Diff of /RadOnly/ode4.m [000000] .. [02e2c3]

Switch to side-by-side view

--- a
+++ b/RadOnly/ode4.m
@@ -0,0 +1,65 @@
+function Y = ode4(odefun,tspan,y0,varargin)
+%ODE4  Solve differential equations with a non-adaptive method of order 4.
+%   Y = ODE4(ODEFUN,TSPAN,Y0) with TSPAN = [T1, T2, T3, ... TN] integrates 
+%   the system of differential equations y' = f(t,y) by stepping from T0 to 
+%   T1 to TN. Function ODEFUN(T,Y) must return f(t,y) in a column vector.
+%   The vector Y0 is the initial conditions at T0. Each row in the solution 
+%   array Y corresponds to a time specified in TSPAN.
+%
+%   Y = ODE4(ODEFUN,TSPAN,Y0,P1,P2...) passes the additional parameters 
+%   P1,P2... to the derivative function as ODEFUN(T,Y,P1,P2...). 
+%
+%   This is a non-adaptive solver. The step sequence is determined by TSPAN
+%   but the derivative function ODEFUN is evaluated multiple times per step.
+%   The solver implements the classical Runge-Kutta method of order 4.   
+%
+%   Example 
+%         tspan = 0:0.1:20;
+%         y = ode4(@vdp1,tspan,[2 0]);  
+%         plot(tspan,y(:,1));
+%     solves the system y' = vdp1(t,y) with a constant step size of 0.1, 
+%     and plots the first component of the solution.   
+%
+
+if ~isnumeric(tspan)
+  error('TSPAN should be a vector of integration steps.');
+end
+
+if ~isnumeric(y0)
+  error('Y0 should be a vector of initial conditions.');
+end
+
+h = diff(tspan);
+if any(sign(h(1))*h <= 0)
+  error('Entries of TSPAN are not in order.') 
+end  
+
+try
+  f0 = feval(odefun,tspan(1),y0,varargin{:});
+catch
+  msg = ['Unable to evaluate the ODEFUN at t0,y0. ',lasterr];
+  error(msg);  
+end  
+
+y0 = y0(:);   % Make a column vector.
+if ~isequal(size(y0),size(f0))
+  error('Inconsistent sizes of Y0 and f(t0,y0).');
+end  
+
+neq = length(y0);
+N = length(tspan);
+Y = zeros(neq,N);
+F = zeros(neq,4);
+
+Y(:,1) = y0;
+for i = 2:N
+  ti = tspan(i-1);
+  hi = h(i-1);
+  yi = Y(:,i-1);
+  F(:,1) = feval(odefun,ti,yi,varargin{:});
+  F(:,2) = feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,1),varargin{:});
+  F(:,3) = feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,2),varargin{:});  
+  F(:,4) = feval(odefun,tspan(i),yi+hi*F(:,3),varargin{:});
+  Y(:,i) = yi + (hi/6)*(F(:,1) + 2*F(:,2) + 2*F(:,3) + F(:,4));
+end
+Y = Y.';