smiles_lst = [smiles_txt_to_lst(i[2]) for i in x]
icdcode_lst = [icdcode_text_2_lst_of_lst(i[3]) for i in x]
criteria_lst = [protocol2feature(i[4], sentence2vec) for i in x]
return [nctid_lst, label_vec, smiles_lst, icdcode_lst, criteria_lst]
def trial_complete_collate_fn(x):
nctid_lst = [i[0] for i in x] ### ['NCT00604461', ..., 'NCT00788957']
status_lst = [i[1] for i in x]
why_stop_lst = [i[2] for i in x]
label_vec = default_collate([int(i[3]) for i in x]) ### shape n,
phase_lst = [i[4] for i in x]
diseases_lst = [i[5] for i in x]
icdcode_lst = [icdcode_text_2_lst_of_lst(i[6]) for i in x]
drugs_lst = [i[7] for i in x]
smiles_lst = [smiles_txt_to_lst(i[8]) for i in x]
criteria_lst = [protocol2feature(i[9], sentence2vec) for i in x]
return [nctid_lst, status_lst, why_stop_lst, label_vec, phase_lst, diseases_lst, icdcode_lst, drugs_lst, smiles_lst, criteria_lst]
def csv_three_feature_2_dataloader(csvfile, shuffle, batch_size):
with open(csvfile, 'r') as csvfile:
rows = list(csv.reader(csvfile, delimiter=','))[1:]
## nctid,status,why_stop,label,phase,diseases,icdcodes,drugs,smiless,criteria
nctid_lst = [row[0] for row in rows]
label_lst = [row[3] for row in rows]
icdcode_lst = [row[6] for row in rows]
drugs_lst = [row[7] for row in rows]
smiles_lst = [row[8] for row in rows]
criteria_lst = [row[9] for row in rows]
dataset = Trial_Dataset(nctid_lst, label_lst, smiles_lst, icdcode_lst, criteria_lst)
data_loader = data.DataLoader(dataset, batch_size = batch_size, shuffle = shuffle, collate_fn = trial_collate_fn)
return data_loader
def csv_three_feature_2_complete_dataloader(csvfile, shuffle, batch_size):
with open(csvfile, 'r') as csvfile:
rows = list(csv.reader(csvfile, delimiter=','))[1:]
nctid_lst = [row[0] for row in rows]
status_lst = [row[1] for row in rows]
why_stop_lst = [row[2] for row in rows]
label_lst = [row[3] for row in rows]
phase_lst = [row[4] for row in rows]
diseases_lst = [row[5] for row in rows]
icdcode_lst = [row[6] for row in rows]
drugs_lst = [row[7] for row in rows]
smiles_lst = [row[8] for row in rows]
new_drugs_lst, new_smiles_lst = [], []
criteria_lst = [row[9] for row in rows]
dataset = Trial_Dataset_Complete(nctid_lst, status_lst, why_stop_lst, label_lst, phase_lst,
diseases_lst, icdcode_lst, drugs_lst, smiles_lst, criteria_lst)
data_loader = data.DataLoader(dataset, batch_size = batch_size, shuffle = shuffle, collate_fn = trial_complete_collate_fn)
return data_loader
def smiles_txt_to_2lst(smiles_txt_file):
with open(smiles_txt_file, 'r') as fin:
lines = fin.readlines()
smiles_lst = [line.split()[0] for line in lines]
label_lst = [int(line.split()[1]) for line in lines]
return smiles_lst, label_lst
def generate_admet_dataloader_lst(batch_size):
datafolder = "data/ADMET/cooked/"
name_lst = ["absorption", 'distribution', 'metabolism', 'excretion', 'toxicity']
dataloader_lst = []
for i,name in enumerate(name_lst):
train_file = os.path.join(datafolder, name + '_train.txt')
test_file = os.path.join(datafolder, name +'_valid.txt')
train_smiles_lst, train_label_lst = smiles_txt_to_2lst(train_file)
test_smiles_lst, test_label_lst = smiles_txt_to_2lst(test_file)
train_dataset = ADMET_Dataset(smiles_lst = train_smiles_lst, label_lst = train_label_lst)
test_dataset = ADMET_Dataset(smiles_lst = test_smiles_lst, label_lst = test_label_lst)
train_dataloader = data.DataLoader(train_dataset, batch_size = batch_size, shuffle=True)
test_dataloader = data.DataLoader(test_dataset, batch_size = batch_size, shuffle = False)
dataloader_lst.append((train_dataloader, test_dataloader))
return dataloader_lst
# ## x is a list, len(x)=batch_size, x[i] is tuple, len(x[0])=5
# def mpnn_feature_collate_func(x):
# return [torch.cat([x[j][i] for j in range(len(x))], 0) for i in range(len(x[0]))]
# def mpnn_collate_func(x):
# #print("len(x) is ", len(x)) ## batch_size
# #print("len(x[0]) is ", len(x[0])) ## 3--- data_process_loader.__getitem__
# mpnn_feature = [i[0] for i in x]
# #print("len(mpnn_feature)", len(mpnn_feature), "len(mpnn_feature[0])", len(mpnn_feature[0]))
# mpnn_feature = mpnn_feature_collate_func(mpnn_feature)
# from torch.utils.data.dataloader import default_collate
# x_remain = [i[1:] for i in x]
# x_remain_collated = default_collate(x_remain)
# return [mpnn_feature] + x_remain_collated