Diff of /RadOnly/ode4.m [000000] .. [02e2c3]

Switch to unified view

a b/RadOnly/ode4.m
1
function Y = ode4(odefun,tspan,y0,varargin)
2
%ODE4  Solve differential equations with a non-adaptive method of order 4.
3
%   Y = ODE4(ODEFUN,TSPAN,Y0) with TSPAN = [T1, T2, T3, ... TN] integrates 
4
%   the system of differential equations y' = f(t,y) by stepping from T0 to 
5
%   T1 to TN. Function ODEFUN(T,Y) must return f(t,y) in a column vector.
6
%   The vector Y0 is the initial conditions at T0. Each row in the solution 
7
%   array Y corresponds to a time specified in TSPAN.
8
%
9
%   Y = ODE4(ODEFUN,TSPAN,Y0,P1,P2...) passes the additional parameters 
10
%   P1,P2... to the derivative function as ODEFUN(T,Y,P1,P2...). 
11
%
12
%   This is a non-adaptive solver. The step sequence is determined by TSPAN
13
%   but the derivative function ODEFUN is evaluated multiple times per step.
14
%   The solver implements the classical Runge-Kutta method of order 4.   
15
%
16
%   Example 
17
%         tspan = 0:0.1:20;
18
%         y = ode4(@vdp1,tspan,[2 0]);  
19
%         plot(tspan,y(:,1));
20
%     solves the system y' = vdp1(t,y) with a constant step size of 0.1, 
21
%     and plots the first component of the solution.   
22
%
23
24
if ~isnumeric(tspan)
25
  error('TSPAN should be a vector of integration steps.');
26
end
27
28
if ~isnumeric(y0)
29
  error('Y0 should be a vector of initial conditions.');
30
end
31
32
h = diff(tspan);
33
if any(sign(h(1))*h <= 0)
34
  error('Entries of TSPAN are not in order.') 
35
end  
36
37
try
38
  f0 = feval(odefun,tspan(1),y0,varargin{:});
39
catch
40
  msg = ['Unable to evaluate the ODEFUN at t0,y0. ',lasterr];
41
  error(msg);  
42
end  
43
44
y0 = y0(:);   % Make a column vector.
45
if ~isequal(size(y0),size(f0))
46
  error('Inconsistent sizes of Y0 and f(t0,y0).');
47
end  
48
49
neq = length(y0);
50
N = length(tspan);
51
Y = zeros(neq,N);
52
F = zeros(neq,4);
53
54
Y(:,1) = y0;
55
for i = 2:N
56
  ti = tspan(i-1);
57
  hi = h(i-1);
58
  yi = Y(:,i-1);
59
  F(:,1) = feval(odefun,ti,yi,varargin{:});
60
  F(:,2) = feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,1),varargin{:});
61
  F(:,3) = feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,2),varargin{:});  
62
  F(:,4) = feval(odefun,tspan(i),yi+hi*F(:,3),varargin{:});
63
  Y(:,i) = yi + (hi/6)*(F(:,1) + 2*F(:,2) + 2*F(:,3) + F(:,4));
64
end
65
Y = Y.';